

Delft University of Technology

Evolution of the WebDSL runtime
Reliability engineering of the WebDSL web programming language
Groenewegen, Danny M.; Chastelet, Elmer Van; Visser, Eelco

DOI
10.1145/3397537.3397553
Publication date
2020
Document Version
Final published version
Published in
Programming 2020 - Conference Companion of the 4th International Conference on Art, Science, and
Engineering of Programming

Citation (APA)
Groenewegen, D. M., Chastelet, E. V., & Visser, E. (2020). Evolution of the WebDSL runtime: Reliability
engineering of the WebDSL web programming language. In A. Aguiar, S. Chiba, & E. G. Boix (Eds.),
Programming 2020 - Conference Companion of the 4th International Conference on Art, Science, and
Engineering of Programming (pp. 77-83). (PervasiveHealth: Pervasive Computing Technologies for
Healthcare). ACM. https://doi.org/10.1145/3397537.3397553
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3397537.3397553
https://doi.org/10.1145/3397537.3397553

Evolution of the WebDSL Runtime
Reliability Engineering of the WebDSL Web Programming Language

Danny M. Groenewegen
Delft University of Technology

The Netherlands
d.m.groenewegen@tudelft.nl

Elmer van Chastelet
Delft University of Technology

The Netherlands
e.vanchastelet@tudelft.nl

Eelco Visser
Delft University of Technology

The Netherlands
e.visser@tudelft.nl

ABSTRACT
Web applications are ideal for implementing information systems;
they can organize and persist the data in a database, do not require
installation on client machines, and can be instantly updated every-
where. However, web programming is complex due to its heteroge-
neous nature, causing web frameworks to suffer from insufficient
or leaky abstraction, weak static consistency checking, and secu-
rity features that are not enforced. We developed the WebDSL web
programming language, which supports direct expression of intent,
strong static consistency checking, linguistic abstractions for web
programming concerns, and automatically enforces security fea-
tures for web applications. We have used WebDSL for over 10 years
to create information systems for academic workflows with thou-
sands of users. Based on our experiences with these applications,
we improved the WebDSL compiler and runtime to increase robust-
ness, performance, and security of applications. In this experience
report, we reflect on the lessons learned and improvements made
to the language runtime.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
Compilers;Runtime environments; Integrated and visual de-
velopment environments.

KEYWORDS
domain-specific languages, web programming, web applications,
web security, compilers, integrated development environments,
experience report
ACM Reference Format:
Danny M. Groenewegen, Elmer van Chastelet, and Eelco Visser. 2020. Evo-
lution of the WebDSL Runtime: Reliability Engineering of the WebDSL Web
Programming Language. In Companion Proceedings of the 4th International
Conference on the Art, Science, and Engineering of Programming (<Program-
ming’20> Companion), March 23–26, 2020, Porto, Portugal. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3397537.3397553

1 INTRODUCTION
Information systems store data, organize data, and manage business
processes. For example, in a university information systems are

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7507-8/20/03.
https://doi.org/10.1145/3397537.3397553

used to track student progress, store grades, manage individual
study program selection, and create overviews for university staff.
Web applications are ideal for implementing information systems:
they organize and persist all data in a database, protect data by only
allowing specific operations, do not require installation on client
computers, and can be upgraded without interruption.

Unfortunately, web application development is complex due to its
heterogeneous nature. It involves multiple programming languages
with their own programming models (e.g. DOM updates with client-
side Javascript, server-side Java code to execute operations, SQL
database queries), and separate software systems in a network
(browser, proxy server, application server, database server) that all
need to work together. Additionally, there are non-functional re-
quirements inherent to the web platform such as protecting against
request tampering and injection attacks.

Many web frameworks exist to assist programmers in organiz-
ing the complexity of web programming by enforcing standard
patterns. These frameworks also have their own issues, such as
having to write boilerplate code to glue together components, late
integration checks between framework components, and weak IDE
support for framework concepts [11]. Part of the problem is lack
of collaboration between the programming language design and
the framework design. For example, where a typical framework
provides convenient ways to escape values in queries, query injec-
tion attacks can be prevented in a safer way if the programming
language is made aware of queries, because the developer can forget
about the problem entirely [2].

