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ARTICLE INFO ABSTRACT

Keywords: Economic losses of bridge failures can mount to millions of dollars per day and spiral quickly. In particular, steel

Bridge truss bridges are highly vulnerable to member failures, which, if propagated, can cause severe disruptions to the

Steel truss entire system. The vulnerability of these structures has been underscored in recent bridge collapses, which were

;legiltéﬂure initiated by the propagation of localised member failures (e.g., I-35W Mississippi Bridge). This paper proposes a

Bayesian network methodology for the structural assessment of member failure scenarios in steel truss bridges. A quantitative index

Safety (SoD) is proposed to evaluate the consequences of member failures in all bridge elements. The methodology
includes a Bayesian Network that captures the relationship between load models and structural responses.
Additionally, the methodology integrates Extreme Value Analysis and computes the expected SoD for a 100-year
return period. Two complementary approaches are suggested for the analysis of the member failure scenarios.
The first approach focuses on the failure scenario itself, examining the post-failure effects in all bridge elements.
The second approach evaluates the response of individual elements to various failure scenarios, allowing an in-
depth understanding of how different member failures influence specific bridge elements. The methodology has
been tested on a railway steel truss bridge in which eleven member failures were simulated. Results allowed to
identify the level of significance for the scenarios, providing insights to guide SHM strategies, prioritise in-
terventions and optimise maintenance efforts. This work aims to simplify engineering efforts and support bridge
management entities in their crucial fight to improve the bridge’s structural safety.

1. Introduction

Societies are confronting unprecedented extreme events that surpass
existing adaptation efforts [1]. Civil infrastructures are increasingly
exposed to aggressive environmental conditions, rising traffic loads, and
maintenance deficiencies, exacerbating structural deterioration over
time [2]. These destabilizing factors have considerably magnified the
socioeconomic impacts on transportation networks [3]. Steel truss
bridges, in particular, are increasingly vulnerable to member failures
that, under adverse conditions, may initiate a cascade of structural
damages across the entire bridge system, leading to progressive collapse
[4-6]. Bridge collapses often result in devastating consequences,
including fatalities, service disruptions, and significant economic and
environmental losses [7-9]. Due to the importance of such a phenom-
enon and its relevance to our society, progressive collapse has become

* Corresponding author.
E-mail address: joadmar@upv.es (J.M. Adam).

https://doi.org/10.1016/j.engstruct.2025.120850

one of the most active research areas in structural engineering [10-12].
This highlights the urgent need to assess member failure scenarios in
steel truss bridges. Understanding how these localised failures impact
the overall stability of such structures is essential to prevent progressive
collapse.

Over the last decade, several efforts have been made to assess
member failure scenarios in steel truss bridges [13-26]. These studies
have been conducted broadly through experimental approaches, nu-
merical modelling, or a combination of both. Among the most relevant
experimental studies, Buitrago et al. [13] tested a 21 m full-scale steel
truss bridge with an extensive monitoring system subjected to member
failure. Their work established practical structural health monitoring
recommendations to identify early failures. Similarly, Brunell et al. [14]
tested a laboratory-scale steel truss bridge under 16 damage scenarios.
The study aimed to propose a global safety index as an indicator to
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detect the presence of local damage. Zhao et al. [15] designed a
member-breaking device to remove a member in planar trusses sud-
denly, and a collapse-resistant analysis for different element-removal
cases was performed. On the other hand, among the most relevant
studies in which numerical modelling has been implemented to assess
member failures in steel truss bridges, Porcu et al. conducted a
robustness-based assessment in a steel truss bridge to prevent progres-
sive collapse [16], eight failure scenarios were considered in the study,
and their role on the progressive collapse was analysed. Caredda et al.
[17] analyse different member failure scenarios in a validated FEM to
assess the steel truss bridge capacity to activate Alternative Load Paths
(ALPs) efficiently. Chen et al. [18] performed an ALP-based methodol-
ogy, which includes two quantitative metrics to analyse the redundancy
of steel truss bridges subjected to member failure scenarios. Praxedes
et al. [19] developed a probabilistic-based robustness index for the
analysis of the progressive collapse of a bridge subjected to an unex-
pected element failure. Li et al. [20] developed a framework that con-
siders the dynamic effect of sudden member loss to identify critical
members in steel truss bridges. Lastly, Connor et al. [21] developed a
model-based standardized methodology to identify fracture-critical
members in steel truss bridges; these findings were published in offi-
cial guide specifications [27,28].

As seen, most of the research conducted to assess scenarios of
member failures in steel truss bridges has been concentrated on
encompassing strategies to determine the ability of the bridge to with-
stand when a local failure occurs; this approach has been demonstrated
to be essential to develop the knowledge on bridge redundancy and
structural robustness [29-31]. Nevertheless, a reliable quantitative
assessment that evaluates the consequences at the element level remains
undeniably crucial to understanding the impact of localised failures in
the entire structure. Beyond that, it is equally essential to determine
whether failure-induced demand alterations remain localised or propa-
gate throughout the truss system. Such insights would allow for priori-
tising bridge elements, serve as a decision-making tool to optimise SHM
systems, and directly enhance the safety and reliability of steel truss
bridges.

Bridges deteriorate over time due to exposure to aggressive envi-
ronments and increasing traffic loads [32]. This degradation leads to a
progressive reduction in structural reliability, which may eventually fall
below acceptable safety levels [33]. Uncertainties in bridge assessments
arise in multiple aspects, including material mechanical properties,
operational and environmental conditions, and applied loads [34-36].
In response, reliability-based approaches have emerged to quantify
these uncertainties and enhance the structural assessments [31].
Traditionally, structural reliability has been evaluated using conven-
tional methods [37-39]. However, Bayesian Networks (BNs) have given
rise to a significant research trend, having emerged as a promising
alternative for conducting reliability assessments [40-42]. It has been
shown that BNs offer substantial advantages over traditional frame-
works due to their ability to characterise and analyse uncertainty
effectively [43]. The applications of BNs in bridge engineering have
been extended to many fields involving bridge safety [44-49], risk
analysis [50-53], damage detection [54-57] and FE advance modelling
and updating [58-61]. One of the most important applications of BNs for
reliability applications involves the probabilistic modelling of traffic
loads [62-68]. This approach has proven to be effective in enhancing the
robustness of structural assessments [69]. In this regard,
Morales-Napoles et al. [62] developed a large-scale BN for traffic load
modelling using Weigh-In-Motion (WIM) data. Mendoza-Lugo et al. [63]
proposed a BN to generate synthetic heavy loads and estimate the crit-
icality of the national bridge network of Mexico. Kim et al. [64] devel-
oped a Bayesian updating methodology for the probabilistic modelling
of bridge traffic loads using in-service SHM data. Lastly, Yu et al. [65]
implemented a BN for the condition assessment of bridges; the BN was
designed to predict the extreme load effects. While BNs have been
widely employed in bridge reliability assessments, a significant gap
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remains in their integration with FEM-based methodologies. Existing
studies have primarily focused on traffic load modelling or direct con-
dition assessments but have not leveraged BNs to establish a probabi-
listic link between load conditions and structural response within a
reliability-based framework.

