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Foreword

The men of experiment are like the ant, they only collect and use; the
reasoners resemble spiders, who make cobwebs out of their own substance.
But the bee takes the middle course: it gathers its material from the flowers
of the garden and field, but transforms and digests it by a power of its own
-Francis Bacon.

Powders are poorly understood due to the dissipative nature of the grain-grain inter-
actions. History dependence and non-linearity create plenty of phenomenology and
puzzles for the scientists. Although so similar, the knowledge we have about solids,
gases and liquids does not seem to capture the physics of powders. In order to explain
the macroscopic dynamics of these materials there has to be established relationships
between the microscopic nature and macroscopic behaviour of these systems. An im-
portant piece in this micro-macro transition are microstructural –real experiments.

The raison d’être of an instrument is really established when the instrument is
shown to be applicable for the study of nature. Establishing only how and what it
measures should indeed not be motivation enough [24]. A Spin-Echo Small Angle
Scattering (SESANS) instrument is capable of studying samples containing large inho-
mogeneities, large in a sense that they extend across the mesoscopic and microscopic
domains. Thus, being applicable to samples of polymers, colloids, dairy products, pow-
ders, clays etc. All this in simple and more direct way than existing small angle neutron
scattering instruments. In essence, we are confident enough to start exploring the real
samples –samples that SESANS is made for.

I believe that the SESANS experiments conducted during my thesis work and pre-
sented in this book is capable of bringing insight in the relationship between micro and
macroscopics of fine cohesive powders. I also hope to have inspired for future research
on samples made up of large disordered heterogeneities in a sense that I discuss many
of the correlation functions expected in these systems.

After an introductory text, which serves to introduce the reader to the physics and
methods used in greater lines, follows a number of self contained chapters, these are
the scientific articles prepared and published during this thesis work.
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Introduction

Granular Materials

Imagine taking a piece of rock, shatter it into many smaller pieces, grinding

and breaking the rock so much that the graininess finally becomes hidden in the

bulk of the material. What type of material does that represent? A practical

answer would be a granulated material maybe a powder or just simply –Granular

Matter. A strict classification does not seem to exist for what we just made.

Although ubiquitous, we lack a physical theory and framework answering the

many questions arising about its behaviour. In the end there are the laws of

nature governing the system. There is no need for magic but what we need are

answers and explanations to the measurable quantities and phenomenologies.

The grain must play a similar role as the molecules and atoms in solids, liquids

and gases. We may observe that the powder sits solidly in the form of a pile, flows

in a hourglass or blows in the sandstorm. The behaviour of the solid, liquid and

gas is seemingly mimicked by granular materials. But it is clear that it is none

of these common states, the granular matter is rather a class in its own right.

Clearly, the notion of temperature lacks relevance for the granular material.

The relatively large mass of the grains makes the gravitational and kinetic energies

exceed the thermal energy by orders of magnitude. When the grains interact they

will do that in an irreversible way due to the many internal degrees of freedom

contained in the grain. Energy will be dissipated via friction and sound-waves,

some grains will be part of force networks and some not, all together making the

theories of classical statistical mechanics difficult to apply.

Thus, there is a great deal of fundamental challenges for the study of these

materials. Granular materials seem to share many of the properties of other non-

equilibrium systems such as gels and glassy systems. The macroscopic nature of

the granular media makes it an easy accessible model-system both computation-

ally and experimentally. Usually one chooses N -identical spherical beads as the

model system. Easily bought and computationally convenient.

A set of tapping experiments on such samples was conducted in Chicago
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Figure 1: Number of records (scientific publications) found by Web of Science when conducting a boolean search

that finds the word ‘Granular’ together with either ‘Material(s)’ or ‘Matter’ in the topic of articles. Searching

by topic means a search in the abstract, title, and keyword fields of a record.

[57, 56, 42], in the years 1995-1997. The authors noted that there is a so called

”reversible branch” on the sphere packing fraction versus tapping acceleration

curve. In essence this experiment showed that the granular matter (depending on

initial conditions) can exist in a reversible steady state. This observation makes

a statistical mechanics approach more realistic. In fact, these experiments were

inspired by such a statistical mechanics approach proposed by theoretical work

[22] published in 1989 by Edwards et.al. These experiments and the theoretical

work inspired scientists and physicists in particular to conduct research in the

framework of granular materials, and the area saw a boom in interest, see Fig. 1.

Fig. 1 is an analysis of the number of records found by Web of Science based

on a search that finds the word ‘Granular’ together with either ‘Material(s)’ or

‘Matter’ in the topic (abstract, title and keywords) of articles. The number of

records found is plotted as a function of year. Note the increase of publications

around the around the time of [22] 1989 and [42] 1995.

The ultimate goal for the physicist dealing with granular media is to find

a continuum mechanics description that satisfactory explains the macroscopical
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mechanical response of the material, i.e., being able to relating force and motion.

For this to be achieved the physicist has to link the microscopic –grain-level statis-

tics and dynamics to the macroscopic behaviour. The creation of such theory and

model would ultimately lead to better understanding about natural phenomenons

such as avalanches, landslides, earthquakes and erosion in general, better engi-

neered dams and dykes and more effective handling of particulate materials in

industry. This thesis deals with experimental work on the bulk microstructure of

fine powders.

Cohesive Granular Materials (Powders)

Further processing and grinding our rock discussed in the previous section creates

finer granular material made up of smaller particles. The grains are barely con-

trasted and there is now the notion of a powder or –cohesive granular materials.