We have developed WebDSL, a domain-specific programming
language that incorporates web framework concepts in the lan-
guage. WebDSL provides linguistic abstractions for the various
aspects of web programming integrated in a single language that
produces code for the different tiers in a web application. The lan-
guage abstractions allow direct expression of intent. Accidental
complexity from boilerplate code and non-functional requirements
is handled by the code generator and runtime. The language pro-
vides static consistency checking in the compiler and IDE which
avoids consistency errors in the application definition. TheWebDSL
compiler generates a full Java web application that can be deployed
on an application server.

We have been developing and using WebDSL for over 10 years
to create information systems for academic workflows. The initial
WebDSL research was focused on DSL compiler design [12, 13],
language design for access control and data validation concerns [7,
8], and static consistency checking [11]. The applications we created
at that point were prototypes and case studies, with few external
users. Because the WebDSL compiler became more reliable over

77

https://doi.org/10.1145/3397537.3397553
https://doi.org/10.1145/3397537.3397553

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Danny M. Groenewegen, Elmer van Chastelet, and Eelco Visser

time, the applications became more ambitious. By now we have
developed several applications with thousands of users:
EvaTool: a course evaluation application that supports processes
for analyzing student feedback by lecturers and other staff.
WebLab: an online learning management system with a focus on
programming eduction (students make programming assignments
in the browser), with support for lab work and digital exams, used
in multiple courses at TU Delft.
MyStudyPlanning: an application for composition of individual
study plans by students and verification of those plans by the exam
board, used by multiple faculties at TU Delft.
conf.researchr.org: a domain-specific content management sys-
tem for creating and hosting integrated websites for conferences
with multiple co-located events, used by all ACM SIGPLAN and
SIGSOFT conferences.

We learned many lessons while developing these applications,
which we used to improve the reliability of the WebDSL language
and its runtime. The abstraction layer that the WebDSL language
provides between application specification and implementation, en-
tails that the time invested in fine tuning reliability, robustness, per-
formance, scalability, and security of the language and its runtime
benefits all applications. Engineering a reliable runtime requires
coordination between all the heterogeneous components of a web
application, and takes a lot of experimentation to improve. In this
paper, we reflect on improvements we made to the WebDSL code
generator and runtime and how they related to language design
decisions. The contributions of this paper are:

(1) A reflection on design decisions in WebDSL and their impact
on the reliability of the resulting applications.

(2) An experience report on robustness, performance, and secu-
rity problems that came up in real-world web information
system scenarios.

(3) Insight into the requirements for the next generation of
multitier web programming languages.

2 WEBDSL LANGUAGE
In this section we discuss the design and implementation of the
WebDSL language. In subsequent sections we focus on reliability
aspects.

2.1 Language Design Principles
Based on the problems we observed in web programming languages,
and our experiences in creating applications, we identify 5 design
principles for WebDSL which guide the language design decisions.
Linguistic abstractions should enable direct expression of
intent. Boilerplate code is generated or hidden in the runtime.
Accidental complexity is removed, only essential complexity is ex-
pressed. Design language concepts with as much or little flexibility
as required for the essential complexity.
Linguistic abstractions should ensure reliability and secu-
rity. Applications should keep working when deployed in a real
setting. This means the runtime should ensure robustness, perfor-
mance, scalability, and also security, protecting against malicious
web technology exploits (e.g. cross-site scripting or remote code
evaluation). Exploit countermeasures are enforced in the runtime
without adding complexity to application code.

Figure 1: Editor screenshot, example intentionally seeded
with faults to show static checks in IDE

Static checking should present errors in terms of the domain.
WebDSL is designed from the ground up with static analysis and
cross-language consistency checking in mind. The IDE and com-
piler can analyze the code and immediately report errors. Because
of the explicit syntactic constructs for language concepts, semantic
errors can be precise and messages in terms of the domain concepts.
Figure 1 demonstrates this with a screenshot of the WebDSL editor.
Extensibility should be explicit. Avoid abstractions from be-
coming leaky, in cases where knowledge of the generated code
is required to complete the application. Extension with external
components is done through explicit foreign function interfaces in
the language, such as for invoking server-side Java or client-side
Javascript libraries.
Lessons learned should be consolidated in the language. Lan-
guage and applications should co-evolve, reflecting experiences
from requirements engineering and application development in the
language design. General problems found and fixed in applications
should become language or library improvements, so that other
applications automatically reap the benefits.

