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Abstract—Soft continuum robots provide a compelling so-
lution for safe interactions with unknown and unstructured
environments, owing to their compliance and infinite degrees
of freedom. However, the non-linear deformation and inherent
underactuation pose a persistent challenge for real-time control
and state estimation. To date, continuum structures are typically
discretized using a fixed-parameter kinematic model, introducing
a trade-off between model accuracy and computational efficiency.

This letter presents an adaptive kinematic modeling frame-
work to address the challenge of underactuation in a different
way - not by increasing model resolution or complexity - but by
making the model parametric with respect to a set of parameters
that are dynamically adapted using a novel inverse kinematic
adaptive controller.

We formally prove stability of the adaptive controller and
validate its performance through simulations and experiments,
considering setpoint reaching tasks with variable end-effector
payloads. Even though the approach introduces additional chal-
lenges, in comparison to the conventional fixed-parameter models
presented in literature, the proposed solution enhances shape
representation, redundancy resolution, and state inference while
mitigating model complexity.

Index Terms—Soft robotics, adaptive control, kinematic mod-
els, underactuation, simulation, experimental validation

I. INTRODUCTION

The growing demand for safer human-robot interaction,
careful handling of delicate objects, and exploration of un-
known, unstructured environments instigated a shift within
the field of robotics. The nascent sub-domain of soft robotics
has witnessed significant progress in recent years regarding
design, modeling, and control [1]–[3]. To suit the absence
of structural rigidity, design principles are adapted to confer
inherent compliance on these types of robots; uniquely suited
to manipulation in uncertain and dynamic environments such
as minimally invasive surgery [4], crop harvesting [5], and
search-and-rescue applications [6].

While their conformability is advantageous, the highly non-
linear nature and inherent underactuation introduce additional
challenges regarding modeling and control. The influence of
actuator design has become more pronounced as they dictate
the finite and controllable degrees of freedom, through actua-
tion mechanisms that are integrated and distributed throughout
the structure [7].

Moreover, conventional sensing modalities are to be re-
considered as state feedback acquisition is compromised -
sensor measurements must be transformed into the selected

state representation to recover the generalized coordinates that
describe the system’s state within a virtual model. A synergy
that explains how the chosen sensing and actuation modality
influences the performance of soft continuum manipulators via
modeling inaccuracies.

Researchers are developing new models to capture the
intricate kinematics and complex dynamics, governed by the
principles of continuum mechanics instead of those of rigid-
body dynamics [8]. Within the literature, the conventional
modeling methods rely on fixed-parameter models, thereby
assuming a static representation of the system’s behavior in
both kinematics and dynamics.

Depending on the underlying assumptions, they occupy
various levels of accuracy. Lower-fidelity, computationally
efficient, and analytically tractable models such as the Piece-
wise Constant Curvature (PCC) are widely adopted in a vast
range of control applications, from inverse kinematic control
[9] to closed-loop dynamic feedback control [3]. However,
suffers from the rigorous assumptions of no external loads
and the general validity of the constant curvature, which is
too conservative for dynamically loaded tasks. Higher-fidelity
models, on the other hand, based on Cosserat rod theory [10],
[11] or Finite Element Methods (FEM) [12], [13], provide high
accuracy at the cost of run-time complexity.

Even though feedback control is one approach to mitigate
modeling inaccuracies, at the current state, it still asks for
advancements in sensory feedback to assist in the development
of more advanced closed-loop control envelopes. As such, a
fundamental contradiction exists that a higher gain is needed
to obtain good accuracy, which eradicates the desired softness
[14]. In recent years, adaptive control has been explored to
capture the intricacies of soft robotic morphology, environ-
mental interactions, and task execution.

A notable trend within this literature emerges as the focus is
exclusively on uncertainty in the dynamics [15]–[17]; however,
this approach proves insufficient in the context of dynamically
loaded tasks, where the discrepancies between modeled and
actual behavior are more pronounced. The fidelity of the
underlying kinematic model remains critical for accurate state
estimation and effective control, as inaccuracies in the kine-
matics further exacerbate uncertainties in the dynamics [18].
Therefore, to this day, kinematic controllers remain the most
commonly utilized controllers within the domain of model-



based control [19].
The inherent compliance and infinite degrees of freedom

thus challenge traditional control and modeling methods. Yet,
conventional approaches to overcome the issue of underactu-
ation rely on increasing the complexity and resolution of the
used model, revealing a gap within the literature: the absence
of a modeling approach that retains simplicity while adapting
to real-world deformation online to overcome the issue of
underactuation.

In this work, we therefore propose an adaptive kinematic
modeling framework. By making the model parametric with
respect to a set of parameters, we can dynamically adapt to
the system’s behavior and compensate for the underactuation
while preserving computational tractability. The contributions
of this work can be summarized as follows:

• A novel inverse kinematic adaptive controller that dy-
namically adapts the parameters of the kinematic model,
inherently enhancing the shape representation of the
controlled structure as a by-product of the primary control
objective.

• A decoupling algorithm to detach both sensing- and
actuation inputs from the real-system and the correspond-
ing virtual model; as part of a new decoupled state
feedback algorithm to infer the virtual model state using
an arbitrary number of sensors and model sections at
once - independent of the underlying discretization as
estimated by the adaptive controller.

Although the work is developed alongside the widely used
PCC model due to its popularity and analytical simplicity, in
principle, the approach generalizes to any more complex kine-
matic model that allows for a linearly parametrized structure.
In that regard, the contribution is not only in dynamically
improving the shape representation, state inference, or task
performance, but in offering a new perspective on dealing with
the inherent under-actuation in soft continuum robots.

II. THE KINEMATIC MODEL

In this work, we adopt the Piecewise Constant Curvature
(PCC) model to define the kinematics of our soft continuum
manipulator. Using this model, we can present the proposed
solution with a reduced level of abstraction, providing a more
intuitive understanding of the system’s behavior.

Said model neglects all strains but one curvature strain and
hypothesizes that the continuous structure can be approxi-
mated through a discrete set of extensible tangential sections
with constant curvature, which are continuously differentiable
[3] (see fig. 1). While different sets of parameters1 have been
used to describe the state of a constant curvature section,
the adopted state parameterization in this work is based on
the ∆−parametrization [20] void of unwanted discontinuities
and singularities associated with the unified- and standardized
frameworks.

1Different sets of parameters have been used throughout the literature to
describe a constant curvature section, for example using Denavit-Hartenburg
parameters, Frenet-Serret frames, and exponential coordinates.

Fig. 1: Schematic overview of an arbitrary 3D curve dis-
cretized into three CC sections. The frames {Si} represent the
attached reference frames and base frame {S0}, with {T i

i−1}
being the homogeneous transformation mappings. Image taken
from [20]

Hence, in the remainder of this letter, the configuration of
the ith section is thus defined by qi =

[
∆xi

∆yi
δLi

]T ∈
R3 where the vector q ∈ Rn collects the individual terms
associated with each body; obtaining the homogeneous trans-
formation from the (i − 1)th frame to frame i as defined in
(1). In this case, ∆x,i = θidi cos(ϕi), ∆y,i = θidi sin(ϕi)

and ∆i =
√

∆2
x,i +∆2

y,i where ϕi is the direction of bending
and θi the angle of curvature. It is worth pointing out that
the translational component of (1) is a function of both
the configuration vector qi as well as the fixed kinematic
parameter L0i .

III. ADAPTIVE KINEMATIC CONTROLLER

To introduce adaptivity into the framework, we propose to
make the model parametric with respect to unknown kinematic
parameters L0i , i.e., the rest length of each considered body,
estimated by an adaptive inverse kinematic controller. This
approach presents a unique trait in that it inherently enhances
the shape representation as a by-product of the primary control
objective. This is particularly desirable in the context of soft
robotics for accurate state inference and performing secondary
objectives besides precise end-effector positioning.

Even though this set of parameters is the most intuitive
and introduces unique challenges on its own, in principle, this
framework can be extended to different models that allow
for a linearly parametrized structure to compensate for the
underactuation.

A. Linear parametrization

For the derivation of the adaptive inverse kinematic con-
troller, we establish the following theorem:



Theorem 1. The relationship between the task-space velocity
ẋ and the joint-space velocity q̇, defined by ẋ = J(q)q̇, is
linear in the set of constant kinematic parameters:

π = {L01 , ..., L0nb
}

such that we can write

ẋ = J(q)q̇ = Y (q, q̇)π +Φ(q, q̇) (2)

where Y (q, q̇) ∈ R3×nb is a known regressor matrix and
Φ(q, q̇) ∈ R3 is a known function independent of π for nb

discretized sections.