The analysis of demand effects (e.g. displacements), particularly the
Extreme Values of the Demand Effects (EVDE) is also essential to assess
the reliability of bridges [70]. Typically, these methods consider the
simulation through a FEM-based approach [71], applying recorded data
of real traffic (e.g. WIM stations) [72]. However, significant gaps are
limiting the accuracy and applicability of this approach [73]. On the one
hand, the estimation of EVDE relies on extreme demands that, are rarely
observed on real recorded data. On the other hand, recorded traffic data,
in turn, is commonly restricted to a short time period [72]. In response,
various probabilistic methods have been developed to estimate EVDE on
structures [74-78]. The estimation of EVDE in bridges is an ongoing
focus of research within bridge engineering [79-82]. Wang et al. [79]
performed an analysis in a cable-stayed long-span bridge to assess the
extreme load effects based on vehicle distribution and its location
through the bridge; the study was further extended for
vehicle-congested conditions [80]. Rahman et al. [81] performed
component-level and system-level fragility analyses for the resilience of
coastal bridges exposed to extreme waves. Dai et al. [82] simulated the
100-year response of bridges of various spans to develop an algorithm
able to fit data from WIM systems and predict extreme values responses.
Despite its extensive applications, existing approaches of EVDE have
primarily focused on global load effects, without considering the impact
of member failures under extreme demand conditions. This study
bridges this gap by integrating EVDE estimation in bridges subjected to
localised failure scenarios.

This study introduces a novel methodology for the structural
assessment of steel truss bridges subjected to localised member failures.
While previous research has focused on robustness evaluation or struc-
tural collapse prevention, this work advances the field by implementing
a dual-analysis perspective to understand how failures affect all bridge
elements and how each element responds to multiple failure scenarios.
The methodology integrates the quantification and propagation of un-
certainties to calibrate a finite element model (UFEM). A Gaussian
Copula-based Bayesian Network (GCBN) is employed to model the
operational loads on the structure, providing a probabilistic represen-
tation of train axle loads which accounts for possible variations in train
weights. These probabilistic load scenarios are propagated through the
UFEM to compute the State-of-Demand (SoD) index for all structural
elements, enabling a quantitative assessment of the demand state of the
structural elements in the entire bridge. Finally, Extreme Value Analysis
(EVA) is applied to estimate SoD values for long-term return periods,
supporting the identification of critical elements and prioritisation of
maintenance actions. The main novelty of this study lies in the devel-
opment and implementation, in a real-world case study, of a unified
reliability-based methodology that comprehensively quantifies the ef-
fects of member failure scenarios in steel truss bridges by integrating
uncertainty quantification and propagation, probabilistic load model-
ling, and the application of extreme value theory.

The objective of this study is to propose a methodology for the
structural assessment of member failure scenarios in steel truss bridges,
addressing key gaps in existing methodologies. A quantitative index
(SoD) is proposed to evaluate the consequences of member failures. The
State-of-Demand index (SoD) quantifies the relationship between de-
mand and capacity on each bridge element when the bridge is subjected
to member failures. Additionally, a Gaussian Copula-based Bayesian
Network (GCBN) is developed to model the probabilistic relationship
between loading conditions and structural response (SoD). This allows
for the generation of critical load conditions while incorporating un-
certainties inherent to bridge loading. The proposed methodology in-
tegrates two complementary analysis approaches. First, the structure-
level analysis, which focuses on the failure scenario itself, examining
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the post-failure effects in all bridge elements. Second, the element-level
analysis, which evaluates the response of different bridge elements when
the bridge is subjected to several member failure scenarios. The meth-
odology is validated in a real railway steel truss bridge. The methodol-
ogy provides valuable insights to guide SHM strategies, prioritising
interventions, optimise maintenance efforts, and enhance risk assess-
ment methodologies.

After this introduction, Section 2 presents the proposed methodol-
ogy. This Section details the Updated Finite Element Model (UFEM) and
introduces the SoD which is used as a key performance metric. Addi-
tionally, the implementation of a GCBN for generating critical load
conditions is described, along with the application of EVA to estimate
SoD extremes over long-term return periods. Section 3 applies the
methodology to a real steel truss bridge. Two complementary analyses
are implemented, the element-level and the structure-level analyses.
Finally, Section 4 highlights the findings of this research with the main
conclusions drawn from the work.

2. The methodology

This section presents the methodology for evaluating the impact of
different member failure scenarios in steel truss bridges at both structure
and element levels. The proposed methodology ultimately integrates
numerical modelling, structural performance metrics, and statistical
tools to propose an approach for assessing failure scenarios in steel truss
bridges. The methodology is conducted using an updated finite element
model (UFEM), in which member failure scenarios are numerically
simulated. For each bridge element (e.g. an upper chord), the State-of-
Demand index (SoD) is computed as a core metric for quantifying the
differences between structural demand and capacity (see 2.2). In this
regard, Extreme Value Analysis (EVA) is applied to estimate the SoD
extremes for various return periods (e.g., SoD for a 100-year return
period) (see 2.3). Recognizing the critical influence of the load charac-
terisation, the methodology includes a Gaussian Copula-based Bayesian
Network (GCBN) to generate realistic loading conditions (see 2.1). Two
analysis approaches are employed to assess the bridge subjected to

The Steel Truss Bridge
(STB)

Section 2.1

Probabilistic load
modelling

Jor

all Local Failure
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member failure scenarios; both are described in the last part of this
Section (see 2.4). The flowchart of the methodology is presented in
Fig. 1, highlighting the stages of the methodology. The stages are
explained in detail in the following subsections. The reader is referred to
Section 3 for the practical application of these concepts on a real steel
truss bridge.

2.1. The state-of-demand index (SoD) of individual elements

The methodology considers a quantitative index to evaluate the el-
ements demand state in relation to reference values related to its ca-
pacity. Several indexes have been developed in the literature in this
regard [22-24]. In this study, the State-of-Demand index (SoD) is
adopted as core numerical metric. The SoD is computed through the
Updated Finite Element Model (UFEM). The SoD is formulated as a set of
ratios reflecting the state of each bridge element based on two criteria:
(i) proximity to steel yielding ( and (ii) susceptibility to local instabilities
(. Thus, the SoD is selected as the higher of the Demand Capacity Ratio
(DCR) of axial forces and stresses, as follows:

S0Deiementn = Max(DCRar ,DCRs) (@D)]

Where the Demand Capacity Ratio of axial forces () is computed as
follows:

P,
DCRar = 1;“’" 2
cr

P.m is the Numerical Axial-Force computed during each iteration,
while P,, is the critical buckling load according to the Euler’s formula-
tion. P, is calculated as described in Eq. (3), where E represents the
modulus of elasticity of the steel, I is the moment of inertia of the
element under analysis, k is the element effective length factor and L
denotes the element length.

