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ALGEBRAIC CONSTRUCTION OF ADAPTIVE COARSE SPACES
FOR TWO-LEVEL SCHWARZ PRECONDITIONERS\ast 

ALEXANDER HEINLEIN\dagger AND KATHRIN SMETANA\ddagger 

Abstract. Two-level domain decomposition preconditioners lead to fast convergence and scala-
bility of iterative solvers. However, for highly heterogeneous problems with a rapidly varying coeffi-
cient function, the condition number of the preconditioned system generally depends on the contrast
of the coefficient function. As a result, the convergence may deteriorate. Enhancing the coarse
space by functions constructed from suitable local eigenvalue problems restores robust, contrast-
independent convergence; these coarse spaces are often denoted as adaptive or spectral coarse spaces.
However, these eigenvalue problems typically rely on nonalgebraic information such that the adap-
tive coarse spaces cannot be constructed from the fully assembled system matrix. In this paper, a
novel algebraic adaptive coarse space which relies on the a-orthogonal decomposition of (local) finite
element (FE) spaces into functions that solve the elliptic PDE with some trace and FE functions
that are zero on the boundary is proposed. In particular, the basis is constructed from eigenmodes
of two types of local eigenvalue problems associated with the edges of the domain decomposition. To
approximate functions that solve the PDE locally, we employ a transfer eigenvalue problem which
has originally been proposed for the construction of optimal local approximation spaces for multiscale
methods. In addition, we make use of a Dirichlet eigenvalue problem that is a slight modification of
the Neumann eigenvalue problem used in the adaptive generalized Dryja--Smith--Widlund (AGDSW)
coarse space. Both eigenvalue problems rely solely on local Dirichlet matrices, which can be extracted
from the fully assembled system matrix, allowing for an algebraic construction. By combining argu-
ments from multiscale and domain decomposition methods, we derive a contrast-independent upper
bound for the condition number. While we restrict ourselves here to a two-dimensional diffusion
problem discretized by low-order FEs on regular meshes, the proposed framework is general, and we
conjecture that the approach can be readily extended, for instance, to other elliptic problems, three
dimensions, or, under mild assumptions, higher-order discretizations. The robustness of the method
is confirmed numerically for a variety of heterogeneous coefficient distributions, including binary ran-
dom distributions and a coefficient function constructed from the SPE10 benchmark. The results are
comparable to those of the nonalgebraic AGDSW coarse space as well as for those cases where the
convergence of the classical algebraic generalized Dryja--Smith--Widlund coarse space deteriorates.
Moreover, the coarse space dimension is the same as or comparable to the AGDSW coarse space for
all numerical experiments.

Key words. domain decomposition methods, multiscale methods, overlapping Schwarz precon-
ditioner, adaptive coarse spaces
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1. Introduction. Domain decomposition methods (DDMs) are a popular class
of methods that yield rapid convergence in the iterative solution of linear systems
of equations arising from PDEs. In particular, if a suitable coarse level is used, then
DDMs have proved to be scalable for a wide range of problems, which, for elliptic prob-
lems, can be shown theoretically by proving an upper bound for the condition number.

Unfortunately, in the presence of strong heterogeneities in certain problem pa-
rameters, the convergence of classical DDMs may deteriorate. For instance, for a
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1171

diffusion problem with a coefficient function that is varying rapidly on possibly sev-
eral nonseparated scales, the condition number may depend on the contrast of the
maximum and minimum values of the coefficient. One way to overcome this issue
is by using adaptive coarse spaces, also known as spectral coarse spaces. These ap-
proaches are based on solving local generalized eigenvalue problems and selecting a
number of eigenfunctions based on a user-chosen tolerance for the eigenvalues. The
selected functions are used to construct coarse basis functions with local support.
Due to the use of spectral information, these coarse spaces typically yield a provable
upper bound of the condition number that is independent of the contrast and de-
pends on the tolerance for the eigenvalues. Hence, adaptive coarse spaces yield robust
convergence. A variety of adaptive coarse spaces has been introduced for nonover-
lapping DDMs [43, 58, 37, 36, 10, 35, 47], most of which consider finite element
(FE) tearing and interconnect--dual primal (FETI-DP) methods, balancing domain
decomposition by constraints (BDDC) methods, and overlapping Schwarz methods
[17, 15, 57, 25, 26, 27, 18, 38, 6].

Even though most of the approaches referenced above are provably robust, none is
algebraic. This means that they cannot be constructed using only the fully assembled
system matrix, requiring new assembly routines or even access to the mesh of the
FE discretization. FETI-DP and BDDC methods are generally not algebraic since
they require local Neumann matrices on the subdomains, which cannot be extracted
from the system matrix. Schwarz methods can be constructed algebraically if the
coarse space can be constructed algebraically. However, the adaptive coarse spaces
mentioned above all require additional information for the definition of the eigenvalue
problems, such as local Neumann matrices or geometric information.

In this paper, we propose, to the best of our knowledge for the first time, an
interface-based adaptive coarse space for two-level overlapping Schwarz precondition-
ers that is robust and that can be constructed algebraically. Relying on the well-known
a-orthogonal decomposition of local FE spaces into functions that solve the PDE nu-
merically with a prescribed trace as a boundary condition and FE functions that are
zero on the boundary, we propose in this paper building the adaptive coarse space
from two local eigenvalue problems associated with each edge of the domain decompo-
sition. To approximate functions that solve the PDE locally, we employ the transfer
eigenvalue problem introduced in [54], which is known from the construction of opti-
mal local approximation spaces [5, 54, 41, 51] for novel types of multiscale methods
that allow full error control even for heterogeneous problems with nonseparated scales
[5, 42, 41, 45, 46, 44, 54]. For the approximation of the functions with zero trace,
we make use of a Dirichlet eigenvalue problem which is a slight modification of the
Neumann eigenvalue problem used in the nonalgebraic adaptive generalized Dryja--
Smith--Widlund (AGDSW) [26, 27, 38] coarse space. The adaptive coarse space is
then built from energy-minimizing extensions of the eigenfunctions. Our new method
is algebraic in the sense that both eigenvalue problems rely solely on local Dirichlet
matrices, which can be extracted from the fully assembled system matrix. We show
that using and combining arguments from these novel types of multiscale methods and
DDMs allows deriving a contrast-independent upper bound for the condition number;
the latter depends only mildly on the structure of the domain decomposition. For
examples of how DDMs have been used to develop and analyze such novel types of
multiscale methods, we refer the reader to [40, 39].

As most application codes generate a fully assembled system matrix, a robust
DDM that solely uses this fully assembled matrix for the construction of the coarse
space, as proposed in this paper, is clearly advantageous. In contrast to, for instance,

© 2025 Alexander Heinlein and Kathrin Smetana

D
ow

nl
oa

de
d 

04
/2

9/
25

 to
 1

31
.1

80
.1

30
.2

30
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



A1172 ALEXANDER HEINLEIN AND KATHRIN SMETANA

the AGDSW coarse space, which is not algebraic,the suggested approach has the
disadvantage that it requires approximating two eigenvalue problems and is thus more
costly. However, our numerical tests, including the ones in section 8, indicate that
there is a chance that a coarse space only built from the eigenfunctions of the transfer
eigenvalue problem might be robust. As for many other adaptive coarse spaces, our
approach is based on solving eigenvalue problems on small subdomains; here, we
consider a so-called oversampling domain which encloses the edge for which the coarse
space is constructed. While a small oversampling domain (ideally just one layer
of FEs around the edge) is computationally preferred for the construction of the
coarse space, this may lead to unnecessarily large coarse spaces; see, for instance, the
results in subsection 8.2. Finding the sweet spot here can be as challenging as it is in
other adaptive coarse spaces which allow for varying the domain for the extensions,
for instance, in AGDSW. One way to mitigate this issue is by tuning the tolerance
in the construction of the coarse space, as discussed in section 8; however, this is
also not straightforward to do for the just mentioned type of adaptive coarse spaces.
Addressing these challenges is the subject of future work.

Even though we restrict ourselves to two-dimensional diffusion problems dis-
cretized by low-order FEs on regular meshes in this proof of concept, we conjecture
that the proposed methodology can be easily extended to three dimensions, unstruc-
tured meshes, and other elliptic problems, such as linear elasticity and parabolic
problems; cf. the extensions of the related AGDSW method [26, 27] and optimal
local approximation spaces [54, 51, 52].

The adaptive coarse space proposed in this paper belongs to a class of adaptive
coarse spaces which first partition the interface into nonoverlapping components and
compute the eigenvalue problems on these components; cf. the spectral harmonically
enriched multiscale [18], overlapping Schwarz--approximate component synthesis (OS-
ACMS) [25], and AGDSW coarse spaces. All these approaches yield a minimum
number of total degrees of freedom in all local generalized eigenvalue problems since
no degree of freedom appears in more than one eigenvalue problem. Our new method
is most closely related to the AGDSWmethod. Even though the AGDSW coarse space
contains the generalized Dryja--Smith--Widlund (GDSW) coarse space [13, 14], which
can be constructed algebraically, it is not algebraic since local Neumann matrices
appear in the eigenvalue problems.

Algebraic coarse spaces for overlapping Schwarz methods have recently---and in
parallel to the preparation of this manuscript---also been proposed by Gouarin and
Spillane [21], Spillane [56], Al Daas and Grigori [2], Al Daas and Jolivet [3], and Al
Daas, Jolivet, and Rees [4]. In all cases, the methods can be seen as extensions of
the generalized eigenproblems in the overlaps (GenEO) [57] approach, where local
eigenvalue problems in the overlaps or the overlapping subdomains of the Schwarz
method are solved to compute the coarse space. In order to obtain algebraic coarse
spaces, the authors mostly focus on general linear algebra arguments, such as matrix
splittings and the Sherman--Morrison--Woodbury formula; see also [55, 1] for abstract
descriptions of the GenEO framework. In contrast, our approach is based on a priori
knowledge about the elliptic PDE.

Let us also briefly note that spectral information has also been used to improve
the robustness of algebraic multigrid (AMG) methods [50], for instance, in the spectral
element-based algebraic multigrid (\rho AMGe) method [11].

The paper is organized as follows. We propose adaptive coarse spaces for DDMs
that can be constructed algebraically in section 5 and derive a bound for the condition
number in section 6. Beforehand, we briefly introduce our heterogeneous diffusion
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1173

model problem in section 2 and review two-level overlapping Schwarz preconditioners
in subsection 3.1 and adaptive coarse spaces in subsection 3.2. In particular, we
also elaborate in section 4 on the challenges that arise when one wishes to construct
adaptive coarse spaces without relying on local discrete variational problems with
Neumann boundary conditions that would require new assembly routines on the local
subdomains. Finally, we discuss the computational realization of the proposed method
in section 7 and demonstrate its robustness numerically in section 8.

2. Problem setting. Let \Omega \subset \BbbR 2 be a bounded domain with Lipschitz boundary
and \alpha \in L\infty (\Omega ) with 0<\alpha min \leq \alpha \leq \alpha max <\infty be a highly heterogeneous coefficient
function, possibly with high jumps. We consider the following variational problem:

Find u\in H1
0 (\Omega ) : a\Omega (u,v) =f(v) \forall v\in H1

0 (\Omega ),(2.1)

where a\Omega (u,v) :=

\int 
\Omega 

\alpha (x)(\nabla u(x))T\nabla v(x)dx and f(v) :=

\int 
\Omega 

f(x)v(x)dx,

respectively, and f \in L2(\Omega ). We equip H1
0 (\Omega ) with the energy norm | u| a\Omega 

:=
(a\Omega (u,u))1/2. Due to space limitations, we defer a discussion of the treatment of
Neumann or mixed boundary conditions to a forthcoming paper.

