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A B S T R A C T

Economic losses of bridge failures can mount to millions of dollars per day and spiral quickly. In particular, steel 
truss bridges are highly vulnerable to member failures, which, if propagated, can cause severe disruptions to the 
entire system. The vulnerability of these structures has been underscored in recent bridge collapses, which were 
initiated by the propagation of localised member failures (e.g., I-35W Mississippi Bridge). This paper proposes a 
methodology for the structural assessment of member failure scenarios in steel truss bridges. A quantitative index 
(SoD) is proposed to evaluate the consequences of member failures in all bridge elements. The methodology 
includes a Bayesian Network that captures the relationship between load models and structural responses. 
Additionally, the methodology integrates Extreme Value Analysis and computes the expected SoD for a 100-year 
return period. Two complementary approaches are suggested for the analysis of the member failure scenarios. 
The first approach focuses on the failure scenario itself, examining the post-failure effects in all bridge elements. 
The second approach evaluates the response of individual elements to various failure scenarios, allowing an in- 
depth understanding of how different member failures influence specific bridge elements. The methodology has 
been tested on a railway steel truss bridge in which eleven member failures were simulated. Results allowed to 
identify the level of significance for the scenarios, providing insights to guide SHM strategies, prioritise in
terventions and optimise maintenance efforts. This work aims to simplify engineering efforts and support bridge 
management entities in their crucial fight to improve the bridge’s structural safety.

1. Introduction

Societies are confronting unprecedented extreme events that surpass 
existing adaptation efforts [1]. Civil infrastructures are increasingly 
exposed to aggressive environmental conditions, rising traffic loads, and 
maintenance deficiencies, exacerbating structural deterioration over 
time [2]. These destabilizing factors have considerably magnified the 
socioeconomic impacts on transportation networks [3]. Steel truss 
bridges, in particular, are increasingly vulnerable to member failures 
that, under adverse conditions, may initiate a cascade of structural 
damages across the entire bridge system, leading to progressive collapse 
[4–6]. Bridge collapses often result in devastating consequences, 
including fatalities, service disruptions, and significant economic and 
environmental losses [7–9]. Due to the importance of such a phenom
enon and its relevance to our society, progressive collapse has become 

one of the most active research areas in structural engineering [10–12]. 
This highlights the urgent need to assess member failure scenarios in 
steel truss bridges. Understanding how these localised failures impact 
the overall stability of such structures is essential to prevent progressive 
collapse.

Over the last decade, several efforts have been made to assess 
member failure scenarios in steel truss bridges [13–26]. These studies 
have been conducted broadly through experimental approaches, nu
merical modelling, or a combination of both. Among the most relevant 
experimental studies, Buitrago et al. [13] tested a 21 m full-scale steel 
truss bridge with an extensive monitoring system subjected to member 
failure. Their work established practical structural health monitoring 
recommendations to identify early failures. Similarly, Brunell et al. [14]
tested a laboratory-scale steel truss bridge under 16 damage scenarios. 
The study aimed to propose a global safety index as an indicator to 
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detect the presence of local damage. Zhao et al. [15] designed a 
member-breaking device to remove a member in planar trusses sud
denly, and a collapse-resistant analysis for different element-removal 
cases was performed. On the other hand, among the most relevant 
studies in which numerical modelling has been implemented to assess 
member failures in steel truss bridges, Porcu et al. conducted a 
robustness-based assessment in a steel truss bridge to prevent progres
sive collapse [16], eight failure scenarios were considered in the study, 
and their role on the progressive collapse was analysed. Caredda et al. 
[17] analyse different member failure scenarios in a validated FEM to 
assess the steel truss bridge capacity to activate Alternative Load Paths 
(ALPs) efficiently. Chen et al. [18] performed an ALP-based methodol
ogy, which includes two quantitative metrics to analyse the redundancy 
of steel truss bridges subjected to member failure scenarios. Praxedes 
et al. [19] developed a probabilistic-based robustness index for the 
analysis of the progressive collapse of a bridge subjected to an unex
pected element failure. Li et al. [20] developed a framework that con
siders the dynamic effect of sudden member loss to identify critical 
members in steel truss bridges. Lastly, Connor et al. [21] developed a 
model-based standardized methodology to identify fracture-critical 
members in steel truss bridges; these findings were published in offi
cial guide specifications [27,28].

As seen, most of the research conducted to assess scenarios of 
member failures in steel truss bridges has been concentrated on 
encompassing strategies to determine the ability of the bridge to with
stand when a local failure occurs; this approach has been demonstrated 
to be essential to develop the knowledge on bridge redundancy and 
structural robustness [29–31]. Nevertheless, a reliable quantitative 
assessment that evaluates the consequences at the element level remains 
undeniably crucial to understanding the impact of localised failures in 
the entire structure. Beyond that, it is equally essential to determine 
whether failure-induced demand alterations remain localised or propa
gate throughout the truss system. Such insights would allow for priori
tising bridge elements, serve as a decision-making tool to optimise SHM 
systems, and directly enhance the safety and reliability of steel truss 
bridges.

Bridges deteriorate over time due to exposure to aggressive envi
ronments and increasing traffic loads [32]. This degradation leads to a 
progressive reduction in structural reliability, which may eventually fall 
below acceptable safety levels [33]. Uncertainties in bridge assessments 
arise in multiple aspects, including material mechanical properties, 
operational and environmental conditions, and applied loads [34–36]. 
In response, reliability-based approaches have emerged to quantify 
these uncertainties and enhance the structural assessments [31]. 
Traditionally, structural reliability has been evaluated using conven
tional methods [37–39]. However, Bayesian Networks (BNs) have given 
rise to a significant research trend, having emerged as a promising 
alternative for conducting reliability assessments [40–42]. It has been 
shown that BNs offer substantial advantages over traditional frame
works due to their ability to characterise and analyse uncertainty 
effectively [43]. The applications of BNs in bridge engineering have 
been extended to many fields involving bridge safety [44–49], risk 
analysis [50–53], damage detection [54–57] and FE advance modelling 
and updating [58–61]. One of the most important applications of BNs for 
reliability applications involves the probabilistic modelling of traffic 
loads [62–68]. This approach has proven to be effective in enhancing the 
robustness of structural assessments [69]. In this regard, 
Morales-Napoles et al. [62] developed a large-scale BN for traffic load 
modelling using Weigh-In-Motion (WIM) data. Mendoza-Lugo et al. [63]
proposed a BN to generate synthetic heavy loads and estimate the crit
icality of the national bridge network of Mexico. Kim et al. [64] devel
oped a Bayesian updating methodology for the probabilistic modelling 
of bridge traffic loads using in-service SHM data. Lastly, Yu et al. [65]
implemented a BN for the condition assessment of bridges; the BN was 
designed to predict the extreme load effects. While BNs have been 
widely employed in bridge reliability assessments, a significant gap 

remains in their integration with FEM-based methodologies. Existing 
studies have primarily focused on traffic load modelling or direct con
dition assessments but have not leveraged BNs to establish a probabi
listic link between load conditions and structural response within a 
reliability-based framework.

