
Large Matrix Inversion using State Space Techniques

Alle-Jan van der Veen and Patrick Dewilde

A new computational technique is presented by which large structured matrices
can be inverted. The specified matrix is viewed as the input-output operator of a
time-varying system. Recently developed state space algorithms which apply to
such systems are then used to compute a QR factorization first and subsequently
the inverse of the matrix, starting from a state realization of the matrix. The new
algorithms apply in principle to any matrix. They are efficient if the structure of
the matrix is such that the number of states of its time-varying state realization is
small in comparison to its dimensions.

1. INTRODUCTION

In a number of applications in signal processing, such as inverse filtering, spec-
trum estimation, as well as in certain finite element modeling applications, the
basic algebraic operation consists of a QR factorization, a Cholesky factorization,
or a matrix inversion. Such matrices can be fairly large but, due to the proper-
ties of the signals or physical geometry from which the matrices originate, the
matrices are not fully random but are structured in some way. For example, in
stationary environments, the estimated covariance matrices of measured signals
have a Toeplitz structure, and efficient algorithms (Schur recursions) exist to fac-
tor such matrices or their inverse. Schur recursions can be generalized to apply
to general Toeplitz matrices [1]. The computation of the inverse of a Toeplitz
matrix goes via Gohberg/Semencul recursions [2]. The resulting algorithms have
computational complexity of order (n2) for matrices of size (n × n), as compared
to (n3) for algorithms that do not take the Toeplitz structure into account. For
large matrices with many zero entries, the inverse (or rather, the application of the
inverse to a vector) can be computed iteratively using the Lanczos method.

In this paper, we consider matrices with a different structure, which would cor-
respond, for example, to applications with non-stationary signals. The underlying
idea is to model a given matrix by a time-varying state realization. Such a rep-
resentation is fairly general: any matrix can be modeled in this way. Efficient

1993 IEEE Workshop on VLSI Signal Processing, Veldhoven, The Netherlands.

algorithms will result if the state dimension of the time-varying realization is rel-
atively low in comparison with the size of the matrix.

Using algorithms recently developed for the factorization of time-varying systems
(they are generalizations of the corresponding time-invariant results), it is now
possible to compute QR factorizations, Cholesky factorizations, and matrix inver-
sions, by acting on state space matrices only. The computational complexity is
thus shown to be linear in the size of the matrix, once a low-dimensional state
realization of it is known. Some of these results are collected in this paper, and
applied to the computation of the inverse of a large structured matrix.

Matrix representation by time-varying state realizations

Let T = [Tij]n
i,j=1 be a matrix with entries Tij. For additional generality, we will

allow T to be a block matrix so that its entries are matrices themselves: Tij is an
Mi × Nj matrix, where the dimensions Mi and Nj need not be constant over i and j,
and can even be equal to zero at some points. When a (row) vector is viewed as
a signal sequence on a finite time interval in discrete time, then the multiplication
of a vector by this matrix,

[y1 y2 yn] = [u1 u2 un]T ,

corresponds to the application of the related system to the signal represented by u.
The i-th row of the matrix is the impulse response of the system due to an impulse
at time i, i.e., an input vector u = [0 0 1 0 0]. The system is causal if the
matrix is block upper.

Let Tk
n
1, Tk

n
1 be a series of matrices with block entries

Tk =
Ak Ck

Bk Dk
, Tk =

Ak Ck

Bk 0
, k = 1, , n .

and consider the time-varying forward and backward state recursions, for k =
1, , n,

(T)
xk+1 = xkAk + ukBk

yk = xkCk + ukDk
(T)

xk−1 = xk Ak + ukBk

yk = xk Ck

zk = yk + yk , x1 = [⋅] , xn = [⋅] .