Let \tau h be a quasi-uniform triangulation of \Omega into triangles or quadrilaterals with
element size h. To simplify the presentation, we assume that the triangulation resolves
the coefficient function, i.e., that \alpha is constant on each element. Then we introduce a
conforming FE space V 0

\Omega \subset H1
0 (\Omega ) of dimension N\Omega , where, for the sake of simplicity,

we consider piecewise linear (P1) or bilinear (Q1) FE spaces. We obtain the following
discrete variational problem:

Find u\in V 0
\Omega : a\Omega (u, v) = f(v) \forall v \in V 0

\Omega ,(2.2)

where f(v) :=
\int 
\Omega 
f(x)v(x)dx for v \in V 0

\Omega . The algebraic version of (2.2) then reads as
follows:

Find \bfitu \in \BbbR N\Omega :\bfitA \bfitu = \bfitf , where \bfitA \in \BbbR N\Omega \times N\Omega ,\bfitf \in \BbbR N\Omega .(2.3)

3. Adaptive coarse spaces for two-level overlapping Schwarz precondi-
tioners.

3.1. Two-level overlapping Schwarz preconditioner. Let \Omega be decomposed
into nonoverlapping subdomains \Omega i with maximum diameterH such that \=\Omega =

\bigcup M
i=1

\=\Omega i,
\Omega i\cap \Omega j = \emptyset for i \not = j. We assume that the boundaries of the subdomains are Lipschitz
continuous and do not intersect any element of \tau h. The domain decomposition in-
terface is given as \Gamma =

\bigcup 
i\not =j (\partial \Omega i \cap \partial \Omega j) \setminus \partial \Omega . Then let \{ \Omega \prime 

i\} Mi=1 be a corresponding
overlapping decomposition of \Omega with overlap \delta \geq h. We introduce associated conform-
ing FE spaces V 0

\Omega \prime 
i
\subset H1

0 (\Omega 
\prime 
i), i= 1, . . . ,M , and introduce operators R\Omega \rightarrow \Omega \prime 

i
: V 0

\Omega \rightarrow V 0
\Omega \prime 

i

that restrict FE functions in V 0
\Omega to V 0

\Omega \prime 
i
. The operators E\Omega \prime 

i\rightarrow \Omega : V 0
\Omega \prime 

i
\rightarrow V 0

\Omega extend FE

functions in V 0
\Omega \prime 

i
by zero to FE functions in V 0

\Omega accordingly. Note that the indices
of the restriction and extension operators R\Omega \rightarrow \Omega \prime 

i
and E\Omega \prime 

i\rightarrow \Omega here and henceforth
show the domain of the respective FE spaces that the operators map from and to.1

Moreover, in this paper, the indices at the bottom of the FE spaces show the domain

1Very often, the operators R\Omega \rightarrow \Omega \prime 
i
and E\Omega \prime 

i\rightarrow \Omega are denoted by Ri and RT
i in the literature; see,

e.g., [59]. As we will be needing also additional restriction and extension operators, e.g., for FE
spaces on the edges or \Gamma , we indicate the domains of the associated FE spaces here.
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A1174 ALEXANDER HEINLEIN AND KATHRIN SMETANA

that the space is associated with, and a 0 indicates that the functions in the FE space
are zero on the boundary of the respective domain.

Next, we introduce local bilinear forms a\Omega \prime 
i
: V 0

\Omega \prime 
i
\times V 0

\Omega \prime 
i
\rightarrow \BbbR and corresponding

local stiffness matrices \bfitA \Omega \prime 
i
, i= 1, . . . ,M . We use exact local solvers and thus obtain

a\Omega \prime 
i
(ui, vi) = a\Omega (E\Omega \prime 

i\rightarrow \Omega ui,E\Omega \prime 
i\rightarrow \Omega vi) \forall ui, vi \in V 0

\Omega \prime 
i
, \bfitA \Omega \prime 

i
=\bfitR \Omega \rightarrow \Omega \prime 

i
\bfitA \bfitE \Omega \prime 

i\rightarrow \Omega (3.1)

for i = 1, . . . ,M , where \bfitR \Omega \rightarrow \Omega \prime 
i
and \bfitE \Omega \prime 

i\rightarrow \Omega =\bfitR T
\Omega \rightarrow \Omega \prime 

i
are the algebraic counterparts

of R\Omega \rightarrow \Omega \prime 
i
and E\Omega \prime 

i\rightarrow \Omega , respectively; cf. [59]. Following, e.g., [59, 49], we introduce

operators \widetilde Pi : V
0
\Omega \rightarrow V 0

\Omega \prime 
i
, defined as

a\Omega \prime 
i
( \widetilde Piu, vi) = a\Omega (u,E\Omega \prime 

i\rightarrow \Omega vi) for vi \in V 0
\Omega \prime 

i
, i= 1, . . . ,M.(3.2)

We may then define projections

Pi =E\Omega \prime 
i\rightarrow \Omega 

\widetilde Pi : V
0
\Omega \rightarrow E\Omega \prime 

i\rightarrow \Omega V
0
\Omega \prime 

i
\subset V 0

\Omega , i= 1, . . . ,M,(3.3)

with algebraic counterparts \bfitP i = \bfitE \Omega \prime 
i\rightarrow \Omega \bfitA 

 - 1
\Omega \prime 

i
\bfitR \Omega \rightarrow \Omega \prime 

i
\bfitA , i = 1, . . . ,M ; see [59]. The

additive Schwarz operator PAS - 1 :=
\sum M

i=1Pi then reads in matrix form as

\bfitP AS - 1 :=

M\sum 
i=1

\bfitE \Omega \prime 
i\rightarrow \Omega \bfitA 

 - 1
\Omega \prime 

i
\bfitR \Omega \rightarrow \Omega \prime 

i
\bfitA =

M\sum 
i=1

\bfitR T
\Omega \rightarrow \Omega \prime 

i
\bfitA  - 1

\Omega \prime 
i
\bfitR \Omega \rightarrow \Omega \prime 

i
\bfitA .(3.4)

This Schwarz operator is a preconditioned operator \bfitM  - 1
AS - 1\bfitA consisting of the one-

level Schwarz preconditioner \bfitM  - 1
AS - 1 =

\sum M
i=1\bfitE \Omega \prime 

i\rightarrow \Omega \bfitA 
 - 1
\Omega \prime 

i
\bfitR \Omega \rightarrow \Omega \prime 

i
and the system ma-

trix \bfitA . In this one-level Schwarz method, information is only exchanged between
neighboring subdomains through the overlaps, and as a result, the convergence gen-
erally deteriorates for a large number of subdomains; see [49]. As a remedy, one may
add a global coarse space X0 \subset V 0

\Omega .
2 Correspondingly, we introduce an interpolation

operator E0 :X0 \rightarrow V 0
\Omega , which expresses functions inX0 in the FE basis of V 0

\Omega . The col-
umns of the algebraic counterpart \bfitE 0 therefore contain the FE coefficients of the basis
functions of X0. Introducing the corresponding restriction operator R0 : V

0
\Omega \rightarrow X0 and

its algebraic counterpart \bfitR 0 =\bfitE T
0 , we can define P0 =E0

\widetilde P0 : V
0
\Omega \rightarrow E0X0 \subset V 0

\Omega . We

define the operator \widetilde P0 analogously to (3.2), where

a0(u0, v0) = a\Omega (E0u0,E0v0) \forall u0, v0 \in X0, \bfitA 0 =\bfitR 0\bfitA \bfitE 0 =\bfitR 0\bfitA \bfitR T
0 ;(3.5)

this means that we also consider the case of an exact coarse solver. We then define
the two-level Schwarz operator [59] PAS - 2 :=

\sum M
i=0Pi, and its algebraic counterpart

takes the form

\bfitP AS - 2 =\bfitM  - 1
AS - 2\bfitA :=\bfitE 0\bfitA 

 - 1
0 \bfitR 0\bfitA \underbrace{}  \underbrace{}  

coarse level

+
\sum M

i=1
\bfitE \Omega \prime 

i\rightarrow \Omega \bfitA 
 - 1
\Omega \prime 

i
\bfitR \Omega \rightarrow \Omega \prime 

i
\bfitA \underbrace{}  \underbrace{}  

first level

.(3.6)

Different choices of coarse spaces X0 yield numerically scalable preconditioners,
that is, a condition number bound which is independent of the number of subdomains.
As a result, the convergence of iterative solvers, such as Krylov subspace methods,

2In many publications, the coarse space is denoted by V0. However, to avoid confusion with FE
spaces including functions with zero trace, we denote the coarse space here by X0.
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1175

with such a two-level Schwarz preconditioner is independent of the number of subdo-
mains as well. However, using a standard Lagrangian FE basis, for X0, we obtain the
condition number bound

\kappa (\bfitP AS - 2) = \kappa 
\bigl( 
\bfitM  - 1

AS - 2\bfitA 
\bigr) 
\leq C max

T\in \tau H
max

x,y\in \omega T

\biggl( 
\alpha (x)

\alpha (y)

\biggr) \biggl( 
1 +

H

\delta 

\biggr) 
(3.7)

for our model problem (2.1); similar bounds hold for other classical (nonadaptive)
coarse spaces. Here, \tau H is the coarse triangulation, which, in our case, coincides with
the nonoverlapping domain decomposition \{ \Omega i\} i=1,...,N . Moreover, \omega T corresponds to
the union of all coarse mesh elements which touch a coarse mesh element T . Sharper
variants of this estimate can be derived, but the dependence on the contrast of the
coefficient function remains; see [22]. This means that the convergence of a Krylov
subspace method preconditioned with this two-level Schwarz preconditioner might
actually depend on the contrast of the coefficient function \alpha , resulting in very high
iteration counts; cf. also the results in section 8.

3.2. Adaptive coarse spaces. Figure 1 illustrates one of the reasons that the
coefficient contrast may arise in the condition number bound. The energy

| \cdot | 2a,\Omega := a\Omega (\cdot , \cdot )(3.8)

of the function u plotted in Figure 1 (left) depends only on the minimum value \alpha min

of the coefficient function \alpha but is independent of the maximum value \alpha max, as its
gradient is zero (hatched green) in the yellow region, where \alpha = \alpha max. If we interpolate
the function with piecewise bilinear Lagrangian basis functions (see Figure 1 (right)),
then the interpolant decays to zero within the yellow region (dotted red), and hence
its energy clearly depends on \alpha max. Therefore, in any energy estimate of the coarse
interpolation, which is part of the proof of a condition number bound in the abstract
Schwarz theory [59],

| u0| 2a,\Omega \leq C | u| 2a,\Omega ,(3.9)

the constant C has to depend on the contrast of \alpha , \alpha max/\alpha min. Therefore, in order to
obtain a robust condition number bound, the coefficient function has to be taken into
account in the construction of the coarse space; as we will also observe in section 8,
it is additionally necessary to add one coarse basis function for each high-coefficient
component crossing the domain decomposition interface.

Fig. 1. For a heterogeneous coefficient function, a Lagrangian coarse interpolation (right; here,
piecewise bilinear) of a low-energy function (left) may have a high energy: Let the yellow elements
correspond to a high coefficient (\alpha max) and the blue part to a low coefficient (\alpha min). Since the
function itself is constant (marked in hatched green) in the high-coefficient region but varying in the
remaining part, the energy depends on \alpha min but not on \alpha max. The piecewise bilinear interpolation
has a nonzero gradient everywhere such that the energy also depends on \alpha max (marked in dotted
red). In this case, the stability constant depends on the contrast of the coefficient function.
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A1176 ALEXANDER HEINLEIN AND KATHRIN SMETANA

Adaptive coarse spaces account for variations in the coefficient functions by in-
cluding eigenfunctions of local eigenvalue problems into the coarse space, which is
why they are also denoted as spectral coarse spaces. The term adaptive stems from
the fact that all eigenvalues below a certain tolerance tol can be included in the coarse
space, resulting in a condition number bound of the form

\kappa (\bfitP AS - 2) = \kappa 
\bigl( 
\bfitM  - 1

AS - 2\bfitA 
\bigr) 
\leq C

\biggl( 
1 +

1

tol

\biggr) 
,(3.10)

where C is independent of the contrast of the coefficient function. Hence, the number
of coarse basis functions does not have to be determined beforehand, but it can be
chosen adaptively based on tol.

