CONFIDENTIAL

FATIGUE AND FRACTURE BEHAVIOUR OF WELDED JOINTS

IN HIGH STRENGTH STEELS (Fe E 460)

Interim report no. 4 Period : 1 July 1991 - 31 December 1991 Project leader : C. Noordboek

Project leader : C. Noordhoek (Delft University of Technology)

ECSC Agreement number	ŝ	7210-KD/610 (F5/F1.5/89)					
Beneficiary	42	Foundation for Materials Research in the Sea (SMOZ) Rotterdamseweg 137 2628 AL Delft The Netherlands					
Period	: 1 December 1989 - 30 November 1992						
Participants		<pre>Delft University of Technology Department of Civil Engineering C. Noordhoek Delft University of Technology Ships Structures Laboratory H.G. Scholte Eindhoven University of Technology Laboratory for Structural Fatigue J.L. Overbeeke TNO Institute of Production and Logistics Research C. Koning TNO Building and Construction Research O.D. Dijkstra</pre>					

.

DISTRIBUTION

a. Directorate General XII, Research Science, Developments (10 copies).

b. Executive Committee F5 - Plates and heavy beams:

Alting T.J.	Hoogovens Groep BV
Buzzichelli M.G.	CSM Spa
Debiez G.	Intitut de Soudure
Defourny M.J.	CRM
Dengler J.M.	Arbed Recherches
Demofonti G.	CSM Spa
Devillers L.	Irsid
Dufrane J.J.	Fabrique de fer de Charleroi
Duran J.	Cenim
Flossdorf F.J.	VDEh
Freier K.	Stahlwerke Peine-Salzgitter AG
Lanza M.	Instituto Italiano Saldatura
Maddox S.J.	Welding Institute
Manso F.	Ensidesa
Noordhoek C.	Delft University of Technology
Quintino L.	Instituto Soldatura e Qualidade
Seil M.P.	Arbed Recherches
Webster S.E.	British Steel

c. Representatives of the benificiares:

Anelli E.	CSM Spa
Bateson P.H.	British Steel
Barteri M.	CSM Spa
Bourges Ph.	Creusot Loire
Denys R.	Laboratorium Soete W.L.M.
Dhooge A.	Laboratorium Soete W.L.M.
Fuentes Peres M.	Ceit
Harrison P.L.	British Steel
Moura Branco C.	Cemul
Scheller P.R.	Krupp Stahl
Sonsino C.M.	LBF
Vittori O.	CSM Spa

page 2

CONTENTS

Summary

- 1 Introduction
- 2 Work in progress
- 2.1 General
- 2.2 Manufacturing of test specimens and material tests
- 2.3 Experiments
- 2.3.1 General
- 2.3.2 Experimental details
- 2.4 Fracture mechanics
- 2.4.1 Finite element stress intensity factor analyses of 2D weld geometries
- 2.4.2 Pilot crack growth calculations
- 3 Preliminary conclusions

References Tables Figures Appendices

by O. D. Dijkstra

SUMMARY

During the second half year of 1991 the following activities have been carried out:

-manufacturing of the specimens

-erecting of test rigs

-material tests

-first nine fatigue tests on T-joints carried out

-finite element stress intensity factor analysis of 2D weld geometries -pilot crack growth calculations

In the first half year of 1992 the following activities are planned:

finalizing the manufacturing of the specimensfurther execution of experimentscrack growth calculations

The preliminary conclusions from the nine fatigue tests on T-joints are that the results of the tests at ambient temperature are the same as for the earlier tests on normal strength steel (St 52) and the results of the tests at low temperature (-20°C) are better than the results of the tests at ambient temperature.

SMOZ Interim report 4

1 INTRODUCTION

The improved techniques in steel fabrication make available economic production of high strength steels with a good weldability. The use of this high strength steels leads to weight reduction and more economical solutions in the design.

The increase of the stress level in the structure, combined with a reduction of the due load gives higher stress variations in the structure due to the external loads. These higher stress variations (stress ranges) make fatigue more often the governing load case for the design. Therefore additional research in the field of fatigue of high strength steels is required.

The higher stress levels in a high strength steel structure make the structure more sensitive to unstable crack growth. Therefore brittle fracture needs also further investigation.

Brittle fracture mostly initiates from a fatigue crack at a peak load in the load spectrum. So it seems necessary to combine fatigue- and brittle fracture-testing of structural components under the expected most severe but realistic circumstances with high loads and low temperatures.

Fatigue cracks normally initiate at geometrical discontinuities such as welded details. Therefore the program is concentrated on welded connections. So the general objective of this research is to investigate the fatigue and fracture behavior of welded connections in high strength steel under a realistic fatigue loading and at low temperatures.

The geometry of the test specimens and a review of the test programme are given in figure 1 and table 1.

page 5

2 WORK IN PROGRESS

2.1 General

During this fourth period of the project the following activities have been carried out:

-manufacturing of the specimens
-erecting of test rigs
-first tests carried out
-finite element stress intensity factor analysis of 2D weld geometries
-pilot crack growth calculations

In 2.2, 2.3 and 2.4 detailed information about these subjects are given.

In the next period the following activities are planned:

-finalizing the manufacturing of the specimens -further execution of experiments -crack growth calculations

2.2 Manufacturing of test specimens and material tests

The <u>test specimens</u> were welded according to strict guidelines and welding procedures.

For the T-joints (T40 and T70) the following general conditions have to be met (see appendix A for more details):

overall weld angle between 60° and 70°
maximum local weld toe angle 85°
no undercuts
no arc strikes on the plate

-no grinding on final weld toe -cap welds in 3G position

For the butt weld specimens (SB40, SB70, LP40 and LP70) the general conditions were chosen in such a way that the fatigue crack will grow into the HAZ (as already pointed out in interim report no 2). In appendix B more details of the weld preparation and the run sequence can be found.

The fracture toughness of the base material was determined by CTOD tests on the 70 mm thick plate material. Tests were carried out at -20°, -40°, -60° and -80° C. The results show a good CTOD level for all the test temperatures (see figure 2 and appendix C). The lowest CTOD value measured was 0.19 mm at -80° C.

2.3 Experiments

2.3.1 General

During this fourth period the fatigue tests have started and a total of 9 T-joints have been tested, viz:

> 2 specimens of the T40C+ type at IPL-TNO 3 specimens of the T70C+ type at TNO Building and Construction Research 4 specimens of the T70C- type at DUT-Civil Engineering

All tests have been carried out in four point bending. The inner span in the test rig was 7 * plate thickness and the outer span was 21 * plate thickness.

An overview of the results can be seen in table 2 and figure 3.

SMOZ Interim report 4

page 7

In figure 3 two reference curves based on previous work on normal strength steel are drawn. The 40 mm thick specimens tested at ambient temperature are below the reference curve, the 70 mm thick specimens tested at ambient temperature are on the reference curve and the 70 mm thick specimens tested at -20° C are above the reference curve.

Some more experimental details are given in section 2.3.2. In section 2.3.3 some information on the spectrum load (WASH) as to be used at the Technical University at Eindhoven will be given.

2.3.2 Experimental details

2.3.2.1 Dimensions

The most important dimensions of the specimens are defined in figure 4. The measured dimensions of the test specimens are given in table 3.