(1)

Here, [⋅] denotes a matrix in which one (or both) dimensions are vanishing. The
intermediate quantities in the recursion are xk, the forward state, and xk , the back-
ward state. The matrices Ak, Bk, Ck, Dk, Ak , Bk , Ck

n
1 must have compatible di-

mensions in order for the multiplications to make sense, but they need not be
square or have constant dimensions. The relation between u = [u1, u2, , un]

2

and z = [z1, z2, , zn], as generated by the above state recursions, is

z = u

D1 B1C2 B1A2C3 B1A2A3C4

B2C1 D2 B2C3 B2A3C4

B3A2C1 B3C2 D3 B3C4
...

B4A3A2C1 B4A3C2 B4C3 D4 Bn−2An−1Cn...
...

. . . Bn−1Cn

BnAn−1Cn−2 BnCn−1 Dn

so that the state recursions can be used to compute a vector-matrix multiplication
z = uT, where the matrix T is of the above form. Accordingly, we will say that a
matrix T has a (time-varying) state realization if there exist matrices T k

n
1, Tk

n
1

such that the block entries of T are given by

Tij =
Di , i = j ,
BiAi+1 Aj−1Cj , i < j ,
Bi Ai−1 Aj+1Cj , i > j .

The computation of a vector-matrix product using the state equations is more
efficient than a direct multiplication if, for all k, the dimensions of x k and xk are
relatively small compared to the matrix size. If this dimension is, on average,
equal to d, then a vector-matrix multiplication has complexity (d 2n) (this can be
reduced further to (dn) by considering special types of realizations), and a matrix
inversion has complexity (d2n) rather than (n3), as we show in section 2.

Computation of a state realization

At this point, a first question that emerges is whether, for any given matrix, a state
realization exists. If so, then subsequent questions are (i) how to find it, and (ii)
what will be its complexity. To answer these questions, define the submatrices

Hk =

Tk−1,k Tk−1,k+1 Tk−1,n

Tk−2,k Tk−2,k+1
...

...
. . . T2,n

T1,k T1,n−1 T1,n

(2)

Hk =

Tk,k−1 Tk,k−2 Tk,1

Tk+1,k−1 Tk+1,k−2
...

...
. . . Tn−1,1

Tn,k−1 Tn,2 Tn,1

. (3)

The Hk can be called time-varying Hankel matrices, as they would have a Hankel
structure in the time-invariant context. In terms of the Hk, we have the following
result.

3

Theorem 1. ([3, 4]) Let T be an n × n matrix, and for k = 1, , n, let dk =
rank(Hk), dk = rank(Hk). Then there are time-varying state realizations that realize
T, and the minimal dimension of xk and xk of any state realization of T is equal
to dk and dk , respectively.

Let Hk = QkRk = [Q1,k Q2,k] R1,k
0 be a QR factorization of Hk, where Qk is

a unitary matrix and Rk has the indicated structure such that R1,k has rank dk.
Likewise, let Hk = QkRk = [Q1,k Q2,k]

R1,k
0 . Then a realization of T is given by

T : Ak = [0 Q∗
1,k]Q1,k+1

Bk = (Q1,k+1)(1, :)
Ck = R1,k(:, 1)
Dk = Tk,k

T : Ak = [0 Q ∗
1,k+1]Q1,k

Bk = Q1,k(1, :)
Ck = R1,k+1(:, 1)
Dk = 0 .

In this theorem, (⋅)∗ stands for complex conjugate transpose. For a matrix X, the
notation X(1, :) denotes the first row of X, and X(:, 1) the first column.

Hence, the state dimension of the realization (which determines the computational
complexity of multiplications and inversions using state realizations) is directly
related to the ranks of the Hankel matrices. Once factorizations of the Hk and Hk

for k = 1, , n are known, it is possible to derive minimal realizations of a given
matrix. The realization formulas given above yield a realization that is in input
normal form: it satisfies A∗

kAk + B∗
kBk = I and A ∗

k Ak + B ∗
k Bk = I.

A realization algorithm that is less sensitive to the presence of additive noise on
the entries of T would use singular value decompositions (SVDs) of the Hankel
matrices, rather than the QR factorization, and adjust their rank by setting small
singular values equal to zero. It is also possible to compute optimal approximate
realizations of lower system order [5]. The derivation of the factorizations is
computationally the most demanding part of the whole procedure. Improvements
can be obtained by using updating schemes for the factorizations (since Hk and
Hk+1 have many entries in common), and by considering submatrices of Hk (as it
is known that if Hk has rank dk, then it is enough to consider a submatrix of Hk

whose rank is also equal to dk [6, 4]).