In this paper, we develop a new adaptive coarse space, consisting of basis functions
which minimize the energy | \cdot | 2a,\Omega i

on each nonoverlapping subdomain given appropri-
ately chosen Dirichlet data on the interface. Energy-minimizing functions are part
of constructing a coarse space with a contrast-independent energy (3.9). Moreover,
constructing the coarse basis by energy minimization is one of the key ingredients
for algebraicity since it does not require the availability of a coarse triangulation. In
particular, the energy-minimizing extension vi = H\partial \Omega i\rightarrow \Omega i

(v\partial \Omega i
) from \partial \Omega i to \Omega i for

an FE function v\partial \Omega i on \partial \Omega i is defined as follows: Given some boundary values v\partial \Omega i

on the interface, the corresponding extension H\partial \Omega i\rightarrow \Omega i(v\partial \Omega i) solves

vi = argmin
v| \partial \Omega i

=v\partial \Omega i

| v| 2a,\Omega i
\leftrightarrow a\Omega i(vi,wi) = 0 \forall wi \in V 0

\Omega i
,

vi = v\partial \Omega i on \partial \Omega i.
(3.11)

An energy-minimizing extension v = H\Gamma \rightarrow \Omega (v\Gamma ) extends interface values v\Gamma into the
interior of each subdomain, with zero Dirichlet boundary conditions on \partial \Omega . In matrix
form, this corresponds to

\bfitv =

\biggl( 
 - \bfitA  - 1

II \bfitA I\Gamma 

\bfitI \Gamma 

\biggr) 
\bfitv \Gamma ,(3.12)

where we make use of the splitting of the rows and columns corresponding to interior
(I) and interface (\Gamma ) nodes \bfitA = (\bfitA II \bfitA I\Gamma 

\bfitA \Gamma I \bfitA \Gamma \Gamma 
) and \bfitI \Gamma corresponds to the identity matrix

on \Gamma . Here, as usual, the Dirichlet boundary degrees of freedom are counted as
interior. Due to the Dirichlet boundary conditions in \bfitA , the boundary conditions
are then enforced automatically. Note that \bfitA II = diag (\bfitA \Omega i,II) is a block-diagonal
matrix, where \bfitA \Omega i,II is the matrix corresponding to the interior degrees of freedom in
\Omega i. Hence, in a parallel setting, \bfitA  - 1

II can be applied independently and concurrently
for the subdomains. Moreover, we have that | v| 2a,\Omega i

= a\Omega i
(v, v) = \bfitv T\bfitA \bfitv = \bfitv T

\Gamma \bfitS \bfitv \Gamma ,

with the Schur complement \bfitS =\bfitA \Gamma \Gamma  - \bfitA \Gamma I\bfitA 
 - 1
II \bfitA I\Gamma .

Let us now discuss the general idea of adaptive coarse spaces which are based on
an interface partition. To that end, let the interface \Gamma be partitioned into edges and
vertices. In our discrete setting, we denote an edge as a set of connected interface FE
nodes which belong to the same two subdomains; two nodes are denoted as connected
if they belong to the same FE. A vertex is an interface FE node which belongs to more
than two subdomains; cf. Figure 2. We then solve a generalized eigenvalue problem
of the form

find \bfitv \in \BbbR N\r e such that \bfitS e \bfitv = \mu \bfitA \r e\r e \bfitv (3.13)

for each edge e, where N\r e is the number of degrees of freedom of the interior of
the edge e. Here, \bfitS e is a Schur complement corresponding to the two subdomains
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1177

Ωi Ωj Ωk

Ωl Ωm Ωn

eV

Fig. 2. Structured domain decomposition with six subdomains, seven edges (indicated by blue
shaded boxes), and two vertices (indicated by green shaded circles). The vertex \scrV belongs to four
subdomains, \Omega i,\Omega j ,\Omega l,\Omega m, and the edge e is the set of FE nodes belonging to two subdomains,
\Omega j ,\Omega m.

Fig. 3. For the same configuration as in Figure 1, we consider three different extensions of the
edge values of a function (top left): the zero extension Ee\rightarrow \Omega e (top right), the harmonic extension

with Dirichlet boundary data H\partial \Omega e
e\rightarrow \Omega e

(bottom left), and a harmonic extension with Neumann bound-

ary data He\rightarrow \Omega e (bottom right). The Dirichlet data of the extensions are marked in blue. In general,
only the extension with Neumann boundary data has a guaranteed lower (or equal) energy compared
to the original function; the energy of the other functions may even depend on the contrast.

\Omega i and \Omega j adjacent to e, and \bfitA \r e\r e is the restriction of the global matrix \bfitA to the
degrees of freedom on the interior of the edge. As mentioned above, Schur complement
matrices correspond to energy-minimizing extensions. In this eigenvalue problem, we
consider such an extension from the edge e into the adjacent subdomains. The specific
definition of \bfitS e may vary slightly for different interface-based adaptive coarse spaces,
such as in the boundary conditions in the endpoints of the edge e. Moreover, \bfitA \r e\r e can
also be replaced by a scaled mass matrix or a lumped version of that.

To construct an adaptive coarse space, the eigenfunctions corresponding to eigen-
values below a user-chosen tolerance tol are selected and extended by zero onto the
remaining interface. Then these functions are extended in an energy-minimizing way
by H\Gamma \rightarrow \Omega , resulting in the coarse basis functions.

As will be discussed in section 4 and visualized in Figure 3, eigenvalue problem
(3.13) relates a low-energy extension (\bfitS e) and a high-energy extension (\bfitA \r e\r e). There-
fore, the resulting coarse basis functions corresponding to low eigenvalues capture the
critical components of the coefficient function, resulting in a condition number bound
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A1178 ALEXANDER HEINLEIN AND KATHRIN SMETANA

of the form (3.10), which is independent of the contrast of the coefficient function;
see, for instance, [18, 25, 26].

4. Motivation: Challenges and advantages of robust algebraic precon-
ditioners and key new ideas. Despite the rapid development in adaptive coarse
spaces, the development of algebraic variants, that is, variants that can be constructed
based on the fully assembled system matrix \bfitA , has been an open question for a longer
time. For the practical applicability of a solver, this is, however, a desirable property.
In particular, if the solver is algebraic, then it can be used in any FE implementation
which provides the linear system of equations (2.3) as the solver input.

Let us briefly discuss the main challenge, which can be understood similarly to
Figure 1. The left- and right-hand sides of the eigenvalue problem (3.13) correspond
to energies of certain extensions of the edge values into the interior of the adjacent
subdomains. In Figure 3 (top left), we see some function u with an energy | u| 2a,\Omega 
that does not depend on \alpha max; the gradient in the yellow region is zero (hatched
green). In addition, three different extensions of the edge values of u are depicted:
The extension on the top right is the extension by zero, and the corresponding energy
clearly depends on \alpha max (dotted red). The matrix on the right-hand side of (3.13)
corresponds to this extension; that is, if \bfitu \r e is the discrete vector with the interior
edge values of u, then \bfitu T

\r e \bfitA \r e\r e\bfitu \r e is the energy of the extension by zero (Figure 3 (top
right)). This extension is algebraic since the matrix can be extracted from \bfitA . The
extension on the bottom right is the energy-minimizing extension of ue with Neumann
data on the boundary; of all functions with trace ue, this function has the minimum
energy, which is clearly smaller than or equal to the energy of u. Hence, the function
satisfies an energy estimate of the form (3.9) with a constant C which does not depend
on the contrast of \alpha , \alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}
. This extension is one example of an extension that can

be employed in \bfitS e on the left-hand side of (3.13).
Unfortunately, since this extension has Neumann boundary data, the correspond-

ing matrix \bfitS e cannot be extracted algebraically from \bfitA . An algebraic alternative
to this extension would be the energy-minimizing extension with Dirichlet boundary
data; cf. Figure 3 (bottom left). The Dirichlet submatrix corresponding to both sub-
domains adjacent to the edge e, which is required to compute this extension, can also
be extracted from \bfitA . However, the energy of this extension clearly depends on \alpha max.
Hence, using this algebraic extension in (3.13) would also result in a dependency on
\alpha \mathrm{m}\mathrm{a}\mathrm{x}

\alpha \mathrm{m}\mathrm{i}\mathrm{n}
. This short discussion explains why the Neumann matrix in (3.13) cannot be

simply replaced by a Dirichlet matrix; this has also been discussed in [25]. It can be
observed that, except for very recent approaches targeting algebraic adaptive coarse
spaces, all early adaptive coarse spaces are based on eigenvalue problems which use
Neumann matrices or information about the coefficient function and geometric infor-
mation. Note that there have also been attempts to heuristically construct algebraic
robust coarse spaces; cf., e.g., [25, 23, 29]. However, no theory has been proved for
these approaches yet, and they might not be robust for arbitrary coefficient functions.

5. An algebraic and robust adaptive coarse space based on optimal lo-
cal approximation spaces. In this section, we propose, to the best of our knowledge
for the first time, an algebraic and robust adaptive interface-based coarse space. As
we will only use Dirichlet matrices in the eigenvalue problems to obtain an algebraic
method, we might miss the constant function in the edge space. However, it is well
known in DDMs that a scalable coarse space has to be able to represent the null space
of the global Neumann operator on each subdomain which does not touch the global
Dirichlet boundary. Therefore, we start with the vertex and the edge spaces
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1179

Xvert = span\{ H\Gamma \rightarrow \Omega (E\scrV \rightarrow \Gamma (1)) : \scrV vertex\} and(5.1)

Xconst = span\{ H\Gamma \rightarrow \Omega (Ee\rightarrow \Gamma (1)) : e edge\} ,(5.2)

respectively, containing the constant functions on the vertices and edges of the nonover-
lapping domain decomposition \{ \Omega i\} i=1,...,N . Here, E\scrV \rightarrow \Gamma : V\scrV \rightarrow V 0

\Gamma and Ee\rightarrow \Gamma : V 0
e \rightarrow 

V 0
\Gamma extend the FE function by zero from the vertex \scrV or the edge e to the interface

\Gamma , respectively. Recall that indices at the bottom of FE spaces show the domain that
the space corresponds to, and a 0 indicates that the functions in the FE space are zero
on the boundary of the respective domain. Then we enhance the edge space (5.2) by
edge eigenfunctions of the Dirichlet eigenvalue problem introduced in subsection 5.1
and the transfer eigenvalue problem introduced in subsection 5.2.

Note that XGDSW = Xvert \oplus Xconst corresponds to the classical GDSW coarse
space. This space is also automatically included in the AGDSW adaptive coarse
space. In particular, the constant edge function corresponds to the zero eigenvalue
in the AGDSW edge eigenvalue problem due to full Neumann boundary data; hence,
the function is always selected as a basis function.

5.1. A Dirichlet eigenvalue problem for the edges. As motivated in section
4, for each edge e \subset \Gamma , we consider a Dirichlet eigenvalue problem which is a slight
modification of the Neumann eigenvalue problem (3.13) used in the AGDSW coarse
spaces; cf. [26, 27]. First, we introduce for a fixed but arbitrary edge e a so-called
oversampling domain \Omega e such that dist(\partial \Omega e, e) \geq \upsilon e > 0; see Figures SM2 in the
supplementary material and 4 for illustrations of oversampling domains. In addition,
we introduce Ee\rightarrow \Omega e

: V 0
e \rightarrow V 0

\Omega e
, which assigns the coefficients of the FE functions

on the edge e to the FE basis functions in \Omega e whose associated nodes lie on e and
extends by zero on all other nodes in \Omega e; see Figure 3 (top right) for an illustration.

