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1 Introduction

In the Netherlands, detailed information on buildings and addresses is provided as open data
via the Basisregistratie Adressen en Gebouwen, or BAG for short. This forms part of the Dutch
government’s system of key registers. Within this dataset, the footprints of all buildings are
stored as 2D polygons. Each footprint is associated with a number of attributes, such as the
building’s construction date and current use. By combining the geometry of these footprints
with point cloud data, building height can be determined, as shown in Figure 1. In the Nether-
lands, the AHN point cloud can be used for this purpose.1 This is a nationwide elevation
model obtained through airborne lidar. The 3D Geoinformation research group at TU Delft
has automated the process of extracting building heights from point cloud data and uses this
to extend the BAG dataset with additional height attributes. The extended dataset is openly
available through their 3D BAG service (Dukai et al., 2018). Height information provides in-
creased value to the BAG dataset, as it allows 3D city models to be generated. These have a
wide range of applications, such as the simulation of noise propagation for traffic planning
and the estimation of solar irradiation for solar panel placement (Biljecki et al., 2015).

Figure 1: Determination of building height from aerial lidar data and building footprints.
Adapted from Biljecki et al. (2017).

Many applications of 3D city models require data on the number of floors. For example,
flood response plans require this information to determine the amount of inhabitable storeys
remaining during a flood (M. Pronk, personal communication, July 28th, 2020). This is a par-
ticularly relevant topic for the Netherlands; a country largely located below sea level with
approximately half of the population living at flood risk. For this reason, the Dutch govern-
ment has developed a website that indicates the expected water height at any location given a
major breach of flood defences.2 This site also shows whether any dry storeys remain in each
flooded building. Data on the number of floors is used to provide this information. Another
relevant application is energy demand estimation, which is used to assess the benefit of energy
retrofitting (Agugiaro, 2015; Biljecki et al., 2015). In addition, the number of floors can be used
to estimate building population, which is useful for a variety of network analysis and urban
planning applications (Lwin and Murayama, 2009).

Despite the wide range of applications, the number of floors is currently not included as
an attribute of the BAG dataset. In some cases, this data is collected at a municipal-level as
part of the BAG ”plus” (BAG+). This is a more extensive version of the BAG, which indi-
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vidual municipalities may choose to maintain for internal use (Heeres, 2016). The BAG+ is
generally not made openly available. Lack of open data on the number of floors means that it
must be inferred from other available data. Automatic methods are often based on building
geometry, which usually involves dividing the estimated height of a building by an average
storey height, as shown in Figure 2. Given the strong correlation between building height and
storeys (Biljecki et al., 2017), this approach can often perform well. However, in certain cases
this over-simplification also limits the accuracy of the results, which has adverse consequences
for the intended application. This is further explained in Section 2.2.

Estimated height

Average storey 
height

Floor 3

Floor 2

Floor 1

Figure 2: Determination of floor count using building height

Therefore, this thesis aims to develop an alternative method to automatically infer the num-
ber of floors. This method will be based on the building footprints available in the BAG
dataset. Similar studies related to inferring building properties have used machine learning
to obtain accurate results. A number of examples are provided in further detail in Sections
2.3.2 and 2.3.3. These studies show that combining multiple attributes has a greater potential
than using a single predictor. For this reason, the alternative method will also focus on using
machine learning to combine multiple attributes, such as roof shape and construction year,
in order to obtain a more realistic estimate of the number of floors. If the accuracy of the re-
sults is sufficient, they may be integrated as a new attribute of the 3D BAG, allowing the data
to become openly available for use in the previously mentioned applications. In addition to
these applications, the results may be useful in two other main areas. Firstly, as input to algo-
rithms related to reconstructing the interiors of 3D city models (Boeters et al., 2015). Secondly,
for the automatic identification of mistakes in the floor count included in the BAG+, which is
collected manually and is thus prone to errors.

The following sections explain the context, motivation and approach of this research in fur-
ther detail. Section 2 provides an overview of the relevant background and related work,
focusing on (1) 3D city models, (2) geometric approaches to estimate the number of floors and
(3) machine learning. The main objectives of the research and the proposed methodology are
presented in Sections 3 and 4. This is followed by a more in-depth explanation of the tools
and datasets that will be used in Section 5. Preliminary results are presented in Section 6 and
finally, the project planning is outlined in Section 7.