In essence the idea of inter-grain cohesion in powders is a matter of size. The

interactions between the grains in a non-cohesive granular material are mainly

driven by friction and the hard core exclusion between constituent grains. There

are no long range forces and no attractive forces in the dry classical granular

material, and if they would pe present they would be irrelevant as compared to

body forces acting on these large grains.

In nature one finds the action of van der Waals interaction induced by fluc-

tuating dipoles acting between neighbouring molecules. It is possible to sum all

these interactions between the individual molecules [32] so that the interaction

can be generalised to mesoscopic and macroscopic objects. The attractive van

der Waals force between two identical spherical grains can be approximated with:

FvdW � hD

6σ2
(1)

Here D is the sphere diameter, σ is the distance separating the two spheres and

h is the so called Hamaker constant, which is in the order of 10−20 to 10−19 J

depending on the chemistry making up the grain. We remind ourselves that the

force due to gravity acting on a sphere is given by:

Fgrav =
πD3ρg

6
, (2)

where ρ is the density and g is the earth’s gravitational acceleration.

Capillary force is another origin for adhesion among grains. Capillary forces

arise due to the overlap between the liquid meniscus surrounding two particles.

The strength of this interaction depends on the curvature and the surface tension,

7



8

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

D [μm]

nN

 

 
F

grav

F
vdW

F
cap

Figure 2: The solid line is the force due to gravity Fgrav acting on a sphere plotted versus the sphere diameter.

The dashed line is the van der Waals force FvdW acting between two spheres separated a distance σ=10̊a and

characterised by a Hamaker constant h = 10−20J. Finally, on the dot-dashed line we plot the capillary force

acting between two wet spheres.

it is a fairly difficult task to accurately calculate this force, but an approximation

could at least give us the order of magnitude:

Fcap � 2πΓD cos(ϑ) (3)

where Γ is the surface tension of the gas-liquid interface and ϑ is the wetting

angle.

Using these three expression (Eq. (1), Eq. (2) and Eq. (3)) for forces acting

on a grain makes it possible to set up a very simple calculation that relates the

force acting on a grain to the size of the grain. By doing so we will obtain some

orders of magnitude defining the physics regarding powders and granular matter.

Fig. 2 shows the plots of the van der Waals force, gravity force, and capillary

force acting on or between spherical grains versus the grain diameter.

In terms of the grain size, we see that there is a cross over between two

domains, one for small particles where mutual van der Waals attraction between

grains dominates over gravity and a second domain for larger grains, say >200μm,

were gravity dominates. Thus, a powder becomes cohesive when the grain size

8



9

is below a few hundred microns. In Fig. 2 we show that the interaction between

grains due to humidity induced capillary forces can be major up to millimeter

sized grains (we use this when we build sand castles). For this calculation we

used a surface tension Γ of 70mN and a wetting angle ϑ of 45 degrees.

Adhesive forces between grains in a powder may lead to difficulties in many

industrial applications. Attractive forces create stable aggregates, channels, voids

and arches which all leads to unstable mass flows in silos or bubbling fluidised

beds [76]. Mining, pharmaceutical and chemical industries (just to name a few)

are examples of industries that handle fine particulate materials on a large scale.

The powder is either a raw material, byproduct or the desired end product. The

demand for even finer granular materials is increasing due to market demands

for nanostructured materials in pharmaceutical and electronic industries. The

significance of adhesive forces for the macroscopic behaviour is illustrated in In

Fig. 3. The top figure shows a powder made up of silica grains of 5μm in

diameter. The bottom figure shows an assembly of spherical beads of 1mm in

diameter that has been slightly wetted by adding water. Clearly, the action of

adhesive forces can stabilise large clusters of particles.

Microstructure in granular materials: Correla-

tion functions

As we have seen, there are both fundamental and applied reasons motivating the

buildup of models and theory explaining the properties of powders and granular

materials. The computer makes it possible to study many-particle systems using

Monte-Carlo, molecular dynamics and similar approaches [61]. Such simulations

give a complete insight in the relationship between grain scale properties and

the macroscopic properties. Model building, simulations and theory development

need the support and challenge from experimental observations. This calls for

real experiments and observations on the grain level.

The grains making up a 3D granular material tend to organise themselves in a

random fashion and, therefore, it is mainly the problem of random sphere-packing

[7] that has been addressed. In particular, it is the structure in terms of the pair

correlation function g2(r) (giving the probability of finding a neighbouring centre

of mass next to another one) that is being studied. It is appropriate to give g2(r)

some extra attention here, since it is a measurable quantity [5] and [4].

The pair correlation function is related to the inter particle interactions. For

the hard-sphere case one observes clear transitions between gas/liquid/glass/crystal

states in the form of excluded volume correlations and ordering. Concerning gran-

ular materials it is usually the topic of jamming that is studied, both by means of

9



10

Figure 3: Pictures illustrating the significance of adhesive forces among grains. The top figure shows a silica

(SiO2) powder containing primary grains of about 5μm. The bottom picture shows a packing of spherical silica

beads of 1mm in diameter. A small amount of water was added to create capillary forces among the beads. (the

two pictures have the same scale)
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computer simulations and experiments. Dense configurations of spheres are said

to be jammed when all spheres are connected so that no more displacements are

possible, precluding further exploration of phase space. Interestingly this seems

to happen around a well defined sphere packing fraction φJ � 0.64 (far from the

maximum, but also jammed, sphere packing fraction of 0.74). Recall that

φ =
v

V
, (4)

where v is the volume taken up by a granular phase (the fraction of voids is 1-φ)

contained in the volume V . The pair correlation function is for N number of

spheres in a volume V

g2(r) =
V

N24πr2
〈
N−1∑
i=1

N∑
j=i+1

δ(r − rij)〉 (5)

Measurements (or simulation results) of the pair correlation function for packings

of athermal identical spheres do not reveal any crystal ordering. That the struc-

ture appears to be in a frozen liquid like state, the structure is said to be jammed

or in a glassy state. It is usually assumed that the packings are translational in-

variant (i.e., statistically homogeneous) and rotational invariant (i.e., isotropic).