Proof. Let us collect all the kinematic parameters L0i , into a
vector π ∈ Rnb to define the end-effector position x(q, π) ∈
R3 and orientation, given by the rotation matrix R(q, π) ∈
SO(3) such that:[

R(q, π) x(q, π)
[0]3 1

]
=

nb∏
i=1

T i
i−1 (3)

where each T i
i−1 is to be right multiplied. Then, considering

that the linear- and angular velocities of the end-effector can
be defined as [21]:

ẋ(q, q̇, π) = Dq(x(q, π))q̇ (4)

S(ω(q, q̇, π)) =

( n∑
i=1

Dqi(R(q, π)q̇i

)
RT (q, π) (5)

with S(·) denoting the skew-symmetric operator. It follows
that the end-effector twist is given by the function of joint
velocities:

η(q, q̇, π) = ω(q, q̇, π)
⊕

ẋ(q, q̇, π) = J(q, π)q̇ (6)

where J(q, π) ∈ R6×n is the Jacobian.
Exercising the theory in [21], we can state that η(q, q̇, π)

is linearly parametrizable if and only if all elements in (3)
are linearly parametrizable ∀i ∈ {1, ..., nb} - as linearly
parametrizable functions are closed with respect to all the
operators used to compute η(q, q̇, π).

For the sake of brevity, the remainder of the proof considers
a single-section manipulator, i.e., i = 1. To that end, provided
that the linear end-effector velocity is given by (4), linear
parametrization is applicable if all elements in x(q, π) can
be linearly parametrized with respect to π. By expanding ∆1

in (1) and setting d1 = 1, simple algebraic steps then show

that a linear parametrization of x(q, π) with respect to L01 can
thus readily be found as:

x(q, π) =


δL∆x(1−cos(∆))

∆2

∆x(1−cos(∆))
∆2

δL∆y(1−cos(∆))
∆2

∆y(1−cos(∆))
∆2

δL sin(∆)
∆

sin(∆)
∆

[
1
L0

]
, (7)

concluding that (2) must hold.
The Jacobian J(q, π) relates the rate of change of the

configuration variables q to the end-effector velocities, and
is obtained by taking the partial derivatives of x(q, π) with
respect to q. By inspection of J(q, π), and the concurrent
multiplication with q̇; expansion and collection of terms pro-
vides a linear factorization for each element with respect to
L0i , ∀i ∈ {1, ..., nb}. To obtain the following structure for
Y (q, q̇) and π:

Y (q, q̇) =

a11 a12 ... a1nπ

a21 a22 ... a2nπ

a31 a32 ... a3nπ

 ∈ R3×nπ , (8)

with π =
[
1 L01 . . . L0nb

]T ∈ Rnb+1.
We can recognize that the first entry of π is constant, as

the first column of Y (q, q̇) is a known term independent of
L0i . Hence, only the second element and onward - or true
kinematic parameters - are estimated online to obtain:

π̂ =
[
L̂01 ... L̂0nb

]T
(9)

Accordingly, we can deconstruct the regressor matrix Y (q, q̇)
such that:

ẋ = J(q)q̇ = Y (q, q̇)π +Φ(q, q̇) (10)

For the sake of space, the explicit expression for Y (q, q̇)
and Φ(q, q̇) are not reported here.

B. Derivation of the adaptive controller

By invocation of Theorem 1, we can thus write:

ẋ = J(q)q̇ = Y (q, q̇)π +Φ(q, q̇) (11)

where π, Y (q, q̇) and Φ(q, q̇) have been defined. Amidst
kinematic uncertainty, however, the parameters of the Jacobian
are uncertain and therefore:

˙̂x = Ĵ(q, π̂)q̇ = Y (q, q̇)π̂ +Φ(q, q̇) (12)

where ˙̂x ∈ R3, Ĵ(q, π̂) ∈ R3×n and π̂ ∈ Rnb denote the
estimates of the task-space velocity, the Jacobian and the set

T i
i−1 =


1 +

∆2
x,i

∆2
i
(cos(∆i

di
)− 1)

∆x,i∆y,i

∆2
i

(cos(∆i

di
)− 1)

−∆x,i

∆i
sin(∆i

di
)

di(L0,i+δLi)

∆2
i

∆x,i(1− cos(∆i

di
)

∆x,i∆y,i

∆2
i

(cos(∆i

di
)− 1) 1 +

∆2
x,i

∆2
i
(cos(∆i

di
)− 1)

−∆y,i

∆i
sin(∆i

di
)

di(L0,i+δLi)

∆2
i

∆y,i(1− cos(∆i

di
)

∆x,i

∆i
sin(∆i

di
)

∆y,i

∆i
sin(∆i

di
) cos(∆i

di
)

di(L0,i+δLi)

∆2
i

∆i sin(
∆i

di
)

0 0 0 1

 ∈ SE(3) (1)



of kinematic parameters respectively. Note, indeed, that no
uncertainty exists in Φ(q, q̇) as it strictly depends on q and q̇;
so no estimation is imposed.

Then, if we let xd(t) and π̂(t) be our desired end-effector
trajectory and time-varying estimate of π respectively, we can
deduce the error dynamics from the position error e = xd−x
and parameter estimation error π̃ = π − π̂:

ė = ẋd − Y (q, q̇)(π̃ + π̂)− Φ(q, q̇)

= ẋd − Y (q, q̇)π̃ − (Ĵ(q, π̂)q̇ − Φ(q, q̇))− Φ(q, q̇)

= ẋd − Ĵ(q, π̂)q̇ − Y (q, q̇)π̃ (13)

Based on the derived error dynamics, we can now formulate
an appropriate kinematic control and parameter update law:

q̇(q, e, π̂, t) = Ĵ†(ẋd +Ke) (14)
˙̂π(q, e, π̂, t) = −ΓY T e (15)

where Ĵ(q, π̂) is assumed to be full row rank with K ≻ 0 and
Γ ≻ 0.
Remark 1. In the remainder of this work, the derived adaptive
controller is strictly concerned with the linear component of
Y (q, q̇). However, a quick inspection of (1) shows that (5)
can be linearly parametrized with respect to π due to its
independence; the orientation regressor would yield a zero
matrix. Hence, the adaptive controller can easily be extended
to account for the end-effector orientation as well due to the
independence of the adaptive law (15) with respect to the end-
effector orientation.
Remark 2. To address redundancy of the the manipulator with
respect to the task-vector - prevalent within the domain of soft
robotics - the null-space of the Ĵ(q, π̂) can be used to optimize
a secondary objective, provided that the gradient of the cost-
function is of convex nature [22]:

q̇(q, e, π̂, t) = Ĵ†(ẋd +Ke) + (In − Ĵ†Ĵ)∇Ψ (16)

with ∇Ψ the negative convex function gradient.

C. Convergence and stability
While the derivation of Y (q, q̇) introduces the known time-

varying term Φ(q, q̇) - an attribute of the used kinematic model
and consequent linear parametrization - we can observe that
it holds no influence over the error dynamics in (13).

Hence, introducing the control- and adaptive law, as defined
in (14) and (15), in the error dynamics (13) further simplifies
the expression to obtain:

ė+Ke+ Y π̃ = 0, (17)

where the set e = 0 can be shown to be positively invariant as
(17) simplifies to ė+Y π̃ = 0. More specifically, e = 0 implies
that (15) becomes zero and therefore π̂ remains constant. Since
π is also constant, from π̃ = π − π̂ we know that π̃ and ė
therefore must be too. Hence, e remains zero.

To ensure global asymptotic stability of this positively
invariant set, we can consider the following Lyapunov function
candidate:

V =
1

2
eT e+

1

2
π̃TΓ−1π̃ (18)

and its time derivative:

V̇ = eT ė+ π̃TΓ−1 ˙̃π, (19)

which can be further simplified by substitution of ė = −Y π̃−
Ke and ˙̃π = − ˙̂π to obtain:

V̇ = −eTKe (20)

The remainder of the proof then naturally follows conform
Theorem I in [21], however, will be reported here for the sake
of clarity. The fact that V is lower bounded implies that e and
π̃ are to be bounded as V̇ ≤ 0. Therefore, as xd(t) is finite,
x has to be bounded. Under the assumption that the structure
of the robot is such that if x is bounded, Ĵ(q, π) must be
bounded, then so is Ĵ†(q, π). Hence, (14) tells us that q̇ is
also bounded and subsequently so are Y (q, q̇) and Φ(q, q̇).

Then, given that:

V̈ = 2eTK2e+ 2eTKY π̃, (21)

as V̈ is finite and V̇ is uniformly continuous, Barbalat’s lemma
allows us to conlude that limt→∞V̇ = 0. Showing that the
control- and parameter update law in conjunction with the
parameter dynamics provide limt→∞ e = 0.

IV. DECOUPLING SENSING AND ACTUATION

The domain of soft robotics poses unique challenges that
often prevent conventional sensing methodologies from be-
ing applied directly to infer the system’s state. A common
challenge is that acquired sensor measurements must be
transformed into the chosen state representation to obtain the
generalized coordinates that describe the system’s state in a
virtual model.

In addition, the adaptive discretization of the virtual model
- proposed in this letter - introduces a new challenge in that
it relieves the model from a direct, i.e. fixed, mathematical
definition of the sensor- and actuator positions along the
backbone of the structure, as is the case with fixed-parameter
models presented in literature.

To infer the state of our adaptive model through sensor
measurements and resolve the computation of actuation inputs,
it is thus required to decouple the real system from the virtual
model.