The analysis of demand effects (e.g. displacements), particularly the 
Extreme Values of the Demand Effects (EVDE) is also essential to assess 
the reliability of bridges [70]. Typically, these methods consider the 
simulation through a FEM-based approach [71], applying recorded data 
of real traffic (e.g. WIM stations) [72]. However, significant gaps are 
limiting the accuracy and applicability of this approach [73]. On the one 
hand, the estimation of EVDE relies on extreme demands that, are rarely 
observed on real recorded data. On the other hand, recorded traffic data, 
in turn, is commonly restricted to a short time period [72]. In response, 
various probabilistic methods have been developed to estimate EVDE on 
structures [74–78]. The estimation of EVDE in bridges is an ongoing 
focus of research within bridge engineering [79–82]. Wang et al. [79]
performed an analysis in a cable-stayed long-span bridge to assess the 
extreme load effects based on vehicle distribution and its location 
through the bridge; the study was further extended for 
vehicle-congested conditions [80]. Rahman et al. [81] performed 
component-level and system-level fragility analyses for the resilience of 
coastal bridges exposed to extreme waves. Dai et al. [82] simulated the 
100-year response of bridges of various spans to develop an algorithm 
able to fit data from WIM systems and predict extreme values responses. 
Despite its extensive applications, existing approaches of EVDE have 
primarily focused on global load effects, without considering the impact 
of member failures under extreme demand conditions. This study 
bridges this gap by integrating EVDE estimation in bridges subjected to 
localised failure scenarios.

This study introduces a novel methodology for the structural 
assessment of steel truss bridges subjected to localised member failures. 
While previous research has focused on robustness evaluation or struc
tural collapse prevention, this work advances the field by implementing 
a dual-analysis perspective to understand how failures affect all bridge 
elements and how each element responds to multiple failure scenarios. 
The methodology integrates the quantification and propagation of un
certainties to calibrate a finite element model (UFEM). A Gaussian 
Copula-based Bayesian Network (GCBN) is employed to model the 
operational loads on the structure, providing a probabilistic represen
tation of train axle loads which accounts for possible variations in train 
weights. These probabilistic load scenarios are propagated through the 
UFEM to compute the State-of-Demand (SoD) index for all structural 
elements, enabling a quantitative assessment of the demand state of the 
structural elements in the entire bridge. Finally, Extreme Value Analysis 
(EVA) is applied to estimate SoD values for long-term return periods, 
supporting the identification of critical elements and prioritisation of 
maintenance actions. The main novelty of this study lies in the devel
opment and implementation, in a real-world case study, of a unified 
reliability-based methodology that comprehensively quantifies the ef
fects of member failure scenarios in steel truss bridges by integrating 
uncertainty quantification and propagation, probabilistic load model
ling, and the application of extreme value theory.

The objective of this study is to propose a methodology for the 
structural assessment of member failure scenarios in steel truss bridges, 
addressing key gaps in existing methodologies. A quantitative index 
(SoD) is proposed to evaluate the consequences of member failures. The 
State-of-Demand index (SoD) quantifies the relationship between de
mand and capacity on each bridge element when the bridge is subjected 
to member failures. Additionally, a Gaussian Copula-based Bayesian 
Network (GCBN) is developed to model the probabilistic relationship 
between loading conditions and structural response (SoD). This allows 
for the generation of critical load conditions while incorporating un
certainties inherent to bridge loading. The proposed methodology in
tegrates two complementary analysis approaches. First, the structure- 
level analysis, which focuses on the failure scenario itself, examining 
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the post-failure effects in all bridge elements. Second, the element-level 
analysis, which evaluates the response of different bridge elements when 
the bridge is subjected to several member failure scenarios. The meth
odology is validated in a real railway steel truss bridge. The methodol
ogy provides valuable insights to guide SHM strategies, prioritising 
interventions, optimise maintenance efforts, and enhance risk assess
ment methodologies.

After this introduction, Section 2 presents the proposed methodol
ogy. This Section details the Updated Finite Element Model (UFEM) and 
introduces the SoD which is used as a key performance metric. Addi
tionally, the implementation of a GCBN for generating critical load 
conditions is described, along with the application of EVA to estimate 
SoD extremes over long-term return periods. Section 3 applies the 
methodology to a real steel truss bridge. Two complementary analyses 
are implemented, the element-level and the structure-level analyses. 
Finally, Section 4 highlights the findings of this research with the main 
conclusions drawn from the work.

2. The methodology

This section presents the methodology for evaluating the impact of 
different member failure scenarios in steel truss bridges at both structure 
and element levels. The proposed methodology ultimately integrates 
numerical modelling, structural performance metrics, and statistical 
tools to propose an approach for assessing failure scenarios in steel truss 
bridges. The methodology is conducted using an updated finite element 
model (UFEM), in which member failure scenarios are numerically 
simulated. For each bridge element (e.g. an upper chord), the State-of- 
Demand index (SoD) is computed as a core metric for quantifying the 
differences between structural demand and capacity (see 2.2). In this 
regard, Extreme Value Analysis (EVA) is applied to estimate the SoD 
extremes for various return periods (e.g., SoD for a 100-year return 
period) (see 2.3). Recognizing the critical influence of the load charac
terisation, the methodology includes a Gaussian Copula-based Bayesian 
Network (GCBN) to generate realistic loading conditions (see 2.1). Two 
analysis approaches are employed to assess the bridge subjected to 

member failure scenarios; both are described in the last part of this 
Section (see 2.4). The flowchart of the methodology is presented in 
Fig. 1, highlighting the stages of the methodology. The stages are 
explained in detail in the following subsections. The reader is referred to 
Section 3 for the practical application of these concepts on a real steel 
truss bridge.

2.1. The state-of-demand index (SoD) of individual elements

The methodology considers a quantitative index to evaluate the el
ements demand state in relation to reference values related to its ca
pacity. Several indexes have been developed in the literature in this 
regard [22–24]. In this study, the State-of-Demand index (SoD) is 
adopted as core numerical metric. The SoD is computed through the 
Updated Finite Element Model (UFEM). The SoD is formulated as a set of 
ratios reflecting the state of each bridge element based on two criteria: 
(i) proximity to steel yielding ( and (ii) susceptibility to local instabilities 
(). Thus, the SoD is selected as the higher of the Demand Capacity Ratio 
(DCR) of axial forces and stresses, as follows: 

SoDelement,n = max(DCRAF ,DCRS) (1) 

Where the Demand Capacity Ratio of axial forces () is computed as 
follows: 

DCRAF =
Pnum

Pcr
(2) 

Pnum is the Numerical Axial-Force computed during each iteration, 
while Pcr is the critical buckling load according to the Euler’s formula
tion. Pcr is calculated as described in Eq. (3), where E represents the 
modulus of elasticity of the steel, I is the moment of inertia of the 
element under analysis, k is the element effective length factor and L 
denotes the element length. 

Pcr =
π2EI
(kL)2 (3) 

The Demand Capacity Ratio of stresses () is computed as described in 

Fig. 1. Flowchart of the methodology.
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Eq. (4) where σnum is the Numerical Von Mises Stress and fy is the steel 
yield strength. 