The pair correlation is therefor a spherical average over all the particles contained

within some volume.

The pair correlation function g2(r) can easily be calculated numerically, pro-

vided that the centre of mass coordinates of the particles are known.

For a packing of hard spheres with diameter D this function will be zero for

r < D, due to the impenetrability of hard spheres, and unity for r → ∞, provided

that there are no long range order (i.e., crystals). A peak will be present at r = D,

this is the nearest neighbour peak, which will be followed by, special for jammed

hard sphere packings, a split second peak at
√

3D and 2D. This split second

peak in g(r) is seen as a typical marker for the jamming transition. Fig. 4 shows

the pair correlation function for one of the sphere packings reported in [5] and [4].

The 3D density distribution and the center of mass coordinates of the spheres was

determined by a X-ray tomography experiment and the data was kindly provided

by the authors. The packing fraction in this example is 0.64.

The pair correlation function is in principle accessible experimentally in, for

example, wave diffraction experiments [23] and as have been seen from a tomo-

graphic scan. In order to extract g2(r) from a measurement one needs a model or a

measurement that describes the structure of the isolated particle (i.e., the density

distribution ρ(r) surrounding its centre of mass), see Fig. 5 for some examples of

density distributions. The density distribution contains all the information about

11
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Figure 4: The pair correlation function g2(r) for a random packing of spheres. The packing fraction is here 0.64.

The data (center of mass coordinates) was determined by a X-ray tomography experiment and kindly provided

for this calculation by the authors of [5] and [4]

the structure of the material. Considering a phase i in a material, the density

distribution can be (assuming an isotropic distribution)

ρ(r) =

{
1 if r is inside a grain,

0 if r is outside.
(6)

The packing fraction of the grain phase is

φ =
1

V

∫
V

ρ(r)dr (7)

so that 0 < φ < 1. The autocorrelation function of the density fluctuations for a

two phase system becomes

γ(r) =

∫
Δρ(r′)Δρ(r′ + r)dr′

φ(1 − φ)
, (8)

where Δρ(r) = ρ(r)−φ. γ(r) gives the probability of observing the same density

when looking at a position (r′+r) away from a point r′ in the density distribution.

If the density distribution is isotropic, then the correlation function depends only

on the modulus or r and the angular and volume averaged correlation function

is in short notation

γ(r) = 〈Δρ(0)Δρ(r)〉V , (9)

12
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0 5 10 15 20 25 30 35 40

Figure 5: Examples of real-space density distributions. Clockwise from top left we have: Sphere, Diffusion

Limited Aggregate, A random media and finally a 1D random graph.

where γ(0) = 1. A conceptual way of interpreting γ(r) is that it corresponds to

the average shared volume of the density and a copy of the density after shifting

the copy some distance.

γ(r) is in a sense the pair correlation function calculated from all points in

the density distribution, rather than just the particle centre of masses. The

autocorrelation function of the density distribution can be measured. A few

examples of density distributions are shown in Fig. 5. For a single sphere the

autocorrelation function is known analytically, but for the other cases it becomes

necessary to calculate the correlation function numerically.

If one would cut out cross sections at random through a material, then one

would find that the degree of independence between such sections depends on

13
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the distance separating them; at certain distances the sections will be similar

(correlated) and at others not. For disordered materials, like liquids, gases, pow-

der materials etc. a certain degree of correlation is found within the correlation

length of the material, i.e., γ(r) is unity at r = 0 and decays depending on the

density correlations. At some distance one would find that the cross sections are

wholly independent, thus no correlations are expected and γ(∞) = 0

The correlation length ξ of the density distribution is a size which is charac-

teristic, and as will be seen also measurable, of the sample structure

ξ =

∫ ∞

−∞
γ(r)dr. (10)

Rather than decomposing the material into grains, pores, particles etc of certain

size, this characteristic size offers a more general structural parameter in defining

the size of a microstructure.

In this thesis it is the projection of γ(r) that is of interest. It is the projec-

tion that is measured in a spin-echo small angle neutron scattering (SESANS)

experiment. The projection along x in cartesian coordinates becomes

G(z) =
2

ξ

∫ ∞

0

γ(x, 0, z)dx. (11)

If r =
√

z2 + x2 and we substitute x =
√

r2 − z2 so that dx = r(r2 − z2)−1/2 then

we have that

G(z) =
2

ξ

∫ ∞

z

rγ(r)√
r2 − z2

dr, (12)

where the prime denotes differentiation. The inverse transformation reads

γ(r) = −1

π

∫ ∞

r

G′(z)√
z2 − r2

dz, (13)

which is known as the Abel transformation [14] of circular symmetric functions.