We introduce the corresponding inner product be : V
0
e \times V 0

e \rightarrow \BbbR defined as

be(\chi , \zeta ) := a\Omega e(Ee\rightarrow \Omega e\chi ,Ee\rightarrow \Omega e\zeta ) \forall \chi , \zeta \in V 0
e .(5.3)

Furthermore, we introduce the inner product de : V
0
e \times V 0

e \rightarrow \BbbR defined as

de(\chi , \zeta ) := a\Omega e

\Bigl( 
H\partial \Omega e

\r e\rightarrow \Omega e
(Re\rightarrow \r e\chi ),H

\partial \Omega e

\r e\rightarrow \Omega e
(Re\rightarrow \r e\zeta )

\Bigr) 
\forall \chi , \zeta \in V 0

e ,(5.4)

where \r e denotes the discrete interior of the edge e and, algebraically, Re\rightarrow \r e simply
removes the degrees of freedom associated with the corners of the edge. Moreover,
H\partial \Omega e

\r e\rightarrow \Omega e
: V\r e \rightarrow V 0

\Omega e
is defined as

a\Omega e(H
\partial \Omega e

\r e\rightarrow \Omega e
\chi ,v) = 0 \forall v \in V 0

\Omega e
, H\partial \Omega e

\r e\rightarrow \Omega e
\chi = 0 on \partial \Omega e, H

\partial \Omega e

\r e\rightarrow \Omega e
\chi = \chi on \r e;

hence, the upper index \partial \Omega e denotes that the harmonic extension has homogeneous
Dirichlet boundary data on \partial \Omega e instead of Neumann boundary data; cf. the discussion
in section 4. Finally, we denote by \| \cdot \| be and \| \cdot \| de

the respective norms. We may

then consider the following eigenvalue problem: Find (\psi 
(i)
e , \mu (i))\in (V 0

e ,\BbbR +) such that

de(\psi 
(i)
e , \chi ) = \mu (i)be(\psi 

(i)
e , \chi ) \forall \chi \in V 0

e .(5.5)

We select all ndir,e eigenfunctions corresponding to eigenvalues below a chosen toler-
ance toldir and define the space

Xdir := span\{ H\Gamma \rightarrow \Omega (Ee\rightarrow \Gamma \psi 
(i)
e ) : e edge, \mu (i) \leq toldir\} .(5.6)
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A1180 ALEXANDER HEINLEIN AND KATHRIN SMETANA

Here, Ee\rightarrow \Gamma : V 0
e \rightarrow V 0

\Gamma extends the FE function by zero from e to \Gamma , and H\Gamma \rightarrow \Omega :
V 0
\Gamma \rightarrow V 0

\Omega is the energy-minimizing extension from the interface into the interior of the
subdomains as introduced in subsection 3.2. An eigenvalue problem similar to (5.5)
has already been considered in [25]; however, alone, it is not generally robust.

We emphasize that none of the operators and matrices involved in (5.5) require
any additional assembly and rely only on matrices that can be extracted from \bfitA ; see
section 7 for details. However, as can be seen in Table 1, choosing X0 = Xvert \oplus 
Xconst \oplus Xdir does in general not yield a robust coarse space. To obtain a (provably)
robust coarse space, we introduce a second eigenvalue problem.

5.2. Transfer eigenvalue problem. To obtain a robust coarse space, we ex-
ploit a well-known a-orthogonal decomposition of V\Omega e

,3 namely, that every u \in V\Omega e

can be written as

u= u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
+ u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

,(5.7)

where u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
\in V 0

\Omega e
and u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

satisfies

a\Omega e
(u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

, v) = 0 \forall v \in V 0
\Omega e

and u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| \partial \Omega e

= u| \partial \Omega e
.(5.8)

This means that it is an energy-minimizing extension; cf. (3.11). The decomposition
(5.7) is a-orthogonal thanks to (5.8), and hence we have

a\Omega e
(u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

, u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
) = 0 and | u| 2a,\Omega e

= | u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| 2a,\Omega e

+ | u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
| 2a,\Omega e

.(5.9)

In our approach, the eigenvalue problem from subsection 5.1 will serve to control
the trace of functions in V 0

\Omega e
on e. By introducing an eigenvalue problem on the space

of functions that locally solve the PDE

V\Omega \mathrm{e},\mathrm{h}\mathrm{a}
:= \{ w \in V\Omega e

: a\Omega e
(w,v) = 0 \forall v \in V 0

\Omega e
\} ,(5.10)

we can control the trace of functions in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}
on e as well and therefore the traces

of all functions in V\Omega e
on e. The fact that the decomposition is a-orthogonal and

the right-hand side of (5.9) in particular will allow us to combine the contributions
from both eigenvalue problems when deriving the bound for the condition number in
section 6.

The eigenvalue problem we consider on the space of local solutions of the PDE
V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

has originally been suggested in a slightly different form in the context of
multiscale and localized model order reduction methods in [54]. In that paper, it
has been introduced to construct interface spaces that yield a provably optimally
convergent static condensation approximation of the solution of the PDE. Similar to
[54], we introduce a suitable inner product (\cdot , \cdot )\partial \Omega e : V\partial \Omega e \times V\partial \Omega e \rightarrow \BbbR , where we
require that the induced norm \| \cdot \| \partial \Omega e

satisfies

c1\| \zeta \| \partial \Omega e \leq 
\surd 
\alpha min\| \zeta \| L2(\partial \Omega e) \leq c2\| \zeta \| \partial \Omega e

for all \zeta \in V\partial \Omega e
,(5.11)

with constants c1 and c2 that are independent of the mesh size and the coefficient \alpha .

Remark 5.1 (discussion of inner product on \partial \Omega e). Based on the proof in subsection
6.3, a\Omega e

(H\partial \Omega e\rightarrow \Omega e
(\cdot ),H\partial \Omega e\rightarrow \Omega e

(\cdot )) is a natural choice, as it leads to a very simple

3To simplify the notation, we assume here that \partial \Omega e \cap \partial \Omega = \emptyset ; otherwise, V\Omega e has to be replaced
by V \partial \Omega 

\Omega e
:= \{ v \in V\Omega e : v= 0 on \partial \Omega \} here and henceforth.
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1181

bound for the condition number. However, a\Omega e(\cdot , \cdot ) cannot be computed algebraically
on V\Omega e , as it requires the local Neumann matrices on \Omega e. Instead, we choose

(\chi , \zeta )\partial \Omega e
= \alpha min

h

N\partial \Omega e

(\chi , \zeta )l2(\partial \Omega e),(5.12)

which also satisfies (5.11) thanks to \| \cdot \| 2L2(\partial \Omega e)
\equiv h

N\partial \Omega e
\| \cdot \| 2l2(\partial \Omega e)

, where N\partial \Omega e
denotes

the number of FE nodes on \partial \Omega e. Note that \alpha min, h, and N\partial \Omega e are only constant
scaling factors which can be included into (\cdot , \cdot )\partial \Omega e or the choice of a suitable toltr.
In the algebraic setting, (estimates of) h and \alpha min may be provided by the user or
have to be estimated within the algorithm; N\partial \Omega e

is known algebraically. Their esti-
mates do not have to be very accurate, though, since constant factors do not affect
eigenmodes or spectral gap size. For instance, h can be estimated roughly from di-
viding the diameter of \Omega by the square root of the number nodes. For nonuniform
triangulations, h would have to be replaced by the length | \partial \Omega e| in the equivalence of
the L2- and l2-norms, and the availability of appropriate estimates of | \partial \Omega e| depends
on the regularity and structure of the mesh. Alternatively, one may implement a
strategy to detect the spectral gap in order to identify the eigenfunctions necessary
for robustness; see, for instance, Figure SM1. For higher-order discretizations, poten-
tially with p-refinement, an appropriate scaling of the inner product might be more
involved. We remark that, even though the algebraic choice (5.12) yields a slightly
more complicated condition number bound (see subsection 6.3), a numerical compar-
ison in subsection SM2.2 shows that the coarse spaces corresponding to (5.12) and
a\Omega e

(H\partial \Omega e\rightarrow \Omega e
(\cdot ),H\partial \Omega e\rightarrow \Omega e

(\cdot )) perform very similarly.

Next, as in [54], we introduce the transfer operator \widetilde T : V\partial \Omega e
\rightarrow \{ w| e ,w \in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

\} =:

V\Omega \mathrm{e},\mathrm{h}\mathrm{a}
4 defined as \widetilde T\varsigma := (H\partial \Omega e\rightarrow \Omega e\varsigma )| e for \varsigma \in V\partial \Omega e , where the harmonic extension

operator H\partial \Omega e\rightarrow \Omega e
: V\partial \Omega e

\rightarrow V\Omega e
is defined as

a\Omega e(H\partial \Omega e\rightarrow \Omega e\chi ,v) = 0 \forall v \in V 0
\Omega e

and H\partial \Omega e\rightarrow \Omega e\chi = \chi on \partial \Omega e;

cf. subsection 3.2. However, since Xvert, introduced in (5.1), already accounts for the
degrees of freedom in the vertices, we wish to only take into account the behavior of the
functions in the interior of e. Therefore, we define the slightly modified transfer opera-
tor T = (I - I\scrV ,e) \widetilde T , where I\scrV ,e denotes the restriction of I\scrV to e and I\scrV is the interpo-
lation by the nodal functions in Xvert corresponding to the vertices. We then consider
the following transfer eigenvalue problem: Find (\phi 

(i)
e , \lambda i)\in (V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

,\BbbR +) such that

be(T (\phi 
(i)
e | \partial \Omega e), T (w| \partial \Omega e)) = \lambda (i)(\phi (i)e | \partial \Omega e ,w| \partial \Omega e)\partial \Omega e \forall w \in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

.(5.13)

We select the eigenfunctions corresponding to the ntr,e largest eigenvalues such that
\lambda (ntr,e) > toltr and \lambda (ntr,e+1) \leq toltr and introduce

\varphi (i)
e = T (\phi (i)e | \partial \Omega e

), i= 1, . . . ,dim(V\Omega \mathrm{e},\mathrm{h}\mathrm{a}
), and(5.14)

Xtr = span\{ H\Gamma \rightarrow \Omega (Ee\rightarrow \Gamma (\varphi 
(i)
e )) : e edge, \lambda (i) > toltr\} .(5.15)

We highlight that thanks to (5.12), the calculation of the eigenfunctions of (5.13)
only requires access to the global stiffness matrix \bfitA ; for further details and the com-
putational realization of (5.13), see section 7.

4Again, for \partial \Omega e \cap \partial \Omega \not = \emptyset , one needs to replace V\partial \Omega e by V \partial \Omega 
\partial \Omega e

:= \{ v \in V\partial \Omega e : v= 0 on \partial \Omega \} .
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A1182 ALEXANDER HEINLEIN AND KATHRIN SMETANA

Note that we may also perform a singular value decomposition (SVD) of the
operator T , which reads as T\zeta =

\sum 
i \sigma 

(i) \^\varphi (i)(\chi (i), \zeta )\partial \Omega e for \zeta \in V\partial \Omega e with orthonor-
mal bases \^\varphi (i) \in V 0

\Omega \mathrm{e},\mathrm{h}\mathrm{a}
:= \{ (w| e  - I\scrV ,e(w| e)) ,w \in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

\} , \chi (i) \in V\partial \Omega e
, and sin-

gular values \sigma (i) \in \BbbR +
0 . Then we have, up to numerical errors, \sigma (i) =

\surd 
\lambda (i) and

span\{ \varphi (1)
e , . . . ,\varphi 

(n)
e \} = span\{ \^\varphi (1), . . . , \^\varphi (n)\} . We can thus infer from results of the op-

timality of the SVD that the space \Lambda n = span\{ \varphi (1)
e , . . . ,\varphi 

(n)
e \} minimizes \| T  - \Pi \Lambda nT\| 

among all n-dimensional subspaces of V 0
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

and hence optimally (in the sense of

Kolmogorov) approximates the range of T and thus V 0
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

; see also [5, 48, 54].

Remark 5.2. The direct extension to three-dimensional problems would require
solving corresponding pairs of eigenvalue problems on the interface face; see also the
extension of the AGDSW coarse space to three dimensions [26]. Alternatively, a
different decomposition of the interface [27] or randomization [9] could be employed.

5.3. Complete definition of the adaptive coarse space. Finally, we define
the complete adaptive coarse space X0 as

X0 =XVCDT :=Xvert \oplus Xconst \oplus Xdir \oplus Xtr,(5.16)

where Xvert, Xconst, Xdir, and Xtr were defined in (5.1), (5.2), (5.6), and (5.15),
respectively.