A. System decoupling

Given the continuous nature of the real system and the
associated (adaptive) discretization of our virtual model, we
can infer the relative locations of the sensor- and/or actuators
- along the backbone of our virtual model - using a set of
curvilinear material abscissae as defined on the real-system in
the strain-free state.

If we assume the sensor- and/or actuator locations to be
reasonably measurable, we can construct a set of curvilinear
material abscissae S(·):

S(·) = {Xi |Xi ∈ [0, Lr], i ∈ I(·)} (22)

where Lr denotes the rest length of the real system and
I(·) the considered index set of sensors or actuators I =



{1, 2, ..., ns/a}. Then, to transform the elements of S(·) into
a normalized space and acquiring the relative positions within
the virtual model at any given time t, we utilize the time-
varying estimates π̂(t) of π to construct cumulative intervals.

Hence, we obtain:

π̂
(c)
j =

j∑
m=1

π̂m, ∀j ∈ {1, ..., nb} (23)

with (·)(c) denoting the cumulative values and π̂
(c)
0 = 0. These

cumulative values partition the interval in (22), such that for
each Xi ∈ S(·) we can identify a discretized section index:

ji = min{m | π̂(c)
m ≥ Xi} (24)

where Xi lies on the interval π̂
(c)
ji−1 < Xi ≤ π̂

(c)
ji

. Given
the identified index ji, we can then transform each element
Xi ∈ S(·) into a normalized curvilinear material abscissa X̃i

using:

X̃i =
Xi − π̂

(c)
ji−1

π̂ji

, for π̂(c)
ji−1 < Xi ≤ π̂

(c)
ji

. (25)

Here, X̃i denotes the relative position of Xi within the interval
[π̂

(c)
ji−1, π̂

(c)
ji

] and ji represents the corresponding model section
to which Xi belongs. Imposing this mapping on all elements
in S(·) provides the transformed set:

S̃ = {(X̃i, ji) | Xi ∈ S(·), π̂
(c)
ji−1 < Xi ≤ π̂

(c)
ji
} (26)

The mapping S 7→ S̃ establishes an eloquent method to nor-
malize the elements in S(·) within the corresponding estimated
virtual model sections π̂ at time t; decoupling the position of
the sensors and actuators on the real system from the virtual
model (see algorithm 1).

Algorithm 1 Decoupling algorithm
Input: Ss/a, π̂
Require: Ss/a ̸= ∅, π̂ ̸= ∅

1: π̂(c) ← [0] Initialize a zero-list π̂(c)

2: for j = 1 to nb do
3: π̂

(c)
j =

∑j
m=1 π̂m eq. (23)

4: π̂(c) ← π̂
(c)
j Update π̂(c) for each j

5: end for

6: S̃s/a ← ∅ Initialize an empty set S̃s/a
7: for Xi ∈ S(·) do
8: ji = min{m | π̂(c)

m ≥ Xi} eq. (24)

9: X̃i =
Xi−π̂

(c)
ji−1

π̂ji
eq. (25)

10: S̃s/a ← (X̃i, ji) Update S̃s/a for each tuple
11: end for
12: return S̃s/a

Remark 3. In case any of the elements in the set S(·) extend
beyond the cumulative sum π̂

(c)
nb of the frozen estimates π̂, the

normalized curvilinear abscissa X̃i will be attached to the tip
of the last section.

B. State feedback

Building upon the assumption that the set Ss, as defined
in (22), is to be reasonably measurable for ns-sensor(s); and
the chosen sensing modality to provide the Cartesian pose
Ti ∈ SE(3) for each sensor i ∈ {1, ..., ns}. Then, at any
given time t, by invocation of algorithm 1 we are to obtain the
transformed set (26). Enabling us to infer the Cartesian sensor
poses inside our virtual model via the forward kinematic map
h(·):

T̄i = h(q̄, X̃i, π̂), ∀i ∈ {1, ..., ns} (27)

in any generic configuration q̄ for the current (frozen) estimates
π̂ as provided by the adaptive controller at time t (see fig. 2).

Fig. 2: Visualization of the real system, i.e., a continuum
with infinite degrees of freedom, with an arbitrary number of
sensors ns along the backbone (left). The continuum presented
as the proposed decoupled virtual model, comprised of discrete
bodies whose kinematic parameters are adapted over time. To
illustrate the state of decoupling, the section tips of the virtual
model do not coincide with the sensor locations, which would
be a natural choice for the fixed-parameter models found in
literature.

Noting the equivalence between T̄i and the real-world sensor
readings Ti ∀i ∈ {1, ..., ns} thus allows us to infer the
new state of our virtual model through decoupled numerical
inverse kinematics; driven by the estimated Jacobian matrix
Ĵi(q̄k, X̃i, π̂) to each sensor along the backbone of the virtual
model, the ’inferred’ state at the previous iteration q̄k−1, the
current estimates π̂ and the task-error of each sensor Vbi .

More specifically, we seek to iteratively obtain the optimal
virtual model state, i.e., the generalized coordinates q for
which the norm of the task error is minimized at the measured
locations. The need for the decoupling becomes evident as
the adaptive discretization continuously influences the relative
sensor locations along the backbone.

By leveraging the set S̃s, we can thus retrieve the discretized
section index ji and corresponding normalized curvilinear
material abscissa X̃i for each individual sensor to directly
evaluate its pose T̄i as defined in (3). This method can be
conveniently formulated to infer the virtual model state using



an arbitrary number of sensors and model sections at once,
independent of the underlying discretization π̂ as estimated
by the adaptive controller (see fig. 3).

Using composition, both a single task error vector and
estimated Jacobian matrix can be constructed; each element
corresponding to a relative sensor pose inside the virtual
model:

Ĵb(q̄k, X̃, π̂) =

 Ĵb1(q̄k, X̃1, π̂)
...

Ĵbns
(q̄k, X̃ns

, π̂)

 ∈ R6ns×n (28)

for ns-sensors. Here, we adopt the body Jacobian to each
relative sensor defined as:

Jbi(q̄k, X̃i, π̂) =
[
ω v

]T ∈ R6×n, (29)

and the task-error vector:

Vbi = log(T̄ −1
i (q̄k, X̃i, π̂)Ti) ∈ R6. (30)

Note that we compute the Jacobian with respect to all
configuration variables q to ensure a consistent dimensional
structure across all sensors. Hence, we can solve for the virtual
model state considering all sensor pose(s) at once through [23]:

q̄k+1 = q̄k + Ĵ−1
b (q̄k, X̃, π̂)Vb (31)

While the decoupled state feedback algorithm is presented
considering pose feedback (see algorithm 2) - to alleviate the
inferred model state of orientational ambiguity - it can easily
be reformulated to consider the translational component ti of
each sensor Ti only:

q̄k+1 = q̄k + Ĵ†
p(q̄k, X̃, π̂)(t− t̄(q̄k, X̃, π̂)) (32)

providing a more computationally friendly approach.
An observant reader may point out that besides the inferred

configuration q̄, the kinematic regressor matrix (8) exhibits
a dependency on q̇. Indeed, our adaptive law requires us to
approximate the configuration velocity ˙̄q. To do so, we impose
a Savitzky-Golay type filter, convolving a fitted polynomial
over the previous N -number of measured configurations -
including the newly inferred configuration q̄, taking its time
derivative and evaluating it at time t. A visual representation
of this approach is provided in fig. 4.

Fig. 4: Twin-axis plot highlighting the Savitzky-Golay filter
to approximate q̇i via the last N inferred states qi associated
with the previous t timesteps.

Algorithm 2 Decoupled state feedback algorithm
Input: π̂, q̄t−1, Ss, T , N , LinThresh, AngThresh
Require: Ss ̸= ∅, π̂ ̸= ∅, T ∈ R4ns×4

1: S̃s ← Ss Run algorithm (1)
2: Ĵb ← [0] ∈ R6ns×n Initialize a zero matrix
3: Vb ← [0] ∈ R6ns Initialize a zero vector
4: while (eang > Thresh1 & elin > Thresh2) & k ≤ N

do:
5: if k = 0 then
6: q̄k ← q̄t−1 Seed numerical IK
7: else
8: q̄k ← q̄k−1 Seed numerical IK
9: end if

10: for (X̃i, j) ∈ S̃s do
11: T̄i = h(q̄k, X̃i, π̂)
12: Ĵbi = Ĵb(q̄k, X̃i, π̂)
13: Vbi = log(T̄ −1

i (q̄k, X̃i, π̂)Ti)
14: Ĵb ← Ĵbi Update Ĵb for each sensor
15: Vb ← Vbi Update Vb for each sensor
16: end for
17: q̄k+1 ← q̄k + Ĵ−1

b (q̄k, X̃i, π̂)Vb eq. (31)
18: end while
19: return q̄, eang , elin

Remark 4. The numerical IK is initialized at time t with q̄t−1

as the initial guess such that q̄0 = q̄t−1.