2.3.2.2 Strain gage measurements

All specimens were provided with strain gages.

The minimum number of strain gages on a specimen are 3. One gage for an overall control of the load and at each weld toe (left and right side of the stub) one gage for crack detection.

Some joints are provided with more gages to check the strain distribution and the working of the test rig in more detail.

Figure 5 showed an example of the more complex strain measurements on specimen T70C-/1. The strain gages for crack initiation are at a 10 mm distance from the weld toe, while the gages for load and test rig control are at a distance of the plate thickness from the weld toe. A nearly perfect straight line under 45° was found for specimen T70C-/1 for the relation between the nominal strain (calculated from the applied load) and the measured strain at the top of the specimen (see figure 6). During the fatigue test strain measurements were carried out at regular intervals. Figure 7 and 8 show the change in strain range of the gages near the weld toe for specimen T70C+/2 and T70C+/3. The strain range starts at a value above the nominal strain (as given in table 2) due the stress raising effect of the weld toe.

The vertical lines in these graphs gives the number of cycles at which a crack marking was carried out. The procedure of this crack marking and how the number of cycles is corrected for this is described in section 2.3.2.3. As can be seen in figure 7 and 8 the crack marking does not disturb the strain range curve. From this it can be concluded that the crack marking does not disturb the fatigue test.

2.3.2.3 Crack measurements

During the fatigue test the following crack measurements were carried out:

а	Visual crack measurement at the surface of the specimen
b	Alternating Current Potential Drop (ACPD) crack depth
	measurements
С	Crack marking by changing the load range
d	Crack opening displacement (COD) measurements

The first two methods (a and b) were used to find the first small cracks (crack initiation), to control the fatigue test and to decide whether a crack marking or COD measurement was needed.

The crack marking gives the most reliable and complete information of the crack shape during the fatigue test. During a crack marking procedure the load range is taken half the load range of the normal fatigue test. The maximum load is kept the same to avoid rotardation effects. This lower load range gives smaller crack growth rates and thus a different appearance of the crack surface. Assuming a slope in a da/dN- Δ K curve of 3 the load cycles during a crack marking procedure are as effective as 1/8 (= $(1/2)^3$) of the number of load cycles with a normal load range. The test results are corrected in this way.

SMOZ Interim report 4

Figure 9 and 10 gives the crack markings of specimen T70C+/2 and T70C+/3. The number of cycles at with the crack markings were done can be found in figure 7 and 8.

The COD measurements were carried out to investigate whether crack closure occurs. Figure 11 shows no crack closure in specimen T70C+/2. COD measurements at specimen T70C+/1 and T70C+/3 showed no crack closure in these specimens.

2.3.3 Variable amplitude tests

Variable amplitude tests will be carried out at the Eindhoven University of Technology. Therefore the WASH.1 generator was built and tested in this period.

This generator consists of two parts:

a. data-generator

b. signal-generator

The data-generator reads the data (peaks and valleys) from the Wave Action Standard History, which are stored on an eprom disk and transfers these to the signal-generator.

The WASH.l spectrum is developed by the LBF-Darmstadt, and IABG-Ottobrunn, and is described in LBF-report FB-181

It is a standardized load history for stiff and floating platforms, and it contains a fixed sequence of 5.10^5 cycles (10^6 extremes). WASH.1 contains a variable load history composed of a defined series of six seastates, corresponding to long term observations on North Sea platforms during one year.

In this period the WASH.1 generator was tested for accuracy and compared with the WASH-tapes.

da/dn measurements were carried out at R = 0.1 on dummy specimens loaded with the WASH.l sequence in order to get used to it.

2.4 Fracture mechanics

2.4.1 Finite element stress intensity factor analyses of 2D weld geometries

In the fracture mechanics part of the previous ECSC/SMOZ programme [1] finite element analysis were carried out for 2D and 3D geometries.

For the 2D T-joint geometries analyzed the thickness of the attached plate was the same as the thickness of the main plate. In the present programme the thickness of the attached plate is half the thickness of the main plate. There are indications that the thickness of the attachment (or the distance L between the weld toes) has an influence on the fatigue life of a T-joint. Therefore finite element stress intensity factor analyses of 2D weld geometries with various attachment/plate thickness ratios were carried out.

The analyses were carried out with the same technique as in [1] with the general purpose finite element program DIANA.

The geometry analyzed in [1] with t/T = 1 (= 4/4) is given in figure 12, while the present experimental geometry with t/T = 1/2 (= 2/4) is given in figure 13. To cover a wider range of t/T values four analyses were made with t/T ratios of 1/4 , 2/4 , 3/4 and 4/4. The other parameters are the same as in [1] for geometry C-O-1 (see also table 4 and figure 12 and 13).

The four geometries were analyzed for membrane and bending load cases (see figure 14 and 15) with a nominal stress at the surface of 1 N/mm². Each geometry was analyzed for the uncracked situation and for seven crack depth, ranging from 0.5 mm to 35 mm.

The finite element meshes used are given in figure 16. The stress distributions in the uncracked situation of geometry 1/4 and 4/4 near the weld toe are given in figure 17 to 20. The calculated stress in the integration point near the weld toe in the main plate are summarized in table 5. These figures can be regarded as stress concentration factors (SCF) (nominal stress = 1 N/mm^2). As can be seen for thicker attachments the SCF values increase and the SCF for bending load is higher than for membrane load.

The results in term of strain energy release rate (G), stress intensity factor (K), geometrical correction factor (f) and stress intensity concentration factor (M_{K}) are given in table 6 to 9. Table 10 summarizes the M_k factors for all the four geometries. The results are also plotted in figure 21 to 26. It can be seen that the M_k factors for bending are higher than those for membrane stresses and that the M_k factors increase with the thickness of the attachment.

Pilot crack growth calculations 2.4.2

Fracture mechanics fatigue crack growth analysis were carried out with the program FAFRAM. The M_k factors determined in the chapter are not available in FAFRAM at the moment. So, the IIW/OMAE \mathtt{M}_{k} factors (based on PD 6493 and information in [1]) were used. An overview of the input parameters is given in table 11 and appendix D. A part of the results of the calculations are presented in appendix D. A graphical presentation of the relation between the crack depth and the number of cycles is given in figure 27. The experimental results are also plotted in figure 27. The 2D analysis are underpredicting the experimental lifetime as can be expected. The 3D analysis predict the results of the tests at ambient temperature rather good. The test at -20°C showed a longer life compared to other experiments and the FAFRAM analysis. The reason for this is not known at the moment.

The M_k factors of the previous section will be incorporated in FAFRAM and then more analysis will be made in the next period.

3 Preliminary conclusions

The preliminary conclusions based on the limited work done are:

- that the results of the fatigue tests at ambient temperature а are the same as for the earlier tests on normal strength steel (St 52) and the results of the tests at low temperature (-20°C) are better than the results of the tests at ambient temperature.
- that a greater weld toe distance give higher ${\rm M}_{\rm k}$ values and b therefore a shorter fatigue life.

REFERENCES

1 Fatigue behaviour of welded joints in offshore steel structures. Part III: Fracture mechanics. SMOZ, Delft, December 1988. ECSC Convention 7210-KG/602(F7.5/84) Dijkstra, O. D., Snijder, H. H., Overbeeke, J. L., Wildschut, H. and Scholte, H. G.