Fig. 6 gives an idea of the relationship between the density distribution Δρ(x, y, z)

(ray-traced top), its autocorrelation function γ(r) (bottom left) and the projection

G(z) (bottom to the right). The calculations are based on the two distributions,

the sphere and a star like geometry, shown on the top of the figure. More density

distributions and their correlation functions are discussed in Chapter 1.

Wave diffraction and microstructure

The interference of waves that are scattered by an object is called diffraction. If

the scattered waves are coherent then the measured intensity is found as the ab-

solute square of the sum of the amplitudes. A neutron interacts with the nucleus

14
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and the star geometry (solid line)

15



16

q
kf

ki

2θ

r

P

O

Figure 7: The geometry of scattering of waves. The wave, with incoming wave vector magnitude ki = 2π/λ,

scatters at an angle θ. The magnitude of the final wave vector is for elastic scattering kf = ki. The momentum

transfer q = |ki − kf | is related to the scattered angle by q = 4πλ−1 sin(θ).

of an element (the nuclei becomes the source of the secondary scattered waves).

The scattered wave is expressed by the complex function eiη, with η being the

phase (i.e., the optical path difference between a point and a reference multiplied

by the magnitude of the wave vector k = 2π/λ, where λ is the wavelength).

Considering Fig. 7, the path difference of Point P , given by vector r, w.r.t.

the origin O is −r(kf − ki). The scattering is taken to be elastic, meaning that

the magnitude of the wave vector is unchanged, i.e., kf = ki = 2π/λ. The phase

is expressed in terms of momentum transfer, so that η = −qr, where q = |ki−kf |
is the momentum transfer. The magnitude of q is

q = |ki − kf | =
4π

λ
sin(θ). (14)

The resulting amplitude is, as mentioned, found by adding up all the secondary

waves emerging from all the nuclei in the irradiated sample. The sum is written

as an integral over the irradiated volume V

A(q) =

∫
V

e−iqrΔρs(r)d
3r, (15)

which is the mathematical operation of Fourier transformation [14]. In other

words, the neutron interacts with a distribution of scatterers given by Δρs(r).

Δρs(r) is the scattering length density (SLD) distribution of the object, thus the

amplitude of the scattered waves is the Fourier image of the SLD distribution of

the material. It is, however, the intensity that can be measured in an experiment.

Multiplication with the complex conjugate A∗ yields the so called differential

scattering cross section

dΣ

dΩ
(q) = AA∗ =

∫
V1

d3r1

∫
V2

e−iq(r1−r2)Δρs(r1)Δρs(r2)d
3r2. (16)

16
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Thus, this Fourier transformation is an integral over all pair of points in the

irradiated volume. First an integral is calculated over the pairs of points that

have equal relative distances, yielding after dividing with the volume V

Ss(r) =
1

V

∫
Δρs(r1)Δρs(r2)dV, (17)

being is the autocorrelation function of the SLD distribution of the sample. Ex-

pressing the dΣ/dΩ(q) in terms of Ss(r) gives

dΣ

dΩ
(q) =

∫
e−iqrSs(r)d

3r. (18)

The inverse Fourier transformation is

Ss(r) = (2π)−3

∫
V

eiqrdΣ

dΩ
(q)d3q. (19)

For a two phase isotropic material we have that

Ss(r) = (Δρ0)
2φ(1 − φ)γ(r), (20)

Thus, it can be said that the measured intensity in a scattering experiment is the

Fourier transformation of the autocorrelation function γ(r) of density distribution

Eq. (17). Δρ0 is the difference in scattering length density between two phases

(Δρ0 = ρ1 − ρ2).

The unit of dΣ/dΩ(q) is m−1 and the scattering length density Δρs has the

dimension of m−2 so that Ss(r) is in m−4.

Small-angle neutron scattering

Distances in real and reciprocal space are mutually inverse, meaning that scatter-

ing from larger inhomogeneities will result in a scattering at low-q (small angles).

The obvious way to technically enable the detection of such pattern is to create

a narrow beam of neutrons that impinges on a sample and then detect the scat-

tering at some 2D position sensitive detector far away from the sample. This is

a so called pinhole SANS instrument [23] and [29] (see Fig. 8).

The small angle scattering can be expressed as a normalised probability dis-

tribution, with qx = 0 for small angle scattering

Σ(qy, qz) =
dΣ
dΩ

(qy, qz)∫ ∫
dΣ
dΩ

(qy, qz)dqydqz

, (21)

so that ∫ ∫
Σ(qy, qz)dqydqz = 1. (22)
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ki q

Slit (Pinhole)

dΩ

2θ

Figure 8: Principle of a small-angle neutron scattering instrument. The resolution of the instrument at the 2D

detector will depend on the angular spread of the incoming beam. A slit creates a narrow pinhole beam so that

the scattered intensities can be measured as a function of momentum transfer q.

Note that
dΣ

dΩ
(qy, qz) =

∫ ∫
e−i(qyy+qzz)Ŝs(y, z)dydz, (23)

where the projection can be written as

Ŝs(z) =

∫
Ss(x, 0, z)dx = (Δρ0)

2φ(1 − φ)ξG(z). (24)

A SANS instrument measures the differential scattering cross section dΣ/dΩ(qy, qz),

related to the sample structure according to Eq. (18) and Eq. (19).

Spin-echo small angle neutron scattering

The pinhole procedure creates an inverse relationship between q-resolution and

measured intensity (a neutron beam is collimated by cutting out a section of the

beam using slits). The resolution of such instrument is in the order of a few

nanometer up to a few hundred in terms of real-space range.