C. The dynamic model

To build the equations of motion (EOM) we consider the
introduced kinematic model and the Euler-Lagrange equation:

d

dt

(
∂L(q, q̇)

∂q̇

)T

−
(
∂L(q, q̇)

∂q

)T

= τ(q, u) (33)

with the Lagrangian and generalized forces acting on the body
defined as: {

L(q, q̇) := T (q, q̇)− U(q)
τ(q, u) := B(q)u+ τext

(34)

where T (q, q̇) and U(q) are the total kinetic, and potential
energy respectively. The actuation inputs u and external forces
fext perform work on q through the generalized actuation
matrix B(q) ∈ Rn×na and Jacobian J(q) respectively, where
J(q) has been defined. It can be shown that this formulation,
in coherence with the introduced kinematic model, yields the
equation of motion [3]:

M(q)q̈ + C(q, q̇)q̇ +G(q) +D(q)q̇ +K(q) = τ(q, u) (35)

where M(q) ∈ Rn×n and C(q, q̇) ∈ Rn×n are the inertia
matrix and the Coriolis/centrifugal terms respectively. G(q) ∈
Rn is the gravitational force, and D(q)q̇ ∈ Rn×n and K(q) ∈
Rn×n collect the damping and stiffness forces.



Fig. 3: The time-wise evolution of the real system, i.e., a continuum with infinite degrees of freedom, with an arbitrary number
of sensors (or actuators) along the backbone. (left) The continuum represented as the proposed decoupled virtual model,
highlighting how the discretization evolves over time, opposing the conventional fixed-parameter models, and the influence on
state inference. Note that for the sake of interpretation, the sensor (or actuator) locations do not coincide with the section tips
of the virtual model in the initial state. (right)

The Coriolis matrix C(q, q̇) is acquired through the mass
matrix using Christoffel symbols, where the element of C(q, q̇)
at index Ci,j is given by:

[
C(q, q̇)

]
ij
=

n∑
k=1

Γijk(q)q̇k (36)

with Γ defined as Christoffel symbols of the first kind:

Γijk(q) =
1

2

[
∂Mij

∂qk
+ ∂Mik

∂qj
− ∂Mjk

∂qi

]
, (37)

The gravitational- and stiffness forces naturally follow from
the associated potential energy governing the system as:

G(q) =
∂Ug

∂q
, K(q) =

∂Uk

∂q
(38)

D. Model of actuation

To decouple the generalized actuation matrix B(q) - based
on the Geometric Variable-Strain approach - let us first briefly
introduce the Cosserat theory2. Here, a structure is modeled as
a continuous stack of infinitesimal microsolids, parametrized
through the familiar curvilinear material abscissa X ∈ [0, L]
with L the length of the structure.

2A generalization of the Kirchoff rod theory to address all modes of
deformation that present itself in slender structures subject to external loading
such as bending, torsion, stretching and shearing - based on an analogy
between continuum mechanics and rigid-body kinematics.

At any given time t, the configuration of a microsolid is then
defined by the position vector to a moving frame of directors
t(X) ∈ R3 with an orientation R(X) ∈ SO(3) relative to the
world frame. Hence, we can define the configuration of the
manipulator via a curve:

g(·) : X → g(X) =

(
R(X) t(X)
[0]3 1

)
∈ SE(3), (39)

where the partial derivative of (39) with respect to X , here-
inafter denoted by (·)′, provides the strain state in the form of
a twist vector field along g(·) [11]:

X → ξ̂(X) = g−1 ∂g

∂X
= g−1g′ ∈ se(3). (40)

The strain twist of each cross-section in the local body frame
is then defined by:

ξ̂ =

(
k̃ p
[0]3 0

)
∈ se(3), ξ =

(
ξ̂
)∨

= (kT , pT )T ∈ R6 (41)

with (̂·) the isomorphism between the twist vector and matrix
representation, and (·)∨ serving as its inverse. Furthermore, the
operator (̃·) refers to the isomorphism between 3D vectors and
their corresponding skew-symmetric matrix representations,
with k(X) ∈ R3 and p(X) ∈ R3 the angular and linear strains
respectively.

Building upon these definitions, for a general routing of na

threadlike actuators, it has been shown [11] that by projection



of the continuous model onto the space of generalized coor-
dinates, the following expression for the generalized actuation
matrix can be derived:

B(q) =

∫ L

0

ΦT
ξ Φa(q,X)dX ∈ Rn×na . (42)

which relies on the actuation matrix Φa(q,X) ∈ R6×na and
the discretization of the strain field onto a basis of n-vector
functions:

ξ(X) = Φξ(X)q + ξ∗(X) (43)

Here, Φξ(X) ∈ R6×n describes a matrix function whose
columns form the basis of the strain field, q ∈ Rn is the
familiar vector of generalized coordinates in the considered
base and ξ∗(X) is the reference strain computed in the
stress-free configuration. For the sake of space, the explicit
definitions of Φa(q,X) ∈ R6×na and Φξ(X) ∈ R6×n have
been omitted as the focus of this work is not on the derivation
of the model of actuation, but rather on decoupling it.

From here, the decoupled model of actuation can be de-
rived through the superposition of the individual bodies that
compose our manipulator. Based on this notion, it follows
that each discretized body has an associated local strain
field ξi(Xi), basis Φξi(Xi) and actuation matrix Φai

(qi, Xi)
which describes the influence of each tendon traversing the
considered body. Allowing us to rewrite (42) as:

B(q) =

∫ Li

0

ΦT
ξiΦai

dXi︸ ︷︷ ︸
Bi

+ ...+

∫ Ln

0

ΦT
ξnΦan

dXn︸ ︷︷ ︸
Bn

(44)

where ∀ i ∈ {1, ..., nb} and Li ∈ R+ the length of the
considered body.

The adaptive discretization introduces, however, another
caveat as the structure of B(q) is unknown beforehand; the
underlying discretization is time dependent (see fig. 3). To
alleviate this issue, we decouple tendon routing by reintro-
ducing the normalized set Sa, as defined in (22). Providing
direct access to the desired integration intervals to obtain the
estimated generalized actuation mapping matrix at any given
time t:

B̂(q) =
[
B̂1(q) · · · B̂nb

(q)
]T

(45)

where

Bi =

∫ Li

0

... dXi −→ B̂i =

∫ X̃iL̂i

0

... dXi (46)

In short, the decoupled generalized actuation matrix can thus
be constructed by considering the body-dependent contribu-
tions with appropriate integration intervals, scaled with the
normalized curvilinear material abscissae to properly define
the relative position of the tendons.

By making a preemptive symbolic assumption that all
tendons traverse the entire structure, we can efficiently evaluate
(45) via nullification of the matrix elements using the acquired
set Sa online (see fig. 5). It is worth pointing out that under
the PCC-hypothesis, B(q) becomes constant. However, due to

Fig. 5: Visualization of the real system, i.e. a continuum with
infinite degrees of freedom, for an arbitrary number of tendon-
racks k along the backbone and the corresponding curvilinear
material abscissa set S(·) = {Xi |Xi ∈ [0, Lr], i ∈ I(·)}
(left). The consequent pre-emptive symbolic virtual model
assumption of all tendons traversing the entire structure with
S̃ = {(1, 3) | Xi ∈ S(·), π̂

(c)
2 < Xi ≤ π̂

(c)
3 } (middle) and

an example of the corresponding online evaluated decoupled
state (right).

the adaptive discretization, this no longer holds as it becomes
a function of the estimated parameters, i.e. B̂(π̂).

Now given that the length of a threadlike actuator Lci can
be expressed as [11]:

Lci =

∫ L

0

ΦT
ai

(
ξ +

[
03
d′

])
dX, (47)

with Φai
the column associated with the ith actuator, we obtain

a tendon-length differential by comparing Lci to the reference
length in the unstressed state. Which, by using the generalized
mapping matrix B̂(π̂k) can be expressed as:

ŷi =

∫ X̃iL̂i

0

ΦT
ai
ΦξdXq +

∫ X̃iL̂i

0

(Φai
− Φ∗

ai
)T

(
ξ∗

[
03
d′i

])
dX

ŷi = B̂(π̂)Ti q (48)

for d′i = 0 due to structural design. Collecting the individual
differentials in a single vector simplifies to the following
actuator kinematics:

ŷ = B̂(π̂)T q (49)

V. SIMULATION RESULTS

In this section, we validate the efficacy of the proposed
solution through both kinematic and dynamic simulations. As
the manipulator is redundant to the task, a secondary objective
is introduced through the null-space term, substantiated in
remark 2, to constrain the solution space of the (non-)adaptive
controller below base, i.e., z ≤ 0. Hence, the null-space cost



function is formulated as the Euclidean norm of the section-
wise elongations:

Ψ(q) = ∥δL∥2 =

√√√√ nb∑
i=1

(δLi
)2, (50)

ensuring a smooth and differentiable function to obtain the
controller formulation as defined in (16). Besides constraining
the solution space, the incorporation of a secondary objective
enables the evaluation of of adaptive controller’s performance
in utilizing kinematic redundancy - a desirable capability
especially in soft robotic systems.