2. MATRIX INVERSION

In this section, we will show how a state realization of the inverse of a matrix can
be computed from a state realization of the given matrix. We start by considering
a simple case, in which the matrix is block upper and it is known that its inverse
is again block upper. Such a matrix, when viewed as a system, is known in
system theory language as being outer (minimal phase system). Not all block-
upper matrices are outer: simple examples where T is block upper and T−1 is
block lower are given in [4]. Mixed cases (the inverse has a lower and an upper

4

part) can also occur, and these inverses are not trivially computed, as they require
a ‘dichotomy’: a splitting of spaces into a part that determines the upper part
and a part that gives the lower part. The dichotomy can be computed using an
inner-outer factorization (theorem 6 below).

For the case of a general matrix (mixed upper-lower), it is shown how this matrix
can be mapped by a unitary matrix to a block upper matrix. However, as the
inverse of this matrix is possibly not block upper. it is in general necessary to
perform the inner-outer factorization, which factors the matrix into a unitary block
upper matrix (whose inverse is block lower and obtained by a simple transposition)
and a block upper matrix whose inverse is known to be upper, too.

State complexity of the inverse

Suppose that T is an invertible matrix with a state realization of low complexity.
We will first show that (under conditions) the inverse has a state realization of the
same complexity.

Proposition 2. Let T be an invertible n × n matrix with Hankel matrices (HT)k

and (HT)k defined by (2), (3), for k = 1, , n. Put rank (HT)k = dk and rank(HT)k =
dk .

If, for each k, at least one of the submatrices [Tij]k−1
i,j=1 or [Tij]n

i,j=k is invertible,
then S = T−1 has Hankel matrices with the same ranks: rank (HS)k = dk and
rank(HS)k = dk .

(It is conjectured that the proposition is still true if the condition on the invertibility
of the submatrices is lifted.)

Proof We will use Schur’s inversion lemma. In general, let A, B, C, D be matrices
such that A and D are square, and A is invertible, then

A B
C D

=
I 0

CA−1 I
A 0
0 D − CA−1B

I A−1B
0 I

.

If in addition the inverse of this block matrix exists, then D − CA −1B is invertible
and the inverse of the block matrix is given by

A B
C D

=
I −A−1B
0 I

A−1 0
0 (D − CA−1B)−1

I 0
−CA−1 I

=
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1 .

In particular, D is invertible, rank B = rank B, rank C = rank C. The proposition
follows if A B

C D is taken to be a partioning of T, such that B = (HT)k and C = (HT)k.

5

Inversion of an upper matrix with upper inverse

If a matrix is block upper and has an inverse which is again block upper (i.e., the
corresponding time-varying system is outer), then it is straightforward to derive a
state realization of the inverse of the matrix, given a state realization of the matrix
itself. The realization can even be obtained locally: it is, at point k, only dependent
on the realization of the given matrix at point k.

Theorem 3. ([7]) Let T be a block upper triangular matrix, whose entries Tii

on the main diagonal are square and invertible. Then S = T −1 is again block upper
triangular. If T has a state realization T = A k, Bk, Ck, Dk

n
1, then a realization of

S is given by

Sk =
Ak − CkD−1

k Bk −CkD−1
k

D−1
k Bk D−1

k
.

The theorem is proved merely by rewriting the state equations corresponding to T
in (1).

Mapping a matrix to block-upper

In order to use the above inversion theorem on a matrix T which is not block
upper, we compute a kind of QR factorization of T as T = UΔ, where U is block
lower and unitary, and Δ is block upper. Since U is unitary, its inverse is equal
to its Hermitian transpose and can trivially be obtained. We first consider the
special case where T is lower triangular. This case is related to the inner-coprime
factorization in [5].