2.2 WebDSL Language Concepts
TheWebDSL language consists of several concepts or sublanguages
that work together in the specification of a complete web applica-
tion. The three core language concepts in WebDSL, listed at the
top of Table 1, are data model entities with automatic persistence
to the database, user interface templates with safe HTML output
and data binding in forms, and functions to implement operations
on data. The rest of the table lists extensions to the core concepts
and provides insight into the interactions between concepts. These
interactions determine the static consistency checking the compiler
and IDE perform and how error messages about failed consistency
checks are phrased. For example, user interface templates require
well-typed access to the data model; access control rules refer to
defined user interface components for weaving in checks; the prin-
cipal entity declaration needs to refer to entities and properties that

78

Evolution of the WebDSL Runtime <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Table 1: WebDSL Language concepts and their interactions

Concept Functionality
data model data entity objects with database persistence

primitive, reference, and collection types
load/save functionality for objects

ui templates pages connected by navigation links
render HTML tags and data model values
forms with databind update data model objects

functions general-purpose object oriented language
actions triggered from ui templates
update data model objects with assignments

queries query data model objects in functions
email email templates, based on ui templates render

send email trigger in functions
data validation validation phase after databind ui templates

data model invariants, functions assertions
render messages in ui templates

access control rule-based sublanguage to create security policy
declare principal data model object
rule checks can use expressions from functions
rule needs to refer to existing ui templates

native classes declare interface of Java code in data model
create objects and invoke methods in functions

services ui templates page request to generate JSON
read incoming JSON request data in functions

search search field mapping in data model
search queries in functions

JS CSS embed embed JS and CSS fragments in ui templates
Ajax updates update subset of ui templates inside page

have been declared elsewhere. Access control rules define the acces-
sibility to pages and templates. If a page does not have an associated
access control rule, a warning is given to notify the developer that
the page is inaccessible. In addition to static consistency checking,
the links between language concepts also influence the runtime of
the language. For example, email rendering reuses template ren-
dering, but stores rendered content in an email queue instead of
returning it in a response to the browser. Note that the table is not
exhaustive; WebDSL supports additional concepts.

2.3 Example Application
Figure 2 shows an example WebDSL application to illustrate the
main language aspects. Code comments in the example illustrate
particular features being used in the line before or above. The
example application is a tiny multi-user note taking application,
in which a user can give edit access of (all) their notes to other
users. The data model consists of two entity definitions (User at
lines 1-14 and Note at lines 15-19) for data objects with persistence.
The root page (lines 20-31) is the default landing page of the web
application and shows a login form (line 21), navigation to the edit
page of the logged in user’s notes (lines 23-25), and displays notes
from every user (lines 26-30) using the note template (defined at
lines 32-37). When the logged in user (principal) has received edit
access from the author of a note, a link to edit those notes is also
visible (line 35, the visibility is controlled by the access control
rules at lines 69-71). The editNotes page allows editing existing
notes (lines 40-51). If the principal is the owner, this page also

 1 entity User {
 2 username : String (id, name)
 3 // id checks uniqueness, runtime uses value for url
 4 // name is shown for selection in inputs
 5 password : Secret // Secret is stored encrypted
 6 notes : {Note} // set of Note type entities
 7 allowEdit : {User}
 8 (allowed=from User as u where u <> ~this)
 9 // allowed filters input options
10 // safe queries as expressions
11 canEdit : {User} (inverse=allowEdit)
12 // bidirectional relation many-to-many
13 validate(notes.length <= 5, "Only 5 notes allowed")
14 }
15 entity Note {
16 author : User (inverse=notes)
17 // bidirectional relation one-to-many
18 content : WikiText // output renders Markdown
19 }
20 page root {
21 authentication
22 // generated template based on principal declaration
23 navigate editNotes(principal){
24 "Edit your notes"
25 } // navigation link to edit page
26 for(n: Note order by n.modified desc){
27 // iterates over all notes in db
28 // modified timestamp is a built-in entity property
29 div{ note(n) } // template call
30 }
31 }
32 template note(n: Note){
33 "~n.author.username: "
34 output(n.content)
35 navigate editNotes(n.author){ "Edit note" }
36 // access control hides inaccessible links
37 }
38 page editNotes(owner: User){
39 div{ "Notes of: ~owner.username" }
40 form {
41 placeholder ph { // mark region as ajax updatable
42 for(note in owner.notes){
43 label("Current"){ output(note.content) }
44 // input and output in standard library
45 label("Update"){ input(note.content) }
46 } // each iteration unique template identity
47 }
48 submit action{ replace(ph); }{ "Save updates" }
49 // commits all databind inputs in form
50 // replace triggers ajax update of placeholder ph
51 }
52 if(principal == owner){
53 // inline access control safe in ui template
54 submit action{
55 Note{ author := owner }.save();
56 // inverse adds it to owner.notes property
57 }{ "Add note" }
58 form{
59 label("Allow edit"){
60 input(owner.allowEdit)[onclick=action{}]
61 // input shows username values with checkboxes
62 // actions can be attached to onX attributes
63 }}}}
64 principal is User with credentials username, password
65 // principal declaration, enables ac rules,
66 // sets principal, generates authentication
67 access control rules
68 rule page root { true }
69 rule page editNotes(owner: User){
70 principal == owner || owner in principal.canEdit
71 }
72 // hides inaccessible links
73 // page init check defends against url tamper