2 Background and related work

2.1 3D building reconstruction

One of the most important concepts in the 3D reconstruction of buildings is the level of detail
(LOD). This concept defines the geometric and semantic complexity of a 3D city model, in
order to describe its degree of resemblance to the real-world situation (Biljecki et al., 2016b).
The most widely used standard for categorising the level of detail is the OGC CityGML 2.0

3



specification, which defines 5 levels of detail (OGC, 2012; Gröger and Plümer, 2012). This cat-
egorisation has been further refined by Biljecki et al. (2016a) to consist of four sub-categories
per level of detail, with the exclusion of LOD4 which is rarely used in practice. The refined
LOD specification is shown in Figure 4. It reduces ambiguity in the CityGML categorisation by
providing a more precise definition of the geometric detail required within each sub-category
(Biljecki et al., 2016a). For the purpose of this thesis, LOD1.2, 1.3 and 2.2 are the most impor-
tant. These models are readily available as part of the 3D BAG 2.0 and could be used to extract
geometric features relevant to estimating the number of floors.

Figure 3: The five LODs defined by the OGC CityGML 2.0 standard.
Reprinted from Biljecki et al. (2016a).

Figure 4: Improved LOD specification. Reprinted from Biljecki et al. (2016a).

Despite the apparent simplicity of the LOD1 block model, there is a high level of ambiguity
in its geometric representation (Biljecki et al., 2014). As illustrated in Figure 5a, the position of
the top surface varies significantly depending on the geometric reference chosen to represent
the building’s height. The 3D BAG takes geometric references into account by including six
different roof heights as attributes, based on the calculation of different percentiles from the
point cloud of each building (Dukai et al., 2019). In the context of this thesis, the difference
between geometric references representing the ridge and eaves of the roof could enable any
storeys beneath slanted roofs to be identified, as shown in Figure 5b.
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(a) Different height references for the top surface of an
LOD1 model. Reprinted from Biljecki et al. (2014).
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(b) Ridge vs eave height

Figure 5: Geometric references

2.2 Geometric approaches to estimate number of floors

Geometric approaches are common in the estimation of the number of floors. These can be
divided into two main types, based on either building height or internal area.

2.2.1 Height-based

Height: 9m
Storey height: 3m
Number of floors: 3 

3m

6m

9m

Figure 6: Schematic illustration of the
height-based method

This approach requires the height of a building to
be known, allowing the number of floors to be esti-
mated by dividing this by an average storey height
and rounding to the nearest integer (as shown in Fig-
ure 6). This is currently the main approach used to de-
termine the number of floors for flood response plans
in the Netherlands (M. Pronk, personal communica-
tion, July 28th, 2020). It is also cited in a number of
research papers (Shiravi et al., 2015; Alahmadi et al.,
2013). For Dutch flood response plans, building height
is calculated as the difference between the 75th roof
percentile and 50th ground percentile, as recorded in
the 3D BAG dataset. An average storey height of 2.65
metres has been derived from the Dutch building code
(Bouwbesluit), based on an average from standards be-
fore and after 2003. The reliability of this method was
assessed by manually inspecting a sample of buildings in Google Street View (M. Pronk, per-
sonal communication, December 2nd, 2020). However, the overall accuracy is currently un-
known. This thesis will therefore also focus on evaluating the performance of this method.

For buildings with flat roofs a height-based approach can work well, as they are essentially
equivalent to their LOD1 representation. However, for slanted roofs the results are highly de-
pendent on the geometric reference chosen to represent building height. In the Netherlands
only 34% of buildings are estimated to have a truly flat roof (Dukai et al., 2019), so using an
appropriate height reference is important. In addition, is also important to select a representa-
tive average storey height. This is difficult because buildings have different ceiling heights and
floor thicknesses, as well as variable ceiling heights from floor to floor. For example, a ground
floor lobby may be much taller than the floors above. This means that, despite a strong cor-
relation between the number of floors and building height, there is also substantial variation
in the number of floors of buildings with the same height. However, residential buildings are
generally more consistent than non-residential buildings (Biljecki et al., 2017).
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2.2.2 Area-based