DCRS =
σnum

fy
(4) 

In this study, SoD is implemented to assess the structural response of 
all bridge elements when a member failure occurs (e.g. the failure of a 
lower chord). The SoD is computed individually for each structural 
element (e.g., an upper chord) as a result to propagate through the 
UFEM the extreme loading conditions generated by the GCBN (refer to 
Section 2.2). Thus, the SoD is recalculated in every realisation under 
extreme loading conditions. As depicted in Eqs. (2) and (4), the capacity- 
related reference values to compute and are defined based on the 
yielding of the cross-section (fy) and Euler’s critical load (Pcr), which are 
assigned from the calibrated model and remain constant. Therefore, the 
SoD reflects how close each element is to its structural capacity under 
extreme loading conditions. This makes the SoD a reliable indicator for 
the element-based structural assessment of steel truss bridges subjected 
to failure scenarios.

2.2. Probabilistic load characterisation

The probabilistic load characterisation is a fundamental component 
of the methodology presented in this study. This section outlines the 
essential considerations for accurately characterise the loads and inte
grating them into the methodology. Initially, the section establishes the 
key criteria for selecting an appropriate load model and determining its 
critical position on the bridge. Subsequently, a four-stage procedure to 
create a Gaussian Copula-based Bayesian Network (GCBN) to integrate 
the load model and the structural response (SoD) is presented.

2.2.1. Load model and critical load position on the bridge
The load model and its configurations depend on the specific con

ditions of the bridge. These conditions include its usage (e.g., railway 
bridge) and the type of traffic it supports (e.g., passenger, freight). 
Ideally, the load model should be adopted based on real traffic data (e.g. 
a WIM system) to reflect the operational conditions of the structure and 
how the load is distributed along the convoys. However, this approach is 
not always feasible; alternatively, the load model may be selected based 
on official standards [83]. Once the load model is determined, identi
fying its critical position on the bridge is essential. This process typically 
involves simulating multiple loading scenarios in different positions 
along the structure to analyse the load position that produces the most 
critical effects on the bridge. Undoubtedly, the critical load position is 
not unique, this is even more relevant when dealing with failure sce
narios located at different positions of the structure. Thus, the critical 
load position is considered as the first to occur of: (i) The load position 
that induces the highest overall mean of SoD across all bridge elements 
(see 2.2), or, (ii) the load position which generates the earlies failure to 
the structure (no-convergence criteria). However, any method [84,85]
that systematically seeks the most adverse conditions to the structure is 
also applicable.

2.2.2. Gaussian Copula-based Bayesian Network
The methodology incorporates a Gaussian Copula-based Bayesian 

Network (GCBN) to integrate the load model and the structural 
response, represented by the SoD. The primary purpose of the GCBN is to 
generate samples that reflect critical (but realistic) loading conditions 
for the bridge. To this, the variables of the load model (e.g., train axle 
loads) and the structural response (SoD) are represented as nodes in the 
GCBN, with their dependencies captured through arcs defined by cor
relation coefficients. These coefficients characterise the strength and 
nature of the relationships between nodes, enabling the network to 
encode complex joint probability distributions efficiently. This capa
bility allows for inference within the GCBN (e.g., conditioning on the 
SoD) to generate synthetic samples of load variables that reflect critical 

loading conditions.
The GCBN is structured as a Directed Acyclic Graph (DAG), where 

each node represents a continuous random variable, and the edges are 
assigned (conditional) bivariate copulas to capture conditional de
pendencies between the random variables. The graph in itself contains 
conditional independence statements usual in Bayesian Networks. Fig. 6
(b) illustrates the configuration used for the case study, where load 
variables (PL1 to PL5) act as parent nodes, and the structural response 
(mSoD) is introduced as a child node in the GCBN.

The dependence structure in the GCBN is built using a Gaussian 
copula, which enables the construction of a joint distribution with given 
marginal distributions and a correlation matrix. For two uniform 
random variables (u,v) ∈ [0,1]2, the Gaussian copula is defined as: 

Cρ(u, v) = Φρ
(
Φ− 1(u),Φ− 1(v)

)
(5) 

Where Φ− 1 denotes the inverse of the univariate standard normal 
cumulative distribution function and Φρ is the bivariate standard normal 
cumulative distribution function with linear correlation coefficient ρ. 
This construction decouples marginal distributions from their depen
dence structure.

The joint probability distribution across all nodes is factorised using 
the DAG structure as: 

f(x1,…, xn) =
∏n

i=1
f(xi|pa(xi) ) (6) 

Where each conditional density f(xi|pa(xi) ) is determined by the 
marginal Fi(xi) and the copula-based dependency between the variable 
and its parents. Conditional rank correlations are used to quantify the 
dependencies. For a node Xi with parent nodes pa1(Xi),…, pam(Xi), the 
rank correlation is assigned as: 

r
(
Xi, paj(Xi)

⃒
⃒pa1(Xi),…, paj− 1(Xi)

)
j = 2,…,m (7) 

r
(
Xi, paj(Xi)

)
; j = 1 (8) 

These rank correlations are mapped to Pearson correlation co
efficients in the Gaussian copula using: 

ρ = sin
(π

6
r
)

(9) 

Since partial correlations are equal to conditional correlations in the 
multivariate Gaussian case. Then, the correlation matrix is assembled 
using the usual recursive formula: 

ρ1,2;3,…,n =
ρ1,2;4,…,n − ρ1,3;4,…,nρ2,3;4,…,n

((
1 − ρ2

1,3;4,…,n

)(
1 − ρ2

2,3;4,…,n

))1/2 (10) 

The assignment described until now. Ensures a valid correlation 
matrix. While the main assumption of the model is that the Gaussian 
copula adequately represents the data. One of the key advantages of this 
formulation is the ability to perform inference. Given an observed or 
target value y of a variable Y, the GCBN enables conditional sampling of 
the remaining variables X. Conditionalizing in GCBN is efficient since 
the conditionalization is done in the multivariate standard normal 
transform of the variables. This allows for the generation of load sce
narios that are statistically consistent with a desired structural response 
(e.g., high mSoD).

This section describes the process for developing the proposed GCBN. 
Although the process intends to be standard, it is crucial to note that for 
the practical application a self-judgement must be exercised based on 
the purpose of the GCBN, which is to reduce uncertainties in the load 
model. The logical process for creating the GCBN is outlined through a 
systematic four-stage procedure. For the practical application of a GCBN 
to characterise the loading conditions in a real structure the reader is 
referred to Section 3. 
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1. The first stage involves constructing an Initial Gaussian Copula- 
based Bayesian Network (IGCBN). This stage involves the creation 
of an initial directed acyclic graph (DAG) and the selection of the 
probabilistic parameters of the nodes. In the initial DAG, the nodes 
should correspond to the load model variables (e.g. train axle 
weights). It is essential to select the node parameters (mean and 
standard deviation) based on engineering judgment of the real con
ditions. If the assessment includes traffic observations (e.g., with a 
WIM system), the parameters should be derived directly from ob
servations; otherwise, the parameters should be assigned based on 
standards [83]. Ultimately, the IGCBN is constructed to represent 
variability in loading conditions.