A. Kinematic simulation

For the kinematic simulation, we consider the nominal case
nbt = nbv , i.e., the true system encapsulates a discretized
representation that comprises the same number of bodies as
the virtual model. The control architecture is shown in fig.
6 and is designed such that the control inputs for the real
system are generated using the state of the virtual model,
while sensor measurements are mimicked using the forward
kinematic map h(·) on the true state; allowing us to evaluate
the decoupled state feedback algorithm (2) and the adaptive
controller simultaneously.

Fig. 6: The control architecture used to evaluate the con-
vergence and performance of the adaptive framework under
nominal conditions.

The true system is initialized with nbt = 3 and the
kinematic parameters π =

[
0.105 0.255 0.24

]
m, where

the sensors are ’attached’ at the distal ends each body. Hence,
defining the set of curvilinear material abscissae (22) as
Ss = {0.105, 0.36, 0.60} in the strain-free state. Furthermore,
the initial estimates for the adaptive controller are set to
π̂ =

[
012 0.28 0.27

]
m with the linear- and angular error

thresholds 1e−4 m and 5e−3 rad for the decoupled state feed-
back algorithm respectively, considering a maximum number
of N = 7 iterations.

The adaptive controller is subjected to a trajectory tracking
task for a run-time of T = 20 s with the trajectory r(t) defined
as:

r(t) = r0 +A · sin(ωt), (51)

where

r0 =
[
0 0 −0.5

]T
and A =

[
0.5 0.3 0.1

]T
for an angular frequency of ω = 0.2π. The inverse kinematic
controller gain is set to K = I3 with Γ = diag(90, 42.5, 35)
for the adaptive law.

The obtained simulation results are provided in fig. 7 as a
four-way panel. Here, sub-figure 7a emulates a visual of the
time-wise evolution of the controlled system for the first three
seconds of simulation, i.e, T ∈ [0, 3], with the leftmost plot
showing the true system, while the center plot presents the
virtual model used to control it.

From a visual perspective, the adaptive discretization and
hence decoupled nature become evident. In the initial stages,
π ̸= π̂, therefore sensor measurements on the true system, as
indicated by the red markers in the center plot, do not align
with the section tips of the virtual model. However, over time,
the adaptive controller adjusts the discretization such that the
virtual model attains a perfect reconstruction of the controlled
structure.

This observation is substantiated in the remaining panels
7b and 7c, which display the end-effector error and the total
length of both the true system and virtual model, respectively.
In addition, 7d introduces the shape reconstruction error to
quantify the shape representation of the virtual model with
respect to the true system:

Eshape =
1

N

N∑
i=1

∥ptruei − papproxi ∥, (52)

for N = 500 points ptruei , papproxi ∈ R3 uniformly sampled
along the backbones.

Based on panel 7b and 7d, it becomes evident that over time,
the end-effector error(s) as well as the shape reconstruction
error converge to zero during the trajectory tracking task,
confirming our visual observation. This is intuitively under-
stood by taking a closer look at the total length of the virtual
model. As shown in fig. 7c, the length of our virtual model
converges to the length of the true system, while the kinematic
parameters also show full convergence in fig. 8; highlighting
the relationship of the body-wise elongation inferred through
the decoupled state algorithm and associated (estimated) rest
length through Li = L0i + δLi.

Whilst no formal guarantee can be given for the convergence
of estimated the kinematic parameters to the true values,
it can thus be shown that for appropriately chosen gains
the kinematic parameters can converge to the true state; i.e.
∥π̃∥ → 0 as t→∞.

In addition to the adaptive controller, the decoupled state
feedback algorithm also shows increased performance as the
shape of the virtual model gravitates closer to the true system.
Fig. 9 highlights how both the linear- and angular sensor error
norms, as returned by the decoupled state feedback algorithm,
tend to full convergence over time. An important notion, whose
significance shall become more pronounced in section V-B.



(a)

(b) (c) (d)

Fig. 7: A four-way panel highlighting the adaptive controller performance. (a) Emulates a visual of the time-wise evolution of
the controlled system for the first three seconds of simulation, i.e T ∈ [0, 3]. The leftmost figure is the true system controlled
by the adaptive controller based on the virtual model depicted in the center plot. The right-side image shows an overlap of the
true system and virtual model to visually showcase the convergence of ∥π̃∥ → 0. The red dots in the center image represent
the sensor locations and thus section tips of the true system, indicating a clear initial decoupled state. (b) The evolution of the
end-effector error of the true system over time. (c) A comparison of the total manipulator length for both the true system and
the virtual model. (d) The shaped reconstruction error (52) over time.

Fig. 8: The time-wise evolution of the estimated kinematic
parameters π̂ of the virtual model converging to the true values
π =

[
0.105 0.255 0.24

]
m in the nominal case.

Fig. 9: The sensor error norms of the decoupled state feedback
algorithm decomposed into angular and linear components for
the adaptive controller.



Fig. 10: The designed control architecture used in simulation during the setpoint reaching task under dynamic conditions;
shown for the adaptive framework to highlight the influence of adaptive discretization.

B. Dynamic simulation

The dynamic simulation is concerned with benchmarking
the adaptive controller (A-PCC) against the state-of-the-art
fixed-parameter PCC model, evaluating their average perfor-
mance across a multiple setpoint reaching tasks and varying
end-effector payloads.

To mimic complex deformations that exceed the descriptive
capabilities of the chosen modeling modality, the true system
dynamics are represented using a higher-resolution discretized
model consisting of six bodies, rather than a lower-resolution
discretized model comprising three bodies as our virtual
model.

In close correlation to the experimental setup used in section
VI, the true system is controlled using a PID-controller that
acts on the offset between tendon differentials associated with
the state of the true system and the desired tendon differentials
acquired by the (non-)adaptive controller through (49); the
control architecture is depicted in fig. 10.

To highlight the generality and robustness of the proposed
framework, we consider two different true systems during
simulations. For the sake of space, the interested reader is
referred to Appendix A for the results on the second system.

The remainder of this section will elaborate on the first true
system, initialized with:

πt =
[
0.0525 0.0525 0.1275 0.1275 0.12 0.12

]
,

where both the sensors and actuators are ’attached’ at the distal
ends of the second, fourth, and sixth sections. Hence, defining
the abscissa of curvilinear material sets identical to the kine-
matic simulation (22) as Ss = Sa = {0.105, 0.36, 0.60} in
the strain-free state.

The structure is actuated using a total of nine tendons,
distributed across three actuation racks; each accommodating

three tendons uniformly distributed around the circumference
with 120◦ intervals. In addition, each consecutive rack is
rotated by 30◦ relative to the preceding rack. As a result, the
tendons either partially or fully traverse the structure with a
constant radial offset from the backbone at d = 0.027m.

The total mass of m = 1 kg is evenly distributed throughout
the structure, with the section-wise allocation scaled according
to their respective lengths as initialized in π, resulting in:

m =
[
0.0875 0.0875 0.2125 0.2125 0.2 0.2

]
,

In similar fashion, the stiffness matrices associated with
each of the sections are also scaled according to their re-
spective lengths, based on the axial and curvature stiffness
ka = 100N/m and kc = 0.778N/rad corresponding to a
section of length l = 0.1m. The obtained stiffness matrix
is used to define a damping matrix D(q) = 0.1K(q).

The virtual model in both the adaptive- and non-adaptive
cases is initialized with:

πv = π̂v =
[
0.105 0.255 0.240

]
,

i.e., sensors and actuators ’attached’ to the true system cor-
respond to the section tips of the virtual model and are thus
presumed to be reasonably measurable. Note, indeed, that in
the adaptive case this is only valid in the initial state; as t
varies, the model will decouple.

To evaluate the average performance, we consider ten
different setpoints distributed across the workspace, each set-
point being evaluated for three different end-effector payloads:
m = 0kg, m = 0.25kg, and m = 0.50kg, considering a
simulation runtime of T = 10s. In addition, the performance is
assessed using two feedback configurations for the decoupled
state feedback algorithm: sensor-based position feedback as
well as full pose measurements. The PID-controller gains set
to KP = 750I9,KI = I9 and KD = 5I9.



Simulation run I - Robot I + Position feedback only:
The first simulation considers the decoupled state feedback
algorithm to run on positional sensor measurements only, with
the inverse kinematic controller gain set to K = 1.8I3 for
both the standard- and adaptive controller. The latter using
Γ = 40.5I3 for the adaptive law defined in (14).

As shown in fig. 11 the performance degradation of the
adaptive controller is significantly better in comparison to
the standard controller with increasing payloads across the
workspace. The shape reconstruction error Eshape, as defined
in (52), is reduced on average by 28% decreasing from
1.82mm to 1.31mm. Moreover, both the minimum and
maximum mismatch are decreased by 7% (from 0.19mm
to 0.17mm) and 21.7% (from 3.32mm to 2.60mm) as
indicated by the shaded area.

Under the adaptive control strategy, the shape of the virtual
model thus aligns significantly more closely with the con-
trolled true system.

Fig. 11: A comparison of the shape reconstruction error Eshape
across all simulations for both the adaptive- and standard
control strategy.