TABLES

1	Review of test specimens
2	Test results
3	Dimensions of test specimens
4	Dimensions of FEM geometries
5	Stress in integration point near weld toe.
6	Geometry factors for C-O-1- 1/4
7	Geometry factors for C-O-1- 2/4
8	Geometry factors for C-O-1- 3/4
9	Geometry factors for C-O-1- 4/4
10	Summary of M _k factors
11	Input parameters of crack growth calculations

Table	1	Review of	test	specimens
		(Specimen	code	<pre>/ number of specimens)</pre>

Plate thickness		40	mm	70 mm		
Testing	temperat	ure	+20°C	-20°C	+20°C	-20°C
Geometry	l) Special details	2) Type of loading				
SB40 /	-	CA	SB40C+/2	SB40C-/4	SB70C+/2	SB70C-/4
Small	-	VA	SB40V+/2	SB40V-/4	SB70V+/2	SB70V-/4
welds	-	ΔK	-	SB40K-/4	-	SB70K-/8 ³⁾
LP40 /	-	CA	LP40C+/2	LP40C-/2	LP70C+/4	LP70C-/6
Large Plate welds	Pre- cracked	CA	-	-	-	LP70PC-/4
T40 /	-	CA	T40C+/4	T40C-/2	T70C+/4	T70C-/6
T-joints	Ground	CA	T40GC+/2	T40GC-/2	T70GC+/2	T70GC-/2

¹⁾ Pre-cracked = artificial initial semi-elliptical surface crack at weld toe Ground = weld toe grinding

- 2) CA = constant amplitude loading VA = variable amplitude loading ΔK = constant ΔK loading with intermediate CTOD loads
- 3) Some tests at temperatures lower than -20° C

N.B. In this period some specimens of the bold figures are tested.!!

Specimen	R	Δσ _{nom} N/mm ²	Δε _{nom} *10 ⁻⁶	^N f1 *10 ⁶	^N f2 *10 ⁶	^N f3 *10 ⁶	^N f4 *10 ⁶
T40C+/1	0.1	200	952	0.055	0.205	0.213	0.235
T40C+/2	0.1	200	952	0.043	0.190	0.204	0.221
T70C+/1	0.1	200	952	0.031	0.108	0.108	0.203
T70C+/2	0.1	200	952	*)	0.110	0.110	0.187
T70C+/3	0.1	120	571	0.127	0.492	0.749	0.825
T70C-/1	0.1	200	952	0.060	0.147	0.186	0.299
T70C-/2	0.1	120	571	0.290	1.339	1.462	1.500
T70C-/3	0.1	200	942	0.056	0.226	0.226	0.270
T70C-/4	0.1	120	571	0.240	0.868	0.916	1.039

Table	2	Test	results

 N_{f1} = crack initiation (10 mm surface crack)

N_{f2}= crack first corner

 N_{f3} = crack second corner

N_{f4}= End of Test

*) first crack missed due to computer failure

	1	T								
Specimen	plate thick- ness	plate width	stub thick- ness	weld dist front	weld toe distance front back		weld front left right		height back left right	
	т	В	t	L-f	L-b	H-fl	H-fr	H-bl	H-br	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
T40C+/1	40.0	210.1	19.9	43.2	43.2	21.8	19.0	16.7	20.2	
T40C+/2	40.0	209.9	19.93	43.3	43.8	17.2	20.8	15.7	18.9	
T70C+/1	70.9	210.0	34.6	55.6	55.7	17.6	18.5	19.3	19.0	
T70C+/2	70.6	209.9	34.5	53.4	54.5	18.8	23.21	19.1	18.1	
T70C+/3	70.6	[.] 209.9	34.2	54.3	55.1	20.7	20.0	20.9	20.9	
T70C-/1	70.7	210.0	34.6	53.8	53.0					
T70C-/2										
T70C-/3										
T70C-/4										

Table 3 Dimensions of tested specimens

Geometry C-0-1-		1 / 4	2 / 4	3 / 4	4 / 4
Dimensions					
Plate thickness	T [mm]	70	70	70	70
Attachment thickness	ቲ [mm]	17.5	35	52.5	70
Attachment height	h [mm]	30	30	30	30
Weld angle	0 [°]	70	70	70	70
Weld toe radius	ρ [mm]	0.	0.	0.	0.
Weld toe distance	L [mm]	39.3	56.8	74.3	91.8
NOLG COC GLOCALOG					
Dimensionless paramet	ers				
t / T	[-]	0.25	0.50	0.75	1.00
L / T	[-]	0.562	0.812	1.062	1.312
h / T	[-]	0.429	0.429	0.429	0.429
ρ / Τ	[-]	0.	0.	0.	0.

Table 4 Dimensions of FEM geometries

Table 5 Stress in integration point near weld toe.

Geometry C-0-1-	1 / 4	2 / 4	3 / 4	4 / 4
Membrane load	5.08	5.66	6.04	6.28
Bending load	5.63	6.55	7.21	7.63

Table 6	Geometry factors for C-O-1- 1/4
	Load case: $b = pure bending$, $m = membrane$
	к ² 2

$$G = \frac{K^2}{E} * (1-\nu^2); \quad K = f\sigma\sqrt{\pi a}; \quad \sigma = 1 \text{ N/mm}^2; \quad f = f_{\text{strip}} * M_k.$$

relative crack depth	load case	G	К	f	f _{strip}	Mk
a/T [-]	b,m	[10 ⁻³ N/mm]	[Nmm ^{-3/2}]	[-]	[-]	[-]
0.0071	b	0.03305	2.762	2.2038	1.0995	2.0043
	m	0.02855	2.567	2.0482	1.1091	1.8467
0.0250	b m	0.05120 0.04838	3.437 3.342	$1.4658 \\ 1.4253$	1.0777 1.1110	1.3602 1.2829
0.0625	b	0.08440	4.413	1.1903	1.0560	1.1272
	m	0.09169	4.600	1.2408	1.1410	1.0874
0.1375	b	0.1488	5.860	1.0657	1.0362	1.0284
	m	0.2041	6.864	1.2483	1.2337	1.0118
0.2750	b	0.3175	8.560	1.1007	1.0960	1.0043
	m	0.6402	12.16	1.5637	1.5624	1.0008
0.3875	b	0.5607	11.38	1.2328	1.2349	0.9983
	m	1.514	18.69	2.0246	2.0333	0.9957
0.5000	5000 b 1.047		15.54	1.4820	1.4896	0.9949
	m 3.704		29.24	2.7885	2.8057	0.9939