Figure 2: WebDSL example

79

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Danny M. Groenewegen, Elmer van Chastelet, and Eelco Visser

allows adding new notes or giving another user access to edit the
owner’s notes (lines 52-63). An interesting aspect of this edit page
is that forms (lines 40 and 58) automatically perform databinding
of input values (lines 45 and 60), an action that simply needs to
store the inputs does not require code (line 60). Additionally, the
form input id attributes are implicit, every input(note.content)
(line 45) has its own template identity which relates a form input
field to a particular Note entity being edited (see Section 2.5). Page
content can be updated through ajax without refreshing the entire
page. This is done through placeholder definitions that mark the
area to be refreshed (line 41), and invoking the built-in replace
function as part of an action (line 48). Access control is enabled by
declaring the entity (User) that is used to represent the principal
(line 64). Based on the principal declaration, a default authentication
form is automatically generated (called at line 21). Access to pages
is denied by default and rules express the condition for allowing
access. The root page with the login form is accessible to anyone
(line 68), while the editNotes page can only be accessed if you
are the owner, or have gotten access from the owner (lines 69-71).
This is an example of a simple discretionary access control model,
that allows users to configure access control restrictions to their
data [7].

2.4 WebDSL Request Lifecycle
The main runtime behavior of WebDSL applications is handling
browser page requests for retrieving a page (GET) and requests
for posting form data (POST). The request processing lifecycle is
shown in Figure 3. The dispatch handler starts by analyzing request
parameters to determine the page that was accessed and load the
arguments to the page. Session data is also loaded to determine
whether a user is logged in. This is followed by an access con-
trol check, which can deny access to the rest of processing and
redirect. In case of a GET request that only reads data, the tem-
plates are rendered, and no database transaction commit is required.
In case of a form submit the templates are evaluated in multiple
phases: databinding processes inputs and transforms request data
to updates in the loaded entities, validation then checks for failing
validation rules before deciding to execute the requested action,
finally the requested action is executed. In case of validation failure,
the transaction is rolled back, and the page is rendered with errors.
When validation succeeds, the transaction is committed and the re-
sponse is rendered or a redirect is triggered. An ajax update request
is a variation of this process, where only part of a page is rendered
and returned. Throughout the request phases, the persistent data
model is accessed to load entity data by id or through queries. En-
tity updates are tracked, and flushed back to the database when
committing. Database transaction semantics decide how to resolve
conflicts in updating persisted data.

2.5 User Interface Template Identity
The user interface templates in WebDSL use a custom framework
for dispatching and handling requests. A distinguishing feature in
this implementation is a deterministic template identifier generator
that uniquely identifies instances of templates. This is the basis
for form handling, because these identifiers connect input data
in a submit request back to the data model value in the input. In