Internal area: 30m2 
Footprint area: 10m2

Number of floors: 3 

Figure 7: Schematic illustration of the
area-based method

Alternatively, the number of floors can be estimated
by dividing the internal area of a building by its foot-
print area and rounding to the nearest integer. In
the Netherlands, the net internal area (NIA) is doc-
umented within the BAG and can be used for this
purpose. The NIA does not represent the gross area
of a building, but rather the usable area of individ-
ual building units. This means that it excludes areas
related to, for instance, stairs and elevator shafts or
places where ceiling height is lower than 1.5 metres
(Biljecki et al., 2017). This approach is used for Dutch
flood response plans when building height informa-
tion is not available (M. Pronk, personal communi-
cation, July 28th, 2020). For example, for buildings
constructed more recently than the latest AHN point
cloud. The height-based method is preferred because
NIA is often incorrectly registered in the BAG. In ad-
dition, the footprint area includes walls while the NIA does not, which can lead to errors (M.
Pronk, personal communication, July 28th, 2020). There are also discrepancies in the calcula-
tion of NIA before and after the introduction of the Dutch standard for areas and volumes of
buildings (NEN 2580:2007) (Boeters, 2013). Furthermore, in some cases the building footprint
registered in the BAG represents multiple buildings or is much larger than the floors above.
However, a potential benefit is that underground floor area is included in the NIA, meaning
that underground storeys can be inferred (Biljecki et al., 2017).

2.3 Machine learning

The following section provides a background on machine learning and outlines two relevant
examples of its application. These examples are chosen because they are based on using build-
ing footprints and attributes to infer a building property. This provides a useful reference for
predicting the number of floors from similar data, as further elaborated on in Section 4.2.

2.3.1 Background

Machine learning is the field of study that enables computers to learn from data without be-
ing explicitly programmed (Géron, 2019). Since they do not rely on hard-coded rules, machine
learning systems can be used to gain insights into large, complex datasets and to solve prob-
lems for which conventional approaches do not perform well. It is a technique used for a wide
variety of tasks ranging from email spam filters to facial recognition.

Machine learning techniques can be divided into different categories. One major distinc-
tion is made between supervised and unsupervised methods. Supervised algorithms require
the input data to consist of a mapping between features and labels, whereas unsupervised
algorithms determine this mapping independently and require only features. In the case of
inferring the number of floors, the labels are the building floor count (ground truth), while the
features are any relevant building properties, such as roof shape and construction year. Super-
vised algorithms can be further sub-divided into regression and classification tasks. Figure 8
illustrates the difference between these tasks. Regression algorithms are used to predict con-
tinuous values (e.g. building height), whereas classification is used to predict discrete classes
(e.g. roof shape categories) (Müller and Guido, 2016). For the estimation of the number of
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floors, it is not clear which of these tasks is more appropriate. This is discussed in further
detail in Section 6.2.

feature
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(a) Regression

model

x1

x2

(b) Classification

Figure 8: Two main types of supervised machine learning algorithms, with the predictions made for
new instances shown in blue

Random Forest (RF) is one example of a supervised machine learning algorithm that can be
used for both classification and regression tasks. This is the main algorithm used in the exam-
ples provided in the following sections. It works by combining multiple decision trees, which
are each trained on different random subsets of the training data (Géron, 2019). A schematic
representation is shown in Figure 9. Decision trees are essentially a hierarchy of if/else ques-
tions, which the algorithm constructs by finding the best feature to split each node. One main
drawback of decision trees is their tendency to over-fit the data. Through the combination of
many slightly different trees, over-fitting can be averaged out, allowing more reliable results
to be obtained (Müller and Guido, 2016). The main advantage of RF is that the feature im-
portance is calculated, which enables predictive models to be constructed using the optimal
subset of features. Other examples of supervised machine learning algorithms include linear
regression, Support Vector Machines (SVMs) and neural networks. The comparison of dif-
ferent models plays an important role in the development of a machine learning algorithm.
Multiple models can also be combined through ensemble learning to improve the accuracy of
the results (Géron, 2019).