2. The second stage focuses on evaluating the influence of probabilistic 
dependencies of the IGCBN in the global structural response. This 
involves performing a sensitivity analysis in the IGCBN to analyse 
how its probabilistic dependencies affect the SoD in all bridge ele
ments. To achieve this, the IGCBN is used to sample loading with 
varying correlation coefficients (CCs) (e.g. 0.8, 0.9, 0.95). The 
sensitivity analysis is performed through the UFEM, where the mean 
value of the SoD (mSoD) is analysed for all bridge elements. mSoD 
quantifies the entire bridge demand state, higher mSoD’s indicate 
that, on average, the bridge elements experience high demand ratios 
in relation to their capacities.

3. The third stage aims to evaluate the results of stage 2 to generate a 
dataset that will be used to create a final GCBN. As the GCPN aims to 
generate critical loading condition for the bridge, this stage focuses 
on selecting the samples (loads) that resulted in the highest structural 
demands (mSoD) from the simulations performed with different CCs 
(stage 2). A package-based approach is considered, where a subset of 
the samples (e.g., a decile) with the highest mSoD are selected from 
each group of simulations (corresponding to different CCs). Each 
package includes both the samples (loads) and the responses 
(mSoD’s) for all CC groups of simulations. The generated packages 
are then combined in a final dataset, which includes the highest- 
demand scenarios across all CC groups.

4. The final stage involves updating the IGCBN by incorporating the 
effects of the loads on the bridge (final dataset). This is achieved by 
adding an additional node to the DAG, representing the global 
structural response (mSoD). The mSoD node will then modify the 
network dependencies, becoming the parent of the nodes repre
senting the load system variables. The parameters of the updated 
GCBN are calculated by fitting to theoretical distributions (e.g., 
Gaussian, Gumbel, Weibull, etc…) the variables of the final dataset 
performed in Stage 3. This process results in a GCBN that integrates 
the uncertainties in the loading conditions and their structural ef
fects. The final GCBN can infer the load conditions that would lead to 
a specific demand state for a defined time period (e.g. 1 year of 
loading conditions for 20 trains passing per day).

The GCBN developed in this work stands out as a versatile and 
powerful tool for structural engineering. Although the GCBN is used in 
this study to generate critical (but realistic) loading, its capability goes 
far beyond that [86]. In general, the GCBN can be used to infer any 
variable within the network through conditionalization, making it 
invaluable for reliability studies and allowing the analysis of complex 
interactions between loading conditions and structural responses. 
Additionally, the GCBN benefits practitioners by providing a practical 
tool to determine the structure demand state through its loading con
dition. This dual capability highlights the GCBN as an essential resource 
for both advanced reliability-based analyses and practical structural 
evaluations, demonstrating its adaptability to a wide range of structural 
engineering applications.

2.3. Extreme SoD effects

The analysis of the demand effects (e.g. displacements), particularly 

the Extreme Values of the Demand Effects (EVDE), is essential to assess 
the reliability of bridges [66]. This discipline, known as Extreme Value 
Analysis (EVA) [87] considers the application of statistical techniques to 
fit a distribution of demands (e.g. displacements) to the tail of its cu
mulative distribution function (CDF) [70]. The most common methods 
employed to estimate EVDE are the Peaks-Over-Threshold (POT) 
method [74] and the Block Maximum (BM) method [75]. POT assesses 
the extent to which peaks exceed a specified threshold [74], fitting these 
peaks to a probability distribution such as the Generalized Pareto dis
tribution (GP) [76]. BM, by contrast, considers only the maximum de
mand effects in a predefined time block [75], which is advantageous for 
calculating lifetime maximum probabilities of exceedance. Other alter
native methods, such as the Box–Cox method [77] and Rice formula 
[78], are also employed.

As discussed, the GCBN (see 2.2) can generate loading conditions for 
a defined time period (e.g. 1 year of loading conditions for 20 trains 
passing per day). These loading conditions are subsequently used as 
input in the UFEM to compute the SoD for all bridge elements. Thus, 
EVA is employed in this work to assess, for all bridge elements, the 
extreme structural responses (SoD) when the bridge is subjected to 
member failure scenarios.

This study adopts BM fitting to a Generalized Extreme Value distri
bution (GEV), given that this approach considers only the largest event 
in each time block (e.g. a one-day block), and its usefulness lies in its 
ability to effectively capture daily variations, offering a versatile 
approach adaptable to a variety of scenarios [75]. This capability makes 
it particularly advantageous for EVA, establishing it as fundamental in 
recent studies [79–82]. In this study, BM is fitted to the GEV distribution 
as described in Eq. (1). Where μ is the location parameter, σ is the scale 
parameter, and ξ is the shape parameter. There are three types of 
extreme value distributions characterised by the parameter ξ. When the 
parameter ξ equals 0, the distribution is a Gumbel distribution; when ξ is 
greater than 0, it is a Fréchet; and when ξ is less than 0, it is a Weibull 
distribution. 

F(x; μ, σ, ξ) =
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−
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(11) 

In the context of this work, the methodological process starts with 
grouping the SoD data in one-day blocks, with the maximum value 
recorded in each block (daily maxima). The maximum likelihood esti
mation (MLE) method determines the parameters that best fit the daily 
maxima data to the GEV. Once the GEV is characterised, its empirical 
cumulative distribution function (ECDF) is calculated, which is then 
used to determine the expected SoD value across various return periods 
(T). Return periods provide a probabilistic approach to quantify the 
occurrence of SoD extremes, offering insight into the frequency at which 
a SoD might be expected over a given timeframe [88]. Return periods 
define the expected time (in years) between exceedances of a specific 
SoD (e.g. an event with a 1 % annual probability of exceedance corre
sponds to a return period of 100 years, T100). Ultimately, the method
ology focuses on the SoD associated with a 100-year return period 
(SoDT100) which is computed for all bridge elements while it is subjected 
to all damage scenarios. The final output of this methodology is an n × m 
matrix, where n represents the SoDT100 for all bridge elements at m 
member failure scenarios considered. For the practical application of 
EVA to assess the SoD extremes in a real structure, the reader is referred 
to Section 3.

2.4. Assessment of member failure scenarios

This section defines the methodology to analyse the SoD associated 
with a 100-year return period (SoDT100) of all bridge elements for the 
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bridge subjected to member failure scenarios. The analysis is performed 
by computing the absolute difference of the SoDT100 for a given bridge 
element (e.g. the SoDT100 of an upper chord when a lower chord failure 
occurs) with its undamaged state (the SoDT100 of the same upper chord 
for the bridge on its undamaged state). This metric, here called Δ 
SoDT100 (see Eq. (2)), is computed for all bridge elements and failure 
scenarios considered. 

ΔSoDT100 =
⃒
⃒SoDT100 scenario − SoDT100 undamaged

⃒
⃒ (12) 

Two complementary approaches are employed in the analysis. The 
first approach (structure-level) focuses on the failure scenario itself, 
examining its effect on the ΔSoDT100 values of all bridge elements post- 
failure. The second approach (element-level) evaluates the response of 
individual elements to various failures, allowing an in-depth under
standing of how these scenarios influence specific bridge elements. The 
following lines describe both approaches in detail. The reader is referred 
to Section 3.3 for the practical application and analysis of both analysis 
approaches in a real steel truss bridge.