Data model
entities

loaded in
memory

database

UI Templates

load entities
read property values

retrieve entities by query

set property values
create new instances

flush changes and
commit transaction

or
rollback transaction

start new transaction

commit or rollback

query entities
Databinding

Validate Forms

Handle Actions

Access Control
Check

Commit writes if
validation ok
or rollback

Render
Response
or Redirect

HTML response
JSON reponse for ajax update

File Download
Redirect Headers

GET request
POST request with form data

Convert Request
Parameters

Redirect to accessDenied page

Figure 3: WebDSL request lifecycle

many MVC frameworks (e.g. Django, Ruby on rails) the developer
is required to specify such id attributes consistently in both the
template and action handler. This makes reuse of form templates
more difficult, because multiple occurrences need explicit unique id
attributes. WebDSL takes a different approach and includes action
handling as part of the user interface context. Input tag identities are
implicit, and data model values are automatically updated through
databinding when a form is submitted. This scales easily to more
complex forms with iteration and choice. WebDSL automatically
inserts unique identifiers and avoids clashes in the input ids. Submit
actions also follow this method and use the template identifier
to match a button submit form request to the right action. Input
identifiers that are not in the template declaration, or submit ids
that are not available, are ignored to avoid security problems caused
by form data tampering. The construction of template identity is
illustrated in the table below.

for(e in persistent entities)

for(e in transient entities)

for(e in primitive values)

templatecall(args) static id

e.id

iteration numberfixline

e

assign unique id at compile-time

Template Element Template Id Component

The template id is build up dynamically in a stack when process-
ing phases of templates. Part of the construction is static, each
templatecall in the AST of the application gets a fresh id assigned
at compile-time. This makes multiple calls to the same template
unique, which means only iteration constructs could create colli-
sions. For each iteration construct in WebDSL, the runtime decides
on an appropriate identity value to add to the stack. When request-
ing an id for a template, the stack content is hashed to constrain
the size of the id attribute.

80

Evolution of the WebDSL Runtime <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Nginx

Tomcat

http

JDBC

Tomcat

MySQL

http

JDBC

Tomcat

MySQL

http

JDBC

https
application code

WebDSL compiler

generated Java

Java compiler

war file

Compile
WebDSL

Application

Deploy
WebDSL

Application

Figure 4: Deployment scenario, each box can be a separate
server or the same depending on application requirements

2.6 Application Deployment
The WebDSL compiler creates a war file with a complete Java
web application. A typical deployment scenario is illustrated in
Figure 4. Here, the war file is copied into the webapps folder of
a Tomcat application server. On initialization of the application,
MySQL database table schemas are created if they do not exist,
and updated if new columns are added. Nginx receives incoming
requests first and decides based on the domain which application
and application server are requested. Using a reverse proxy server
to handle outside requests is more secure than directly exposing
an application server to the web. The Apache Httpd and Nginx
projects get a lot more scrutiny because these are used everywhere.
Additionally, they can be set up to connect to multiple Tomcat
instances, and take care of common web deployment configuration,
like HTTPS encryption. A Tomcat application server can host one
or more web applications, and a MySQL instance can host databases
for multiple web applications.

3 ROBUSTNESS ENGINEERING
We define robustness as: applications should not crash and should
not show glitches in availability.

Single Application per JVM. In an ideal scenario for deploying
Java web applications, it is enough to have one application server
instance hosting all the applications, and one database server in-
stance hosting all the databases. What we experienced in practice
is that there are many reasons why the JVM can crash:

• Hanging Tomcat JVM due to expensive page request
• Tomcat crashing automatically after 50 days 1

• Crashed JVM due to bug in JNI code of a library
• Maximum open file handles reached for process

These problems can all be solved, some require changing the OS en-
vironment, or JVM parameters, or the bug has been fixed in a newer
JVM/Tomcat/library. Even though they can be solved, having all
applications in one application server means if one crashes the JVM,
all applications are down. For robustness in our application deploy-
ment we switched to one application per Tomcat instance. With
MySQL we experienced few robustness issues. However, for per-
formance tuning it can be useful to have one application database
per MySQL instance to have more control over settings.