Figure 9: Random forest algorithm

2.3.2 Building height

Biljecki et al. (2017) used machine learning to infer building heights using only 2D features
derived from building footprints and attributes. This research highlighted the potential to
estimate building height without elevation data. Furthermore, the results provided a higher
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level of accuracy than the commonly used geometric approach, which is based on multiplying
the number of floors by an assumed storey height. Ten different features were derived and
different combinations were used as input to a Random Forest regression algorithm. These
combinations were selected in order to take into account scenarios where not all features are
available. The number of storeys, building age and net internal area were found to be the
features with the highest importance.

Lánský (2020) further extended on this research by inferring the height of all buildings in
the USA, using similar features derived from 2D building footprints and attributes. The level
of accuracy achieved for rural and suburban areas was relatively good, but the mean absolute
error (MAE) for central business districts in cities was high. This is potentially because the
training data was not representative enough. Similar research has also been conducted by
Anh et al. (2018) using the same geometric predictors as Biljecki et al. (2017) to infer the height
of buildings in Hanoi, Vietnam. However, the performance of the model is lower, which the
authors attribute to the limited amount of training data used by the algorithm.

2.3.3 Roof shape

Biljecki and Dehbi (2019) explored the use of machine learning to infer roof shape from LOD0
and LOD1 models without the acquisition of lidar data. Twelve features were used as input
to a Random Forest classifier, around half of which were derived from the geometry of the
building footprint. The model achieved an accuracy of 85% for the prediction of six roof classes
and 92% for distinguishing flat roofs from slanted roofs. Footprint area and building height
were found to be the two most important features in this case. This research is closely related
to the previously described work of Biljecki et al. (2017), as it forms part of a possible pipeline
for constructing LOD2 models from footprints without elevation data (Figure 10).

Figure 10: Pipeline for generating LOD2 models from building footprints without elevation
data. Adapted from Biljecki and Dehbi (2019).

2.4 Conclusions from the literature review

The main conclusions from the literature review are:

1. Commonly used geometric approaches rely on a single feature (e.g. building height) to
determine the number of floors, which can be prone to errors. The overall accuracy of
these approaches is currently unknown and requires evaluation.

2. Machine learning may allow more accurate results to be obtained, since multiple at-
tributes have a greater potential than the use of a single predictor. Features used to infer
building height and roof shape in previous studies could be useful in the prediction of
the number of floors from similar data.

3. The use of different combinations of features is an important consideration when devel-
oping a machine learning algorithm. This also allows situations where not all features
are available to be taken into account.

4. The comparison of geometric height references could be an important aspect to investi-
gate in relation to identifying storeys beneath slanted roofs (see Figure 5b).
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3 Research objectives

The main research question of this thesis is:

To what extent can machine learning provide a better estimate of building storeys than a purely
geometric approach?

The goal of this research is to develop a machine learning algorithm which improves on the
results obtained from the geometric approaches described in Section 2.2. Rather than relying
on a single predictor (e.g. height), this algorithm will be based on multiple building attributes
and geometrical features. The focus will be on developing an algorithm which uses the opti-
mal subset of building features to determine the number of floors, taking into account cases
where not all attributes are readily available (e.g. buildings constructed after the most recent
lidar survey). If a sufficient level of accuracy is achieved, the results may be integrated as a
new attribute of the 3D BAG service.

3.1 Sub-questions

In order to achieve the main research objective, the following sub-questions are defined:

a. Which features are related the number of floors? Is there any overlap between these
features and which subset is optimal?

b. Which supervised learning method provides the best results? Does combining different
machine learning algorithms through ensemble learning improve the results?

c. What level of accuracy can be achieved? To what extent does this improve on the current
estimation?

3.2 Scope

The following scope is defined for the research:

• The focus will be on buildings in the Netherlands due to:

– the wide availability of open data

– the aim to integrate the number of floors as a new attribute of the 3D BAG service

– the fact that applications related to flooding are specifically relevant to the Nether-
lands, since a large portion of the country is under sea-level.

• The focus will be on (mixed-)residential buildings because:

– this avoids over-complication of the problem, since non-residential buildings are
more variable in design

– some applications are most relevant to this type of building use (e.g the liveability
of homes subject to flooding)

• The comparison of different machine learning algorithms will not be extended to neural
networks/deep learning, in order to prevent the algorithm from becoming a ”black box”.