2.4.1. Structure-level analysis
The structure-level analysis focusses into analyse how a specific 

member failure scenario (e.g. the failure of an upper chord) affects the Δ 
SoDT100 of all bridge elements (e.g. Diagonals, verticals, lower chords, 
etc.). This approach aims to analyse the scenario significance. A member 
failure scenario is deemed significant if it induces in any bridge element 
increases of the State-of-demand (ΔSoDT100). As an example, the 
following categorical scale is proposed to classify each scenario by its 
level of significance: 

• 0 ≤ ΔSoDT100 < 5, low significance scenario.
• 5 ≤ ΔSoDT100 < 25, low-medium significance scenario.
• 25 ≤ ΔSoDT100 < 60, medium significance scenario.
• 60 ≤ ΔSoDT100 < 100, medium-high significance scenario.
• ΔSoDT100 ≥ 100, high significance scenario.

2.4.2. Element-level analysis
The element-level analysis centres to analyse the ΔSoDT100 of a 

specific bridge element (e.g. a midspan diagonal) or groups (e.g. di
agonals) for all member failure scenarios. Element-level analysis ulti
mately identifies elements that should be prioritised in the structural 
health monitoring (SHM) and maintenance systems. Although the pri
oritisation hierarchy should encompass an engineering judgment of the 
undamaged state of the element, an element in which the 
max(SoDT100 for all scenarios) is considerably higher in relation with its 
undamaged state (SoDT100 undamaged) should be prioritised.

3. Application to a real steel truss bridge

The methodology described in Section 2 has been tested in a railway 
steel truss bridge. This bridge was selected as a case study due to its 
characteristics as an old-riveted steel truss structure with available 
monitoring data. Additionally, it has been previously analysed, 
emerging as an engaging alternative for selecting relevant member 
failure scenarios. At the outset, this section describes the bridge and the 
procedure adopted to achieve a calibrated Updated Finite Element 
Model (UFEM). In the first stage, the load model is described. The pro
cedure to generate a Gaussian Copula-based Bayesian Network (GCBN) 
to generate 1-year of critical loading conditions is addressed. The dis
cussion continues with selecting member failure scenarios based on 
historical precedents and an in-service structural assessment. Subse
quently, for each member failure scenario, the State-of-Demand (SoD) 
index is computed for all bridge elements. Extreme Value Analysis (EVA) 
is then employed to compute the 100-year return period of the SoD. 
Finally, the last part of this section presents and discusses the results of 
the methodology. The discussion is addressed by analysing two 

complementary approaches. While the first approach evaluates the 
impact of each member failure scenario on the bridge elements, the 
second approach examines how different bridge elements respond to all 
member failure scenarios.

3.1. Description of the bridge

The bridge consists of a three-isostatic-span steel truss bridge located 
in Galicia, Spain. The bridge, constructed in 1910 [89], has a span length 
of 40 m for the side spans and 70 m for the central span. This study only 
considers one side span (40 m length, 7 m width, and a maximum height 
of 8 m). The arch (upper chords) has a parabolic shape, and both sides 
are connected by five transversal beams. These upper chords are verti
cally linked to the bottom chord through fourteen verticals and four 
piers. The deck is formed by nine transversal beams and thirty-two lower 
bracings, equally divided into eight panels of four members each. The 
lower bracings run directly beneath the projection of the traffic lanes 
(interior longitudinal beams), and the loads can be applied directly onto 
these elements. The bridge presents simple hinged supports on one side 
and roller-hinged supports on the other. During the construction, all 
members were built up using steel plates and L-type profiles joined by 
rivets. Fig. 2 shows a downstream view of the bridge.

An initial finite element model (IFEM) of the bridge was developed 
using data gathered from an experimental campaign. The campaign 
involved a detailed visual inspection that identified widespread corro
sion, thickness losses, and other damage in various structural compo
nents. A Terrestrial Laser Scanning (TLS) survey was conducted to 
produce a high-resolution point cloud model of the structure. An 
Ambient Vibration Testing (AVT) complemented the campaign with a 
multi-setup deployment of seismic accelerometers capturing the dy
namic behaviour of the bridge. The collected data informed the as-built 
geometric modelling. The initial FEM was modelled using DIANA FEA 
[79] and was connected via MATLAB [80]. The model updating was 
carried out through a genetic algorithm to minimize discrepancies be
tween numerical and experimental results. The updated model achieved 
a mean frequency error of 3.24 % and a Modal Assurance Criterion 
(MAC) average of 0.947, demonstrating high agreement between 
experimental and numerical behaviour. The study presented here relies 
on a nonlinear analysis accounted for both physical and geometrical 
nonlinearities performed in the Updated Finite Element Model (UFEM). 
The UFEM is shown in Fig. 3.

The load characterisation of the bridge was conducted as described 
in Section 2.2. The bridge is located in an industrial area frequently used 
by passenger and freight trains. Thus, the Type 5 locomotive-hauled 
freight train from the Eurocode was selected [90]. The UFEM was 
configured to compute the analysis of the critical loading position, 
where the load was applied acting on nodes on the interior longitudinal 
beams. Several analyses were simulated varying the point load positions 

Fig. 2. The steel truss bridge.

S. López et al.                                                                                                                                                                                                                                    Engineering Structures 341 (2025) 120850 

6 



at different locations along the bridge span. The criteria for identifying a 
load position as critical were those defined in Section 2.2. Fig. 4 presents 
the adopted load model, while Fig. 5 highlights the critical load position 
after performing the abovementioned analysis on the structure.

3.2. Failure scenario definition

The characterisation of the member failure scenarios is addressed in 
this section. The approach to generate critical loading conditions is 
presented. Then, the selection of relevant member failures is discussed. 
Specifically, this section aims to create a GCBN that integrates the load 
model with the SoD. In addition, the reasoning behind selecting candi
date elements to simulate their failure in the UFEM is discussed. This 
section ultimately illustrates the practical application of the methodol
ogy described in Section 2 adapted to the specific characteristics of the 
case study.

3.2.1. Generation of synthetic heavy trains
Building upon the updated finite element model (UFEM) described in 

Section 3.1, the four-stage procedure outlined in Section 2.2.2 was fol
lowed to create a GCBN to generate loading samples represented critical 
conditions for the bridge (synthetic heavy trains). The GBPN has been 
implemented in BANSHEE, an open-access scriptable code developed as 
a toolbox in MATLAB [91] and Python [92,93]. In this work, the 
MATLAB version of BANSHEE was employed.