Fluent Redeploy. When redeploying an application there is a
small delay between thewar file being deployed and the first request
1https://bz.apache.org/bugzilla/show_bug.cgi?id=56684

being accepted. This delay can be reduced by using tomcat war file
versioning e.g. by copying a war file with version number appended,
e.g. ROOT##42.war. The new war file is deployed next to the old
one, and requests are directed to the new application instance as
soon as it is finished deploying. A WebDSL application starts with
checking the database schema for updates. In the case of adding
a new property to an entity with many saved instances, this can
be slow. The schema update can also be done in advance to avoid
the delay in deployment. Another issue was related to template
identity. The identifiers are partially based on a static id assigned
to template calls at compile-time. If this id is not stable between
recompilations, input and action ids can change. This means that if
a user is looking at a loaded page, then a redeploy is performed on
the application server, the forms on the loaded page are no longer
valid. A page refresh is needed to get back to a working page. We
improved this behavior by making the ids more deterministic, using
the AST location as unique identifier, which resulted in fewer failed
actions after a redeploy.

Transaction Retry. In the majority of requests there is no issue
with concurrent edits of the same data. Since we rely on the transac-
tion behavior of the database to handle conflicts, there are specific
scenarios where a request fails because another transaction com-
mitted changes at the same time, e.g. by code in a background task.
This situation was observable as a page sometimes not loading,
or an action failing to complete. We added a retry mechanism to
handling requests in the specific scenario of a concurrent change.
By default, requests are tried upto 3 times before giving up. In most
situations this is enough to let the update be processed. The request
is handled as if it came after the commit that caused the conflict.
Transaction semantics can not be hidden entirely from the WebDSL
application developer, as we experienced in a WebLab scenario. A
new feature was added to calculate an average grade for all exam
assignments, updated every time a change was made by any stu-
dent. This led to all student transactions being in conflict, because
they were trying to update the same row storing the average grade
in the database. The problem of describing derived values concisely
and deriving a robust evaluation was inspiration for the IceDust
language [9, 10].

Submit Failure Feedback. Another improvement was made in
the handling of failed actions. When data is updated in the data-
base, it might happen that a form is no longer available, meaning
the unique ids of the inputs and actions will be ignored. If the
user then submits the form, it is not recognized as a valid action.
The initial implementation would cause the button not to get a re-
sponse, which was confusing for users. We improved this behavior
by explicitly notifying the user with a customizable message. For
example, in WebLab, the submit button for an assignment becomes
unavailable after the deadline passes. The student now gets a mes-
sage explaining that the deadline has passed, when they press the
submit button.

4 PERFORMANCE ENGINEERING
We define performance as: applications should have no noticeable
delay in response times, and this should hold also when the amount
of data increases (scalability).

81

https://bz.apache.org/bugzilla/show_bug.cgi?id=56684

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Danny M. Groenewegen, Elmer van Chastelet, and Eelco Visser

In-Memory Page Cache. In many applications there are more
users reading data than writing data. In that case, a page cache is
very beneficial for performance, e.g. in CMS-style applications such
as conf.researchr.org. By building a page cache into the runtime we
can automatically handle cache invalidation. After checking access
control, the rendered page is retrieved from cache if available. The
cache is filled automatically and keeps the most recently used pages
in cache. Cache space is allocated for anonymous users, and for
logged in users, which helps improve the browsing speed for a user
session on the website. All caches are invalidated when an entity
change happens. If it is a session entity change, only the page cache
for logged in users is invalidated.

Query Prefetching. In the data model of the WebDSL runtime,
we use Hibernate ORM to implement objects with persistence. In
the runtime, we made the decision to have a default configuration
that retrieves reference properties lazily. In many cases this is a
good default. If the reference is not used, it does not have to be
loaded from the database. The effect is that the queries that get
generated are small and fast. However, the number of executed
queries is high. When there is an iteration over a large collection,
and for each iteration a query is executed, it is often faster to do
one query with a join for the extra needed data (eager fetching).
This is referred to as the 1+N problem in ORM terminology. We
have experimented [6] with deriving automatic prefetching, which
showed us that the decision for eager fetching can be partly static,
by analyzing access patterns in the application code. However,
there is also a dynamic component. The actual speed improvement
depends on the table sizes and several database settings. To have
more control, we also added prefetching syntax to the language
to force eager fetching. This turned out to be very convenient in
practical situations where a single page was getting too slow.

5 SECURITY ENGINEERING
We define security as: applications should prevent attacks from
malicious sources, where vulnerabilities in the web technology
stack are abused.