In addition, based on the data presented in fig. 12 the adap-
tive controller also demonstrates a substantial performance
increase on the secondary task-objective defined in (50); low-
ering the cost-function on average by 57.9% from 4.61 cm2

to 1.94 cm2. Again, with a more bounded performance profile
as the lower-bound is reduced by 91.2% (from 2.71mm to
0.24mm) and the upper-bound by 27.6% from 8.45mm to
6.11mm.

Fig. 12: A comparison of the null-space cost function between
the adaptive- and standard controller.

As one might notice, unlike with the kinematic simulation
Eshape ̸→ 0; meaning that perfect shape reconstruction is not
attained between the true system and virtual model. However,
this behavior can be expected as there is a theoretical limit on
how well a lower resolution model can represent the shape of
a higher resolution system.

Furthermore, the evolution of π̂v tells a similar story as we
look at fig. 13. In the initial stages of simulation, the updates
are rather stagnant before enveloping into fairly aggressive
updates and smoothing out once the end-effector position of
the true system is getting close to xd. This is intuitively
understood by revisiting (15), which tells us that as e → 0
and/or q̇ gets smaller, the adaptive law barely updates.

In other words, there is no incentive to drive adaptive law
once the task error is nearing convergence.

Fig. 13: A visual overview of the evolution of the adaptive
kinematic parameters π̂v and fixed parameters πv

Simulation run II - Robot I + Full pose feedback: The
second simulation considers the (decoupled) state feedback al-
gorithm to utilize the sensor pose setup, alleviating the inferred
virtual model state from orientational ambiguity. The inverse
kinematic controller gain remains identical at K = 1.8I3 for
both the standard- and adaptive controller, with the latter using
Γ = 24.5I3 for the adaptive law defined in (14).

Before proceeding to the average performance, we first
briefly introduce a single run from the broader set of
simulations to provide a more intuitive understanding of
the implications. The run considers the setpoint xd =[
0.325, 0.15,−0.275

]
with a payload of m = 0.5kg, to high-

light the performance degradation for increasing deformation
complexity under both control strategies.

Figure 14 provides a side-by-side, dual-angle, stroboscopic
plot of the controlled system and the associated virtual model.



Fig. 14: A side-by-side, dual angle, stroboscopic plot as a visual comparison on the evolution of the true system carrying a
0.50kg payload to the setpoint xd =

[
0.325, 0.15,−0.275

]
; controlled with the standard and adaptive controller on the first

and second row, respectively.

Here, one notices a clear distinction in performance; the
mismatch between the true system and corresponding virtual
model is very different between the two control strategies. In
the adaptive case, the virtual model neatly aligns with the true
system while in the non-adaptive case it does not. To further
quantify this, Eshape is lowered by 45.8% from 12.33mm to
6.68mm during task execution when adopting the adaptive
strategy (see fig. 15). Moreover, in the adaptive case, the

Fig. 15: A comparison of the shape reconstruction error Eshape
between the adaptive- and standard controller on the specified
run.

sensor- and actuator locations on the true system (denoted with
the red markers) coincide with the backbone of the virtual
model, unlike for the standard case.

Indeed, for the fixed-parameter (or standard) model, the
sensors and actuator locations should coincide with the section
tips of the virtual model as was defined in the initial state.
However, in contrast to simulation I, the decoupled state
feedback algorithm now considers pose measurements, which
paints an interesting picture if we reconsider fig. 9. It was
shown that as π̂ → π, and the virtual model converged to the
true state, the decoupled state feedback algorithm tended to
converge as well.

In other words, the inferred state of the virtual model
became more accurate over time as the kinematic parame-
ters converged to the true values. However, when a higher
resolution system, i.e., the true system, is controlled with the
standard controller, fig. 16 shows opposite behavior.

As the deformation of the structure becomes increasingly
complex over time, the decoupled feedback algorithm provides
less accurate inferred states of the virtual model. Eluding to
the fact that while orientational ambiguity is relieved, the
deformation becomes too complex to be accurately captured
with the standard (fixed-parameter) PCC model when one



Fig. 16: The sensor error norms returned by the decoupled
state feedback algorithm, decomposed into angular and linear
components under both control strategies considering a pay-
load of m = 0.50 kg.

accounts for both orientation and position of the sensors.
In this scenario, the adaptive controller proves particularly

effective (see fig. 16): Reducing the positional component of
the sensor error between 2.5 and 4.5 cm, an improvement of
62 to 86% depending on the sensor. Similarly, the angular
component is reduced around 0.35 to 0.85 crad, achieving an
improvement between 84 to 90%.

To put this into perspective, the end-effector position of the
inferred virtual model using the standard controller is more
than 4 cm removed from sensor measurement recorded at the
end-effector of the corresponding true system; while in the
adaptive case the offset is less than 0.5 cm (see fig. 14).

Fig. 17: The shape reconstruction error Eshape aggregated over
all simulation runs.

These findings remain consistent when we aggregate the
performance of all simulation runs. As shown in fig. 17, Eshape
is lowered 28.6% on average (from 6.82mm to 4.87mm)

using the adaptive controller. Even though there is a slight
performance decrease on the lower-bound of 6.32% (from
1.03mm to 1.10mm), the overall performance degradation
for the adaptive controller is significantly better as the up-
per bound is 36.7% lower, coming down from 12.9mm to
8.17mm. Moreover, fig. 18 shows that the adaptive controller
lowers the average cost on the secondary objective by 51.9%
with a tighter overall spread as the upper- and lower-bound
are reduced by 38.1% and 92.1% respectively.

Fig. 18: A comparison of the null-space cost function between
the adaptive- and standard controller averaged across all runs.

To briefly conclude, for higher resolution systems, the
decoupled state feedback algorithm does not fully converge as
the deformations are too complex for lower resolution models.
However, the adaptive framework provides significantly more
accurate inferred model states as the decoupled state algorithm
converges closer to the measured values (fig. 19).

Fig. 19: The sensor error norms returned by the decoupled
state feedback algorithm, decomposed into angular and linear
components under both control strategies averaged across all
runs.



VI. EXPERIMENTAL VALIDATION

The platform is a tendon-driven ’trunk-scale’ soft robotic
arm composed of five trimmed-helicoid modules, 3D printed
with 72D soft TPU [24]. The tendons are controlled using a
Raspberry Pi 5 and nine Dynamixel XM430-W210-R motors,
acting on tendon differentials with respect to the calibrated
zero-state. In addition, a dedicated motor is used to control the
custom gripper. An overview of the tendon routing is provided
in figure 20. Note that the platform utilizes the independent
manipulator setup.

(a) (b)

Fig. 20: (a) The experimental platform (b) A schematic
overview of the tendon routing, configured as the independent
manipulator setup as opposed to the coupled manipulator
layout used in simulation. Image taken from [24]

To run the (decoupled) state feedback algorithm, eight Prime
W13 Optitrack cameras are used, as shown in figure 21.

Fig. 21: The experimental setup: a tendon-driven five-module
TH structure mounted on an aluminum extrusion profile frame.
The red circles indicate the positions of the eight Optritrack
cameras.

To deal with the deformable structure of the manipulator,
which violates the ’Rigid body’ constraints in Motive (the Op-

titrack software), custom 3D printed detachable PLA marker
rings were manufactured. In addition, as the operational space
of the manipulator was rather constrained, markers were
developed with an extruded base to increase the detectability
of the markers in close proximity to the cameras.

Each ring exhibits unique geometrical properties to remove
body-wise ambiguity within the software; designed to main-
tain the same geometrical center, independent of the marker
distribution, which is essential for accurate tracking of the
structural backbone. As shown in fig. 20a, the distal ends of
the first, third, and fifth TH module were used to attach the
markers, aligning with the tendon mounting points.

Within Motive each set of markers is assigned a ’Rigid
Body’ ID whose coordinates are transformed into the assigned
base-frame: four equally spaced markers around the perimeter
of the manipulator base, with a translated pivot point of
20.5mm in the positive z-direction; aligned with the backbone
of the manipulator at the base (see fig. 22).

Fig. 22: The calibrated zero-state of the manipulator within
motive: the defined rigid-bodies represent the ground plane,
baseframe, and attached sensors from top to bottom, respec-
tively. Note, the tracked rigid bodies are shown as right-handed
Y -down coordinate frames, but streamed as Z-up.

A. Experiment I - Evaluating the decoupled state feedback
algorithm

To evaluate the state feedback algorithm, in conjunction
with the used sensing modality, we uniformly sample tendon
differentials over the course of eight unique runs. Providing
arbitrary shapes and deformations within a safe operating
range for the platform:

Xi =

{
U(−0.035, 0) ∀i ∈ {1, 2, 3}
U(−0.075, 0) ∀i ∈ {4, 5, 6, 7, 8, 9},

with i the tendon index. In addition, random estimates of the
kinematic parameters π̂ are sampled according to:

π̂ = π + ϵ, with ϵ ∼ U(−0.3, 0.3)



Fig. 23: A side-by-side, four-panel stroboscopic plot to com-
pare the inferred virtual model states under decoupled and
non-decoupled conditions for sample run 4.