Table 7	Geometry factors for	C-O-1- 2/4			
	Load case: $b = pure$	bending , $m = membrane$			

$$G = \frac{K^2}{E} * (1-\nu^2); \quad K = f\sigma\sqrt{\pi a}; \quad \sigma = 1 \text{ N/mm}^2; \quad f = f_{\text{strip}} * M_k.$$

relative crack	load case	G K		f	f _{strip}	Mk	
depth a/T [-]	b, m	[10 ⁻³ N/mm]	[Nmm ^{-3/2}]	[-]	[-]	[-]	
0.0071	0.0071 b		3.131	2.4982	1.0995	2.2721	
	m		2.804	2.2373	1.1091	2.0172	
0.0250	0.0250 b		3.803	1.6219	1.0777	1.5050	
	m		3.584	1.5285	1.1110	1.3758	
0.0625	.0625 b 0.09608 4.709		4.709	1.2702	1.0560	1.2028	
	m 0.09972 4.797		4.797	1.2939	1.1410	1.1340	
0.1375	b	0.1590	6.058	1.1017	1.0362	1.0632	
	m	0.2125	7.003	1.2735	1.2337	1.0323	
0.2750	0.2750 b		8.639	1.1109	1.0960	1.0136	
	m		12.21	1.5701	1.5624	1.0049	
0.3875	0.3875 b 0.5		11.43	1.2382	1.2349	1.0027	
	m 1.5		18.76	2.0322	2.0333	0.9995	
0.5000 b		1.056	15.61	1.4887	1.4896	0.9994	
m		3.740	29.38	2.8018	2.8057	0.9986	

Table 8	Geometry factors for C-O-1- 3/4
	Load case: $b = pure bending , m = membrane$

$$G = \frac{K^2}{E} * (1-\nu^2); \quad K = f\sigma\sqrt{\pi a}; \quad \sigma = 1 \text{ N/mm}^2; \quad f = f_{\text{strip}} * M_k.$$

relative crack	load case	G	K	f	f _{strip}	M _k	
a/T [-]	b, m	[10 ⁻³ N/mm]	[Nmm ^{-3/2}]	[-]	[-]	[-]	
0.0071	b	0.04954	3.381	2.6976	1.0995	2.4535	
	m	0.03757	2.945	2.3498	1.1091	2.1186	
0.0250	0.0250 b		4.048	1.7264	1.0777	1.6019	
	m		3.725	1.5887	1.1110	1.4299	
0.0625	0.0625 b		4.909	1.3241	1.0560	1.2539	
	m		4.909	1.3241	1.1410	1.1605	
0.1375	b	0.1665	6.199	1.1273	1.0362	1.0879	
	m	0.2174	7.083	1.2881	1.2337	1.0441	
0.2750	b	0.3279	8.698	1.1185	1.0960	1.0205	
	m	0.6496	12.24	1.5740	1.5624	1.0074	
0.3875	0.3875 b 0.56		11.46	1.2414	1.2349	1.0053	
	m 1.53		18.80	2.0366	2.0333	1.0016	
0.5000	0.5000 b		15.64	1.4915	1.4896	1.0013	
	m		29.42	2.8057	2.8057	1.0000	

Table 9	Geometry factors for C-O-l- 4/4
	Load case: b = pure bending , m = membrane

$$G = \frac{K^2}{E} * (1-\nu^2); \quad K = f\sigma\sqrt{\pi a}; \quad \sigma = 1 \text{ N/mm}^2; \quad f = f_{\text{strip}} * M_k$$

relative crack	load case	G	K	f	f _{strip}	M _k	
depth a/T [-]	b,m	[10 ⁻³ N/mm]	[Nmm ^{-3/2}]	[-]	[-]	[-]	
0.0071	b	0.05377	3.523	2.8109	1.0995	2.5565	
	m	0.03952	3.020	2.4096	1.1091	2.1726	
0.0250	b	0.07596	4.187	1.7857	1.0777	1.6570	
	m	0.06257	3.800	1.6207	1.1110	1.4588	
0.0625	b m	0.1093 0.1069	5.023 4.968	$1.3549 \\ 1.3400$	1.0560 1.1410	1.2830 1.1744	
0.1375	b	0.1709	6.280	1.1420	1.0362	1.1021	
	m	0.2200	7.125	1.2957	1.2337	1.0503	
0.2750	2750 b 0.3304 8.732 1.1229		1.1229	1.0960	1.0245		
	m 0.6509 12.26 1.5765		1.5765	1.5624	1.0090		
0.3875	0.3875 b 0.5710 m 1.533		11.48 18.81	1.2436 2.0376 2.0333		1.0070 1.0021	
0.5000 b		1.060	15.64	1.4915	1.4896	1.0013	
m		3.753	29.43	2.8066	2.8057	1.0003	

relative crack depth	load case	t/T = 1/4	t/T = 2/4	t/T = 3/4	t/T = 4/4
a/T [-]	b, m	[-]	[-]	[-]	[-]
0.0071	b	2.0043	2.2721	2.4535	2.5565
	m	1.8467	2.0172	2.1186	2.1726
0.0250	b	1.3602	1.5050	1.6019	1.6570
	m	1.2829	1.3758	1.4299	1.4588
0.0625	b	1.1272	1.2028	1.2539	1.2830
	m	1.0874	1.1340	1.1605	1.1744
0.1375	b	1.0284	1.0632	1.0879	1.1021
	m	1.0118	1.0323	1.0441	1.0503
0.2750	b	1.0043	1.0136	1.0205	1.0245
	m	1.0008	1.0049	1.0074	1.0090
0.3875	b	0.9983	1.0027	1.0053	1.0070
	m	0.9957	0.9995	1.0016	1.0021
0.5000	b	0.9949	0.9994	1.0013	1.0013
	m	0.9939	0.9986	1.0000	1.0003

Table 10 Summary of M_k factors geometry C-O-1 1/4, 2/4, 3/4 and 4/4

Parameter	40 mm thicl	k T-joints	70 mm thick T-joints		
	2 - D	3 - D	2 - D	3 - D	
Thickness T (mm) Width B (mm)	40.	40. 210.	70.	70. 210.	
A-law constant C (N, mm) exponent m	Paris .18320E-12 3.	Paris .18320E-12 3.	Paris .18320E-12 3.	Paris .18320E-12 3.	
C-law constant C (N, mm) exponent m	-	Paris .18320E-12 3.		Paris .18320E-12 3.	
Stress Intens. Fac Mk weld angle θ (deg) toe radius ρ (mm) toe dist. L (mm)	Brown/S/O IIW-X/OMAE 60. .5 43.5	Newman/Raj IIW-X/OMAE 60. .5 43.5	Brown/S/O IIW-X/OMAE 60. .5 55.0	Newman/Raj IIW-X/OMAE 60. .5 55.0	
Initiation		Single	•	Single	
initial defects crack depth a _. (mm) crack width c ⁱ (mm)	. 15 -	.15 .75	. 15 -	. 15 . 75	
Process parameters α ($\Delta a = \alpha * a_i$)	.05	. 05	. 05	.05	
stopped when	a _n > a _f	a _n >a _f	a _n > a _f	a _n > a _f	
final depth a _n (mm)	20.	20	35.	35.	
Stress range					
$\Delta \sigma_{\rm m}$ (N/mm ²)	0.	0.	0.	0.	
$\Delta \sigma_{\rm b}$ (N/mm ²)	200.	200.	200.	200.	