6. Bound of the condition number. Since we use exact local and coarse
solvers, (3.1) and (3.5), we obtain local stability with constant \omega = 1; cf. [59, As-
sumption 2.4] and, for the reader's convenience, Assumption SM1.1. Thanks to [59,
Lemma 3.11 and follow-up discussion] and the proof of [16, Theorem 4.1], we obtain

\kappa 
\bigl( 
\bfitM  - 1

AS - 2\bfitA 
\bigr) 
\leq C2

0 (m+ 1) ,(6.1)

where C2
0 is the constant in the stable decomposition in Assumption 6.1 below andm\in 

\BbbN is an upper bound for the number of overlapping subdomains \Omega \prime 
i that any FE node

in \Omega can belong to. Hence, m only depends on the structure of the overlapping domain
decomposition and is, for regular domain decompositions, bounded from above; also,
for domain decompositions generated by mesh partitioners such as METIS [33], m
is generally reasonably small. Therefore, it suffices to bound the constant C2

0 in the
stable decomposition to obtain a condition number bound.

Assumption 6.1 (stable decomposition [59, Assumption 2.2]). There exists a con-
stant C0, such that every u\in V 0

\Omega admits a decomposition

u=E0u0 +

M\sum 
i=1

E\Omega \prime 
i\rightarrow \Omega ui(6.2)

such that

M\sum 
i=0

a\Omega \prime 
i
(ui, ui)\leq C2

0a\Omega (u,u).(6.3)

6.1. Construction of the stable decomposition. One key novelty of the
present manuscript which is a key ingredient for proving robustness lies in the specific
definition of the coarse component u0. To that end, we define projection operators
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1183

\Pi e,dirv :=

ndir,e\sum 
i=1

be(v,\psi 
(i)
e )\psi (i)

e \forall v \in V 0
e and(6.4)

\Pi e,trv :=

ntr,e\sum 
i=1

1

\lambda (i)
be(v,\varphi 

(i)
e )\varphi (i)

e \forall v \in V 0
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

,(6.5)

where ndir,e and ntr,e denote the number of selected eigenfunctions from the eigen-
problems (5.5) and (5.13), respectively. Note that for all v \in V 0

\Omega \mathrm{e},\mathrm{h}\mathrm{a}
and v= T (\widetilde v| \partial \Omega e

),

we have \Pi e,trv =
\sum ntr,e

i=1 (\widetilde v| \partial \Omega e
, \phi (i)| \partial \Omega e

)\partial \Omega e
\varphi 
(i)
e , where \phi (i) is the ith eigenfunction of

the transfer eigenvalue problem (5.13). Exploiting the latter and definition (5.14),

\varphi 
(i)
e := T (\phi 

(i)
e | \partial \Omega e), yields the expression of \Pi e,trv in (6.5). Moreover, we introduce

the maps fitting the definitions of the coarse spaces Xdir and Xtr in (5.6) and (5.15):

\Pi dirv :=H\Gamma \rightarrow \Omega (Ee\rightarrow \Gamma (\Pi e,dirv)) \forall v \in V 0
e and

\Pi trv :=H\Gamma \rightarrow \Omega (Ee\rightarrow \Gamma (\Pi e,trv)) \forall v \in V 0
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

.

Definition of the coarse interpolation. As we will later use Poincar\'e's inequality,
we have to include the constant function in our interpolation. This step will then
introduce the minimum value of the coefficient function \alpha min into the estimate, which
is why we already included it on the right-hand side of the transfer eigenvalue problem;
see (5.11). Our final condition number bound will still be robust since the maximum
eigenvalue and, hence, the contrast will not appear. Similarly as in [54], we exploit
that functions which are constant on \Omega e lie in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

. We may thus write

u| \Omega e
= \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

+ cu1\Omega e
+ u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

, where \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
:= u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - cu1\Omega e
\in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

(6.6)

and cu \in \BbbR is zero when \partial \Omega e \cap \partial \Omega \not = \emptyset and will be selected later otherwise. We define
the coarse interpolation

u0 :=H\Gamma \rightarrow \Omega ((I\scrV u)| \Gamma ) +
\sum 
e\in \Gamma 

(u0,\Omega \mathrm{e},ha + u\bot 0,\Omega \mathrm{e},ha), where(6.7)

u0,\Omega \mathrm{e},ha := \Pi tr(\widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e  - I\scrV ,e\widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e) +H\Gamma \rightarrow \Omega (Ee\rightarrow \Gamma (cu1e  - I\scrV ,ecu1e)),

u\bot 0,\Omega \mathrm{e},ha := \Pi dir(u
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,eu
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e),

where I\scrV is the interpolation by the nodal functions in Xvert corresponding to the
vertices and I\scrV ,e is the restriction of this interpolation to the edge e. To simplify
notations, we assume that u0 is already expressed in the basis of V 0

\Omega .
Definition of the local components ui, i = 1, . . . ,M . As typical in the proof of

condition number estimates for Schwarz methods, we define

ui =R\Omega \rightarrow \Omega \prime 
i
Ih(\theta i(u - u0)), i= 1, . . . ,M,(6.8)

where Ih(\theta i(u  - u0)) \in V 0
\Omega denotes the interpolant of \theta i(u  - u0) and \{ \theta i\} Mi=1 is a

partition of unity corresponding to an overlapping decomposition \{ \widetilde \Omega i\} Mi=1 of \Omega with
overlap h; hence, it is also a partition of unity on the overlapping domain decom-
position \{ \Omega \prime 

i\} Mi=1. In detail, we define \theta i(xh) = 1 in \Omega i, \theta i(xh) = 1/mxh
on \Gamma , and

\theta i(xh) = 0 otherwise for all FE nodes xh; here, mxh
denotes the number of subdomains

that xh belongs to. This definition ensures (6.2); see, for example, [59, section 3.6]
for the same construction with a slightly different choice of the partition of unity.
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A1184 ALEXANDER HEINLEIN AND KATHRIN SMETANA

6.2. Bound of the coarse-level and local contributions. The general struc-
ture of the proof follows earlier works, such as [18, 25, 26, 27]. We first prove estimates
for the coarse and local components, as summarized in Lemma 6.2, and then combine
them to the final estimate for C2

0 in Proposition 6.7. Plugged into (6.1), we obtain
the final condition number estimate. The main step in the proof is finding an upper
bound for the term | Ee\rightarrow \Omega e

[(u - u0)| e] | 2a,\Omega e
. This corresponds to upper bounds for

| weij (u - u0)| 2a,\Omega e
in OS-ACMS [25] or | z\xi \rightarrow \Omega \xi 

(u - u0)| 2a,\Omega \xi 
in AGDSW [26], respec-

tively. The proof of this bound differs significantly for our new method and is the
central novel contribution of the analysis in this manuscript and the topic of sub-
section 6.3. The remainder of the proof of the bound of the coarse-level and local
contributions, as summarized in Lemma 6.2, is standard. It follows the earlier works
listed above and can, for the reader's convenience, be found in subsection SM1.1.

Lemma 6.2 (bound of the coarse-level and local contributions). Let u0 and ui be
defined as in (6.7) and (6.8), respectively, and let me denote the maximal number of
edges e in a subdomain \Omega i. Then we have

| u0| 2a,\Omega \leq 2| u| 2a,\Omega + 2me

M\sum 
i=1

\sum 
e\subset \partial \Omega i

| Ee\rightarrow \Omega e
[(u - u0)| e]| 2a,\Omega e

,(6.9)

M\sum 
i=1

| ui| 2a,\Omega \prime 
i
\leq 18| u| 2a,\Omega + 15me

M\sum 
i=1

\sum 
e\subset \partial \Omega i

| Ee\rightarrow \Omega e
[(u - u0)| e]| 2a,\Omega e

,(6.10)

where Ee\rightarrow \Omega e has been defined in the beginning of subsection 5.1.

6.3. Bound of the extension of (\bfitu  - \bfitu 0)| \bfite . To complete the proof of the
bound of the condition number, it thus remains to estimate the term | Ee\rightarrow \Omega e [(u  - 
u0)| e]| 2a,\Omega e

. Different from other approaches, we decompose V\Omega e
in an a-orthogonal

way and derive a bound for each part separately. The a-orthogonal decomposition al-
lows combining both parts afterward. In particular, as already indicated in subsection
5.2 and more specifically in (5.7), we exploit that every u\in V\Omega e can be written as

u= u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
+ u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

,(6.11)

where u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
\in V 0

\Omega e
and u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

satisfies

a\Omega e
(u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

, v) = 0 \forall v \in V 0
\Omega e

and u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| \partial \Omega e

= u| \partial \Omega e
.(6.12)

Thanks to the definition of the coarse-level contribution (6.7), u0,\Omega \mathrm{e},ha| e\ast = 0 and
u\bot 0,\Omega \mathrm{e},ha

| e\ast = 0 for e \not = e\ast , and the linearity of the interpolation operator I\scrV , we get

| Ee\rightarrow \Omega e
[(u - u0)| e] | 2a,\Omega e

\leq 2
\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\bigl[ \bigl( 
u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - I\scrV u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
 - u0,\Omega \mathrm{e},ha

\bigr) 
| e
\bigr] \bigm| \bigm| \bigm| 2

a,\Omega e

(6.13)

+ 2
\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\Bigl[ \Bigl( 
u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - I\scrV u
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - u\bot 0,\Omega \mathrm{e},ha

\Bigr) 
| e
\Bigr] \bigm| \bigm| \bigm| 2

a,\Omega e

.

Next, by exploiting the properties of the eigenvalue problems introduced in subsec-
tions 5.1 and 5.2, we will estimate the terms in (6.13) separately and combine the
estimate at the end by exploiting a-orthogonality, that is,

| u| 2a,\Omega e
= | u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| 2a,\Omega e
+ | u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

| 2a,\Omega e
.(6.14)
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1185

Bound of the harmonic part. To estimate the terms containing the harmonic part
of u, we will exploit that \Lambda n = span\{ \varphi (1)

e , . . . ,\varphi 
(n)
e \} minimizes \| T  - \Pi e,trT\| among

all n-dimensional subspaces of V 0
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

(see the last paragraph of subsection 5.2 for the
definition) and that for all v \in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

:= \{ w| e ,w \in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}
\} , we have

\| (v| e  - I\scrV ,e(v| e)) - \Pi e,tr (v| e  - I\scrV ,e(v| e))\| be \leq 
\sqrt{} 
toltr\| v| \partial \Omega e

\| \partial \Omega e
.(6.15)

This follows from the well-known fact that \| T - \Pi e,trT\| = \sigma ntr,e+1, as \Lambda n is the span of
the first n left singular vectors of T ; cf. the Eckart--Young theorem, for instance, in [20]
for the discrete setting; [48, Chapter 4, Theorem 2.2] for infinite-dimensional spaces;
and [5, 54] for the derivation of error bounds for the local and global approximation
error of optimally converging multiscale methods. We may show the following.

Proposition 6.3 (bound of the harmonic part). Let

ct,e := sup
v\in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

\| v| \partial \Omega e\| L2(\partial \Omega e)

\| v\| H1(\Omega e)
, cp,e := sup

v\in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

\| v - c\Omega e

| \Omega e| 
\int 
\Omega e
v1\Omega e

\| L2(\Omega e)

\| \nabla v\| L2(\Omega e)
,(6.16)

where c\Omega e
= 1 if \partial \Omega e \cap \partial \Omega = \emptyset and 0 otherwise. Then we have\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\bigl[ \bigl( 
u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - I\scrV u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
 - u0,\Omega \mathrm{e},ha

\bigr) 
| e
\bigr] \bigm| \bigm| \bigm| 2

a,\Omega e

\leq 
c2t,etoltr(1 + c2p,e)

c21
| u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| 2a,\Omega e
,

where c1 depends on the choice of the bilinear form (\cdot , \cdot )\partial \Omega e
in (5.12); see (5.11).