_ 7°H
ca (k‘_L)2

3

The Demand Capacity Ratio of stresses () is computed as described in

Section 2.4
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Fig. 1. Flowchart of the methodology.
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Eq. (4) where o, is the Numerical Von Mises Stress and f, is the steel
yield strength.

DCRg = 7mm 4)
Y

In this study, SoD is implemented to assess the structural response of
all bridge elements when a member failure occurs (e.g. the failure of a
lower chord). The SoD is computed individually for each structural
element (e.g., an upper chord) as a result to propagate through the
UFEM the extreme loading conditions generated by the GCBN (refer to
Section 2.2). Thus, the SoD is recalculated in every realisation under
extreme loading conditions. As depicted in Eqgs. (2) and (4), the capacity-
related reference values to compute and are defined based on the
yielding of the cross-section (f,) and Euler’s critical load (P.,), which are
assigned from the calibrated model and remain constant. Therefore, the
SoD reflects how close each element is to its structural capacity under
extreme loading conditions. This makes the SoD a reliable indicator for
the element-based structural assessment of steel truss bridges subjected
to failure scenarios.

2.2. Probabilistic load characterisation

The probabilistic load characterisation is a fundamental component
of the methodology presented in this study. This section outlines the
essential considerations for accurately characterise the loads and inte-
grating them into the methodology. Initially, the section establishes the
key criteria for selecting an appropriate load model and determining its
critical position on the bridge. Subsequently, a four-stage procedure to
create a Gaussian Copula-based Bayesian Network (GCBN) to integrate
the load model and the structural response (SoD) is presented.

2.2.1. Load model and critical load position on the bridge

The load model and its configurations depend on the specific con-
ditions of the bridge. These conditions include its usage (e.g., railway
bridge) and the type of traffic it supports (e.g., passenger, freight).
Ideally, the load model should be adopted based on real traffic data (e.g.
a WIM system) to reflect the operational conditions of the structure and
how the load is distributed along the convoys. However, this approach is
not always feasible; alternatively, the load model may be selected based
on official standards [83]. Once the load model is determined, identi-
fying its critical position on the bridge is essential. This process typically
involves simulating multiple loading scenarios in different positions
along the structure to analyse the load position that produces the most
critical effects on the bridge. Undoubtedly, the critical load position is
not unique, this is even more relevant when dealing with failure sce-
narios located at different positions of the structure. Thus, the critical
load position is considered as the first to occur of: (i) The load position
that induces the highest overall mean of SoD across all bridge elements
(see 2.2), or, (ii) the load position which generates the earlies failure to
the structure (no-convergence criteria). However, any method [84,85]
that systematically seeks the most adverse conditions to the structure is
also applicable.

2.2.2. Gaussian Copula-based Bayesian Network

The methodology incorporates a Gaussian Copula-based Bayesian
Network (GCBN) to integrate the load model and the structural
response, represented by the SoD. The primary purpose of the GCBN is to
generate samples that reflect critical (but realistic) loading conditions
for the bridge. To this, the variables of the load model (e.g., train axle
loads) and the structural response (SoD) are represented as nodes in the
GCBN, with their dependencies captured through arcs defined by cor-
relation coefficients. These coefficients characterise the strength and
nature of the relationships between nodes, enabling the network to
encode complex joint probability distributions efficiently. This capa-
bility allows for inference within the GCBN (e.g., conditioning on the
SoD) to generate synthetic samples of load variables that reflect critical
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loading conditions.

The GCBN is structured as a Directed Acyclic Graph (DAG), where
each node represents a continuous random variable, and the edges are
assigned (conditional) bivariate copulas to capture conditional de-
pendencies between the random variables. The graph in itself contains
conditional independence statements usual in Bayesian Networks. Fig. 6
(b) illustrates the configuration used for the case study, where load
variables (PL1 to PL5) act as parent nodes, and the structural response
(mSoD) is introduced as a child node in the GCBN.

The dependence structure in the GCBN is built using a Gaussian
copula, which enables the construction of a joint distribution with given
marginal distributions and a correlation matrix. For two uniform

random variables (u,v) € [0,1]%, the Gaussian copula is defined as:
Cy(u,v) =@, (@' (u),d'(v)) (5)

Where @' denotes the inverse of the univariate standard normal
cumulative distribution function and ®, is the bivariate standard normal
cumulative distribution function with linear correlation coefficient p.
This construction decouples marginal distributions from their depen-
dence structure.

The joint probability distribution across all nodes is factorised using
the DAG structure as:

for, o) = [ [ foxlpate) ©)

Where each conditional density f(x;[pa(x;)) is determined by the
marginal F;(x;) and the copula-based dependency between the variable
and its parents. Conditional rank correlations are used to quantify the
dependencies. For a node X; with parent nodes pa; (X;), ...,pan(X;), the
rank correlation is assigned as:

r(X:,pa;(X;) [par (X)), ..., pai1 (X)) j=2,...,m @)

r(Xi,pa(X:));j=1 (8)

These rank correlations are mapped to Pearson correlation co-
efficients in the Gaussian copula using:

p = sin <% r) (©)]

Since partial correlations are equal to conditional correlations in the
multivariate Gaussian case. Then, the correlation matrix is assembled
using the usual recursive formula:

P12:4..n — P134,..nP234...n (10)

((1 - Pf3:4\_.,n> (1 - p%-3:4.,__,,.> )1/2

The assignment described until now. Ensures a valid correlation
matrix. While the main assumption of the model is that the Gaussian
copula adequately represents the data. One of the key advantages of this
formulation is the ability to perform inference. Given an observed or
target value y of a variable Y, the GCBN enables conditional sampling of
the remaining variables X. Conditionalizing in GCBN is efficient since
the conditionalization is done in the multivariate standard normal
transform of the variables. This allows for the generation of load sce-
narios that are statistically consistent with a desired structural response
(e.g., high mSoD).

This section describes the process for developing the proposed GCBN.
Although the process intends to be standard, it is crucial to note that for
the practical application a self-judgement must be exercised based on
the purpose of the GCBN, which is to reduce uncertainties in the load
model. The logical process for creating the GCBN is outlined through a
systematic four-stage procedure. For the practical application of a GCBN
to characterise the loading conditions in a real structure the reader is
referred to Section 3.

P123,..n =
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1. The first stage involves constructing an Initial Gaussian Copula-
based Bayesian Network (IGCBN). This stage involves the creation
of an initial directed acyclic graph (DAG) and the selection of the
probabilistic parameters of the nodes. In the initial DAG, the nodes
should correspond to the load model variables (e.g. train axle
weights). It is essential to select the node parameters (mean and
standard deviation) based on engineering judgment of the real con-
ditions. If the assessment includes traffic observations (e.g., with a
WIM system), the parameters should be derived directly from ob-
servations; otherwise, the parameters should be assigned based on
standards [83]. Ultimately, the IGCBN is constructed to represent
variability in loading conditions.