In doing so, we can evaluate the algorithm’s performance
under both decoupled and non-decoupled conditions, the sam-
pling results are included in table I. Each run is initiated
by acquiring both the curvilinear material set Ss (22) and the
kinematic parameters π for the non-decoupled case, defined
in the initial calibrated zero-state using the Optitrack setup.
Note, indeed, that π strictly corresponds to the non-decoupled
case; as π̂ is randomly sampled.

To alleviate jerky motion, the sampled tendon differentials
are linearly interpolated from the calibrated zero-state to
acquire n-unique control inputs for each run; published to the
motor controllers, while the (non)-decoupled state feedback
algorithm infers the state of the virtual model through real-
time sensor measurements, considering both the position and
pose setting simultaneously.

In figure 23, a four-way panel is provided to visually assess
the performance in more detail; corresponding to run 4 shown
in boldface in table I (see fig. 25a for the true system). It
becomes apparent that the algorithm works as expected in
both the non-decoupled (top-row) and decoupled (bottom-row)
cases, considering either position or pose state feedback. The
algorithm provides a smooth evolution of the inferred model
state during task execution using real-time Cartesian sensor
measurements.

While the discussed orientational ambiguity is already
slightly visible in fig. 23 if the position measurements are used,

Fig. 24: A side-by-side, four-panel stroboscopic plot to com-
pare the inferred virtual model states under decoupled and
non-decoupled conditions for sample run 8.

(a) (b)

Fig. 25: A side-by-side comparison of the final manipulator
state for sample runs four and eight, respectively.

different runs show a more pronounced implication. Hence,
confirming earlier results: relieving orientational ambiguity
introduces uncertainty in the inferred model state as the
deformations become too complex to be fully resolved with
a three-body system. Upon closer inspection of run 8, for
example (see table I and fig. 25b), one can conclude that the
inferred model state (see fig. 24) is markedly different from the
true state of the system even though the algorithm converges
if position measurements are used.



TABLE I: Overview of experimental parameters

Overview of experimental parameters

Run Sampled tendon differentials (X ) π π̂

1 0.012 0.006 0.006 0.040 0.030 0.024 0.070 0.070 0.050 0.114 0.246 0.245 0.127 0.245 0.252

2 0.004 0.027 0.014 0.034 0.009 0.068 0.004 0.004 0.049 0.114 0.246 0.245 0.094 0.253 0.226

3 0.029 0.018 0.013 0.066 0.046 0.052 0.005 0.004 0.070 0.105 0.245 0.245 0.102 0.255 0.259

4 0.026 0.013 0.002 0.047 0.046 0.008 0.028 0.023 0.074 0.106 0.244 0.245 0.100 0.218 0.231

5 0.027 0.018 0.022 0.030 0.035 0.025 0.032 0.052 0.043 0.105 0.245 0.245 0.103 0.271 0.259

6 0.003 0.023 0.013 0.011 0.001 0.074 0.012 0.003 0.017 0.105 0.245 0.245 0.125 0.255 0.267

7 0.021 0.021 0.011 0.015 0.015 0.028 0.007 0.037 0.014 0.065 0.244 0.244 0.079 0.257 0.270

8 0.031 0.003 0.012 0.048 0.031 0.024 0.037 0.055 0.060 0.066 0.245 0.245 0.084 0.254 0.260

In this case, introducing the orientational term in the state
feedback algorithm might not yield full convergence, but it
provides a virtual model state that more accurately repre-
sents the true state. Interestingly enough, under these specific
decoupled conditions, the effect is even more pronounced,
highlighting the underlying trade-off.

To quantify the performance of the decoupled state feedback
algorithm across the sampled workspace, figure 26 provides
the average sensor error norms aggregated across all runs for
the pose configuration.

Fig. 26: Error norm decomposition for the decoupled state
feedback algorithm averaged over all sampled runs for the
standard controller

It is worth emphasizing that the presented data is not an
evaluation of the adaptive controller as the kinematic param-
eters are randomly sampled, and not driven by the adaptive
law. Rather, it provides an evaluation of the algorithm when
dealing with decoupled states. Thereto, these measurements
have not been included in fig. 26 as it would only skew the
performance with stochasticity rather than objectivity.

B. Experiment II

The second experiment aligns with the dynamic simulations
conducted in subsection V-B; i.e., benchmarking the adaptive
framework (A-PCC) with the fixed-parameter PCC model via
setpoint reaching tasks with varying end-effector payloads.

The sensors and actuators remain mounted at the distal ends
of the first, third, and fifth TH-Module. Hence, we initialize
the curvilinear material sets Ss/a (22) and the (estimated)
kinematic parameters π = π̂ in the calibrated zero-state via
the motion capture, which runs at 50Hz.

As earlier introduced, the model of actuation presented in
sec. V-B and the tendon routing of the experimental platform
do not correspond (recall the coupled and independent setup
presented in fig. 20). Consequently, the reachable workspace is
particularly constrained: the desired configuration qd, provided
by the standard and/or adaptive controller, is mapped to tendon
differentials that do not accurately reflect the required values
to reach qd from a kinematic perspective.

Hence, to quantify the severity of this issue, we introduce
an additional metric:

Emapping = ∥xd(q)− xm∥, xd = h(qd), (53)

where xd is the ’expected’ end-effector position acquired via
the forward kinematic map h(·) and xm being the measured
end-effector position after providing the control input ŷ =
B̂(π̂)T qd (or y = BT qd in the non-adaptive case) as defined
in (49).

Run I - Gripper + Position feedback only: The first exper-
imental run considers the desired setpoint

xd =
[
0, 0.15,−0.5

]
, (54)

with the (decoupled) state feedback algorithm using positional
sensor measurements. Besides the custom gripper, no addi-
tional end-effector payload is attached. The controller gain is
set to K = 1.5I3 for both the standard and adaptive controller,
with the latter using Γ = 40I3 for the adaptive law defined
in (14). The control loop is terminated once the end-effector
position converges within 1mm of the desired setpoint.

The absence of a direct measurement on the backbone of
the robot manipulator precludes the use of Eshape as defined
in (52), complicating a quantitative performance comparison
in that regard.



(a) Standard controller (b) Adaptive controller

Fig. 27: A dual-panel visual overlay of the true system and
associated virtual model(s) in the Y Z-plane. The visualized
state corresponds to the moment of task completion, consid-
ering position measurements only.

To address this, a visual overlay of the true system and asso-
ciated virtual model is provided in the Y Z-plane (see fig. 27).
While the visual differences, in this case, might be difficult to
observe, and task execution times remain approximately the
same for both control strategies (see fig. 28), the way they
execute the task is inherently different.

Fig. 28: The measured end-effector error norm with no exter-
nal payload running on position feedback only; control-loop
termination is indicated with the vertical dashed line.

As shown in figure 29, the adaptive controller effectively
reduces the secondary objective cost-function by an average of
69.4% (from 2.02 cm2 to 0.62 cm2). More importantly, how-
ever, the control precision is adversely affected as introduced
in (53) - even for setpoints defined close to the initial state.
Yet, as illustrated in fig. 30, the adaptive controller mitigates
this issue as it reduces the average mismatch by 58.6% (from
6.15cm to 2.55cm).

A feat that could also be physically observed during the
experiments due to reduced tendon slack near the motor
housing and a less frequent need to recalibrate the system.

Fig. 29: The secondary cost function objective with no exter-
nal payload running on position feedback only; control-loop
termination is indicated with the vertical dashed line.

Fig. 30: The actuation mismatch with no external payload
running on position feedback only; control-loop termination
is indicated with the vertical dashed line.

Run II - Gripper + Full pose feedback: The second run con-
siders identical conditions to run I, but in this case utilizes the
pose measurements. The controller gains remain unchanged
with K = 1.5I3 for both the standard- and adaptive controller,
with the latter using and Γ = 40I3 for the adaptive law defined
in (14).

Again, a visual overlay of the true system and associated
virtual model(s) is provided in the Y Z-plane(see fig. 31).
In this case, however, the visual discrepancies are more
pronounced. As shown in fig. 32, the adaptive controller
also exhibits significantly faster convergence to the desired
setpoint: converging in 2.76 s compared to 6.01 s for the
standard controller.

Fig. 32: The measured end-effector error norm with no
external payload running on pose feedback; control-loop
termination is indicated with the vertical dashed line.



(a) Standard controller (b) Adaptive controller

Fig. 31: A dual-panel visual overlay of the true system and
associated virtual model(s) in the Y Z-plane. The visualized
state corresponds to the moment of task completion, consid-
ering pose measurements.

While stochastic variations may partially influence this
improvement due to the actuation mapping issue, particularly
for subtle movements close to the setpoint, the additional
performance metrics provide further insight. As illustrated
in figure 33, the adaptive controller reduces the secondary
objective cost function by an average of 66.4%, decreasing
from 1.97 cm2 under the standard control strategy to 0.66 cm2.

Fig. 33: The secondary cost function objective with no external
payload running on pose feedback; control-loop termination is
indicated with the vertical dashed line.

But more than that, the actuation mismatch in fig. 34 reveals
that at the time of control-loop termination, the adaptive
controller stabilizes at 3.2 cm, whereas the standard controller
continues to grow to 8.5 cm - providing an overall improve-
ment of 57.42%.