Proof. By exploiting the definition of u0,\Omega \mathrm{e},ha in (6.7), the restriction to the edge
e, the linearity of the interpolation operators I\scrV and I\scrV ,e, the definition of \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

in
(6.6), and the definition of the inner product be in (5.3), we obtain\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\Bigl[ \Bigl( 
u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - I\scrV u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
 - u0,\Omega \mathrm{e},ha

\Bigr) \bigm| \bigm| \bigm| 
e

\Bigr] \bigm| \bigm| \bigm| 2
a,\Omega e

=
\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\Bigl[ 
(u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,eu\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e) - \Pi e,tr(\widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,e\widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e)

 - (cu1e  - I\scrV ,ecu1e)
\Bigr] \bigm| \bigm| \bigm| 2

a,\Omega e

=
\bigm\| \bigm\| (\widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,e\widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e) - \Pi e,tr(\widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,e\widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e)
\bigm\| \bigm\| 2
be
.

As \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e is in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}

= \{ w| e ,w \in V\Omega \mathrm{e},\mathrm{h}\mathrm{a}
\} , we may then invoke (6.15) and obtain\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\Bigl[ \Bigl( 
u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - I\scrV u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
 - u0,\Omega \mathrm{e},ha

\Bigr) \bigm| \bigm| \bigm| 
e

\Bigr] \bigm| \bigm| \bigm| 2
a,\Omega e

\leq toltr\| \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| \partial \Omega e

\| 2\partial \Omega e
.(6.17)

To conclude the estimate of the harmonic part of the function, we exploit (5.11)
and choose cu in \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

:= u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
 - cu1\Omega e

, as cu = (1/| \Omega e| )
\int 
\Omega e
u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

if \partial \Omega e \cap \partial \Omega = \emptyset 
and cu = 0 otherwise. Now we apply the trace theorem and the Poincar\'e inequality:\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\Bigl[ \Bigl( 
u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - I\scrV u\Omega \mathrm{e},\mathrm{h}\mathrm{a}
 - u0,\Omega \mathrm{e},ha

\Bigr) \bigm| \bigm| \bigm| 
e

\Bigr] \bigm| \bigm| \bigm| 2
a,\Omega e

\leq toltr
\alpha min

c21
\| \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| \partial \Omega e
\| 2L2(\partial \Omega e)

\leq toltr
c2t,e\alpha min

c21
(\| \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

\| 2L2(\Omega e)
+ \| \nabla \widehat u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

\| 2L2(\Omega e)
)

\leq toltr
c2t,e\alpha min

c21
(1 + c2p,e)\| \nabla u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

\| 2L2(\Omega e)
\leq 
c2t,etoltr

c21
(1 + c2p,e)| u\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| 2a,\Omega e
.(6.18)

Remark 6.4. Taking the supremum in (6.16) over V\Omega \mathrm{e}
shows that ct,e and cp,e do

not depend on the contrast of the coefficient function.
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Bound of the perpendicular part. By exploiting that the eigenfunctions \psi 
(i)
e ,

i= 1, . . . ,dim(V 0
e ), of (5.5) span V

0
e and that we select all ndir,e eigenfunctions corre-

sponding to eigenvalues below a chosen tolerance toldir to define the space Xdir, we
obtain by standard spectral arguments for adaptive coarse spaces that

\| v\| 2de
= \| \Pi e,dirv\| 2de

+ \| v - \Pi e,dirv\| 2de
, \| v - \Pi e,dirv\| 2be \leq 

1

toldir
\| v - \Pi e,dirv\| 2de

(6.19)

for each v \in V 0
e ; cf., e.g., [37, 57, 25]. Using (6.19), we can show the following result.

Proposition 6.5 (bound of the perpendicular part). We have\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\Bigl[ \Bigl( 
u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - I\scrV u
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - u\bot 0,\Omega \mathrm{e},ha

\Bigr) 
| e
\Bigr] \bigm| \bigm| \bigm| 2

a,\Omega e

\leq 1

toldir
| u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

| 2a,\Omega e
.(6.20)

Proof. By exploiting the definition of u\bot 0,\Omega \mathrm{e},ha
in (6.7), the restriction to the edge

e, the linearity of the interpolation operators I\scrV and I\scrV ,e, the definition of the inner
product be in (5.3), and (6.19), we obtain\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\Bigl[ \Bigl( 
u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - I\scrV u
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

 - u\bot 0,\Omega \mathrm{e},ha

\Bigr) 
| e
\Bigr] \bigm| \bigm| \bigm| 2

a,\Omega e

=
\bigm| \bigm| \bigm| Ee\rightarrow \Omega e

\Bigl[ \Bigl( 
(u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,eu
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e) - \Pi e,dir(u
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,eu
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e)
\Bigr) \Bigr] \bigm| \bigm| \bigm| 2

a,\Omega e

= \| (u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e  - I\scrV ,eu

\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e) - \Pi e,dir(u
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,eu
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e)\| 2be
(6.19)

\leq 1

toldir
\| u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,eu
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e\| 2de
.

A close inspection of the definition of the inner product de in (5.4) reveals that, as we
have Re\rightarrow \r e(u

\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e  - I\scrV ,eu
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e) =Re\rightarrow \r e(u
\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e), there holds that

\| u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e  - I\scrV ,eu

\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e\| 2de
= a\Omega e(H

\partial \Omega e

\r e\rightarrow \Omega e
Re\rightarrow \r e(u

\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e),H\partial \Omega e

\r e\rightarrow \Omega e
Re\rightarrow \r e(u

\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e)).

As u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
\in V 0

\Omega e
and the discrete harmonic extension H\partial \Omega e

\r e\rightarrow \Omega e
Re\rightarrow \r e(u

\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e) minimizes

the | \cdot | a,\Omega e-norm among all functions in V 0
\Omega e

that equal u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
on \r e, we conclude that

\| u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e  - I\scrV ,eu

\bot 
\Omega \mathrm{e},\mathrm{h}\mathrm{a}

| e\| 2de
\leq | u\bot \Omega \mathrm{e},\mathrm{h}\mathrm{a}

| 2a,\Omega e
.

Combining the bounds of the harmonic and perpendicular parts. By invoking the
stability result (6.14) and exploiting the estimate (6.13) and Propositions 6.3 and 6.5,
we obtain the following result.

Corollary 6.6. We have

| Ee\rightarrow \Omega e
[(u - u0)| e] | 2a,\Omega e

\leq 2max

\Biggl\{ 
c2t,etoltr(1 + c2p,e)

c21
,

1

toldir

\Biggr\} 
| u| 2a,\Omega e

.

6.4. Complete bound of the condition number. By combining Lemma 6.2
and Corollary 6.6, we obtain the following bound for the condition number.
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1187

Proposition 6.7. Let u0 and ui, i = 1, . . . ,M , be defined as in (6.7) and
(6.8), respectively. Let further me denote the maximal number of edges e in a sub-
domain \Omega i, \nu := maxe\in \Gamma \{ number of subdomains \Omega i that satisfy \Omega i \cap \r e \not = \emptyset \} , \widetilde \omega =
maxi=1,...,M\{ number of \Omega e such that \Omega e \cap \Omega i \not = \emptyset \} , ct := maxe\in \Gamma ct,e, and cp :=
maxe\in \Gamma cp,e, where ct,e and cp,e have been defined in (6.16). Then the condition num-
ber can be bounded as \kappa 

\bigl( 
\bfitM  - 1

AS - 2\bfitA 
\bigr) 
\leq C2

0 (m+ 1) with

C2
0 :=

\Biggl( 
20 + 34me\nu \widetilde \omega max

\Biggl\{ 
c2t toltr(1 + c2p)

c21
,

1

toldir

\Biggr\} \Biggr) 
(6.21)

in the stable decomposition in Assumption 6.1.

Remark 6.8. The bound in Proposition 6.7 is only mildly affected by the structure
of the domain decomposition via the Poincar\'e constant cp,e. As can be seen in (6.18),
the latter is defined on the oversampling domain \Omega e, and it depends on both the size
and the regularity of \Omega e; see, for example, [13, Lemma 2.2]. We assume that \Omega e is
relatively small in size, neither very thin nor with a boundary featuring very pointed
parts, and we therefore conjecture that the Poincare constant will only have a minor
effect on the bound.

Remark 6.9. Compared with numerical results in section 8, the condition num-
ber bound (6.21) is pessimistic. However, it correctly states the scalability and the
robustness with respect to coefficient jumps of the coarse space. This is similar to the
bounds in many other adaptive coarse spaces; see, for instance, [18, 25].

Remark 6.10. The bilinear form in Remark 5.1 enabling the algebraic construction
of our coarse space depends on the parameters \alpha min, h, and N\partial \Omega e

, which are constant
under our assumptions. Whereas N\partial \Omega e

is known algebraically, \alpha min and h may be
provided by the user or have to be estimated. Their estimate does not have to be
very accurate since constant factors do not affect eigenmodes or spectral gap size.

7. Computational realization. In this section, we briefly discuss the algo-
rithmic steps for the algebraic construction of the different components of the two-
level Schwarz preconditioner (3.6) with the adaptive coarse space X0 (5.16). As
XGDSW = Xvert \oplus Xconst \subset X0 (cf. the discussion at the beginning of section 5),
many algorithmic building blocks are the same as in the standard GDSW precondi-
tioner. We thus mainly focus here on the Dirichlet and transfer eigenvalue problems
and refer the reader to [31, 24] for details on the algebraic construction of GDSW
preconditioners.

The main algorithmic components of the two-level preconditioner (3.6). Since
\bfitE \Omega \prime 

i\rightarrow \Omega =\bfitR T
\Omega \rightarrow \Omega \prime 

i
and \bfitE 0 =\bfitR T

0 and thus \bfitA \Omega \prime 
i
=\bfitR \Omega \rightarrow \Omega \prime 

i
\bfitA \bfitR T

\Omega \rightarrow \Omega \prime 
i
and \bfitA 0 =\bfitR 0\bfitA \bfitR T

0 ,
it is sufficient to construct the operators \bfitR \Omega \rightarrow \Omega \prime 

i
for i= 1, . . . ,M and \bfitR 0.

Nonoverlapping domain decomposition. Let us assume that a nonoverlapping do-
main decomposition \=\Omega = \cup i

\=\Omega i is already given or can be obtained from the sparsity
pattern of the matrix \bfitA using a graph partitioner, such as METIS [34].

Restriction operators on the first level. For the first level, the operators\bfitR \Omega \rightarrow \Omega \prime 
i
ex-

tract the subvector corresponding to \Omega \prime 
i when applied to a global FE vector. Similarly,

\bfitA \Omega \prime 
i
= \bfitR \Omega \rightarrow \Omega \prime 

i
\bfitA \bfitR T

\Omega \rightarrow \Omega \prime 
i
can be obtained by extracting the submatrix corresponding

to \Omega \prime 
i from \bfitA . Hence, the \bfitR \Omega \rightarrow \Omega \prime 

i
never have to be set up explicitly.

To define the action of the operator \bfitR \Omega \rightarrow \Omega \prime 
i
, it is sufficient to identify the in-

dex set of the subdomain \Omega \prime 
i. Starting from the nonoverlapping subdomain \Omega i, the

overlapping subdomain can be constructed recursively by adding layers of FE nodes.
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A1188 ALEXANDER HEINLEIN AND KATHRIN SMETANA

This can, again, be performed based on the sparsity pattern of \bfitA , making use of
the fact that two FE nodes share a nonzero off-diagonal coefficient in \bfitA if they are
adjacent.

Computation of the coarse basis functions. The coarse basis functions in terms of
the FE basis functions are stored in the columns of \bfitE 0. If we have computed the in-
terface values \bfitE 0,\Gamma of the coarse basis functions, the interior values are then computed
as energy-minimizing extensions from the interface to the interior of the subdomains
\bfitE 0,I = - \bfitA  - 1

II \bfitA I\Gamma \bfitE 0,\Gamma ; cf. (3.11) and (3.12) and the discussion in subsection 3.2.
The steps above require a partition into interior and interface nodes. Based on

their multiplicity in the nonoverlapping domain decomposition, the nodes can be
algebraically categorized as interior (multiplicity 1), edge (multiplicity 2), or vertex
(multiplicity >2).