Table 11 Input parameters crack growth calculations

FIGURES

1	Geometry of test specimens.								
2	CTOD values for 70 mm plate material.								
3	S-N curve for T-joints								
4	Dimensions of test specimens								
5	Location of strain gages on specimen T70C-/1								
6	Relation nominal strain and measured strain for specimen								
	T70C-/1								
7	Relation strain range and number of cycles during the								
	fatigue test for specimen T70C+/2								
8	Relation strain range and number of cycles during the								
	fatigue test for specimen T70C+/3								
9	Fracture surface with crack marking on specimen T70C+/2								
10	Fracture surface with crack marking on specimen T70C+/3								
11	Crack opening displacement measurements on specimen T70C+/2								
12	Geometry C-0-1- 4/4								
13	Geometry C-O-1- 2/4								
14	Membrane load case on FEM geometry								
15	Bending load case on FEM geometry								
16	Finite element meshes								
17	Stress distribution near weld toe for geometry C-O-1 1/4								
	(membrane loadcase)								
18	Stress distribution near weld toe for geometry C-O-1 1/4								
	(bending loadcase)								
19	Stress distribution near weld toe for geometry C-O-1 4/4								
	(membrane loadcase)								
20	Stress distribution near weld toe for geometry C-O-1 4/4								
	(bending loadcase)								
21	M _k factors for C-O-1- 1/4								
22	M_k^{c} factors for C-O-1- 2/4								
23	M_k^{*} factors for C-O-1- 3/4								
24	M_k^{\sim} factors for C-O-1- 4/4								
25	M factors for membrane stress								
26	M _k factors for bending stress								
27	Comparison FAFRAM analysis and experiments								

Figure 1 Geometry of test specimens.

Figure 2 CTOD values for 70 mm plate material.

Figure 3 S-N curve for T-joints

Figure 4 Dimensions of test specimens

Figure 6 Relation nominal strain and measured strain for specimen T70C-/1

Figure 8 Relation strain range and number of cycles during the fatigue test for specimen T70C+/3

Figure 9 Fracture surface with crack marking on specimen T70C+/2

Figure 10 Fracture surface with crack marking on specimen T70C+/3

Figure 11 Crack opening displacement measurements on specimen T70C+/2

Figure 12 Geometry C-0-1- 4/4

Figure 13 Geometry C-0-1- 2/4

Figure 14 Membrane load case on FEM geometry

Figure 15 Bending load case on FEM geometry

Figure 16 Finite element meshes

Figure 17

Stress distribution near weld toe for geometry C-O-1 1/4 (membrane loadcase)

Figure 18 Stress distribution near weld toe for geometry C-O-1 1/4 (bending loadcase)

· · · · · ·						2					
+	×	×	×	×	×	0.7 1.6	0 0.7 2 1.6	71 0.60 59 1.73	8-0.62 3-1.76	0.57 1.82	0.48 1.87
×	×	X	X	×	×	0.7 1.6	5 0.7 8 1.7	5 0.69 7 1.82	0.66	0.58 1.93	0.47 1.95
×	X	×	×	X	×	0.80 1.70	0 0.7	9 0.73 5 1.93	0.71	0.60	0.46
+.	×	×	X	X	×	0.8/ 1.82	0.8	5 0.76 2 1.98	0.72 2.07	0.63 2.20	0.44 2.19
+	×	X	X	X	×	0.89 1.97	0.92	2 0.85 9 2.17	0.73 2.13	0.63 2.38	0.41 2.50
+	~	X	X	\mathcal{X}	~	0.96 2.15	1.02 2.27	0.96	0.78 2.37	0.66	0.42
-+	X	X	X	×	\mathcal{A}	0.91 2.23	1.14 2.46	1.36 2.70	0.98 2.74	0.42 2.64	0.41 3.08
×	×	X	X	~	_	0.84 2.52	1.04 2.79	1.27 3.05	0.95 4.11	0.28 3.12	0.11 2.72
X	X	X	\mathcal{X}			0.80 2.94 0.41 2.77	0.98 3.24 0.56 4.27	1.19 3.52 0.89 6.05	1.35 6.28	0.51 4.45	0.03
/	/					0.04 2.16	0.06 2.73	0.37 [.] 3.88			
J						0.29 2.86	-0.02 1.94 -0 2.	0.07 33			

Figure 19 Stress distribution near weld toe for geometry C-O-1 4/4 (membrane loadcase)

Figure 20

Stress distribution near weld toe for geometry C-O-1 4/4 (bending loadcase)

Figure 22 M_k factors for C-0-1- 2/4

Figure 24 M_k factors for C-O-1- 4/4

Figure 26 M_k factors for bending stress

-

APPENDICES

A	Weld	procedure	of	T-joints

- Weld procedure of butt welds В
- CTOD results on 70 mm plate FAFRAM analyses of T-joints С
- D

page A- 1

Appendix A

Weld procedure of T-joints

AANWIJZINGEN VOOR HET LASSEN VAN DE T-PROEFSTUKKEN (40 en 70 mm).

De lassen zullen worden uitgevoerd met de parameters aangegeven in stuk 90-50. De volgende punten dienen daarbij in acht te worden genomen.

- a. de overall lashoek moet liggen tussen 60° en 70° .
- b. de max. locale lashoek mag 85° zijn.
- c. er mogen geen inkartelingen aan de lasteen voorkomen.
- d. er mogen geen arc-strikes op de plaat worden aangebracht.
- e. er mag buiten de te beproeven las niet aan de plaat worden gelast.
- f. er mag niet aan de uiteindelijke lasteen worden geslepen.
- g. alle afzonderlijke proefstukken moeten, voordat ze worden uitgesneden, worden genummerd.
- h. voordat de gelaste platen in afzonderlijke proefstukken worden verdeeld, moeten op de kopse kant proefstuknummers worden aangebracht.
- i. de eerste laslagen mogen d.m.v. OP-lassen worden gelegd.
- j. het aflassen moet in 3G-positie gebeuren (vertikaal opgaand).

.

1×.1-000 STR SNH. HI Amp Volt Diam POS cm/min k3/cm Size AV /DC METAL -117-27 5,5 Niss 34,5 AC 3<u>G</u> 13.15 28 15 42 AC Niss зG 126___ 3.15 R 126 20 15 42 AC Niss 3G 3.15 126 28 5 42 AC INiss 3G 3.15 -10--Chargeno's u.d. draad \$ 3.15 16819-081119 \$ 4 17066-131220 \$3.15 16434-131220 Laag 1 t/m6 gelast door VID 21/08/91 laag 7 ca soom R16 22/08/91 Restant Ozz 23/08/91 Plaats u.d. hechter 0- yomm 780 - 850mm -----1420-1470mm-2140_2210mm 2600 _2650 mm 2800 - 28 yomm 2880mm Fén arc strikedoor het hechten in tweede hecht 83 cm van beginpunt Deze arc strike zit in proef 5-4 De volgende proefstukken zijn voorzien van numers s.

. . .

1 1

Appendix B

Weld procedure of butt welds

23-910

EGKS4-91-82

W-L

AANWIJZINGEN VOOR HET LASSEN VAN DE PROEFLAS OP SHORALSIM VOOR DE BUTT WELDS.

- Voor het lassen wordt een stuk materiaal gebruikt van ca. 775x300x70 mm. Na het doorbranden kan hierop een las van ca. 300 mm. worden aangebracht.
- 2. Tijdens het lassen zal ervoor gezorgd worden dat de inbrandingsdiepte van elke afzonderlijke lasrups 4 mm. bedraagt.
- 3. De lasrups die de lasteen met het moedermateriaal vormt, zal zo gelegd worden dat de lasteen 4 mm. verwijderd ligt van de oorspronkelijke zijkant van het moedermateriaal. De lasteen ligt zodoende boven de fusion line van alle eronder liggende lasrupsen.