The pinhole can, however, be made obsolete by using so called spin-echo

techniques [54]. Neutrons undergo a Larmor precession in magnetic fields. The

precession is expressed in terms of an angle

ϕ = cλBL, (25)

where B is the magnetic field, L is the path length through the field and the

Larmor constant is c = 4.6368 × 1014T−1m−2. If the face of the magnetic field

region is inclined, forming a parallelogram shaped region (see Fig. 9), then

ϕ1 � cλBL(1 − α cot θ0), (26)

where θ0 is related to the inclination angle of the field region and α is the neu-

tron transmission angle with the x-axis (see Fig. 9). Note that the path-length

travelled for a un-scattered neutron will be the same in the two field regions.
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θ0
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x

L

+B -B
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kf
α

ϕ1

Δϕ=|ϕ1−ϕ2|=0

ϕ2

Δϕ=|ϕ1−ϕ2|

Figure 9: Principle of the spin-echo small angle neutron scattering instrument. Two parallelogram shaped

magnetic field regions, with tilt angle θ0, form a symmetric setup around the sample position. The regions have

opposite magnetic fields B+ and B- meaning that the neutron is precessing in opposite directions in the two

fields (ϕ1 and ϕ2). The incoming neutron enters the first field with an angle α and scatters by an angle 2θ from

ki to kf at the sample position. The scattering leads to a net precession Δϕ due to the different path-lengths

travelled in the second magnetic field.

Using polarised neutrons and combining two such field regions, but having one

with opposite direction of the field, produces a spin-echo setup (the precession

in the first field region is compensated/echoed in the second the precession). If

there is no scattering then the net precession angle is Δϕ = ϕ1 −ϕ2 = 0. If there

is scattering then the symmetry is broken, giving rise to net precession due to

the different path length in the last field region. The net-precession of a neutron

scattered over a vertical angle θ is

Δϕ = ϕ1 − ϕ2 � cλBLθ cot θ0, (27)

In this way, the setup is said to encode the scattered angles.

Using Eq. (14) we can express the net precession in terms of the z-component

momentum transfer q.

Δϕ � B
cλ2L cot(θ0)

2π
qz = qzz, (28)

where qz � 4πθ/λ for small angles. The spin-echo length z is defined as

z ≡ B
cλ2L

2π
cot(θ0), (29)

and has the dimension of length. The physical origin of z being a length can be

understood from the quantum mechanical treatment of Larmor precession, where

the two eigenstates of the neutron are separated over z in the field region [24]

and [10].
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The net precession cannot be measured directly, but is related to the polari-

sation of the neutron beam after the last field, i.e.,

P (qz, z) = cos(Δϕ) = cos(qzz). (30)

The spin-echo length z is varied by changing the magnetic field B according to

Eq. (29). Thus, no scattering results in P = cos(0) = 1 and in the case of

scattering P < 1.

If there is a sample (a distribution of scatterers) present between the two

field regions, then the measured polarisation will be the weighted sum of the

polarisation of the scattered and un-scattered neutrons. Thus,

P (z) = (1 − Σt) + Σt

∫ ∫
cos(qzz)Σ(qy, qz)dqydqz, (31)

where the first term is the contribution from the un-scattered neutrons and the

second term is the polarisation for the scattered part. Σt is the fraction of neutron

that scatters once. Since Σ(qy, qz) is real valued and even, we find that the

polarisation of the neutron beam in the case of single scattering is [63]

P (z) = (1 − Σt) + Σt

∫ ∫
ei(qyy+qzz)Σ(qy, qz)dqzdqz = (1 − Σt) + ΣtG(z), (32)

where G(z) is the projection of γ(r). Taking into account multiple scattering it

can be shown that [65]

P (z) = eΣt(G(z)−1). (33)

For a sample with thickness t

Σt = λ2t(Δρ0)
2φ(1 − φ)ξ. (34)

This shows that a SESANS measurement relates the measured polarisation of a

neutron beam to the projection G(z) of the autocorrelation function γ(r) of the

sample. SESANS can probe correlations in the range 20nm< z <20μm without a

significant need for beam collimation and multiple scattering is easily accounted

for.

Technical details and experimental conditions

The setup is shown together with a schematic drawing of the key components in

Fig. 10. A set of six pyrolytic graphite monochromators focuses a beam with a

wavelength of 0.21nm±1% on the sample position. The beam is first polarised by

a set of supermirrors (reflecting one spin state) and a similar set at the end of the
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set-up acts as an polarisation analyser before the 3He detector used for counting

the neutrons. The polarisation P is found as

P =
I+ − I−
I+ + I−

, (35)

where I+ is the spin up intensity and I− is the down intensity detected by the

detector.

Two sets of slits, one after the polariser and one before the analyser, define

the dimensions of the incoming and outgoing beam. The size of the beam is in the

order of cm2. Four electromagnets are positioned on an aluminium table to avoid

disturbance of the surroundings of the neutron path. The sign of the magnetic

field changes from the second to third magnet and for this purpose a field stepper

is installed just before the sample position. The field stepper makes a sharp

transition between the two field regions. Samples are mounted on a translation

stage capable of moving the sample in and out of the beam. The magnetic fields

are set and controlled to values between 0.5 and 230×mT. A key component in

the set-up are the 3 μm thick perm alloy films deposited on silicon wafers placed

between the pole faces of the electromagnets (see Fig. 10). The foils make the

neutron spin undergo a π-flip, all together creating two parallelogram shaped

precession regions. The foils are positioned with an angle of 5.5◦ to the central

axis of the neutron beam in the centre of the electromagnets.