Remark 7.1. As mentioned in section 5, we begin the construction of \bfitE 0,\Gamma with a
basis for the vertex and edge spaces Xvert and Xconst, respectively, spanning the null
space. For a nodal basis, we can simply restrict the vector 1 with only 1 entries to the
vertices and edges. If the basis is not nodal, for instance, for high-order discretizations,
then we assume that a basis of the null space is provided as a user input. This is a
typical requirement for nonstandard null spaces in algebraic preconditioning packages,
such as the AMG and DD packages MueLu [7] and FROSch [30] from Trilinos [32].

7.1. Algebraic construction of coarse edge functions from Dirichlet and
transfer eigenvalue problem.

Construction of \Omega e. Both eigenvalue problems require the oversampling domain
\Omega e corresponding to each edge e. It can be constructed similarly to the overlapping
subdomains: We start with the FE nodes of the interior of the edge e and extend the
set recursively by layer of FE nodes using the sparsity pattern of \bfitA ; cf. Figure 4.

Dirichlet eigenvalue problem (5.5). The Dirichlet eigenvalue problems can be writ-
ten as follows: Find (\bfitv , \mu )\in \BbbR N\r e \times \BbbR + such that

\bfitS e \bfitv = \mu \bfitA \r e\r e \bfitv 

with matrices \bfitS e and \bfitA \r e\r e; see also (3.13). The latter can easily be extracted from \bfitA ;
it is the submatrix corresponding to the interior edge nodes. The Schur complement
on the left-hand side is given by \bfitS e = \bfitA \r e\r e  - \bfitA \r e \widetilde R\bfitA  - 1\widetilde R \widetilde R\bfitA \widetilde R\r e, where the index set \widetilde R
corresponds to the interior nodes of \Omega e except for the interior nodes of e. As \bfitA \r e\r e, the
matrices \bfitA \r e \widetilde R, \bfitA \widetilde R \widetilde R, and \bfitA \widetilde R\r e can be extracted as submatrices of \bfitA .

Transfer eigenvalue problem (5.13). The transfer eigenvalue problem can be writ-
ten in the following matrix form: Find (\bfitv , \lambda )\in \BbbR N\partial \Omega e \times \BbbR + such that

\bfitT T \bfitA \r e\r e\bfitT \bfitv = \lambda 
\alpha minh

N\partial \Omega e

\bfitI \partial \Omega e\bfitv ,

where \bfitT is the matrix corresponding to the transfer operator, N\partial \Omega e is the number of
FE nodes on \partial \Omega e, and \bfitI \partial \Omega e

\in \BbbR N\partial \Omega e\times N\partial \Omega e is the identity matrix on the degrees of

freedom of \partial \Omega e. Therefore, let \widehat \bfitT = (
 - \bfitA  - 1

\r \Omega e\r \Omega e
\bfitA \r \Omega e\partial \Omega e

\bfitI \partial \Omega e

), where \r \Omega e and \partial \Omega e correspond to

the interior nodes of \Omega e and the nodes on \partial \Omega e, respectively, correspond to the energy-
minimizing extension from \partial \Omega e to \Omega e; cf. (3.12). Then \bfitT =\bfitR \Omega e\rightarrow \r e

\widehat \bfitT , where\r e denotes
the discrete interior of e. Again, all matrices involved in the transfer eigenvalue
problem, \bfitA \r e\r e, \bfitA \r \Omega e

\r \Omega e
, and\bfitA \r \Omega e\partial \Omega e

, can be extracted from\bfitA , and\bfitR \Omega e\rightarrow \r e only requires
the index sets of \Omega e and \r e.
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1189

Remark 7.2. We can efficiently approximate the space spanned by the leading
singular vectors of the transfer operator T by using randomization, as suggested in
[9], in the context of localized model reduction. This is helpful since the transfer
eigenvalue problem, which is defined on the nodes of \partial \Omega e, may be significantly larger
than the Dirichlet eigenvalue problem, which is defined on the interior nodes of e.

Orthogonalization of the edge functions. Let us remark that V 0
\Omega e

| e \cap V\Omega \mathrm{e},\mathrm{h}\mathrm{a}
| e \not = \emptyset .

Hence, even though the two spaces are a-orthogonal on \Omega e, when restricted to an edge,
the functions from the two spaces may not be linearly independent anymore. In order
to remove (almost) linearly dependent edge functions, we finally orthogonalize the
edge functions for each edge using a proper orthogonal decomposition (POD) [8, 53].

Remark 7.3. The construction of our new algebraic adaptive coarse space requires
additional algorithmic steps compared to nonalgebraic adaptive coarse spaces, such as
[57, 18, 25], but those additional steps are local to \Omega e. After showing the feasibility of
our new approach in this paper, we will further investigate potential improvements in
terms of the complexity of the algorithm and its computational efficiency, for instance,
using randomized linear algebra for solving the two eigenvalue problems.

8. Numerical results. In this section, we present numerical results demon-
strating the robustness of our new adaptive coarse space introduced in (5.16). In
particular, we consider model problem (2.1) with various heterogeneous coefficient
functions on the computational domain \Omega = [0,1]2. We discretize using piecewise lin-
ear FEs on a regular mesh. Moreover, we use the preconditioned conjugate gradient
(PCG) method and stop the iteration once \| \bfitM  - 1r(k)\| /\| \bfitM  - 1r(0)\| < 10 - 10. The
overlapping subdomains \{ \Omega \prime 

i\} Mi=1 are constructed algebraically, that is, by extending
the nonoverlapping subdomains by one layer of FE nodes. In most of our numeri-
cal experiments, we start with nonoverlapping square subdomains, which also yields
square overlapping subdomains. In the results in subsection 8.4, we additionally con-
sider an unstructured nonoverlapping domain decomposition generated using METIS
version 5.0 [33]. Moreover, we keep the tolerances for the selection of eigenfunctions
in the Dirichlet eigenvalue problem toldir = 10 - 3 and the tolerance for the POD or-
thogonalization tolo = 10 - 5 fixed. The tolerance for the transfer eigenvalue problem
toltr is chosen as 105 in most cases and only varied in a few cases, as reported in the
tables. The algorithms have been implemented and run using MATLAB R2023a.

We compare the adaptive coarse space proposed in this paper in (5.16) and vari-
ants of it with the classical GDSW and AGDSW coarse spaces. Even though our
theory holds for general coefficient functions, we are mostly interested in testing our
coarse space for difficult configurations, where standard coarse spaces fail: We focus
on discontinuous coefficient functions since they deteriorate convergence more than
continuous coefficient functions; see also the results in subsection 8.4. Furthermore, it
is well known that high-coefficient components fully contained inside the subdomains
only have a minor influence on the convergence; see, for example, [19]. It has also
been observed that examples where the high-coefficient components do not touch the
Dirichlet boundary are more challenging; this is particularly evident for low numbers
of subdomains. Therefore, except for the realistic coefficient function in subsection
8.4, we set a low coefficient on the elements which touch the boundary of the domain.

Additional results on the spectra of the eigenvalue problems as well as a compar-
ison of the algebraic and nonalgebraic variants of the transfer eigenvalue problem are
presented in section SM2.
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A1190 ALEXANDER HEINLEIN AND KATHRIN SMETANA

Fig. 4. Heterogeneous coefficient functions with high-coefficient channels of varying lengths
(left) and comb-type components (right) cutting the interface of a 4\times 4 domain decomposition with
H/h = 10. The interface is depicted as dashed red lines, elements with \alpha = \alpha \mathrm{m}\mathrm{a}\mathrm{x} are colored in
yellow, and elements with \alpha = \alpha \mathrm{m}\mathrm{i}\mathrm{n} are colored in dark blue. Oversampling domains \Omega e of varying
size are depicted: \Omega 2h

e in light blue, \Omega 5h
e in pink, \Omega H

e in light green, and the domain for the extensions
in AGDSW eigenvalue problems in light purple; the discrete interior edge \r e is plotted in solid red.

Table 1
Numerical results for the configuration shown in Figure 4 (left) with \alpha \mathrm{m}\mathrm{i}\mathrm{n} = 1, \alpha \mathrm{m}\mathrm{a}\mathrm{x} = 106; for

the novel XVCD, XVCT, and XVCDT coarse spaces, we vary the size of \Omega e. We report the coarse
space dimensions (after/before proper orthogonal decomposition), estimated condition numbers, and
iteration counts. Nondefault toltr is marked in boldface.

X0 \Omega e toltr dimX0 \kappa No. of iterations

X\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- -- 33/ 33 2.7\cdot 105 118

X\mathrm{A}\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- -- 57/ 57 7.4 24

\Omega 2h
e -- 33/ 33 2.7\cdot 105 118

X\mathrm{V}\mathrm{C}\mathrm{D} \Omega 5h
e -- 57/ 57 7.2 24

\Omega H
e -- 57/ 57 7.2 24

\Omega 2h
e 105 93/105 7.6 24

X\mathrm{V}\mathrm{C}\mathrm{T} \Omega 5h
e 105 57/ 66 19.0 36

\Omega H
e 105 57/ 66 19.0 36

105 93/105 7.6 24
\Omega 2h

e 10\bfsix 57/ 69 7.6 24
X\mathrm{V}\mathrm{C}\mathrm{D}\mathrm{T} \Omega 5h

e 105 57/ 90 7.2 25

\Omega H
e 105 57/ 90 7.2 24

8.1. A first model problem: Channels of varying lengths. As a first model
problem, we consider the coefficient function shown in Figure 4 (left). The results
are listed in Table 1, where, here and elsewhere, the reported condition number is
estimated from the Lanczos process within PCG. The results clearly show the bad
performance of the classical GDSW coarse space; in fact, the condition number of
2.7\cdot 105 is close to the contrast \alpha max/\alpha min = 106 itself. Due to the moderate number
of subdomains, the resulting iteration count is still moderate, that is, 118. Both the
AGDSW and the new coarse space yield a low condition number below 10 and fast
convergence within 24 or 25 iterations.

In Table 1, we also provide results for only using one of the two eigenvalue prob-
lems, that is, either only the Dirichlet eigenvalue problem (XVCD) or only the trans-
fer eigenvalue problem (XVCT). We observe that, once \Omega e gets too small (\Omega 2h

e ), the
Dirichlet eigenvalue problem fails to detect the high-coefficient channels. The result-
ing coarse space just corresponds to the standard GDSW coarse space. On the other
hand, for this example, the transfer eigenvalue problem alone already yields a robust
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ALGEBRAIC ADAPTIVE SCHWARZ COARSE SPACES A1191

Table 2
Numerical results for the configuration shown in Figure 4 (left) with varying \alpha \mathrm{m}\mathrm{i}\mathrm{n} and \alpha \mathrm{m}\mathrm{a}\mathrm{x} =

106 using the classical XGDSW and adaptive XVCDT (\Omega e =\Omega 5h
e ) coarse spaces. We report the coarse

space dimensions (after/before POD), estimated condition numbers, and iteration counts.

\alpha \mathrm{m}\mathrm{i}\mathrm{n} X0 toltr dimX0 \kappa No. of iterations

X\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- 33/33 2.7\cdot 107 142
10 - 2

X\mathrm{V}\mathrm{C}\mathrm{D}\mathrm{T} 104 57/93 7.3 25

X\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- 33/33 2.7\cdot 105 118
1

X\mathrm{V}\mathrm{C}\mathrm{D}\mathrm{T} 104 57/93 7.2 25

X\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- 33/33 2.7\cdot 103 95
102

X\mathrm{V}\mathrm{C}\mathrm{D}\mathrm{T} 104 57/69 8.5 25

coarse space. However, for \Omega 2h
e , the transfer eigenvalue problem yields unnecessary

eigenmodes for the default tolerance 105. Table 1 shows that, when increasing the tol-
erance to 106, those unnecessary eigenmodes are omitted; see also subsection SM2.1.

Furthermore, we observe that there is a significant amount of linearly depen-
dent edge basis functions for the new coarse space; this results from the fact that we
combine the constant function and eigenfunctions from the Dirichlet and transfer ei-
genvalue problem. Due to POD orthogonalization, the total coarse space dimension is
reduced by 12--15. Here, the resulting coarse space dimension of 57 is always optimal,
which can be explained as follows: For each edge, we need at least one (constant)
function and, in case of channels cutting the edge, at least as many functions as chan-
nels. This yields 12 + 3\times 12 = 48 edge functions. In addition to that, we obtain one
function for each of the nine vertices, resulting in a dimension of 57.