• The focus will be on extracting features based on building geometry and existing at-
tributes, not on the modelling of buildings in LOD2. An LOD2 model of the Netherlands
is already openly available as part of the 3D BAG 2.0.
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4 Methodology

An overview of the proposed methodology is provided in Figure 11. It consists of three main
stages: (1) data acquisition and pre-processing, (2) data preparation and (3) modelling.

Figure 11: Flowchart of methodology

4.1 Data acquisition and pre-processing

The first stage of the methodology involves collecting the data required for the analysis. This
will be obtained from four main datasets, as outlined in further detail in Section 5.2. In ad-
dition to the BAG building footprints, this includes a dataset containing neighbourhood and
district statistics. As explained in further detail in the following section, this data will be used
to extract additional features which may be related to the number of floors.

This stage also involves a number of pre-processing steps. Firstly, the 2D building footprints
from the BAG dataset will be filtered by current use to consist of only (mixed-)residential
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buildings. Since the focus is on estimating the number of floors of residential buildings, dis-
carding any other building types will help to reduce data storage. After filtering the data, the
net internal area of each building will be calculated based on the usage area of its constituent
building units. This data is available as an attribute of the verblijfsobjecten contained in the
BAG dataset. Furthermore, since the statistical data is only available at a neighbourhood and
district level, it will need to be associated to each building contained within the boundaries.
Finally, the training data from different municipalities will be combined into a uniform format.
After the pre-processing steps, the data will be loaded into a PostgreSQL/PostGIS database.

4.2 Data preparation

The second stage of the methodology involves the preparation of the data for the machine
learning algorithm. The first step is to validate and clean the data. This is expected to be
the most time-consuming step, as it is essential to ensure that the input data is clean for the
algorithm to perform well (Géron, 2019). This mainly involves verifying the accuracy of the
training data and removing any instances that are incorrectly labelled. It also involves check-
ing the consistency of the 3D BAG footprints. For example, some buildings are marked as
having valid height while they do not have any ground points, which leads to incorrect height
calculation. Furthermore, any missing data or anomalies will be identified and handled. The
handling of missing data could either involve ignoring these instances completely, setting the
values to zero or using the mean/median as a replacement value.

(a) Exterior

ratio >> 1

ratio = 1

ratio > 1

(b) Interior

Figure 12: Schematic illustration showing the potential use of the roof to footprint area ratio for
identifying floors below slanted roofs. A ratio equal to 1 indicates a flat roof, as shown by the

middle building. A ratio larger than 1 indicates a slanted roof. The larger this value, the higher the
likelihood of a full storey located below the roof, as shown by the buildings on the left and right.

Once the data has been validated and cleaned, the next step will be to extract features.
These features will be used as input to the machine learning algorithm. A list of attributes that
may be useful for feature extraction is provided in Table 1. This list categorises the attributes
into cadastral, geometrical and statistical. After feature extraction, feature scaling may be
required to normalise the feature ranges, as machine learning does not perform well if the
input features have very different scales (Géron, 2019). After this, the data will be split into
training and test sets. The training set will be used to train the machine learning algorithm,
whereas the test set will be used to evaluate its performance. Usually 20% of the dataset is
set aside to create the test set. A simple way to split the data is through random sampling.
Alternatively, building characteristics could be used to stratify the split, helping to make the
training set more representative.

11



Table 1: List of useful attributes for feature extraction

Category Attribute Explanation (and reference)

Cadastral
Construction year Building age is related to storey height to some

extent (Biljecki et al., 2017). Possibly useful
for determining storey height from the Dutch
building code.

Net internal area Calculated as summed area of building units,
used to compute ratio with footprint area.

Geometrical
Footprint area For comparison with net internal area.

Measured height Roof percentile – ground percentile. Different
geometric references could be used for com-
parison of roof eaves and ridge, in order to de-
termine the ceiling height under slanted roofs,
as shown in Figure 5b.

Number of neighbouring
residential buildings

Building height has been linked to the num-
ber of neighbouring buildings, shorter build-
ings (less floors) typically have more neigh-
bours (Biljecki et al., 2017)

Roof shape Either based on binary classification (flat/not-
flat) or a more complex shape metric if results
require improvement. The roof flat attribute in
the 3D BAG implements quite a strict defini-
tion of flat (Dukai et al., 2019).