2. The second stage focuses on evaluating the influence of probabilistic
dependencies of the IGCBN in the global structural response. This
involves performing a sensitivity analysis in the IGCBN to analyse
how its probabilistic dependencies affect the SoD in all bridge ele-
ments. To achieve this, the IGCBN is used to sample loading with
varying correlation coefficients (CCs) (e.g. 0.8, 0.9, 0.95). The
sensitivity analysis is performed through the UFEM, where the mean
value of the SoD (mSoD) is analysed for all bridge elements. mSoD
quantifies the entire bridge demand state, higher mSoD’s indicate
that, on average, the bridge elements experience high demand ratios
in relation to their capacities.

3. The third stage aims to evaluate the results of stage 2 to generate a
dataset that will be used to create a final GCBN. As the GCPN aims to
generate critical loading condition for the bridge, this stage focuses
on selecting the samples (loads) that resulted in the highest structural
demands (mSoD) from the simulations performed with different CCs
(stage 2). A package-based approach is considered, where a subset of
the samples (e.g., a decile) with the highest mSoD are selected from
each group of simulations (corresponding to different CCs). Each
package includes both the samples (loads) and the responses
(mSoD’s) for all CC groups of simulations. The generated packages
are then combined in a final dataset, which includes the highest-
demand scenarios across all CC groups.

4. The final stage involves updating the IGCBN by incorporating the
effects of the loads on the bridge (final dataset). This is achieved by
adding an additional node to the DAG, representing the global
structural response (mSoD). The mSoD node will then modify the
network dependencies, becoming the parent of the nodes repre-
senting the load system variables. The parameters of the updated
GCBN are calculated by fitting to theoretical distributions (e.g.,
Gaussian, Gumbel, Weibull, etc...) the variables of the final dataset
performed in Stage 3. This process results in a GCBN that integrates
the uncertainties in the loading conditions and their structural ef-
fects. The final GCBN can infer the load conditions that would lead to
a specific demand state for a defined time period (e.g. 1 year of
loading conditions for 20 trains passing per day).

The GCBN developed in this work stands out as a versatile and
powerful tool for structural engineering. Although the GCBN is used in
this study to generate critical (but realistic) loading, its capability goes
far beyond that [86]. In general, the GCBN can be used to infer any
variable within the network through conditionalization, making it
invaluable for reliability studies and allowing the analysis of complex
interactions between loading conditions and structural responses.
Additionally, the GCBN benefits practitioners by providing a practical
tool to determine the structure demand state through its loading con-
dition. This dual capability highlights the GCBN as an essential resource
for both advanced reliability-based analyses and practical structural
evaluations, demonstrating its adaptability to a wide range of structural
engineering applications.

2.3. Extreme SoD effects

The analysis of the demand effects (e.g. displacements), particularly
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the Extreme Values of the Demand Effects (EVDE), is essential to assess
the reliability of bridges [66]. This discipline, known as Extreme Value
Analysis (EVA) [87] considers the application of statistical techniques to
fit a distribution of demands (e.g. displacements) to the tail of its cu-
mulative distribution function (CDF) [70]. The most common methods
employed to estimate EVDE are the Peaks-Over-Threshold (POT)
method [74] and the Block Maximum (BM) method [75]. POT assesses
the extent to which peaks exceed a specified threshold [74], fitting these
peaks to a probability distribution such as the Generalized Pareto dis-
tribution (GP) [76]. BM, by contrast, considers only the maximum de-
mand effects in a predefined time block [75], which is advantageous for
calculating lifetime maximum probabilities of exceedance. Other alter-
native methods, such as the Box—Cox method [77] and Rice formula
[78], are also employed.

As discussed, the GCBN (see 2.2) can generate loading conditions for
a defined time period (e.g. 1 year of loading conditions for 20 trains
passing per day). These loading conditions are subsequently used as
input in the UFEM to compute the SoD for all bridge elements. Thus,
EVA is employed in this work to assess, for all bridge elements, the
extreme structural responses (SoD) when the bridge is subjected to
member failure scenarios.

This study adopts BM fitting to a Generalized Extreme Value distri-
bution (GEV), given that this approach considers only the largest event
in each time block (e.g. a one-day block), and its usefulness lies in its
ability to effectively capture daily variations, offering a versatile
approach adaptable to a variety of scenarios [75]. This capability makes
it particularly advantageous for EVA, establishing it as fundamental in
recent studies [79-82]. In this study, BM is fitted to the GEV distribution
as described in Eq. (1). Where y is the location parameter, ¢ is the scale
parameter, and ¢ is the shape parameter. There are three types of
extreme value distributions characterised by the parameter . When the
parameter & equals 0, the distribution is a Gumbel distribution; when ¢ is
greater than 0, it is a Fréchet; and when ¢ is less than 0, it is a Weibull
distribution.

1
exp| — 1+§<¥> ¢ ,&E#0
F(x;4,0,8) = an

on(-on( 1)) a0

In the context of this work, the methodological process starts with
grouping the SoD data in one-day blocks, with the maximum value
recorded in each block (daily maxima). The maximum likelihood esti-
mation (MLE) method determines the parameters that best fit the daily
maxima data to the GEV. Once the GEV is characterised, its empirical
cumulative distribution function (ECDF) is calculated, which is then
used to determine the expected SoD value across various return periods
(T). Return periods provide a probabilistic approach to quantify the
occurrence of SoD extremes, offering insight into the frequency at which
a SoD might be expected over a given timeframe [88]. Return periods
define the expected time (in years) between exceedances of a specific
SoD (e.g. an event with a 1 % annual probability of exceedance corre-
sponds to a return period of 100 years, T;o0). Ultimately, the method-
ology focuses on the SoD associated with a 100-year return period
(SoDT;00) which is computed for all bridge elements while it is subjected
to all damage scenarios. The final output of this methodology isann x m
matrix, where n represents the SoDTjq, for all bridge elements at m
member failure scenarios considered. For the practical application of
EVA to assess the SoD extremes in a real structure, the reader is referred
to Section 3.

2.4. Assessment of member failure scenarios

This section defines the methodology to analyse the SoD associated
with a 100-year return period (SoDTigo) of all bridge elements for the
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bridge subjected to member failure scenarios. The analysis is performed
by computing the absolute difference of the SoDTi¢ for a given bridge
element (e.g. the SoDT; (o of an upper chord when a lower chord failure
occurs) with its undamaged state (the SoDTj ¢ of the same upper chord
for the bridge on its undamaged state). This metric, here called A
SoDTigp (see Eq. (2)), is computed for all bridge elements and failure
scenarios considered.