The process started with the construction of the initial DAG. Each 
group of six-point loads (PL1, PL2, …, PL6) in the load model was 
defined as one node in the DAG, as illustrated in Fig. 6a. The mean SoD 
was selected as the parent node (see 2.2.2). The mean value for the load 
nodes (PL1 to PL5) was derived directly from the load model (see Fig. 4). 
Since 80 % of the total load was attributed to the locomotive’s dead 
weight, the standard deviation of the load nodes was calculated based on 
two scenarios: fully loaded wagons and empty wagons (where empty 

wagons will weigh 20 % less than fully loaded ones). The probabilistic 
dependencies among load variables and mSoD were incorporated as 
correlation coefficients (CCs) between DAG arcs. Stage 2 in 2.2.2 was 
implemented to assess the influence of probabilistic dependencies of the 
IGCBN in the global structural response (mSoD). CC values of 0.6, 0.7, 
0.8, 0.9, and 0.95 were considered. For each simulation group with its 
corresponding CC (e.g. simulation group of CC = 0.6), 1000 synthetic 
train samples were generated, and the mSoD was computed using the 
UFEM. As described in stage 3 in 2.2.2, a package-based approach was 
employed to identify the fifty highest-demand scenarios for each simu
lation group. This stage finally compiled a dataset containing the highest 
demand loading conditions (PL1 to PL5) alongside their corresponding 
mSoD responses.

The resulting dataset was fitted to theoretical probabilistic distri
butions; the results are illustrated in Fig. 7, where each node of the 
IGCBN is presented with its corresponding theoretical distribution. As 
seen in the figure, the data for the five load nodes (PL1 through PL5) 
were fitted to normal distributions, with mean values significantly 
higher than those suggested by regulatory standards (see Fig. 7). In 
contrast, the mSoD node was fitted to a Generalized Extreme Value 
(GEV) distribution, characterised by its tail dependency. The specific 
parameters of the GEV distribution (k, µ, and σ) are also presented in 
Fig. 7. These fitted parameters provide the probabilistic basis for the 
characterisation of the final GCBN, which integrates the mSoD as a 
parent node to the load nodes (PL1 through PL5). The final GCBN es
tablishes a hierarchical structure that captures the dependencies be
tween the structural response and the load variables. This integration 
models the global structural response of the bridge while maintaining 
the variability and interactions between the load nodes. The correlation 
matrix of the final GCBN is presented in Fig. 8.

The GCBN is used to generate synthetic heavy trains, which involves 
sampling loading conditions (PL1 to PL5). This process relies on con
ditional inference [94], a mathematical approach where the 

Fig. 3. 3D-View of the Updated Finite Element Model (UFEM).

Fig. 4. Load model adopted. From [90].
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distributions of the remaining nodes in the GCBN are determined based 
on the conditionalized value of one or more variables. In this study, the 
mSoD node was conditionalized to a value of 19 %, identified through 
the package-based analysis as the maximum mSoD observed across 
simulation groups. Fig. 9 illustrates the exceedance probability for the 
load nodes, both with and without conditioning in the mSoD node. 
These graphs show that conditionalizing the mSoD results in load dis
tributions skewed towards higher values across all cases. This is 
particularly beneficial compared to conventional sampling methods that 
do not incorporate the effects of structural response to generate loading 
conditions for the bridge. For instance, a conventional approach might 
treat load variables as independent, failing to capture their interaction 
with the overall demand state.

3.2.2. Selection of relevant member failures
Relevant member failures were selected following a threat- 

independent approach [95]. Each member failure scenario was numer
ically generated in the UFEM without considering the specific hazard 
that led to the scenario (e.g. fatigue). The selection of relevant member 
failure scenarios was based on two complementary criteria: historical 
precedents of failure propagation in steel truss bridges and an in-service 
assessment of the studied structure. For the first criterion, a 
threat-independent approach was adopted, meaning that the simulated 
failures were not associated with specific hazards (e.g. fatigue), but 
rather focused on members whose failure triggered the progressive 
collapse of the entire structure or significant portions of it. This selection 
was supported by a previous study by the authors [96], which analysed 
25 documented bridge collapses and identified the elements whose 
failure led to propagation across the structure. That study compiled 

detailed information on the initial damage, its propagation patterns, and 
associated consequences to each collapse, allowing for the identification 
of critical elements with a history of inducing severe structural effects. 
This increased the relevance and interest of the selected elements for the 
current case study. The second criterion was based on an in-service 
assessment of the bridge. To this end, the UFEM was used to compute 
the SoD for all structural elements under service conditions (undam
aged), enabling the identification of elements with higher demands in 
comparison to their capacity. Together, these two strategies provided a 
consistent basis for selecting failure scenarios that are both historically 
grounded and structurally meaningful in the context of the studied 
bridge. Fig. 10 and Table 1 highlight the member failure scenarios 
considered. The numbers in the figure correspond to the identification 
IDs of each scenario.

The simulation approach follows the methodology outlined in Sec
tion 2, as depicted in the flowchart in Fig. 1. It was considered 10 heavy 
train crossings per day. Thus, 3650 loading samples were generated with 
the GCBN, representing a year of operational conditions. Each failure 
scenario was simulated in the UFEM, and the SoD was computed for all 
bridge elements. The resulting dataset, which consists of SoD values for 
all bridge elements when the bridge is subjected to all member failure 
scenarios (FS1 to FS11). The key modelling and computational param
eters of the analysis are summarised in Table 2. This table outlines the 
core aspects of the methodology, including the UFEM configuration, 
uncertainty quantification, number of simulations, computational setup, 
and post-processing strategies (see Section 2). The information is pre
sented to provide transparency on the computational cost and scope of 
the analysis, facilitating comparison with other approaches that assess 
member failure scenarios in steel truss bridges. The assessment of 

Fig. 5. Critical load position in the steel truss bridge, measurements in meters. (a) Plan view (b) Lateral view.

Fig. 6. Illustrating the creation of the GCBN. (a) Load nodes (b) Initial DAG.
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Fig. 7. Theoretical fitted distributions for the load nodes -PL1 to PL5- and the structural response (mSoD). Measurements of µ and σ in kN.

Fig. 8. Gaussian Copula-based Bayesian Network rank correlation matrix.
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member failure scenarios is discussed in the following section.

3.3. Assessment of member failure scenarios

Understanding the structural implications of localised member fail
ures is essential for assessing the behaviour of steel truss bridges. This 
section shows how the methodology presented in Section 2.4 applies to 
the case study. Starting with the derivation of the SoDT100 metric and 
building upon the described in Section 2.4. The analysis is carried out 
using two complementary approaches. The structure-level analysis 

examines how specific failure events impact the bridge elements, of
fering insight into the level of significance of the scenarios. In contrast, 
the element-based analysis focuses on the response of specific bridge 
elements when the bridge is subjected for all member failure scenarios, 
allowing for the identification of groups of elements that should be 
prioritized in SHM system and maintenance interventions. Together, 
these approaches comprehensively evaluate member failures and their 
effects on the bridge.

Fig. 9. Conditional margin for all nodes (PL1 to PL5) in the GCBN.