A result that ties directly into the fact that the inferred
model state thus becomes more accurate when adaptivity
is introduced: reducing the positional norm by an average
of 0.25 cm to 0.5 cm while maintaining comparable angular
norms on average (see fig. 35).

Fig. 34: The actuation mismatch with no external payload run-
ning on pose feedback; control-loop termination is indicated
with the vertical dashed line.

Fig. 35: The decoupled state feedback performance with
no external payload running on pose feedback; control-loop
termination is indicated with the vertical dashed line.

Run III - Gripper with 0.210 kg + Full pose feedback: The
third experimental run highlights the ability to utilize lower
control gains by introducing adaptivity, even when carrying a
payload. Hence, the robot manipulator carries an apple with a
mass of m = 0.21kg, utilizing full pose sensor feedback but
with distinct controller levels.

The standard controller gain is set to KS = 2I3, whereas
the adaptive controller operates with a reduced gain level of
KA = 1.5I3. The latter uses Γ = 30I3 for the adaptive law
defined in (14).

As observed in figure 36, the adaptive controller exhibits
a slightly slower convergence time to the desired setpoint;
approximately 1s in comparison to the standard controller.
This outcome does, however, align with the expectations of
using a lower gain configuration. To illustrate, an evaluation
of the standard controller operating at identical gain levels



Fig. 36: A comparison of the measured end-effector error with
a 0.21kg payload attached, considering pose measurements
and three distinct controller gain levels.

(KS = 1.5I3) is also presented, demonstrating that while
the adaptive controller successfully reaches the setpoint under
lower gain conditions, the standard controller does not fully
converge and is manually terminated after T = 11.24s.

Fig. 37: A comparison of secondary cost function objective
considering full pose measurements and 0.21kg payload

Interestingly enough, even when operating at the lower
gain level, the adaptive controller yields further advantages in
comparison to the higher gain standard controller. It reduces
the secondary objective cost function by 68.3% (see fig.
37) and decreases the actuation mismatch (53) by 27.3% as
illustrated in fig. 38.

Fig. 38: A comparison of actuation mismatch considering full
pose measurements and 0.21kg payload

Moreover, figure 39 demonstrates that the inferred model
state improves: the angular norms are reduced by 0.5 to 1 crad,
while the positional terms are between 0.3 cm and 0.5 cm

lower on average for the first and second sensor respectively,
while conceding 0.15 cm on the end-effector position.

Fig. 39: A comparison of state feedback performance consid-
ering full pose measurements and 0.21kg payload.

VII. CONCLUSION & DISCUSSION

In this work, we proposed an adaptive kinematic modeling
framework to address the challenge of underactuation from a
different perspective - not by increasing model resolution or
complexity - but by making the model itself adaptive.

To introduce adaptivity into the framework, we made the
kinematic model parametric with respect to the parameters
L0i and dynamically adapted the set using a novel inverse
kinematic adaptive controller. The controller presents a unique
and desirable trait in that it inherently enhances the shape
representation as a by-product of the primary control objective.
In addition, we also provided a proof that the control and
parameter update law result in global asymptotic convergence
of the position error.

The controller was presented in conjunction with a decou-
pling algorithm to separate both the sensing and actuation
inputs on the real system from the virtual model, as part of
a novel decoupled state feedback algorithm. This algorithm
allowed us to infer the virtual model state from an arbitrary
number of sensors and model sections, independent of the un-
derlying discretization as estimated by the adaptive controller.

While the framework was developed alongside the widely
used PCC-model, and introduces unique challenges on its own,
in principle, it can be transferred to any higher-fidelity kine-
matic model that allows for a linearly parametrized structure
to compensate for the underactuation.

The proposed solution was evaluated considering a kine-
matic controller on the fully actuated case. Here, it was shown
that the estimated parameters can converge to the true values



during a kinematic trajectory tracking task under nominal
conditions. Furthermore, dynamic simulations and experiments
demonstrated increased performance in shape representation,
model state inference, and the use of redundant degrees of
freedom through a secondary task objective.

Therefore, we can conclude for the hypothesis of the thesis,
the adaptive framework mitigates the issue of underactuation
better - in comparison to fixed-parameter models presented in
literature - while retaining simplicity by adapting to real-world
deformation online.

Further work should be dedicated to a more extensive
experimental validation, unconstrained by actuation mapping
discrepancy and void of frequent recalibration. In addition,
the behavior of the Savitzky-Golay type filter is yet to be
evaluated, as it introduces an additional degree of freedom to
the adaptive law. The configuration velocity q̇ is estimated on
the N -previous inferred states q, meaning that lower values of
N allow for more aggressive, noisy updates on the kinematic
parameters, while higher values provide smoother but less
responsive updates.

To achieve additional performance results, controller tuning
can be optimized. The work considered a general performance
across the workspace for various payloads, while more task-
specific conditions allow for the adaptive controller to be tuned
accordingly, potentially utilizing asymmetrical gain levels.

Moreover, as the validation considers setpoint reaching
tasks, instead of trajectory-tracking, the controller is sensitive
to the gains when optimizing the shape representation. This
is intuitively understood by the fact that the adaptive law is
driven by the end-effector error, and therefore no incentive
exists to optimize the shape fidelity.

On a more general note, the (decoupled) state feedback
algorithm also introduces an interesting aspect. To relieve
the virtual model (either adaptive or not) of orientational
ambiguity, one concedes on positional alignment of the model
with the real world sensor measurements. Therefore, it would
be interesting to explore a hierarchy-based numerical inverse
kinematics scheme. Providing control over the degree of align-
ment from an orientational point of view, while maintaining
full positional priority.

As a closing remark, it would be interesting to transfer
the framework to a more complex model to evaluate the
potential or even a composite adaptive controller, utilizing the
adaptive model while addressing uncertainty in the dynamics
simultaneously.
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APPENDIX A - ADDITIONAL SIMULATION RESULTS

The aim of this appendix is to highlight the generality and
robustness of the proposed solution on a secondary continuum
manipulator. As opposed to the non-uniformly discretized
true system in section V-B, this simulation run considers a
uniformly discretized system with a shorter overall length of
0.45m. In coherence, the true system is initialized with the
kinematic parameters:

πt =
[
0.075 0.075 0.075 0.075 0.075 0.075

]
,

where both the sensors and actuators remain ’attached’ at the
distal ends of the second, fourth and sixth section. Hence,
defining the new sets of curvilinear material abscissae as Ss =
Sa = {0.15, 0.30, 0.45} in the strain-free state.

The virtual model in both the adaptive- and non-adaptive
cases is initialized as:

πv = π̂v =
[
0.15 0.15 0.15

]
,

i.e. the ’attached’ sensors in the true system correspond to the
section tips of the virtual model and are thus presumed to
be reasonably measurable. Note, indeed, that in the adaptive
case these parameters are continuously updated thus this is
only valid in the initial state; as t varies the model will
decouple. Furthermore, the structure maintains the same model
of actuation as shown in section V-B.

In similar fashion, we consider ten different setpoints dis-
persed across the workspace, with each setpoint evaluated
for three different end-effector payloads: m = 0kg, m =
0.25kg, and m = 0.50kg, considering a simulation runtime
of T = 10s. In addition, the performance is assessed using

only the pose-feedback setup for the decoupled state feedback
algorithm. The PID-controller gains remain unchanged and are
thus set to KP = 750I9,KI = I9 and KD = 5I9. The
inverse kinematic controller gains are set to K = 1.5I3 for
both the standard and adaptive controller, with the latter using
Γ = 18.5I3 for the adaptive law defined in (14).

Fig. 40: A comparison of the shape reconstruction error Eshape
between the adaptive- and standard controller

Figure 41 provides the familiar stroboscopic visual compari-
son of a selected run from the subset. As shown in fig. 40, the
shape fidelity is improved as Eshape is lowered on average
28.6% (from 6.82mm to 4.87mm) during task execution
using the adaptive controller, accompanied by a lower-bound
concession of 5.82% (from 0.55mm to 0.58mm) in favor of
the standard controller but with significantly less performance
degradation for the adaptive controller - the upper bound is
reduced by 19.4% from 5.16mm to 4.15mm.

Moreover, fig. 42 shows that the adaptive controller lowers
the average cost on the secondary objective by 25.8%, while
the upper- and lower-bound are reduced by 17.8% and 36.1%
respectively.

Fig. 42: A comparison of the null-space cost function between
the adaptive- and standard controller averaged across all runs.

Finally, the adaptive controller provides significantly more
accurate inferred model states as the decoupled state algo-
rithm converges closer to the measured values. This result is
substantiated in fig. 43



Fig. 41: A side-by-side, dual angle, stroboscopic plot as a visual comparison on the evolution of the True system carrying a
0.50kg payload to the setpoint xd =

[
0.15, 0.225,−0.1875

]
; controlled with the standard and adaptive controller on the first

and second row respectively. The red markers indicate the sensor- and actuator locations on the true system and the (decoupled)
location in the virtual model space.

Fig. 43: The decomposed sensor error norms of the decoupled
state feedback algorithm