De hiervoor gekozen lasmethode is die volgens lasproefje 1. Hierbij is de afstand van de electrode tot het moedermateriaal 4 mm. en de oppervlakte van de voorlaatste lasrups tot het oppervlak van het moedermateriaal ook 4 mm.

- 4. Na het lassen zullen kerfslag proefstaafjes worden gemaakt en beproefd zoals ook voor de eerdere proeflas is gebeurd. Tevens moeten 2 macro's gemaakt worden. Hiervan dienen foto's gemaakt te worden om de structuur zichtbaar te maken en moeten hardheidsmetingen worden uitgevoerd.
- 5. Voor de gelaste platen in afzonderlijke proefstukken worden verdeeld, moeten op de <u>kopse kanten</u> proefstuknummers worden aangebracht.

. . .

.....

(* 1) i

N-Y CODE: LMB(WPS): 9 WIJZ:1 REV DATUM(DATE):27/01/92 CERT NO: 0 LMK(PQR): 250PROJECT :Lasproeven Shoralsim ORDER: 30361 OPDR.GEVER(CLIENT):TNO/TU-Delft INSPEKTIE:-REV NO: 0 TEKENING(DRWG): 0 (MATERIAL)2:shoralsim MATERIAAL:1:Shoralsim DIKTE(THN):70 MM MAX.Ceg:-DIKTE(THN):70 MM MAX.Ceq:-LASPROCES:1:SMAW POSITIE:1G POLARITEIT:+/-(PROCES) 2:SAW POSITIE:1G POLARITEIT: + 3:-POSITIE:-POLARITEIT:-LAS MATL :1:Ni 55 SPEC.:A 5.5 CLAS.:E 8018 SCALE:D (WELD-) 2:LNS 140 A SPEC.:A 5.2 CLAS.: F8A4 SCALE:D (CONS.) 3:-SPEC.:-CLAS.:-SCALE:-GAS:-GAS SPEC .: -STR. SNH. (FLOW RATE-L/MIN. POEDER(FLUX):P 230 POEDER(FLUX)SPEC.: EA1-A2 SCALE: D WARMTE :COMB. DIKTE(CTHN):140 MM MAX.CEN WAARDE:-VOORW.(PREH)TEMP:120C METODE:Electrical INTERP TEMP: 180C GLOEIEN (P.W.H.T.):- GLOEI PROCEDURE:-VOORBWERKING: SLIJPEN!!! (PREPARATION BEFORE WELDING: GRINDING) LASVORM (WELD PREPARATION) LAS DETAIL (RUN SEQUENCE) See sheet & B-5 LAS GEGEVENS (WELD PARAMETERS) AMP VOLT SNH UITHI LAAG DIAM STR LAS POS V CM/ ROL | KJ/CM | AC/ | (WELD) PASS SIZE A MIM CM MM DC METAL 75 25 1 3.15 8 |14.06|+/-|Ni 55 1G 25 14.58 +/-2 - 14175 18 Ni 55 4 1G 31 26.87 + 15 4 650 45 140A 1G32 30 32 45 42.24 + 16 4 660 140A 1G 27.73 + 17 4 650 140A 1G 660 32 30 42.24 + 18 140A 1G GUTSEN NA LAAG NO (GOUGING AFTER PASS) : 52 SLIJPEN NA LAAG NO (GRINDING AFTER PASS): 52 VEREISTE KWALIFICATIES (REQUIRED QUALIFICATIONS): POSITIE (POSITION): 1G METODE (METHOD): S/SA TOEPASBAARHEID GRENZEN (RANGE OF APPROVAL):-MATERIALEN (MATERIALS):-HOEKL.AFM. (FILLETSIZE):-DIKTES (THICKNESS):-PIJP DIAM. (PIPE DIAM):-DIAMETERS ELEKTRODEN (DIAM.WELDCONSUMABLES):-**OPDRACHTGEVER**(CLIENT) HOLLANDIA INSPECTIE INST. TNO/TU-Delft -NAAM: NAAM: 19 DATUM: DATUM 19 ACC: JA / NEE ACC: JA / NEE PARAAF HANDTEK:....

.

.

Posg sheet 3

0

B-5

0

B-6

.

page C- 1

Appendix C

CTOD results on 70 mm plate

Instituut voor Produktie en Logistiek TNO. 09-01-92

COD-data sheet

Intended for:EGKS

		Construction of the local data and the local data a
Specimen No.	8-1	8-2
Fatigue pre-cracking N/mm - R (yield strength) N/mm ³ / - Kf (final position of crack) N/mm ³ / - R (fatigue force ratio) - - Ff k - Nf cycles.10- - a ₀ m - a ₄ m	n ² 450 / ² 1063 0.1 cN 80.0 - ³ 83.0 rm 70.9 rm 69.6	450 1347 0.1 100.0 21.8 69.9 69.9
Bend test - S (loading span) - z (distance clip to surface) - T (test temperature) - B - W - a ₁ - a ₂ - a ₂ - ($a_1 + a_2 + a_3$) / 3 - a/W - Y Does fatigue crack satisfy: - minimum growth	rm 560 rm -1 C -20 rm 70.7 rm 140.5 rm 72.3 rm 72.3 rm 72.3 rm 72.3 rm 72.3 rm 72.3 0.51 11.14	560 -1 -20 70.8 138.9 71.7 72.2 71.8 71.9 0.52 11.24
 minimum growth non planar growth multiple nucleation effects 	Yes	Yes
Clip gauge displacement (plastic) - V. - V ⁱ - V ^c - V ^u m	man - man - man - man - 7 7 7 9.40	
Appropriate critical applied force - Fi - F ^C - F ^C - F ^U - F ^U m	xN – kN – kN – xN – XN 434.85	462.97
Critical COD-values (d) - δ_{1} (onset slow crack growth) - δ_{1}^{2} (unstable fracture/"pop-in") - δ_{2}^{2} (unstable fracture/"pop-in"(*)) - δ_{m}^{2} (maximum force plateau)	mm – mm – mm – mm – πm –	

According to BS5762: 1979

C-2

COD-data sheet

Intended for:EGKS

Specimen No.		8-3.	8-4	
Fatigue pre-cracking - R (yield strength) N/m - Ke (final position of crack) N/mm ³ - Rf (fatigue force ratio) - F _f - N cycles.10 - a ₀ - a ₄	m ² /2 /2 kN - 3 mm mm	450 1242 0.1 90.0 34.2 71.3 70.3	450 1198 0.1 90.0 29.1 69.4 69.9	r
<pre>Bend test - S (loading span) - z (distance clip to surface) - T (test temperature) - B - W - a₁ - a₂ - a₃ - (a₁ + a₂ + a₃) / 3 - a/W - Y Does fatigue crack satisfy: - minimum growth - non planar growth - non planar growth</pre>		560 -1 -40 70.7 140.0 73.6 73.7 73.5 73.6 0.53 11.55 Yes Yes Yes	560 -1 -40 70.6 140.0 71.9 72.2 71.9 72.0 0.51 11.12 Yes Yes Yes	
Clip gauge displacement (plastic) - V. - V ¹ - V ^C - V ^U m	nan nan nan nan	14.00	- - 14.00	
Appropriate critical applied force - F _i - F ^c - F ^c - F ^u m	kN kN kN	454.12	455.10	
Critical COD-values (d) - δ_i (onset slow crack growth) - δ_i (unstable fracture/"pop-in") - δ_c^c (unstable fracture/"pop-in"(*)) - δ_u^u (maximum force plateau)	nun nun nun		- - 4.05	