A measurement takes from a few hours up to days depending on the desired

statistical accuracy of the measurement (the error is proportional to the square

root of the neutron counts). The typical size of a sample is in the order of cm2

and a few mm to a few cm:s thick along the beam, a good value for Σt in Eq. (34)

would be about 0.1-1.
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Chapter 1

Analysis of Spin-echo small-angle

neutron scattering measurements

This article, By Robert Andersson, Leon F. van Heijkamp, Ignatz M. de Schepper and
Wim G. Bouwman, has been ‘accepted if revised’ for publication by the scientific jour-
nal : Journal of Applied Crystallography.

Abstract

Spin-echo small-angle neutron scattering (SESANS) is, in con-
trast to conventional small-angle neutron scattering (SANS), a
real-space technique. SESANS measures the projection of the
density-density correlation function of a sample, rather than, as
in SANS, its Fourier transform. This paper introduces a toolkit
for how to interpret and analyse a SESANS measurement. Mod-
els that are used in SANS are discussed and translated into a
SESANS formalism. These models can be used to analyse and
fit the data obtained by SESANS. Dilute, concentrated, random,
fractal and anisotropic density distributions are considered. Nu-
merical methods used to calculate the projection from numerical
data are presented, either using Fourier transformation or via the
real-space pair correlation function.
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24 Analysis of Spin-echo small-angle neutron scattering measurements

1.1 Introduction

Small-angle x-ray scattering or Small-angle neutron scattering neutrons (SANS), was
developed in order to enable investigations of the bulk microstructure of samples. Sam-
ples that are characterised by heterogeneities ranging between tens of nanometers up
to several hundred nanometers [23]. A conventional SANS instrument measures the
intensities of neutrons scattered into the solid angles of a detector positioned far away
from the sample. The scattered intensities measured in a SANS experiment are there-
fore proportional to the Fourier transform I(q) of the autocorrelation function γ(r)
of the samples density distribution ρ(r). Since distances in real and Fourier space
are mutually inverse this approach makes it necessary to collimate the beam. Beam
collimation creates an inverse relationship between angular (momentum, q) resolution
and measured intensities. Ultra small-angle neutron scattering (USANS) increases the
resolution by orders of magnitude so that micrometer length scales become accessible.
For a recent review on SANS and USANS and its applications see [53] and on the data
analysis see [58].

Spin-echo small-angle neutron scattering (SESANS) was developed in order to cir-
cumvent the need for beam collimation and therefore enable investigations of samples
containing structures ranging from the nano up to the micrometer domain. The techni-
cal details and theoretical framework needed to realise this development can be found
in [66] and its applications in [9]. The SESANS approach relates the polarisation P (z)
of the neutron beam to the projection G(z) of the autocorrelation function γ(r) of
the samples density distribution ρ(r). The polarisation is in a SESANS experiment
measured as a function of the spin-echo length. The spin-echo length is the real-space
distance over which correlations are measured in the sample. SESANS and its mea-
sured quantities can be understood from a wavenumber perspective [80], and in this
context the instrument is performing a 2D Fourier transform of the scattered intensities.
The SESANS measurement can also be formulated in real-space, both physically [24],
[10] and mathematically [45], meaning that SESANS measures the projection of γ(r)
along the neutron beam path. The integral transformation producing G(z) is called
the Abel transformation of γ(r). The inverse Abel transform is unique for an isotropic
distribution.

An advantage, considering the data analysis of a SESANS measurement, is that
multiple scattering effects are easily accounted for [65]. Therefore, SESANS enables
measurements on strongly scattering and thicker samples, which is typically the case in
the sample-domain of interest. In SANS/USANS, on the other hand, multiple scattering
makes the data analysis more involved, see [83] and [68]. The amount of scattering
is therefore often reduced by manipulating the sample (dilution, making it thinner,
contrast matching etc). The application of SESANS to samples are found throughout
a wide range of domains, such as model colloids for fundamental studies [45], fine
granular and powder materials [2], food materials [79] and other complex colloidal
suspensions, cements and clays, just to name a few areas.
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1.1 Introduction 25

More SESANS-type instruments are being constructed and planned throughout
the neutron scattering community, see [60], [62]. Such instruments will be accessible
by a more general user community. These developments make it necessary to develop
a framework for how to interpret, analyse and model such experiments. This paper
introduces such a toolkit that can be used for the analysis of a SESANS experiment.

The first data analysis of a measurement can be done by looking at the raw data by
eye. Some rules of thumb together with model free methods will be presented. Model
free parameters that can be extracted from a SANS measurement often have SESANS
counterparts, such parameters will be discussed. The methods developed by Debye
and Porod as well as Guinier’s law for the analysis of small-angle scattering will be
discussed, and the analogous SESANS formalisms are discussed. This paper translates
many of the so called form factors, describing spheres, cylinders, spheroids etc. Some
theoretical and model distributions are shown to highlight the applicability of SESANS
for the study of anisotropic density distributions.