ASoDT1g0 = ‘SODTIOO scenario —  SODT100 undamaged‘ 12)

Two complementary approaches are employed in the analysis. The
first approach (structure-level) focuses on the failure scenario itself,
examining its effect on the ASoDTj, values of all bridge elements post-
failure. The second approach (element-level) evaluates the response of
individual elements to various failures, allowing an in-depth under-
standing of how these scenarios influence specific bridge elements. The
following lines describe both approaches in detail. The reader is referred
to Section 3.3 for the practical application and analysis of both analysis
approaches in a real steel truss bridge.

2.4.1. Structure-level analysis

The structure-level analysis focusses into analyse how a specific
member failure scenario (e.g. the failure of an upper chord) affects the A
SoDT; of all bridge elements (e.g. Diagonals, verticals, lower chords,
etc.). This approach aims to analyse the scenario significance. A member
failure scenario is deemed significant if it induces in any bridge element
increases of the State-of-demand (ASoDTjqp). As an example, the
following categorical scale is proposed to classify each scenario by its
level of significance:

e 0 < ASoDTyop < 5, low significance scenario.

5 < ASoDTygo < 25, low-medium significance scenario.

25 < ASoDTjg < 60, medium significance scenario.

60 < ASoDTjo9 < 100, medium-high significance scenario.
ASoDT190 > 100, high significance scenario.

2.4.2. Element-level analysis

The element-level analysis centres to analyse the ASoDTyop of a
specific bridge element (e.g. a midspan diagonal) or groups (e.g. di-
agonals) for all member failure scenarios. Element-level analysis ulti-
mately identifies elements that should be prioritised in the structural
health monitoring (SHM) and maintenance systems. Although the pri-
oritisation hierarchy should encompass an engineering judgment of the
undamaged state of the element, an element in which the
max(S0DT100  for all scenarios) iS considerably higher in relation with its
undamaged state (S0DT100  undamaged) Should be prioritised.

3. Application to a real steel truss bridge

The methodology described in Section 2 has been tested in a railway
steel truss bridge. This bridge was selected as a case study due to its
characteristics as an old-riveted steel truss structure with available
monitoring data. Additionally, it has been previously analysed,
emerging as an engaging alternative for selecting relevant member
failure scenarios. At the outset, this section describes the bridge and the
procedure adopted to achieve a calibrated Updated Finite Element
Model (UFEM). In the first stage, the load model is described. The pro-
cedure to generate a Gaussian Copula-based Bayesian Network (GCBN)
to generate 1-year of critical loading conditions is addressed. The dis-
cussion continues with selecting member failure scenarios based on
historical precedents and an in-service structural assessment. Subse-
quently, for each member failure scenario, the State-of-Demand (SoD)
index is computed for all bridge elements. Extreme Value Analysis (EVA)
is then employed to compute the 100-year return period of the SoD.
Finally, the last part of this section presents and discusses the results of
the methodology. The discussion is addressed by analysing two
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complementary approaches. While the first approach evaluates the
impact of each member failure scenario on the bridge elements, the
second approach examines how different bridge elements respond to all
member failure scenarios.

3.1. Description of the bridge

The bridge consists of a three-isostatic-span steel truss bridge located
in Galicia, Spain. The bridge, constructed in 1910 [89], has a span length
of 40 m for the side spans and 70 m for the central span. This study only
considers one side span (40 m length, 7 m width, and a maximum height
of 8 m). The arch (upper chords) has a parabolic shape, and both sides
are connected by five transversal beams. These upper chords are verti-
cally linked to the bottom chord through fourteen verticals and four
piers. The deck is formed by nine transversal beams and thirty-two lower
bracings, equally divided into eight panels of four members each. The
lower bracings run directly beneath the projection of the traffic lanes
(interior longitudinal beams), and the loads can be applied directly onto
these elements. The bridge presents simple hinged supports on one side
and roller-hinged supports on the other. During the construction, all
members were built up using steel plates and L-type profiles joined by
rivets. Fig. 2 shows a downstream view of the bridge.

An initial finite element model (IFEM) of the bridge was developed
using data gathered from an experimental campaign. The campaign
involved a detailed visual inspection that identified widespread corro-
sion, thickness losses, and other damage in various structural compo-
nents. A Terrestrial Laser Scanning (TLS) survey was conducted to
produce a high-resolution point cloud model of the structure. An
Ambient Vibration Testing (AVT) complemented the campaign with a
multi-setup deployment of seismic accelerometers capturing the dy-
namic behaviour of the bridge. The collected data informed the as-built
geometric modelling. The initial FEM was modelled using DIANA FEA
[79] and was connected via MATLAB [80]. The model updating was
carried out through a genetic algorithm to minimize discrepancies be-
tween numerical and experimental results. The updated model achieved
a mean frequency error of 3.24 % and a Modal Assurance Criterion
(MAC) average of 0.947, demonstrating high agreement between
experimental and numerical behaviour. The study presented here relies
on a nonlinear analysis accounted for both physical and geometrical
nonlinearities performed in the Updated Finite Element Model (UFEM).
The UFEM is shown in Fig. 3.

The load characterisation of the bridge was conducted as described
in Section 2.2. The bridge is located in an industrial area frequently used
by passenger and freight trains. Thus, the Type 5 locomotive-hauled
freight train from the Eurocode was selected [90]. The UFEM was
configured to compute the analysis of the critical loading position,
where the load was applied acting on nodes on the interior longitudinal
beams. Several analyses were simulated varying the point load positions

Fig. 2. The steel truss bridge.
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Fig. 3. 3D-View of the Updated Finite Element Model (UFEM).

at different locations along the bridge span. The criteria for identifying a
load position as critical were those defined in Section 2.2. Fig. 4 presents
the adopted load model, while Fig. 5 highlights the critical load position
after performing the abovementioned analysis on the structure.

3.2. Failure scenario definition

The characterisation of the member failure scenarios is addressed in
this section. The approach to generate critical loading conditions is
presented. Then, the selection of relevant member failures is discussed.
Specifically, this section aims to create a GCBN that integrates the load
model with the SoD. In addition, the reasoning behind selecting candi-
date elements to simulate their failure in the UFEM is discussed. This
section ultimately illustrates the practical application of the methodol-
ogy described in Section 2 adapted to the specific characteristics of the
case study.

3.2.1. Generation of synthetic heavy trains

Building upon the updated finite element model (UFEM) described in
Section 3.1, the four-stage procedure outlined in Section 2.2.2 was fol-
lowed to create a GCBN to generate loading samples represented critical
conditions for the bridge (synthetic heavy trains). The GBPN has been
implemented in BANSHEE, an open-access scriptable code developed as
a toolbox in MATLAB [91] and Python [92,93]. In this work, the
MATLAB version of BANSHEE was employed.