According to BS5762: 1979

C-3

COD-data sheet

./

Intended for:EGKS

Specimen No.	8-5	8-6	8-10
Fatigue pre-cracking - R (yield strength) N/mm ² - Kf (final position of crack) N/mm ³ / ² - R (fatigue force ratio) kN - Ff cycles.10-3 - a ₀ mm - a ₄ mm	450 1194 0.1 90.0 29.3 69.1 69.8	450 1213 0.1 90.0 31.8 69.7 69.9	450 1224 0.1 90.0 28.7 69.0 69.4
Bend test - S (loading span) mm - z (distance clip to surface) °C - T (test temperature) °C - B $^{\circ}$ - W $^{\circ}$ - a ₁ - a ₂ - a ₃ - (a ₁ + a ₂ + a ₃) / 3 mm - a/W - Y	$560 \\ -1 \\ -60 \\ 70.7 \\ 140.0 \\ 71.8 \\ 72.1 \\ 71.9 \\ 71.9 \\ 71.9 \\ 0.51 \\ 11.10 $	560 -1 -60 70.5 140.1 72.4 72.9 72.3 72.5 0.52 11.24	$560 \\ -1 \\ -60 \\ 70.6 \\ 140.0 \\ 72.8 \\ 73.3 \\ 72.7 \\ 72.9 \\ 0.52 \\ 11.36 \\ $
Does fatigue crack satisfy: - minimum growth - non planar growth - multiple nucleation effects	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes
Clip gauge displacement (plastic) - V. - Vi - V ¹ - V ^C - V ^U mmm mmm mmm mmm	4.48	9.60	 11.60
Appropriate critical applied force - Fi - Fi - FC - FU - FU - Fm	387.60	- - 414.90 -	437.18
Critical COD-values (d) - δ_i (onset slow crack growth) mm - δ_i (unstable fracture/"pop-in") mm - δ_i^{C} (unstable fracture/"pop-in"(*)) mm - δ_i^{U} (maximum force plateau) mm		2.78	3.32

According to BS5762: 1379

C-5

Instituut voor Produktie en Logistiek TNO. 15-01-92

Intended for:EGKS

Specimen No.	8-7	8-8	8-9
Fatigue pre-cracking N/mm² - R (yield strength) N/mm²² - K (final position of crack) N/mm³/² - R (fatigue force ratio) kN - F (fatigue force ratio) cycles.10-3 - a0 mm - a4 mm	450 1217 0.1 90.0 29.9 70.4 69.6	450 1214 0.1 90.0 27.4 69.3 69.4	450 1217 0.1 90.0 33.3 70.6 69.9
Bend test - S (loading span) mm - z (distance clip to surface) mm - T (test temperature) °C - B mm - W mm - a ₁ - a ₂ - a ₃ - (a ₁ + a ₂ + a ₃) / 3 mm - a/W - Y	560 -1 -80 70.5 140.2 72.6 73.2 72.5 72.8 0.52 11.29	$560 \\ -1 \\ -80 \\ 70.5 \\ 139.8 \\ 72.1 \\ 72.6 \\ 72.4 \\ 72.4 \\ 0.52 \\ 11.24$	$560 \\ -1 \\ -80 \\ 70.6 \\ 140.0 \\ 72.3 \\ 73.0 \\ 72.7 \\ 72.7 \\ 72.7 \\ 0.52 \\ 11.29$
Does fatigue crack satisfy: - minimum growth - non planar growth - multiple nucleation effects	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes
Clip gauge displacement (plastic) - V _i - V ⁱ - V ^C - V ^C - V ^U mm	- - 2.46 -	0.32	- 4.16 -
Appropriate critical applied force - Fi kN - F ^C - F ^C - F ^U - KN kN kN	- - 376.95 -	350.63 _ _	- 391.05 -
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.80	0.19 _ _	- - 1.27 -

According to BS5762: 1979

Appendix D

FAFRAM analyses of T-joints

FAFRAM 2D analysis of T40 specimens

Testname :	t40 2d
Geometry :	2D-Surface
Edge crack	
Thickness (mm):	40.000
A-law :	Paris
C (N, mm):	.18320E-12
M :	3.000
SIF :	Brown/Scrawley/Orange
Mk :	IIW-X/OMAE
Theta (deg):	60.000
Rho (mm):	. 500
L (mm):	43.500
Process paramete	ers
Alpha :	. 050
Ai (mm):	.150
Ni :	0.
Stopped when :	ai > af
Af (mm):	20.000
Stress	
SigM (Nmm-2):	.000
SigB (Nmm-2):	200.000

Ai mm	A/T	Mkm-a	Mm-a	Mkb-a	Mb-a	DK-a Nmm-1.5	Ai+l mm	Ni+1
0.150	0.004	3.086	1.119	2.537	1.115	397.964	0.158	650
0.158	0.004	3.039	1.119	2.499	1.115	401.596	0.165	1313
0.165	0.004	2.992	1.119	2.462	1.114	405.282	0.174	1991
0.174	0.004	2.947	1.119	2.425	1.114	409.025	0.182	2684
0.182	0.005	2.903	1.119	2.390	1.114	412.824	0.191	3391
0.191	0.005	2.859	1.119	2.354	1.114	416.680	0.201	4113
0.201	0.005	2.816	1.119	2.320	1.113	420.594	0.211	4851
0.211	0.005	2.774	1.119	2.286	1.113	424.567	0.222	5603
0.222	0.006	2.732	1.119	2.253	1.113	428.599	0.233	6372
0.233	0.006	2.692	1.119	2.220	1.112	432.690	0.244	7156
0.244	0.006	2.652	1.119	2.188	1.112	436.841	0.257	7956
0.257	0.006	2.612	1.119	2.157	1.111	441.052	0.269	8772
0.269	0.007	2.574	1.119	2.126	1.111	445.322	0.283	9604
0.283	0.007	2.536	1.119	2.096	1.111	449.652	0.297	10453
0.297	0.007	2.498	1.119	2.066	1.110	454.040	0.312	11319
0.312	0.008	2.461	1.119	2.037	1.110	458.487	0.327	12202
0.327	0.008	2.425	1.119	2.008	1.109	462.991	0.344	13103
0.344	0.009	2.389	1.119	1.980	1.109	467.551	0.361	14021
0.361	0.009	2.354	1.119	1.952	1.108	472.166	0.379	14957
0.379	0.009	2.320	1.119	1.925	1.107	476.834	0.398	15911
0.398	0.010	2.285	1.119	1.898	1.107	481.554	0.418	16884
0.418	0.010	2.252	1.119	1.872	1.106	486.321	0.439	17875

etc.