Fig. 10. Member failure scenarios considered.
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3.3.1. The 100-year return period expected value of the SoD
The assessment of member failure scenarios considers estimating the 

100-years return period expected value of SoD (SoDT100) for all bridge 
elements. As described in 2.3, EVA is implemented to characterise the 
extreme structural responses. The daily maxima of the SoD were 
extracted for all bridge elements, providing a single critical value that 
represents the maximum demand observed per day. These daily maxima 
were then fitted to a Generalized Extreme Value (GEV) distribution 
using maximum Likelihood estimation (MLE) to calculate the expected 
SoD values for different return periods. This procedure was performed 
for all bridge elements when the bridge was undamaged and subjected to 
all member failure scenarios (FS1 to FS11). Thus, during each scenario, 
SoDT100 is computed for all bridge elements. Fig. 11 exemplifies the 
process. The figure displays the probability of excedeence of the SoD of a 
midspan vertical of the bridge (Vertical 7) when: (a) The bridge is in its 
undamaged state, (b) the bridge is subjected to a close-to-support ver
tical failure (FS2), and (c) the bridge subjected to a midspan lower chord 
(FS3). In the figure, the blue points represent the observed daily maxima 
(from UFEM simulations), while the red points correspond to the esti
mated values derived from the GEV distribution. As discussed in section 
2.3, the resulting SoDT100 values establish a consistent basis to assess the 
significance of each failure scenario, forming the foundation for the 
analytical approaches introduced in the following sections.

3.3.2. Structure-level analysis
The structure-level analysis was performed as described in 2.4.1. 

This approach focusses in analysing how a specific member failure 
scenario (e.g. FS2) affects the SoDT100 of all bridge elements (e.g. lower 
chords). The Eq. (2) was implemented to compute for all bridge elements 
the absolute increase of the SoDT100 when the bridge is subjected to a 
failure scenario with its undamaged state (See 2.4). The results are 
displayed in Fig. 12.

Each truss representation in Fig. 12 corresponds to a specific failure 
event, where the removed element is marked, and the remaining ele
ments are colour-coded based on the magnitude of their ΔSoDT100 as 
indicated in the colour-bar legend on the right side of the figure. Ele
ments with low variations of SoDT100 with respect to its undamaged 
state (0–5 %) remain grey, while those experiencing higher increases are 
classified as green (5–25 %), yellow (25–60 %), orange (60–100 %), and 

Table 1 
List of member failure scenarios.

Scenario ID Failure Scenario

FS1 Vertical No. 7
FS2 Vertical No. 3
FS3 Lower Chord No. 11
FS4 Lower Chord No. 3
FS5 Diagonal No. 33
FS6 Diagonal No. 9
FS7 Upper Chord No. 9
FS8 Upper Chord No. 3
FS9 Transversal Beam No. 14
FS10 Upper Transversal Beam No. 3
FS11 Lateral Bracing No. 10

Table 2 
Key modelling and computational parameters for the case study.

Parameter Value / Description

Model type Updated Finite Element Model (UFEM).
Uncertainty 

modelled
Traffic loads (via GCBN).

Failure scenarios 
analysed

Eleven (11) member failure scenarios (threat- 
independent).

Load samples per 
scenario

3650 samples (1 year; 10 trains/day).

Total simulations 40,150 UFEM analyses (11 × 3650).
Simulation type Nonlinear static for each load sample.
Index State of Demand
Index calculation Computed for each bridge element.
CPU cores used 16 (Intel Xeon)
Average time per 

scenario
~30 h

Post-processing Statistical fitting of SoD indexes; Extreme Value Analysis to 
compute SoDT100

Main outputs Matrix of SoDT100 [Elements × Scenarios]
Final insights Element-based insights to optimise SHM strategies, 

prioritise maintenance interventions, and enhancing 
reliability-based and risk methodologies.

Fig. 11. EVA to estimate the SoD expected value for different return periods. Probability of exceedance of SoD for Vertical 7 (a) Undamaged state (b) FS2 (c) FS3.
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red (above 100 %). As observed in Fig. 12, failure scenarios that lead to 
significant increases in ΔSoDT100 across multiple bridge elements are 
those involving upper chords, lower chords, and diagonal members. 
More specifically, scenarios where central upper and lower chords fail 
(FS3 and FS7) and those where upper chords, lower chords, and di
agonals near the supports fail (FS4, FS6 and FS8) exhibit the highest 
increases for the remaining bridge elements.

The failure of a central upper chord (FS7) produces the widest SoD 
distribution across the structure. The entire panel containing the failed 
element exhibits a severe increase, with both verticals and diagonals 
turning red. Additionally, adjacent panels also experience increments, 
with their diagonals turning yellow, indicating that the effects extend 
beyond the immediate vicinity of the failure. As described in Section 2.1, 
the SoD reflects variations in the structural demand-to-capacity ratio, 
allowing for an assessment of how failure scenarios alter the overall 
behaviour of the system. Based on these results, it can be inferred that 
upper chords in midspan play a fundamental role in transferring demand 
across multiple panels, as their removal leads to widespread SoD in
creases in surrounding elements. In contrast, when an upper chord near 
the support fails (FS8), the affected area is more localised. While the 
panel containing the failed element still exhibits high values, the effect 
on adjacent panels is less pronounced. This indicates that upper chords 
at midspan are more structurally engaged in global distribution, 
whereas those near the supports experience more localised effects. On 
another hand, a distinct pattern is observed for lower chords. When a 
midspan lower chord fails (FS3), the adjacent verticals exhibit high SoD 
values, but unlike the upper chord failure, the entire panel does not 
experience a uniform increase since there are more elements providing 
capacity in the bottom part of the bridge (e.g. bracing). Additionally, 
FS3 shows that internal longitudinal beams exhibit an increase in SoD, 
which is not observed in upper chord failures, suggesting that lower 
chords influence the internal bracing system more directly. When a 
lower chord near the support fails (FS4), the behaviour is comparable to 
FS3 but with one notable difference: multiple lower chords in the lon
gitudinal direction exhibit slight increases. This suggests that lower 
chords near the support contribute more significantly to longitudinal 
demand transmission than those at midspan. The failure of a diagonal 

near the support (FS7) produces a markedly different response 
compared to midspan diagonal failures. While the failure of a central 
diagonal (FS5) induces only minor ΔSoDT100 increases in adjacent ver
ticals, the removal of a diagonal near the support results in severe in
creases in surrounding verticals, reaching the red threshold in Fig. 12.

Beyond these primary failure scenarios, other elements exhibit 
distinct SoD responses under localised failures. The failure of a vertical 
does not lead to significant increases in other elements, except on those 
adjacent to the failed, which experience a slight increase (FS1 and FS2). 
This suggests that verticals primarily act as local demand distributors, 
and their failure does not substantially impact the overall truss response. 
A unique pattern is observed in lateral bracing failures (FS11). Unlike 
other elements, when a lateral bracing member fails, SoD increases are 
distributed only across multiple bracings, including those farther from 
the failed element. This indicates that lateral bracings exhibit a demand- 
sharing effect, where failure in one member influences a broader region 
of the structure. Similarly, the failure of a transversal beam at midspan 
(FS9) results in a widespread but moderate SoD increase, primarily 
affecting lateral bracing members and verticals. While the magnitude of 
the SoD increase remains low (classified as green in Fig. 12), the broad 
effect suggests that transversal beams contribute to structural demand 
distribution across multiple elements. Finally, the failure of an upper 
transversal beam (FS10) does not result in any SoD increases in other 
bridge elements, indicating that these members play a negligible role in 
the redistribution of structural demand under the analysed and vertical 
loading conditions.