Improving CSRF Protection. Easy to guess id attributes in form
inputs are vulnerable to Cross-Site Request Forgery (CSRF) attacks.
A malicious website can create a link or image that is a forged
request to execute an action on the targeted application. If the victim
is logged in to the targeted application, the browser will perform
the request using the victim’s credentials. Template id generation
in WebDSL depends on the data and is hashed to make them hard
to guess. We further improved this protection by including the
principal user entity id in all template id attributes. This can be done
transparently because the compiler controls id generation, and the
entity used as principal is explicitly identified for access control. A
commonway to do CSRF protection in frameworks like Django is to
rely on adding an additional CSRF token to all the forms. The token
is a random secret value associated with a user session that needs
to be submitted with the request parameters to perform the action.
Although it makes protection convenient, it is still something that
a developer can forget to include, or cause confusion if it is used
incorrectly and blocks a submit unintentionally.

Force HTTPS. A feature that is best solved before requests go to
the application server at all, is forcing request to go over HTTPS.

This makes sure all sensitive form data and cookies gets sent en-
crypted. This is simple to configure in Apache Httpd or Nginx and
can be configured with HSTS headers so that browsers cache the
decision to access the site over HTTPS.

Single Sign-On. The largest security issue we experienced was
a bug in the A-Select single sign-on Apache module provided by
the university. The module was vulnerable to a directory traversal
attack, which would circumvent the filter that blocked access. The
lesson learned here is to be very careful with external authentication
integration, the application code might have a perfect access control
model, but if you cannot trust the signin procedure it is useless.

Deployment Isolation. Since we were running the servers, we
also managed a Jenkins instance for our research group. This be-
came a problem when the jenkins user started executing suspicious
commands on the server. It turned out that a vulnerability in Jenk-
ins was abused to run arbitrary scripts. The lesson we learned was
to not trust that other developers of other web applications get
security right, and deploy applications with scripting components
in as much virtualization and isolation as possible.

6 RELATEDWORK
WebDSL has been designed to integrate web information system
concerns into a single language. Comparing with existing languages
and frameworks, it functions as a full-stack web programming so-
lution like the Java Spring framework, Django Python framework,
and Ruby on Rails. React and Angular are popular client-side ren-
dering frameworks. These are not full-stack solutions, and require a
server-side component to handle concerns like persistence. Integrat-
ing concerns as language features requires making design decisions
up front. This means WebDSL is particularly suited for information
systems. However, it might not be a good choice for other styles
of web applications. For example, if you need raw performance,
or a client-side rendered user interface with mostly web socket
communication, then the current language features in WebDSL are
not sufficient.

WebML [1] is a modeling language for generating Java web
applications. Applications are created in a graphical tool using high-
level page components such as login, show all items, search items,
item detail. High-level components have the benefit of allowing fast
prototyping and easy understanding of applications. The downside
is that there is a large gap to get fine-grained control, such as having
to write custom components in Java code.

Ur/Web [3] provides verification of rich program properties
through type-checking. The Ur/Web code compiles to run on server
and client, generating C for the server and Javascript for the client.
An example of verification related to input id attributes is that it
checks whether the request data ids accessed in an action handler
are indeed produced in the HTML form that invokes the action.

The Links [4] web programming language provides a single lan-
guage from which code for all tiers (client, server, and database)
is generated. The database abstraction provides transparent opti-
mized database queries derived from the code. Security aspects are
identified as open issues in this work. Current work on Links [5]
introduces session types to provide static guarantees that com-
munication between clients and server complies with a specified
protocol.

82

Evolution of the WebDSL Runtime <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

REFERENCES
[1] Marco Brambilla and Piero Fraternali. 2014. Large-scale Model-Driven Engineer-

ing of web user interaction: TheWebML andWebRatio experience. Science of Com-
puter Programming 89 (2014), 71–87. https://doi.org/10.1016/j.scico.2013.03.010

[2] Martin Bravenboer, Eelco Dolstra, and Eelco Visser. 2010. Preventing injection
attacks with syntax embeddings. Science of Computer Programming 75, 7 (2010),
473–495. https://doi.org/10.1016/j.scico.2009.05.004

[3] Adam Chlipala. 2016. Ur/Web: a simple model for programming the web. Com-
mun. ACM 59, 8 (2016), 93–100. https://doi.org/10.1145/2958736

[4] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web
Programming Without Tiers. In Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands, November
7-10, 2006, Revised Lectures (Lecture Notes in Computer Science, Vol. 4709), Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever (Eds.).
Springer, 266–296. https://doi.org/10.1007/978-3-540-74792-5_12