FAFRAM 3D analysis of T40 specimens

Testnam	e :	t40 3d					
Geometr	y :	3D-Surface					
Finite	width						
Thickne	ss (mm):	40 000					
Width	(mm):	210 000					
A-law	(Paris					
С	(N. mm) ·	18320E-12					
M	(21), 1111/.	3 000					
C-law		Paris					
C	(N. mm):	18320E-12					
M	(11) .	3 000					
SIF		Newman/Raiu					
Mk		ITW-X/OMAE					
Theta	(deg):	60,000					
Rho	(mm):	500					
L	(mm) ·	43 500					
OMMA		1 000					
OMMC		1 000					
OMBA		1,000					
OMBC		1 000					
Initiat	ion ·	Single					
Process	paramet	ers					
Alpha	, pullumot	050					
Ai	(mm) [.]	.050					
Ni	(. 190					
Ci	(mm) ·	750					
Stopped	when :	ai > af					
Af	(mm):	20 000					
Stress	(20.000					
SigM	(Nmm - 2)	000					
SigB	(Nmm - 2)	200,000					
8-	(2).	2001000					
Ai	Ci	DK-a	DK-c	Ai+1	DC	Ci+1	Ni+1
mm	mm	Nmm - 1 . 5	Nmm - 1.5	mm	mm	mm	
0.150	0.750	376.216	185.689	0.158	0.001	0.751	769
0.158	0.751	377.908	193.951	0.165	0.001	0.752	1565
0.165	0.752	379.516	202.499	0.174	0.001	0.753	2391
0.174	0.753	381.034	211.332	0.182	0.001	0.755	3248
0.182	0.755	382.458	220.447	0.191	0.002	0.756	4137
0.191	0.756	383.783	229.841	0.201	0.002	0.759	5061
0.201	0.759	385.006	239.507	0.211	0.002	0.761	6023
0.211	0.761	386.125	249.438	0.222	0.003	0.764	7023
0.222	0.764	387.141	259.625	0.233	0.003	0.767	8066
0.233	0.767	388.055	270.054	0.244	0.004	0.771	9153
0.244	0.771	388.871	280.714	0.257	0.005	0.776	10287
0.257	0.776	389.597	291.588	0.269	0.005	0.781	11471
0 260	0 701	200 2/1	200 660	0 000			

etc.

390.241

302.660

0.283

0.781

0.269

0.787

0.006

12708

Testname :	t70 2d
Geometry :	2D-Surface
Edge crack	
Thickness (mm):	70.000
A-law :	Paris
C (N, mm):	.18320E-12
M :	3.000
SIF :	Brown/Scrawley/Orange
Mk :	IIW-X/OMAE
Theta (deg):	60.000
Rho (mm):	. 500
L (mm):	55.000
Process paramete	ers
Alpha :	.050
Ai (mm):	.150
Ni :	Ο.
Stopped when :	ai > af
Af (mm):	35.000
Stress	
SigM (Nmm-2):	.000
SigB (Nmm-2):	200.000

Ai mm	A/T	Mkm-a	Mm-a	Mkb-a	Mb-a	DK-a Nmm-1.5	Ai+1 mm	Ni+1
0 150	0 002	3 650	1 120	3 143	1 117	493 863	0.158	340
0.158	0.002	3 590	1 120	3 091	1 117	497,699	0.165	689
0.165	0.002	3 530	1 120	3 040	1 117	501 571	0.174	1046
0.174	0.002	3 471	1 119	2 991	1 117	505,481	0.182	1413
0.174	0.002	3 414	1 119	2.942	1,116	509.430	0.191	1790
0.102	0.003	3 357	1,119	2.894	1.116	513.417	0.201	2176
0 201	0 003	3,301	1,119	2.847	1.116	517.443	0.211	2572
0 211	0.003	3.247	1.119	2.801	1.116	521.509	0.222	2978
0.222	0.003	3.193	1.119	2.755	1.116	525.616	0.233	3394
0.233	0.003	3.140	1.119	2.710	1.115	529.763	0.244	3821
0.244	0.003	3.088	1.119	2.667	1.115	533.952	0.257	4260
0.257	0.004	3.037	1.119	2.623	1.115	538.183	0.269	4709
0.269	0.004	2.987	1.119	2.581	1.115	542.456	0.283	5169
0.283	0.004	2.937	1.119	2.540	1.115	546.771	0.297	5642
0.297	0.004	2.889	1.119	2.499	1.114	551.130	0.312	6126
0.312	0.004	2.841	1.119	2.459	1.114	555.532	0.327	6622
0.327	0.005	2.794	1.119	2.419	1.114	559.978	0.344	7131
0.344	0.005	2.748	1.119	2.380	1.113	564.468	0.361	7653
0.361	0.005	2.703	1.119	2.342	1.113	569.002	0.379	8188
0.379	0.005	2.658	1.119	2.305	1.113	573.581	0.398	8736
0.398	0.006	2.615	1.119	2.268	1.112	578.203	0.418	9298
0.418	0.006	2.572	1.119	2.232	1.112	582.870	0.439	9874
0.439	0.006	2.530	1.119	2.197	1.112	587.581	0.461	10464

FAFRAM 2D analysis of T70 specimens

FAFRAM	3D anal	Ly	sis	of	Т70	specimens
Testna	me	:	t7() 30	1	
Geomet	ry	:	3D-	Sur	face	2
Finite	width					
Thickne	ess (mm)	:		7	0.00	0
Width	(mm)	:		21	0.00	0
A-law	,	:	Par	is		
С	(N, mm)	:	. 1	832	0E-1	2
М	. , ,	:			3.00	0
C-law		:	Par	is		
С	(N, mm)	:	.1	832	0E-1	2
M		:			3.00	0
SIF		:	New	man	/Rai	u
Mk		:	IIW	-X/	OMAE	
Theta	(deg)	:		6	0.00	0
Rho	(mm)	:			. 50	0
L	(mm)	:		5	5.00	0
OMMA	. ,	:			1.00	0
OMMC		:			1.00	0
OMBA		:			1.000	0
OMBC		:			1.00	О
Initiat	ion	:	Sin	gle		
Process	parame	te	rs	0		
Alpha		:			.050	С
Ai	(mm)	:			.150	С
Ni		:			0	
Ci	(mm)	:			. 750	С
Stopped	when	:	ai :	> a	f	
Af	(mm)	:		3	5.000	C
Stress						
SigM	(Nmm - 2)	:			. 000)
SigB	(Nmm - 2)	:		20	0.000)

Ai mm	Ci mm	DK-a Nmm-1.5	DK-c Nmm-1.5	Ai+l mm	DC mm	Ci+1 mm	Ni+1
0.150 0.158 0.165 0.174 0.182 0.191 0.201 0.211 0.222 0.233 0.244	0.750 0.751 0.752 0.753 0.755 0.756 0.756 0.759 0.761 0.761 0.764 0.767 0.771	466.897 468.369 469.713 470.925 471.999 472.930 473.718 474.361 474.860 475.221 475.451	230.118 240.366 250.967 261.922 273.227 284.877 296.864 309.179 321.808 334.737 347.947	0.158 0.165 0.174 0.182 0.191 0.201 0.211 0.222 0.233 0.244 0.257	0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.005	0.751 0.752 0.753 0.755 0.756 0.759 0.761 0.764 0.767 0.771 0.771	402 821 1256 1710 2183 2677 3193 3733 4298 4889 5510
0.257	0.782	475.563	361.418	0.269	0.006 0.007	0.782 0.789	$6161 \\ 6844$

etc.