As outlined in Section 2.4.1, the member failure scenarios discussed 
above are classified based on their level of significance. This classifica
tion provides a structured understanding of how different localised 
failures affect the overall truss system. Table 3 presents the classification 
of each scenario.

3.3.3. Element-based analysis
The element-based analysis provides an alternative perspective for 

evaluating the impact of localised failures in truss bridges. Instead of 
analysing individual failure scenarios, this approach focuses on how 
different groups of elements respond to different failure events. As 

Fig. 12. ΔSoDT100 in all bridge elements for all member failure scenarios.
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described in Section 2.4.2, this method enables the identification of el
ements that play a critical role in alternative load path formation, as well 
as those that should be prioritised in structural health monitoring (SHM) 
and maintenance strategies. To systematically assess the structural 
response, Fig. 13 presents a graphical representation where the Y-axis 
corresponds to the ΔSoDT100, indicating the demand state of each 
element for a 100-year return period, while the X-axis groups the ele
ments into structural categories. Each failure scenario is represented by 
a unique colour-coded point, corresponding to the SoDT100 value of the 
affected elements when the bridge is subjected to that scenario. The 
colour legend in Fig. 13 indicates the failure scenario ID (FS1–FS11) 
associated with each data point, allowing direct comparison between 
scenarios. Additionally, a solid line is plotted across all structural 
groups, representing the undamaged state of each element category. Any 
point above this reference line indicates an increase in the SoDT100 due 
to a failure scenario, highlighting the most affected elements. This 
visualization provides an intuitive understanding of the structural 
impact of different failure scenarios. By grouping elements, the 
approach facilitates the identification of structural categories that 
exhibit greater sensitivity to localised failures. This classification is 
particularly relevant for SHM and maintenance prioritisation, as it al
lows engineers to determine which bridge elements are more vulnerable 
under various failure conditions.

In Fig. 13, among all structural groups, verticals exhibit the highest 
sensitivity, consistently experiencing the most significant changes across 
multiple failure scenarios. While the removal of a vertical itself does not 
lead to major alterations in the surrounding elements, verticals are 
particularly affected by failures in upper chords (FS7, FS8), lower chords 

(FS3, FS4), and diagonals near supports (FS6). This reinforces the role of 
verticals as load distributors, which do not initiate major redistributions 
when failing but are highly responsive to failures in primary load- 
bearing components. A similar but less pronounced trend is observed 
in diagonals, which are particularly influenced by upper chord failures 
at midspan and near supports. This highlights the role of diagonals in 
stabilizing the truss system when chords are compromised but also 
suggests that diagonals themselves are less involved in large-scale re
distributions when removed. Chords themselves exhibit contrasting 
behaviour. While chord failures have a significant impact on the rest of 
the truss, the chords are minimally affected by failures in other ele
ments. This contrasts with verticals, which are highly influenced by 
failures in other members but do not cause major redistributions when 
failing. This distinction underscores the primary function of chords as 
direct load carriers, while verticals and diagonals serve as secondary 
stabilizing components that adapt to redistribution demands. Another 
key finding is the dependency of lateral bracings on lower chord failure 
scenarios. Unlike other elements, lateral bracings primarily respond to 
lower chord failures (FS3, FS4), with upper chord failures having min
imal impact. This suggests that lateral bracings play a localised stabi
lizing role as well as elements that provide resistant capacity at the 
bottom part of the bridge. Finally, for upper transversal beams, the only 
notable effect is seen under midspan upper chord failures (FS7). This 
limited response indicates that these elements contribute to localised 
panel stability, but do not participate significantly in global redistribu
tion mechanisms.

4. Conclusions

This study proposes a methodology for assessing the structural 
response of steel truss bridges subjected to localized member failures. 
The proposed approach integrates numerical modelling, structural per
formance metrics, and statistical tools to evaluate the consequences of 
member failures at both structure and element levels. A State-of- 
Demand index (SoD) is implemented as a quantitative metric to eval
uate the relationship between demand and capacity when the bridge is 
subjected to failure scenarios. Additionally, a Gaussian Copula-based 
Bayesian Network (GCBN) is developed to model the probabilistic 
relationship between load conditions and structural response and 
Extreme Value Analysis (EVA) is applied to estimate the expected SoD 
for a 100-year return period.

The methodology was applied to an old-riveted steel truss bridge, 

Table 3 
Scenario-based classification of different member failures.

Scenario ID Failure Scenario Level of significance

FS1 Vertical No. 7 Low
FS2 Vertical No. 3 Low
FS3 Lower Chord No. 11 Medium-high
FS4 Lower Chord No. 3 Medium-high
FS5 Diagonal No. 33 Low
FS6 Diagonal No. 9 High
FS7 Upper Chord No. 9 High
FS8 Upper Chord No. 3 Medium-high
FS9 Transversal Beam No. 14 Medium
FS10 Upper Transversal Beam No. 3 Non-significant
FS11 Lateral Bracing No. 10 Medium

Fig. 13. Element-based analysis of member failure scenarios.
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which was selected due to its historical significance and available 
monitoring data. Eleven member failure scenarios were considered 
based on documented precedents of progressive collapse in steel truss 
bridges and an in-service structural assessment. Each scenario was 
simulated using an Updated Finite Element Model (UFEM) to evaluate 
its consequences on the bridge elements. Of the eleven scenarios 
considered, the analysis identified failures involving upper and lower 
chords and diagonals near supports as the most significant, as they 
induced significant demand increases across multiple bridge elements. 
Specifically, upper chord failures caused the expected increase in Δ 
SoDT100 to exceed 100 % in nearly all elements adjacent to the failed 
member, while inducing demand increases between 60 % and 100 % in 
the rest of the structure. Failures in lower chords and diagonals near 
supports led to ΔSoDT100 surges above 100 % in verticals, while other 
elements experienced increases ranging from 25 % to 60 %. In contrast, 
strut failures primarily resulted in localized demand variations, with 
minimal influence on surrounding elements. The above findings suggest 
the need to prioritise upper and lower chords and diagonals near sup
port, as its failure implies the triggering of significant demand re
distributions across most of the truss system.

The proposed methodology bridges the gap between scientific 
research and practical engineering applications. By integrating finite 
element modelling, performance metrics and statistical analysis, it offers 
a systematic framework for evaluating the structural consequences of 
steel truss bridges subjected to localized failures. The methodology 
contributes to optimise SHM strategies, prioritise maintenance in
terventions, and enhancing reliability-based and risk methodologies. 
Ultimately, the findings of this research aim to support the decision of 
authorities regarding bridge safety, monitoring, and maintenance.
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[62] Morales-Nápoles O, Steenbergen RDJM. “Large-scale hybrid Bayesian network for 
traffic load modeling from weigh-in-motion system data,”. J Bridge Eng 2015;20 
(1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000636.
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[91] Paprotny D, Morales-Nápoles O, Worm DTH, Ragno E. “BANSHEE–A MATLAB 

toolbox for Non-Parametric Bayesian Networks,”. SoftwareX 2020;12:100588. 
https://doi.org/10.1016/j.softx.2020.100588.

[92] Koot P, Mendoza-Lugo MA, Paprotny D, Morales-Nápoles O, Ragno E, Worm DTH. 
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