[5] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional
asynchronous session types: session types without tiers. Proceedings of the ACM
on Programming Languages 3 (2019). https://doi.org/10.1145/3290341

[6] Christoffer M. Gersen. 2013. ORM Optimization through Automatic Prefetching
in WebDSL. Master’s thesis. http://resolver.tudelft.nl/uuid:597b318c-a1af-4fde-
865f-4422f548336b

[7] Danny M. Groenewegen and Eelco Visser. 2008. Declarative Access Control
for WebDSL: Combining Language Integration and Separation of Concerns. In
Proceedings of the Eighth International Conference on Web Engineering, ICWE 2008,
14-18 July 2008, Yorktown Heights, New York, USA, Daniel Schwabe, Francisco
Curbera, and Paul Dantzig (Eds.). IEEE, 175–188. https://doi.org/10.1109/ICWE.
2008.15

[8] Danny M. Groenewegen and Eelco Visser. 2013. Integration of data validation
and user interface concerns in a DSL for web applications. Software and Systems
Modeling 12, 1 (2013), 35–52. https://doi.org/10.1007/s10270-010-0173-9

[9] Daco Harkes, Danny M. Groenewegen, and Eelco Visser. 2016. IceDust: In-
cremental and Eventual Computation of Derived Values in Persistent Object
Graphs. In 30th European Conference on Object-Oriented Programming, ECOOP
2016, July 18-22, 2016, Rome, Italy (LIPIcs, Vol. 56), Shriram Krishnamurthi and
Benjamin S. Lerner (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11

[10] Daco Harkes, Elmer van Chastelet, and Eelco Visser. 2018. Migrating busi-
ness logic to an incremental computing DSL: a case study. In Proceedings of
the 11th ACM SIGPLAN International Conference on Software Language En-
gineering, SLE 2018, Boston, MA, USA, November 05-06, 2018, David Pearce
0005, Tanja Mayerhofer, and Friedrich Steimann (Eds.). ACM, 83–96. https:
//doi.org/10.1145/3276604.3276617

[11] Zef Hemel, Danny M. Groenewegen, Lennart C. L. Kats, and Eelco Visser. 2011.
Static consistency checking ofweb applicationswithWebDSL. Journal of Symbolic
Computation 46, 2 (2011), 150–182. https://doi.org/10.1016/j.jsc.2010.08.006

[12] Zef Hemel, Lennart C. L. Kats, Danny M. Groenewegen, and Eelco Visser.
2010. Code generation by model transformation: a case study in transforma-
tion modularity. Software and Systems Modeling 9, 3 (2010), 375–402. https:
//doi.org/10.1007/s10270-009-0136-1

[13] Eelco Visser. 2007. WebDSL: A Case Study in Domain-Specific Language Engi-
neering. In Generative and Transformational Techniques in Software Engineering
II, International Summer School, GTTSE 2007 (Lecture Notes in Computer Science,
Vol. 5235), Ralf Lämmel, Joost Visser, and João Saraiva (Eds.). Springer, Braga,
Portugal, 291–373. https://doi.org/10.1007/978-3-540-88643-3_7

83

https://doi.org/10.1016/j.scico.2013.03.010
https://doi.org/10.1016/j.scico.2009.05.004
https://doi.org/10.1145/2958736
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1145/3290341
http://resolver.tudelft.nl/uuid:597b318c-a1af-4fde-865f-4422f548336b
http://resolver.tudelft.nl/uuid:597b318c-a1af-4fde-865f-4422f548336b
https://doi.org/10.1109/ICWE.2008.15
https://doi.org/10.1109/ICWE.2008.15
https://doi.org/10.1007/s10270-010-0173-9
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.1145/3276604.3276617
https://doi.org/10.1145/3276604.3276617
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1007/978-3-540-88643-3_7

	Abstract
	1 Introduction
	2 WebDSL Language
	2.1 Language Design Principles
	2.2 WebDSL Language Concepts
	2.3 Example Application
	2.4 WebDSL Request Lifecycle
	2.5 User Interface Template Identity
	2.6 Application Deployment

	3 Robustness Engineering
	4 Performance Engineering
	5 Security Engineering
	6 Related Work
	References