Finally, we report results for varying values of \alpha min in Table 2 to investigate
the robustness with respect to the contrast of the coefficient. We observe that the
classical GDSW coarse space is not robust with respect to the coefficient contrast:
The condition number is in the order of the coefficient contrast, and the convergence
deteriorates with decreasing values of \alpha min. For the XVCDT coarse space, the results
are robust and independent of \alpha min.

8.2. Dimension reduction of the coarse space by enlarging \Omega \bfite . In sub-
section 8.1, we already observed the influence of the size of \Omega e on the spectra of the
eigenvalue problems. Here, we discuss a second example, which is visualized in Figure
4 (right), where the effect is even stronger and better interpretable.

It can be observed that a single edge function, yielding a coarse space of dimension
33, is sufficient for robustness for this example because there is only a single connected
high-coefficient component cutting each edge. Consequently, in Table 3, even the
classical GDSW coarse yields good results. This can only be detected by the eigenvalue
problem if \Omega e is large enough to cover this whole high-coefficient component (\Omega H

e ). If
\Omega e is too small, then the high-coefficient component may appear as either two or three
components cutting the edge for \Omega 2h

e or \Omega 5h
e , respectively; cf. Figure 4 (right). Also,

when using the two subdomains adjacent to the edge e for the energy-minimizing
extension, as in the AGDSW approach, the component is detected as a whole.

This is also reflected clearly in the numerical results in Table 3. There are 12
edges cut by such a high-coefficient component. While increasing the size of \Omega e from
\Omega 2h

e to \Omega 5h
e or \Omega H

e , the coarse space dimension reduces by 12 or 24, respectively. The
same behavior can be observed for AGDSW when using \Omega 2h

e , \Omega 5h
e , and \Omega H

e as the
extension domain. This effect has already been reported for similar cases in [26].
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Table 3
Numerical results for the configuration shown in Figure 4 (right) with \alpha \mathrm{m}\mathrm{i}\mathrm{n} = 1, \alpha \mathrm{m}\mathrm{a}\mathrm{x} = 106; for

the XAGDSW and the novel XVCDT coarse spaces, we vary the size of \Omega e. We report the coarse space
dimensions (after/before POD), estimated condition numbers, and iteration counts. Nondefault toltr
is marked in boldface.

X0 \Omega e toltr dimX0 \kappa No. of iterations

X\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- -- 33/33 24.1 31

\Omega 2h
e -- 57/57 7.1 24

\Omega 5h
e -- 45/45 12.6 26

X\mathrm{A}\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} \Omega H
e -- 33/33 24.1 31

-- -- 33/33 24.1 31

\Omega 2h
e 10\bfsix 57/69 7.1 24

X\mathrm{V}\mathrm{C}\mathrm{D}\mathrm{T} \Omega 5h
e 105 45/57 17.1 33

\Omega H
e 105 33/57 24.1 31

Fig. 5. Exemplary random heterogeneous coefficient functions with 20\% (left), 30\% (middle),
and 40\% (right) elements with high coefficients on a 4\times 4 domain decomposition with H/h = 10.
The interface is depicted as dashed red lines, the elements with \alpha = \alpha \mathrm{m}\mathrm{a}\mathrm{x} are colored in yellow, and
the elements with \alpha = \alpha \mathrm{m}\mathrm{i}\mathrm{n} are colored in dark blue.

8.3. Random coefficient distributions. In order to validate the theory and
show robustness of our new algebraic approach (XVCDT coarse space) for general
coefficient distributions, we test it on randomly distributed binary coefficient distri-
butions; examples for coefficient distributions with 20\%, 30\%, and 40\% elements
with high coefficients are shown in Figure 5.

The results are listed in Table 4, and we can draw several conclusions from those
results. First, we generally obtain good convergence for our new algebraic approach
for different ratios of high-coefficient elements and sizes of \Omega e. As we already ob-
served before, enlarging \Omega e reduces the coarse space dimension, which is much more
pronounced for larger ratios of high-coefficient elements; for instance, for 40\% of high-
coefficient elements, the coarse space dimension can be reduced from 155.1 to 59.0 on
average when keeping the tolerances fixed.

Of course, enlarging \Omega e also increases the computational work for setting up both
eigenvalue problems. As an alternative, we consider the smallest \Omega e = \Omega 2h

e and vary
the tolerance for the transfer eigenvalue problem for the tolerance: When increasing
toltr from 104 to 106, the coarse space dimension reduces from 162.3 to 119.0. At
the same time, the condition number and iteration count increase moderately: The
maximum iteration count goes up from 34 to 44 and the maximum condition number
from 29.4 to 1879.4. When increasing the tolerance further to 107, we obtain an even
smaller coarse space dimension of 79.9; however, the maximum condition number and
iteration count deteriorate to 9.6\cdot 104 and 105, respectively. Obtaining robustness
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Table 4
Numerical results for the configurations shown in Figure 5 with randomly distributed coefficient

functions and \alpha \mathrm{m}\mathrm{i}\mathrm{n} = 1, \alpha \mathrm{m}\mathrm{a}\mathrm{x} = 106 using the novel XVCDT coarse space using varying sizes of
\Omega e. We report the coarse space dimensions (after/before POD), estimated condition numbers, and
iteration counts averaged over 100 runs (maximum in parentheses). Nondefault toltr are marked in
boldface.

No. of
\alpha \mathrm{m}\mathrm{a}\mathrm{x} \Omega e toltr dimX0 \kappa iterations

\Omega 2h
e 105 85.7(105)/128.5(150) 12.1 (36.0) 30.1 (36)

20\% \Omega 5h
e 105 62.6(77)/127.3(158) 9.1 (27.9) 27.8 (32)

\Omega H
e 105 62.4(74)/122.3(142) 8.6 (11.6) 27.5 (31)

\Omega 2h
e 105 121.6(143)/154.8(176) 20.6 (86.3) 30.0 (41)

30\% \Omega 5h
e 105 70.6(81)/122.7(143) 10.6 (25.5) 27.4 (34)

\Omega H
e 105 62.9(74)/122.4(143) 13.3 (38.4) 27.6 (37)

10\bfseven 79.9(87)/ 81.2(88) 1.1\cdot 104 (9.6\cdot 104) 51.4 (105)

10\bfsix 119.0(133)/125.5(136) 223.9 (1879.4) 34.6 (59)
\Omega 2h

e 105 155.1(172)/180.7(200) 17.2 (296.0) 25.5 (33)
40\%

10\bffour 162.3(179)/190.9(210) 6.7 (29.4) 21.7 (26)

\Omega 5h
e 105 81.3(94)/112.3(126) 11.5 (40.6) 27.3 (34)

\Omega H
e 105 59.0(68)/ 95.2(116) 23.3 (76.9) 32.9 (44)

using the algebraic coarse space depends on an interplay of the hyperparameters of
the method, such as the size of \Omega e and the tolerances.

8.4. Modified SPE10 model problem. Finally, we consider a coefficient func-
tion based on realistic data. In particular, we use heterogeneous coefficient functions
\alpha generated from parts of the 40th layer of the second data set from the 2001 SPE
Comparative Solution Project benchmark [12], employing the pixelwise norm of the
permeabilities as the coefficient function. Notably, this example can be solved robustly
using the classical GDSW coarse space, and no adaptive coarse space is needed. How-
ever, if we convert \alpha into a binary coefficient function by setting all coefficients above
1.0 to \alpha max = 106 and all coefficients below 1.0 to \alpha min = 1, then the classical GDSW
coarse space is not robust anymore, resulting in a high condition number of 2.0\cdot 105.
Note that we chose one of the more difficult layers; other layers tested exemplarily
were less challenging for the preconditioners considered. Here, in addition to square
subdomains, we also consider an unstructured domain decomposition into 25 subdo-
mains generated by METIS.

As can be seen from Table 5, for the square subdomains, as expected, theXAGDSW

and XVCDT adaptive coarse spaces yield robust results. For small sizes of \Omega e, the
dimension of the XVCDT coarse space is quite high; for instance, the coarse space
dimension is 362 for \Omega e = \Omega 2h

e (and toltr = 105). We observe that the coarse space
dimension reduces significantly when increasing toltr; for toltr = 107, the dimension
is only 147. The same dimension is obtained for \Omega e =\Omega H

e . While enlarging \Omega e results
in a better condition number and iteration count, it also increases the computational
cost of the eigenvalue problems. On the other hand, increasing toltr does not increase
the computational cost; however, the condition number and iteration count grow
moderately.

We also report results for the space XVCD, where the transfer eigenvalue problem
is completely neglected. While the condition number is contrast dependent for \Omega e =
\Omega 2h

e , which shows that the transfer eigenvalue problem is necessary in this case, we
obtain good results for \Omega e = \Omega 5h

e and \Omega e = \Omega H
e ; notably, the dimension of XVCD is

even lower than that of XAGDSW. Note that if the oversampling domain is mostly
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Fig. 6. SPE10 coefficient functions on a 6 \times 6 domain decomposition with H/h = 10; the
interface is depicted as dashed red lines. Top: Permeability distribution. Right: Binary distribution
using a threshold of 1: Values \geq 1 are mapped to \alpha \mathrm{m}\mathrm{a}\mathrm{x} = 106 and values < 1 to \alpha \mathrm{m}\mathrm{i}\mathrm{n} = 1.

Table 5
Numerical results for the configurations shown in Figure 6; for the novel XVCD and XVCDT

coarse space, we vary the size of \Omega e. We report the coarse space dimensions (after/before POD),
estimated condition numbers, and iteration counts. Nondefault toltr are marked in boldface.

Structured DD METIS DD

X0 \Omega e toltr dimX0 \kappa \# its. dimX0 \kappa No. of iterations

Original coefficient (without thresholding)

X\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- -- 85/ 85 20.6 42 88/ 88 24.4 39

Binary coefficient (with thresholding)

X\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- -- 85/ 85 2.0\cdot 105 57 88/ 88 3.2\cdot 105 54

X\mathrm{A}\mathrm{G}\mathrm{D}\mathrm{S}\mathrm{W} -- -- 93/ 93 19.3 38 96/ 96 16.2 36

10\bfseven 147/150 1859.0 40 160/161 9.1\cdot 104 43

\Omega 2h
e 10\bfsix 262/273 122.8 37 265/277 522.6 36

X\mathrm{V}\mathrm{C}\mathrm{D}\mathrm{T} 105 362/417 9.3 31 303/345 9.9 30

\Omega 5h
e 105 191/229 9.3 31 193/222 8.5 29

\Omega H
e 105 147/176 9.6 31 157/192 14.2 31

\Omega 2h
e -- 87/ 89 2.0\cdot 105 57 88/ 88 3.2\cdot 105 54

X\mathrm{V}\mathrm{C}\mathrm{D} \Omega 5h
e -- 90/ 92 19.4 39 94/ 96 16.5 37

\Omega H
e -- 90/ 93 19.4 39 94/ 97 16.5 36

covered by high-coefficient elements, then we conjecture a slower decay of the harmonic
extensions of higher-frequency modes on \partial \Omega e. This results in a relatively large XVCT

space on e; this is the case, for example, for the green vertical edges in Figure 6.
The results for the METIS DD are consistent with the results obtained for the

square subdomains. We observe that even though the number of subdomains is lower
than for the structured case---25 instead of 36---the number of interface components
is slightly higher: We obtain 56 instead of 60 edges and 32 instead of 25 vertices,
respectively. Correspondingly, we obtain larger coarse spaces for unstructured domain
decompositions, which is a typical observation for interface-based coarse spaces.

These results show that our algebraic approach is very robust, but further investi-
gations of choosing the tolerances will be necessary to obtain the optimal coarse space
dimension. This is a common challenge in adaptive coarse spaces; see, for instance,
the discussion in [28]. A full investigation will be the subject of future research.
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