The process started with the construction of the initial DAG. Each
group of six-point loads (PL1, PL2, ..., PL6) in the load model was
defined as one node in the DAG, as illustrated in Fig. 6a. The mean SoD
was selected as the parent node (see 2.2.2). The mean value for the load
nodes (PL1 to PL5) was derived directly from the load model (see Fig. 4).
Since 80 % of the total load was attributed to the locomotive’s dead
weight, the standard deviation of the load nodes was calculated based on
two scenarios: fully loaded wagons and empty wagons (where empty

6 x 225kN

6 x 225kN 6 X 225kN

6 x 25kN

wagons will weigh 20 % less than fully loaded ones). The probabilistic
dependencies among load variables and mSoD were incorporated as
correlation coefficients (CCs) between DAG arcs. Stage 2 in 2.2.2 was
implemented to assess the influence of probabilistic dependencies of the
IGCBN in the global structural response (mSoD). CC values of 0.6, 0.7,
0.8, 0.9, and 0.95 were considered. For each simulation group with its
corresponding CC (e.g. simulation group of CC = 0.6), 1000 synthetic
train samples were generated, and the mSoD was computed using the
UFEM. As described in stage 3 in 2.2.2, a package-based approach was
employed to identify the fifty highest-demand scenarios for each simu-
lation group. This stage finally compiled a dataset containing the highest
demand loading conditions (PL1 to PL5) alongside their corresponding
mSoD responses.

The resulting dataset was fitted to theoretical probabilistic distri-
butions; the results are illustrated in Fig. 7, where each node of the
IGCBN is presented with its corresponding theoretical distribution. As
seen in the figure, the data for the five load nodes (PL1 through PL5)
were fitted to normal distributions, with mean values significantly
higher than those suggested by regulatory standards (see Fig. 7). In
contrast, the mSoD node was fitted to a Generalized Extreme Value
(GEV) distribution, characterised by its tail dependency. The specific
parameters of the GEV distribution (k, u, and c) are also presented in
Fig. 7. These fitted parameters provide the probabilistic basis for the
characterisation of the final GCBN, which integrates the mSoD as a
parent node to the load nodes (PL1 through PL5). The final GCBN es-
tablishes a hierarchical structure that captures the dependencies be-
tween the structural response and the load variables. This integration
models the global structural response of the bridge while maintaining
the variability and interactions between the load nodes. The correlation
matrix of the final GCBN is presented in Fig. 8.

The GCBN is used to generate synthetic heavy trains, which involves
sampling loading conditions (PL1 to PL5). This process relies on con-
ditional inference [94], a mathematical approach where the
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Fig. 4. Load model adopted. From [90].
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Fig. 5. Critical load position in the steel truss bridge, measurements in meters. (a) Plan view (b) Lateral view.

Fig. 6. Illustrating the creation of the GCBN. (a) Load nodes (b) Initial DAG.

distributions of the remaining nodes in the GCBN are determined based
on the conditionalized value of one or more variables. In this study, the
mSoD node was conditionalized to a value of 19 %, identified through
the package-based analysis as the maximum mSoD observed across
simulation groups. Fig. 9 illustrates the exceedance probability for the
load nodes, both with and without conditioning in the mSoD node.
These graphs show that conditionalizing the mSoD results in load dis-
tributions skewed towards higher values across all cases. This is
particularly beneficial compared to conventional sampling methods that
do not incorporate the effects of structural response to generate loading
conditions for the bridge. For instance, a conventional approach might
treat load variables as independent, failing to capture their interaction
with the overall demand state.

3.2.2. Selection of relevant member failures

Relevant member failures were selected following a threat-
independent approach [95]. Each member failure scenario was numer-
ically generated in the UFEM without considering the specific hazard
that led to the scenario (e.g. fatigue). The selection of relevant member
failure scenarios was based on two complementary criteria: historical
precedents of failure propagation in steel truss bridges and an in-service
assessment of the studied structure. For the first criterion, a
threat-independent approach was adopted, meaning that the simulated
failures were not associated with specific hazards (e.g. fatigue), but
rather focused on members whose failure triggered the progressive
collapse of the entire structure or significant portions of it. This selection
was supported by a previous study by the authors [96], which analysed
25 documented bridge collapses and identified the elements whose
failure led to propagation across the structure. That study compiled

detailed information on the initial damage, its propagation patterns, and
associated consequences to each collapse, allowing for the identification
of critical elements with a history of inducing severe structural effects.
This increased the relevance and interest of the selected elements for the
current case study. The second criterion was based on an in-service
assessment of the bridge. To this end, the UFEM was used to compute
the SoD for all structural elements under service conditions (undam-
aged), enabling the identification of elements with higher demands in
comparison to their capacity. Together, these two strategies provided a
consistent basis for selecting failure scenarios that are both historically
grounded and structurally meaningful in the context of the studied
bridge. Fig. 10 and Table 1 highlight the member failure scenarios
considered. The numbers in the figure correspond to the identification
IDs of each scenario.

The simulation approach follows the methodology outlined in Sec-
tion 2, as depicted in the flowchart in Fig. 1. It was considered 10 heavy
train crossings per day. Thus, 3650 loading samples were generated with
the GCBN, representing a year of operational conditions. Each failure
scenario was simulated in the UFEM, and the SoD was computed for all
bridge elements. The resulting dataset, which consists of SoD values for
all bridge elements when the bridge is subjected to all member failure
scenarios (FS1 to FS11). The key modelling and computational param-
eters of the analysis are summarised in Table 2. This table outlines the
core aspects of the methodology, including the UFEM configuration,
uncertainty quantification, number of simulations, computational setup,
and post-processing strategies (see Section 2). The information is pre-
sented to provide transparency on the computational cost and scope of
the analysis, facilitating comparison with other approaches that assess
member failure scenarios in steel truss bridges. The assessment of
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Fig. 10. Member failure scenarios considered.

member failure scenarios is discussed in the following section.

3.3. Assessment of member failure scenarios

Understanding the structural implications of localised member fail-
ures is essential for assessing the behaviour of steel truss bridges. This
section shows how the methodology presented in Section 2.4 applies to
the case study. Starting with the derivation of the SoDT;qo metric and
building upon the described in Section 2.4. The analysis is carried out
using two complementary approaches. The structure-level analysis

10

examines how specific failure events impact the bridge elements, of-
fering insight into the level of significance of the scenarios. In contrast,
the element-based analysis focuses on the response of specific bridge
elements when the bridge is subjected for all member failure scenarios,
allowing for the identification of groups of elements that should be
prioritized in SHM system and maintenance interventions. Together,
these approaches comprehensively evaluate member failures and their
effects on the bridge.
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Table 1

List of member failure scenarios.

Scenario ID

Failure Scenario

FS1 Vertical No. 7

FS2 Vertical No. 3

FS3 Lower Chord No. 11

FS4 Lower Chord No. 3

FS5 Diagonal No. 33

FS6 Diagonal No. 9

FS7 Upper Chord No. 9

FS8 Upper Chord No. 3

FS9 Transversal Beam No. 14

FS10 Upper Transversal Beam No. 3

FS11 Lateral Bracing No. 10
Table 2

Key modelling and computational parameters for the case study.