Proposition 4. ([5]) Let T be a block lower matrix, with state realization T =
Ak, Bk , Ck , Dk

n
1 normalized such that (Ak)∗Ak +(Bk)∗Bk = I. Then T has a factor-

ization T = UΔ, where U is a unitary block lower matrix and Δ is a block upper
matrix. Realizations of U and Δ are given by

Uk =
Ak CU,k

Bk DU,k
, ΔΔΔk =

(Ak)∗ (Ak)∗Ck + (Bk)∗Dk

(CU,k)
∗ (DU,k)

∗Dk + (CU,k)
∗Ck

where Uk is a square unitary matrix and CU,k and DU,k are determined by com-

pleting Ak
Bk

to a square unitary matrix, for each k in turn.

Note that the realization of T as obtained using theorem 1 has already the required
normalization. The realization for Δ is not necessarily minimal, which is seen,
for example, if T is taken to be unitary itself. Because Ak and Bk need not have
constant dimensions, the number of columns added to obtain U k is not necessarily
constant in time, so that the number of inputs and outputs of U can be time-varying.

6

In particular, U can be a block matrix whose entries are matrices, even if T itself
has scalar entries.

The more general case is a corollary of the above proposition.

Theorem 5. Let T be a block matrix with realizations T = Ak, Bk , Ck , 0 n
1,

T = Ak, Bk, Ck, Dk
n
1. Then T = UΔ, with U a block lower unitary matrix, Δ a

block upper matrix, having realizations

Uk =
Ak CU,k

Bk DU,k
, ΔΔΔk =

(Ak)∗ (Bk)∗Bk (Ak)∗Ck + (Bk)∗Dk

0 Ak Ck

(CU,k)
∗ (DU,k)

∗Bk (CU,k)
∗Ck + (DU,k)

∗Dk

where CU,k and DU,k are determined by completing Ak
Bk

to a square unitary matrix.

Inner-outer factorization

At this point, we have transformed a general matrix T to a block upper matrix Δ. In
order to use theorem 3 to find the inverse of a block upper matrix, it must be known
that the inverse is again upper. As discussed at the beginning of this section, this
will not necessarily be the case for Δ. Hence, the final case to consider in order to
connect theorem 5 with theorem 3 is a block upper matrix which is not invertible
or whose inverse is not block upper. Before theorem 3 can be applied, the matrix
must be factored into the product of an isometric matrix and an invertible matrix
whose inverse is upper again. This QR-factorization is known, in system theory,
as the inner-outer factorization. The factorization can be computed in state space
terms, according to the following theorem.

Theorem 6. ([8, 4]) Let T be a block upper matrix. Then T has a factorization
T = VT0, where V is upper and an isometry (V∗V = I), and T0 is an upper matrix
with upper inverse.

Let T = Ak, Bk, Ck, Dk
n
1 be a realization of T, and put Y1 = [⋅]. Recursively

compute unitary matrices Wk such that the following product has zeros of maximal
possible dimensions at the indicated positions:

W∗
k

Yk

I
Ak Ck

Bk Dk
=

Yk+1 0
0 0

(BT0)k (DT0)k

,
Yk+1Y∗

k+1 > 0 ,
(DT0)k(DT0)

∗
k > 0 .

(4)

Partition the rows of Wk compatibly with the right hand side of equation (4). Then
realizations of V and T0 are

Vk = Wk

I 0
0 0
0 I

, (T0)k =
Ak Ck

(BT0)k (DT0)k
.

7

Note that each Wk can be obtained from a QR-factorization of the matrix Dk Bk
YkCk YkAk

.
Since we obtain a factorization T = VT0, where V is an isometry and T0 is invert-
ible, the inner-outer factorization is a kind of QR factorization. It is, in a sense,
remarkable that it can be computed using QR factorizations of state space matrices.