Roof area Based on LOD2 model. As shown in Figure 12,
this could be compared with footprint area to
identify full storeys below a slanted roof.

Statistical
Population density Buildings with more floors accommodate more

people. Volumetric approaches for calculating
building population are based on the number
of floors (Lwin and Murayama, 2009), suggest-
ing a strong relationship.

% of multi-household buildings Multi-household buildings are generally taller
(contain more floors).

Distance to supermarkets, etc Taller buildings (with more floors) accommo-
date more people, potentially leading to higher
demand for supermarkets and other amenities
(Biljecki et al., 2017).

4.3 Modelling and prediction

The third stage of the methodology consists of implementing the actual machine learning al-
gorithm itself. As part of this stage, a baseline model will also be established. This is a simple
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model that can be used to evaluate the performance of the machine learning algorithm. In this
case, a reference model will be created using the geometric approaches described in Section
2.2. This is the same as the method currently used to determine the number of inhabitable
storeys used in flood response plans. After creating the baseline mode, different machine
learning algorithms will be selected and trained. Once a number of promising models have
been developed, each one will be iteratively evaluated and fine-tuned, taking into account
feature importance, cross-validation scores and hyperparameter values. Once the best combi-
nation is found, the implementation will be finalised and used to predict the number of floors
of all buildings. Multiple models may potentially be combined through ensemble learning.
Finally, the baseline model will be used to evaluate the model performance.

5 Tools and datasets

5.1 Tools

In order to read, store and process the data used in this project several open-source tools are
required. These are summarised below:

• Python will be used to develop the main machine learning algorithm using the scikit-learn
library. It will also be used to read and (pre-)process the data using the (geo)pandas and
numpy libraries. Furthermore, plots will be created using matplotlib.

• PostgreSQL will be used to manage the data from different sources in a central database.
The (3D)BAG datasets will be restored from Postgres backup files and the training data
will be loaded using the ogr2ogr command line utility provided by GDAL. PostGIS will
be used to extend the database with spatial analysis tools in order to extract geometric
features from the data.

• QGIS will be used for the visualisation of 2D data and Azul for the visualisation of 3D
city models in CityJSON/CityGML format.

5.2 Datasets

The following datasets will be used:

1. Basisregistratie Adressen en Gebouwen (BAG). As explained in Section 1, this dataset con-
sists of polygons representing the footprints of all buildings in the Netherlands. It also
consists of points representing each address. It is maintained at the municipality level
and distributed as a national dataset by Kadaster, the Dutch Cadastre. Each building and
address is associated with a number of attributes, such as the current use and construc-
tion year. The building footprints are based on the projection of the roof outline, rather
than the true footprint on the ground.

2. 3D BAG (Dukai et al., 2018). This is a dataset developed and maintained by the 3D Geoin-
formation research group at TU Delft. It provides additional height information about
the roof and ground surfaces of each building in the BAG dataset. This information
is derived at multiple reference heights from the AHN point cloud of the Netherlands.
Parameters related to the quality of LOD1 models generated from the data are also in-
cluded as attributes (Dukai et al., 2019). The dataset is updated monthly but is currently
in the process of being updated to version 2.0, which will include LOD1.2, 1.3 and 2.2
models of all buildings in CityJSON format (a beta version is already available).
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3. CBS wijken en buurten. This is a dataset maintained by the Dutch central bureau for statis-
tics. It consists of census data collected at a district and neighbourhood level on a yearly
basis, such as the population density and percentage of single household dwellings.

4. Training data. Data on the number of floors is required to train the machine learning
algorithm. This data can be obtained from the BAG ”plus”, which is an extended ver-
sion of the BAG maintained by individual municipalities. Since the maintenance of this
dataset is optional, the content varies per municipality and the definition of attributes
is not standardised. This means that additional work will be required to transform the
data into a uniform format. Furthermore, any data on the number of floors is gener-
ally not made publicly available, meaning individual municipalities must be contacted
to request its use. Training data has already been obtained from three municipalities in
Randstad (Rotterdam, The Hague and Amsterdam), as well as a rural municipality in
the East of the Netherlands (Rijssen-Holten). More data may be required from munici-
palities outside of the Randstad in order to avoid potentially introducing bias.