Parameter Value / Description
Model type Updated Finite Element Model (UFEM).
Uncertainty Traffic loads (via GCBN).
modelled
Failure scenarios Eleven (11) member failure scenarios (threat-
analysed independent).

Load samples per
scenario

Total simulations

Simulation type

Index

Index calculation

CPU cores used

Average time per
scenario

Post-processing

Main outputs
Final insights

3650 samples (1 year; 10 trains/day).

40,150 UFEM analyses (11 x 3650).
Nonlinear static for each load sample.
State of Demand

Computed for each bridge element.
16 (Intel Xeon)

~30h

Statistical fitting of SoD indexes; Extreme Value Analysis to

compute SoDt100
Matrix of SoD110¢ [Elements x Scenarios]

Element-based insights to optimise SHM strategies,
prioritise maintenance interventions, and enhancing

reliability-based and risk methodologies.

100

101

103

P(X>x)

104

10

106

Undamaged

® UFEM \
® Estimations
56 58 60 62 64 66 68 70 72 74

65

b)

® UFEM
® Estimations

70 75
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3.3.1. The 100-year return period expected value of the SoD

The assessment of member failure scenarios considers estimating the
100-years return period expected value of SoD (SoDTigo) for all bridge
elements. As described in 2.3, EVA is implemented to characterise the
extreme structural responses. The daily maxima of the SoD were
extracted for all bridge elements, providing a single critical value that
represents the maximum demand observed per day. These daily maxima
were then fitted to a Generalized Extreme Value (GEV) distribution
using maximum Likelihood estimation (MLE) to calculate the expected
SoD values for different return periods. This procedure was performed
for all bridge elements when the bridge was undamaged and subjected to
all member failure scenarios (FS1 to FS11). Thus, during each scenario,
SoDT; is computed for all bridge elements. Fig. 11 exemplifies the
process. The figure displays the probability of excedeence of the SoD of a
midspan vertical of the bridge (Vertical 7) when: (a) The bridge is in its
undamaged state, (b) the bridge is subjected to a close-to-support ver-
tical failure (FS2), and (c) the bridge subjected to a midspan lower chord
(FS3). In the figure, the blue points represent the observed daily maxima
(from UFEM simulations), while the red points correspond to the esti-
mated values derived from the GEV distribution. As discussed in section
2.3, the resulting SoDT1 o values establish a consistent basis to assess the
significance of each failure scenario, forming the foundation for the
analytical approaches introduced in the following sections.

3.3.2. Structure-level analysis

The structure-level analysis was performed as described in 2.4.1.
This approach focusses in analysing how a specific member failure
scenario (e.g. FS2) affects the SoDTj of all bridge elements (e.g. lower
chords). The Eq. (2) was implemented to compute for all bridge elements
the absolute increase of the SoDT;oo when the bridge is subjected to a
failure scenario with its undamaged state (See 2.4). The results are
displayed in Fig. 12.

Each truss representation in Fig. 12 corresponds to a specific failure
event, where the removed element is marked, and the remaining ele-
ments are colour-coded based on the magnitude of their ASoDTigo as
indicated in the colour-bar legend on the right side of the figure. Ele-
ments with low variations of SoDT;qp with respect to its undamaged
state (0-5 %) remain grey, while those experiencing higher increases are
classified as green (5-25 %), yellow (25-60 %), orange (60-100 %), and

FS5 FS3

C)

® UFEM
® Estimations

80 85 90 200 205 210 215 220 225 230 235 240 245

State of Demand index (%)

Fig. 11. EVA to estimate the SoD expected value for different return periods. Probability of exceedance of SoD for Vertical 7 (a) Undamaged state (b) FS2 (c) FS3.
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Fig. 12. ASoDTq in all bridge elements for all member failure scenarios.

red (above 100 %). As observed in Fig. 12, failure scenarios that lead to
significant increases in ASoDTjqy across multiple bridge elements are
those involving upper chords, lower chords, and diagonal members.
More specifically, scenarios where central upper and lower chords fail
(FS3 and FS7) and those where upper chords, lower chords, and di-
agonals near the supports fail (FS4, FS6 and FS8) exhibit the highest
increases for the remaining bridge elements.

The failure of a central upper chord (FS7) produces the widest SoD
distribution across the structure. The entire panel containing the failed
element exhibits a severe increase, with both verticals and diagonals
turning red. Additionally, adjacent panels also experience increments,
with their diagonals turning yellow, indicating that the effects extend
beyond the immediate vicinity of the failure. As described in Section 2.1,
the SoD reflects variations in the structural demand-to-capacity ratio,
allowing for an assessment of how failure scenarios alter the overall
behaviour of the system. Based on these results, it can be inferred that
upper chords in midspan play a fundamental role in transferring demand
across multiple panels, as their removal leads to widespread SoD in-
creases in surrounding elements. In contrast, when an upper chord near
the support fails (FS8), the affected area is more localised. While the
panel containing the failed element still exhibits high values, the effect
on adjacent panels is less pronounced. This indicates that upper chords
at midspan are more structurally engaged in global distribution,
whereas those near the supports experience more localised effects. On
another hand, a distinct pattern is observed for lower chords. When a
midspan lower chord fails (FS3), the adjacent verticals exhibit high SoD
values, but unlike the upper chord failure, the entire panel does not
experience a uniform increase since there are more elements providing
capacity in the bottom part of the bridge (e.g. bracing). Additionally,
FS3 shows that internal longitudinal beams exhibit an increase in SoD,
which is not observed in upper chord failures, suggesting that lower
chords influence the internal bracing system more directly. When a
lower chord near the support fails (FS4), the behaviour is comparable to
FS3 but with one notable difference: multiple lower chords in the lon-
gitudinal direction exhibit slight increases. This suggests that lower
chords near the support contribute more significantly to longitudinal
demand transmission than those at midspan. The failure of a diagonal
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near the support (FS7) produces a markedly different response
compared to midspan diagonal failures. While the failure of a central
diagonal (FS5) induces only minor ASoDTiqo increases in adjacent ver-
ticals, the removal of a diagonal near the support results in severe in-
creases in surrounding verticals, reaching the red threshold in Fig. 12.

Beyond these primary failure scenarios, other elements exhibit
distinct SoD responses under localised failures. The failure of a vertical
does not lead to significant increases in other elements, except on those
adjacent to the failed, which experience a slight increase (FS1 and FS2).
This suggests that verticals primarily act as local demand distributors,
and their failure does not substantially impact the overall truss response.
A unique pattern is observed in lateral bracing failures (FS11). Unlike
other elements, when a lateral bracing member fails, SoD increases are
distributed only across multiple bracings, including those farther from
the failed element. This indicates that lateral bracings exhibit a demand-
sharing effect, where failure in one member influences a broader region
of the structure. Similarly, the failure of a transversal beam at midspan
(FS9) results in a widespread but moderate SoD increase, primarily
affecting lateral bracing members and verticals. While the magnitude of
the SoD increase remains low (classified as green in Fig. 12), the broad
effect suggests that transversal beams contribute to structural demand
distribution across multiple elements. Finally, the failure of an upper
transversal beam (FS10) does not result in any SoD increases in other
bridge elements, indicating that these members play a negligible role in
the redistribution of structural demand under the analysed and vertical
loading conditions.