If the autocorrelation function γ(r) of the distribution is known, then the SESANS
counterpart is found through the projection of the autocorrelation function. On the
other hand, when no analytical functions exists for γ(r) it becomes necessary to do
numerical calculations. A method for performing such calculations and examples are
given. Dense but disordered structures can often be described by relatively simple
formalisms and phenomenological correlation functions. Scale invariant, or fractal,
distributions yield power laws in both real γ(r) and reciprocal space I(q), and it is
shown how such distributions would manifest in a SESANS experiment. Models that
describe random and self-affine distributions have been proven excellent at modelling
many disordered two phase materials [2]. A corresponding SESANS formalism has
been developed and some new functions are proposed. Denser monodisperse sphere-
packings show, due to the excluded-volume, ordering and therefore oscillations in the
correlation function. In SANS one usually separates the measured spectrum into a form-
factor, describing intra-particle correlations, and a structure-factor originating from
inter-particle correlations. A similar approach can be used for SESANS. The Percus
Yevick approximation [59], [74] has been used to calculate the correlation function for
hard sphere liquids in order to highlight how ordering can be observed in a SESANS
experiment.

Although extra focus is given to the real-space description of microstructure, and the
correlation function in particular, we often connect it to the corresponding reciprocal
space SANS formalism. This paper is limited to discuss finite ordering and samples with
two phases distributed isotropically (unless stated otherwise). All together, this paper
presents a toolkit that can be used for the analysis and understanding of a SESANS
experiment.
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26 Analysis of Spin-echo small-angle neutron scattering measurements

1.2 The density distribution and its autocorre-

lation, Fourier transform and projection

The density distribution of a phase making up a material takes on the values

ρ(r) =

{
1 if r is inside the phase,

0 otherwise.
(1.1)

The distribution ρ(r) contained in a volume V is fluctuating around its mean value

φ =
1
V

∫
V

ρ(r)dr (1.2)

Which is the volume fraction of phase in the volume V . For a two phase system, the
fraction of the other phase is 1 − φ. The density fluctuations around the average is

Δρ(r) = ρ(r) − φ, (1.3)

and the autocorrelation function of the density distribution function is:

γ(r) =

∫
V Δρ(r′)Δρ(r′ + r)dr′∫

V Δρ(r′)Δρ(r′)dr′
, (1.4)

so that γ(0) = 1. The integral in the denominator becomes after using Eqs. (1.1)-(1.3)∫
V

[Δρ(r′)]2dr′ = V φ(1 − φ), (1.5)

which is a mean square fluctuation term. The correlation function for an isotropic
distribution depends on the modulus of r only (i.e., γ(r) = γ(r)). The formalism
assumes no long-range order, so that γ(r) will be zero for r = ∞. In fact, γ(r), as
defined here, is invariant to which phase is being correlated, and one can interchange
the 1 and the 0 in Eq. (1.1), meaning that γ(r) of phase one is equal to γ(r) of phase
two, which also leads to Babinet’s theorem [23].

The shape and width of γ(r) depends on the structure of the density distribution,
which might be random, scale invariant (fractal), ordered, well defined (a sphere, a
particle) etc.

The projection of γ(r) along, for example, the Cartesian coordinate x is

G(z) =
2
ξ

∫ ∞

0
γ(x, 0, z)dx, (1.6)

where
ξ = 2

∫ ∞

0
γ(x, 0, 0)dx. (1.7)

For a spherical symmetric (i.e., isotropic) density distributions the projection G(z) can
be written as

G(z) =
2
ξ

∫ ∞

z

γ(r)r√
r2 − z2

dr. (1.8)
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Provided that γ(r) decays to zero faster than 1/r, the inverse transformation is found
as:

γ(r) = − ξ

π

∫ ∞

r

G′(z)√
z2 − r2

dz (1.9)

where the prime denotes differentiation w.r.t z. After integrating by parts in Eq. (1.9)
the derivative is avoided and the transformation reads

γ(r) =
ξ

π

∫ ∞

r

G(r) − G(z)
(z2 − r2)3/2

zdz (1.10)

Thus, γ(r) and G(z) are Abel transform pairs [14]. G(z) is the sample dependent
property measured in a SESANS experiment together with the correlation length of
the density distribution

ξ = 2
∫ ∞

0
γ(r)dr. (1.11)

The power spectrum I(q), proportional to the intensities measured in a conventional
small-angle scattering experiment, is the Fourier amplitudes squared of the density fluc-
tuations and therefor the Fourier transformation of γ(r) according to the convolution
theorem [14]. Assuming a rotational invariant density distribution and using Eq. (1.5)
the Fourier transformation becomes

I(q) =
1

V φ(1 − φ)

∣∣∣∣
∫

V
e−iqrΔρ(r)d3r

∣∣∣∣
2

(1.12)

=
∫

V
e−iqrγ(r)d3r

= 4π
∫ ∞

0
〈e−iqr〉γ(r)r2dr

= 4π
∫ ∞

0

sin(qr)
qr

γ(r)r2dr,

where 〈e−iqr〉 = 〈e−iqr cos θ〉 = sin(qr)
qr is the angular average over θ and the second

equality is due to the convolution theorem [14]. The fourth equality assumes an isotropic
distribution Δρ(r). The inverse transformation is

γ(r) =
1

2π2

∫ ∞

0

sin(qr)
qr

I(q)q2dq (1.13)

The so called Fourier-Abel-Hankel [14] cycle relates the three functions, I(q), G(z)
and γ(r) to each other. The relationships are illustrated schematically in Fig. 1.1 for
isotropic distributions, where the figure shows the inverse related Abel-Hankel-Fourier
transformation and also the operations yielding γ(r), I(q) and G(z) directly from ρ(r).
Note that G(z) can be calculated as the correlation function of the Abel transformation
of ρ(r). The Abel transformation of a circular symmetric function is equivalent to the
Hankel transformation of that functions Fourier transform, thus G(z) is the Hankel
transformation of I(q), mathematically
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28 Analysis of Spin-echo small-angle neutron scattering measurements
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Figure 1.1: The relationship between the Abel, Hankel and Fourier transformation for an isotropic distribution

ρ(r). Note that G(z) can be found by calculating the autocorrelation function of the projection of ρ(r).