Inversion of a general matrix

At this point, all ingredients are present for the computation of a matrix inverse
using state space techniques. We will assume that, for a given matrix T, a time-
varying state realization T, T has been derived using theorem 1. Such a realization
is in input normal form. Subsequently, using theorems 5 and 6, a QR factorization
of T follows as T = (UV)T0, where U is block lower and unitary, V is block upper
and isometric, and T0 is an upper triangular invertible matrix with upper inverse.
These matrices have realizations as stated in the theorems, if proper substitutions
are made.

If T is invertible, then T−1 follows from the above QR factorization as T−1 =
T−1

0 V∗U∗, where T−1
0 is upper triangular and has a realization that is obtained from

that of T0 using theorem 3. The realizations of V∗ and U∗ follow trivially from
those of V and U. We have thus obtained a realization of the factors of T−1. A
realization of T−1 itself can be derived, if necessary, by computing a combined
realization of the products. Again, without special effort such a realization will
not necessarily be minimal, i.e., its state dimensions can be larger than the minimal
state dimension as derived in proposition 2.

3. CONCLUDING REMARKS

In this paper, a recently developed technique to invert a matrix has been presented.
It is intended for the inversion of large matrices that have time-varying state real-
izations with a low number of states. The derived algorithm acts solely on state
space realizations and is a single-directional (forward) recursion consisting of local
state matrix multiplications and QR factorizations. It results in state realizations of
the factors of a QR factorization of the inverse. Starting from a state realization of
T, the computational complexity is (nd2), where n is the size of the matrix and d
is the average number of states at each point. A number of questions are remain-
ing for future research. We mention (1) starting from the realization procedure in
theorem 1, what is a more efficient way to compute a minimal state realization of
T (possibly with certain assumptions on T, and combined with an approximation
scheme), (2) does there exist a technique so that the complexity of the derived
realization of T−1 minimal, i.e., equal to the complexity claimed in proposition 2,
and (3) what is the numerical stability of the technique.

8

References

[1] J. Chun, T. Kailath, and H. Lev-Ari, “Fast Parallel Algorithms for QR and
Triangular Factorizations,” SIAM J. Sci. Stat. Comp., vol. 8, no. 6, pp. 899–
913, 1987.

[2] I. Gohberg and A. Semencul, “On the Inversion of Finite Toeplitz Matrices
and their Continuous Analogs,” Mat. Issled., vol. 2, pp. 201–233, 1972.

[3] A.J. van der Veen and P.M. Dewilde, “Time-Varying System Theory for
Computational Networks,” in Algorithms and Parallel VLSI Architectures, II
(P. Quinton and Y. Robert, eds.), pp. 103–127, Elsevier, 1991.

[4] A.J. van der Veen, Time-Varying System Theory and Computational Modeling:
Realization, Approximation, and Factorization. PhD thesis, Delft University
of Technology, Delft, The Netherlands, June 1993.

[5] P.M. Dewilde and A.J. van der Veen, “On the Hankel-Norm Approximation
of Upper-Triangular Operators and Matrices,” to appear in Integral Equations
and Operator Theory, 1993.

[6] I. Gohberg, M.A. Kaashoek, and L. Lerer, “Minimality and Realization of
Discrete Time-Varying Systems,” in Time Variant Systems and Interpolation
(I. Gohberg, ed.), vol. OT 56, pp. 261–296, Birkhäuser Verlag, 1992.

[7] A.J. van der Veen and P.M. Dewilde, “Time-varying Computational Networks:
Realization, Orthogonal Embedding and Structural Factorization,” in Proc.
SPIE, “Advanced Signal Processing Algorithms, Architectures, and Implemen-
tations”, III (F.T. Luk, ed.), vol. 1770, (San Diego), pp. 164–177, July 1992.

[8] A.J. van der Veen, “Computation of the Inner-Outer Factorization for Time-
varying Systems,” in Challenges of a Generalized System Theory (M. Verhae-
gen et al., ed.), Essays of the Royal Dutch Academy of Sciences, (Amsterdam,
The Netherlands), 1993.

Acknowledgements

This research was supported in part by the commission of the EC under the ESPRIT
BRA program 6632 (NANA2).

Delft University of Technology
Department of Electrical Engineering
2628 CD Delft, The Netherlands

9