As outlined in Section 2.4.1, the member failure scenarios discussed
above are classified based on their level of significance. This classifica-
tion provides a structured understanding of how different localised
failures affect the overall truss system. Table 3 presents the classification
of each scenario.

3.3.3. Element-based analysis

The element-based analysis provides an alternative perspective for
evaluating the impact of localised failures in truss bridges. Instead of
analysing individual failure scenarios, this approach focuses on how
different groups of elements respond to different failure events. As
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Table 3
Scenario-based classification of different member failures.

Scenario ID Failure Scenario Level of significance

FS1 Vertical No. 7 Low

FS2 Vertical No. 3 Low

FS3 Lower Chord No. 11 Medium-high
Fs4 Lower Chord No. 3 Medium-high
FS5 Diagonal No. 33 Low

FS6 Diagonal No. 9 High

FS7 Upper Chord No. 9 High

FS8 Upper Chord No. 3 Medium-high
FS9 Transversal Beam No. 14 Medium
FS10 Upper Transversal Beam No. 3 Non-significant
FS11 Lateral Bracing No. 10 Medium

described in Section 2.4.2, this method enables the identification of el-
ements that play a critical role in alternative load path formation, as well
as those that should be prioritised in structural health monitoring (SHM)
and maintenance strategies. To systematically assess the structural
response, Fig. 13 presents a graphical representation where the Y-axis
corresponds to the ASoDTq, indicating the demand state of each
element for a 100-year return period, while the X-axis groups the ele-
ments into structural categories. Each failure scenario is represented by
a unique colour-coded point, corresponding to the SoDTj¢ value of the
affected elements when the bridge is subjected to that scenario. The
colour legend in Fig. 13 indicates the failure scenario ID (FS1-FS11)
associated with each data point, allowing direct comparison between
scenarios. Additionally, a solid line is plotted across all structural
groups, representing the undamaged state of each element category. Any
point above this reference line indicates an increase in the SoDTo9 due
to a failure scenario, highlighting the most affected elements. This
visualization provides an intuitive understanding of the structural
impact of different failure scenarios. By grouping elements, the
approach facilitates the identification of structural categories that
exhibit greater sensitivity to localised failures. This classification is
particularly relevant for SHM and maintenance prioritisation, as it al-
lows engineers to determine which bridge elements are more vulnerable
under various failure conditions.

In Fig. 13, among all structural groups, verticals exhibit the highest
sensitivity, consistently experiencing the most significant changes across
multiple failure scenarios. While the removal of a vertical itself does not
lead to major alterations in the surrounding elements, verticals are
particularly affected by failures in upper chords (FS7, FS8), lower chords
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(FS3, FS4), and diagonals near supports (FS6). This reinforces the role of
verticals as load distributors, which do not initiate major redistributions
when failing but are highly responsive to failures in primary load-
bearing components. A similar but less pronounced trend is observed
in diagonals, which are particularly influenced by upper chord failures
at midspan and near supports. This highlights the role of diagonals in
stabilizing the truss system when chords are compromised but also
suggests that diagonals themselves are less involved in large-scale re-
distributions when removed. Chords themselves exhibit contrasting
behaviour. While chord failures have a significant impact on the rest of
the truss, the chords are minimally affected by failures in other ele-
ments. This contrasts with verticals, which are highly influenced by
failures in other members but do not cause major redistributions when
failing. This distinction underscores the primary function of chords as
direct load carriers, while verticals and diagonals serve as secondary
stabilizing components that adapt to redistribution demands. Another
key finding is the dependency of lateral bracings on lower chord failure
scenarios. Unlike other elements, lateral bracings primarily respond to
lower chord failures (FS3, FS4), with upper chord failures having min-
imal impact. This suggests that lateral bracings play a localised stabi-
lizing role as well as elements that provide resistant capacity at the
bottom part of the bridge. Finally, for upper transversal beams, the only
notable effect is seen under midspan upper chord failures (FS7). This
limited response indicates that these elements contribute to localised
panel stability, but do not participate significantly in global redistribu-
tion mechanisms.

4. Conclusions

This study proposes a methodology for assessing the structural
response of steel truss bridges subjected to localized member failures.
The proposed approach integrates numerical modelling, structural per-
formance metrics, and statistical tools to evaluate the consequences of
member failures at both structure and element levels. A State-of-
Demand index (SoD) is implemented as a quantitative metric to eval-
uate the relationship between demand and capacity when the bridge is
subjected to failure scenarios. Additionally, a Gaussian Copula-based
Bayesian Network (GCBN) is developed to model the probabilistic
relationship between load conditions and structural response and
Extreme Value Analysis (EVA) is applied to estimate the expected SoD
for a 100-year return period.

The methodology was applied to an old-riveted steel truss bridge,

Undamaged zone

Fig. 13. Element-based analysis of member failure scenarios.

13



S. Lopez et al.

which was selected due to its historical significance and available
monitoring data. Eleven member failure scenarios were considered
based on documented precedents of progressive collapse in steel truss
bridges and an in-service structural assessment. Each scenario was
simulated using an Updated Finite Element Model (UFEM) to evaluate
its consequences on the bridge elements. Of the eleven scenarios
considered, the analysis identified failures involving upper and lower
chords and diagonals near supports as the most significant, as they
induced significant demand increases across multiple bridge elements.
Specifically, upper chord failures caused the expected increase in A
SoDT;p to exceed 100 % in nearly all elements adjacent to the failed
member, while inducing demand increases between 60 % and 100 % in
the rest of the structure. Failures in lower chords and diagonals near
supports led to ASoDTigo surges above 100 % in verticals, while other
elements experienced increases ranging from 25 % to 60 %. In contrast,
strut failures primarily resulted in localized demand variations, with
minimal influence on surrounding elements. The above findings suggest
the need to prioritise upper and lower chords and diagonals near sup-
port, as its failure implies the triggering of significant demand re-
distributions across most of the truss system.

The proposed methodology bridges the gap between scientific
research and practical engineering applications. By integrating finite
element modelling, performance metrics and statistical analysis, it offers
a systematic framework for evaluating the structural consequences of
steel truss bridges subjected to localized failures. The methodology
contributes to optimise SHM strategies, prioritise maintenance in-
terventions, and enhancing reliability-based and risk methodologies.
Ultimately, the findings of this research aim to support the decision of
authorities regarding bridge safety, monitoring, and maintenance.
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