6 Preliminary results

Preliminary results have been obtained for three case study areas in Rotterdam and The Hague.
The table below provides an overview of the study areas.

Case study Area (m²) No. buildings

Zuidplein (Rotterdam) 9.62 × 105 1431

Hoogvliet (Rotterdam) 6.04 × 105 1749

Mariahoeve (The Hague) 2.18 × 106 671

6.1 Reference model results

Firstly, results were obtained using a simple geometric approach. The method implemented
corresponds to the calculation of the number of floors currently used for flood response plans
in the Netherlands. These results will later be used as a reference model to evaluate the per-
formance of the final machine learning algorithm. In order to gain an understanding of the
accuracy of these results, they were compared to the training data available for each case
study. An example is shown in Figure 13 for Zuidplein in Rotterdam. The highest absolute
difference between the training data and reference model is obtained for the large building at
the bottom right of the area. This is actually a mixed-residential shopping mall with a much
larger footprint than the rest of the building, which causes the geometric approach to greatly
underestimate the number of floors. This also occurs in a number of cases for the other study
areas. Aside from this one exception, the reference model obtains reasonably similar results
for the majority of buildings in this study area. In particular, buildings below six storeys corre-
spond very well. However, further inspection using Google Street View to validate the results
has led to some interesting discoveries about the quality of the training data. In quite a few
cases, the training data for Rotterdam is incorrectly labelled and the reference model actually
provides better results. A number of examples are shown in Figure 14.

Due to concerns about the quality of the training data for Rotterdam, a second study area
was investigated. Hoogvliet was chosen because Boeters et al. (2015) referred to this neigh-
bourhood as being a good choice for a case study due to the variation in different building
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(a) Training data (b) Absolute difference with reference model

(c) Distribution of number of floors

Figure 13: Zuidplein, Rotterdam

types. Since Hoogvliet is a very large neighbourhood, a smaller area was selected consist-
ing of mainly 3-storey terraced houses with slanted roofs. This provided a good test for the
reference model. Figure 16a provides a comparison between the training data and reference
model results. In most cases, the reference model underestimates the number of storeys of
3-storey buildings by one floor. This seems to be due to sloped roofs and relatively low floor-
to-ceiling heights, as shown in Figure 15. This highlights the need for a more advanced model
to estimate the number of floors. In the case of Hoogvliet, it seems that a predictor related to
building age may be a useful feature, as this could indicate a particular architectural style.

Finally, part of the Mariahoeve neighbourhood in The Hague was analysed. This area con-
sists of multiple blocks of high-rise flats, as well as terraced housing. Figure 16b provides an
overview of the distribution in the number of floors, for both the training data and reference
model. Overall, the results of the reference model correspond quite well. However, there are
some discrepancies due to the standard used to define the number of floors by the municipal-
ity of The Hague. The training data includes a distinction between whether the first building
storey starts at ground level (etage) or above/below ground (woonlaag). This could be a use-
ful attribute, but also leads to some ambiguity. In some cases a woonlaag starts half a storey
above/below ground and in other cases this is a full storey, meaning that the ground floor
may be completely excluded from the floor count, as shown in Figure 17. It unclear whether
this is consistently the case for apartment blocks, which could be a major limitation and re-
quires further investigation. Another limitation of this training dataset is that it only includes
single-household buildings connected to the ground and flats accessed via a gallery, meaning
that the data is a lot sparser.
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(a) Flakkeesestraat 85-89 (training data: 2 floors;
reference model: 4 floors; actual: 4 floors)

(b) Pleinweg 108–110 (training data: 2 floors;
reference model: 5 floors; actual: 5 floors)

Figure 14: Examples of incorrectly labelled buildings in Zuidplein, Rotterdam
Imagery © Google

(a) Janswaal 28–32 (training data: 3 floors;
reference model: 2 floors; actual: 3 floors)

(b) Wederik 1–17 (training data: 3 floors;
reference model: 2 floors; actual: 3 floors)

Figure 15: Examples of incorrect reference model results in Hoogvliet, Rotterdam
Imagery © Google

(a) Hoogvliet, Rotterdam (b) Mariahoeve, The Hague

Figure 16: Distribution of the number of floors
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(a) Isabellaland (Training data: 7 floors;
reference model: 9 floors; actual: 8 floors)

(b) Robertaland 42 (Training data: 2 floors;
reference model: 3 floors; actual: 3 floors)

Figure 17: Examples from The Hague where floors are counted from above ground level.
Imagery © Google

6.2 Machine learning results

After establishing the reference model, Random Forest regression and classification algorithms
were implemented using two input features: (1) building height and (2) floor area ratio. The
main purpose of this analysis was to gain an initial understanding of the scikit-learn li-
brary. Building height was calculated as the difference between the 75th roof percentile and
50th ground percentile, as recorded in the 3D BAG. Floor area ratio was calculated as the net
internal area of the building units divided by the footprint area.

As mentioned in Section 2.3.1, it is not clear whether a regression or classification algorithm
would be better suited to inferring the number of floors. Therefore, both were implemented
during the preliminary analysis. Since the number of floors is a discrete attribute, a classi-
fication algorithm appeared more appropriate at first. The results of a regression algorithm
would need to be rounded to the closest integer. However, for classification to work prop-
erly, the training data must include sufficient examples of each number of floors encountered
within buildings in reality. If this is not the case, the algorithm would be unable to predict the
number of floors correctly for the missing classes. It seems unlikely that each floor count will
be sufficiently represented in the training data, meaning that a classification algorithm may
only be useful for distinguishing broader ranges (e.g. whether a building has between 1–3
floors). This suggests that regression may be more suitable. The comparison between regres-
sion and and classification will be further investigated during the thesis in order to understand
the limitations of each and to determine which performs best.

The importance of the two input features used by the algorithms is shown in Table 2. The
importance is roughly the same for the classification algorithm in all cases, although area has
slightly more importance for both Hoogvliet and Mariahoeve. This may be because there are
more buildings in these areas with slanted roofs, making height a less good predictor. For the
regression algorithm, height was a much more important predictor for both Zuidplein and
Mariahoeve, while for Hoogvliet the feature importance was roughly equal.

The accuracy of the models was evaluated using a test set. An in-depth evaluation was
not performed since the number of floors was only predicted for a small amount of buildings
and because the training data from Rotterdam contains substantial gross errors. However,
it was still useful to gain an initial understanding of the accuracy metrics that can be used.
For classification algorithms confusion matrices can be used to compare the true labels to the
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Table 2: Overview of feature importance

Classification Regression

Height Area ratio Height Area ratio

Importance

Zuidplein 0.54 0.46 0.84 0.16

Hoogvliet 0.45 0.55 0.55 0.45

Mariahoeve 0.45 0.55 0.77 0.23

predicted labels. These are shown in Figure 18 for the three study areas. A value of 1 on the
diagonal indicates that the class has been predicted correctly. It is interesting to note that the
algorithm struggled most to correctly infer the number of floors for buildings with 2–3 storeys,
similar to the reference model. The performance of the regression algorithm was difficult to
assess. The mean absolute error (i.e. the average difference between true and predicted values)
can be used, but this was zero on average in this case, using rounded predicted values.

(a) Zuidplein (b) Hoogvliet

(c) Mariahoeve

Figure 18: Normalised confusion matrices showing the performance of the RF classification
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7 Project planning

7.1 Tasks and deadlines

The project plan is outlined in the Gantt chart shown in Figure 19. This chart presents the order
and duration of each of the main tasks. Deadlines are indicated with an orange diamond.

January February March April May June
 Task 2.7 2.8 2.9 2.10 - 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11
 Further literature review

 Data aquisition

   - Create central database

   - Obtain extra training data

 Data preparation

   - Validate and clean data 

   - Handle missing data

   - Extract features

 Machine learning

   - Model selection & training

   - Evaluate model performance

   - Fine-tune models

   - Predict no. floors 

   - Compute accuracy metrics

 P3 progress meeting ⬥
 Thesis writing ⬥
 P4 presentation ⬥
 Finalise report ⬥
 P5 presentation ⬥

Figure 19: Gantt chart showing the main tasks, deadlines and overall project schedule

7.2 Meetings

A weekly 30 minute meeting will be held with the first supervisor. Meetings will be held
with the second supervisor and external supervisor when additional guidance or feedback is
required. The co-reader is still to be decided.
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