G(z) =
1

2πξ

∫ ∞

0
J0(qz)I(q)qdq (1.14)

and the inverse transformation is

I(q) = 2πξ

∫ ∞

0
J0(qz)G(z)zdz (1.15)

directly relating a SESANS measurement to a SANS measurement, see Sec. 1.4. The
correlation length is here given by

ξ =
1
2π

∫ ∞

0
I(q)qdq. (1.16)

When calculating γ(r) and G(z) based on a numerical density distribution Δρ(r)
it is computationally more efficient to calculate in the wavenumber domain by using
Eq. (1.12) and Eq. (1.14). Such a procedure bypasses the calculation of the correlation
function in Eq. (1.4).

Previously, this was expressed in cartesian coordinates where G(z) is a 2D Fourier
transform of I(q) [80]. If qx = 0 (i.e., the small-angle scattering approximation) the
correlation function becomes

G(y, z) =
∫ ∞

−∞

∫ ∞

−∞
I(qy, qz)e−i(qyy+qzz)dqydqz. (1.17)

Note also that in the current SESANS setup there is no sensitivity in the y direction, i.e.,
the measurement is as a function of correlation across z. Switching to polar coordinates
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1.3 Basic principle of the SESANS technique 29

in real and reciprocal space (i.e., qy = q cos θ, qz = q sin θ, x = r cos ϕ and y = r sin ϕ)
with the area element dqydqz = qdqdθ gives

G(r) =
∫ ∞

0

∫ 2π

0
I(q)e−iqr(cos ϕ cos θ+sinϕ sin θ)qdqdθ (1.18)

=
∫ ∞

0

∫ 2π

0
I(q)e−iqr cos θqdqdθ

=
∫ ∞

0
I(q)
(∫ 2π

0
e−iqr cos θdθ

)
qdq

=
1
2π

∫ ∞

0
J0(qr)I(q)qdq.

Since y = 0, as in the current SESANS setup, and after normalising with ξ this becomes
Eq. (1.14).

Similarly, I(q) can be expressed as a Fourier transformation in cartesian coordinates,
but now in 3D

I(qy, qz) =
∫ ∫ ∫

e−i(qyy+qzz)γ(x, y, z)dxdydz, (1.19)

=
∫ ∫

e−i(qyy+qzz)G(y, z)dydz,

leading to Eq. (1.15) after switching to polar coordinates in the same way as in
Eq. (1.18).

1.3 Basic principle of the SESANS technique

SESANS makes use of the Larmor precession of neutrons in magnetic field regions
[54]. The geometry of the field regions encodes the scattered angles of the neutrons,
meaning that the angular resolution of the instrument becomes independent of the
angular divergence of the incoming beam [66], see Fig. 1.2. The neutron precesses at
a certain angle ϕ1 in the first field B+ region and the precession is reversed in the
second field B−. Scattering at small angles 2θ between the fields breaks this symmetry
and makes the neutron travel a different path length through the second field so that
(Δϕ = |ϕ1 − ϕ2| 
= 0). The net precession Δϕ causes the beam to depolarise, the
polarisation is directly related to the projection of the autocorrelation function of the
sample.

1.4 SESANS measured quantities and standard

data interpretation

SESANS measures G(z) through the transmission of polarisation, thus the instrument
itself is performing Eq. (1.14). The polarisation as a function of the real-space pa-
rameter (spin-echo length) z after normalisation with an empty beam (i.e., P (0) = 1)
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30 Analysis of Spin-echo small-angle neutron scattering measurements

2θ

z

x+B -B

Δϕ=|ϕ1−ϕ2|

ϕ1 ϕ2

Figure 1.2: Schematic drawing of the SESANS principle and the coordinate frame of reference. In the absence of

scattering the neutron spin precesses through an angle ϕ1 in the two magnetic fields. Scattering at small angles

2θ breaks the symmetry of the setup and give rise to a net precession Δϕ = |ϕ1 − ϕ2| �= 0, which is detected as

depolarisation of the neutron beam.

is
P (z) = eΣt(G(z)−1), (1.20)

where Σt is the average number of times a neutron scatters when traversing the sample,
i.e., this takes into account multiple scattering. For a two phase system this becomes
[23]

Σt = λ2t(Δρ0)2φ(1 − φ)ξ. (1.21)

Where t is the sample thickness, λ is the neutron wavelength and Δρ0 is the neutron
scattering length density (SLD) contrast between the two phases (discussed below).
The (1 − φ) term is due to the substraction of the average density in Eq. (1.3), this
term, however, does not appear in a single-particle scattering treatment. The last terms
in Eq. (1.21) originate from the following correlation function∫

dr〈Δρ0(0)Δρ0(r)〉V = (Δρ0)2φ(1 − φ)ξ, (1.22)

where Δρ0(r) is the SLD contrast distribution of the sample. A density distribution
with no long-range ordering means that G(∞) = 0, thus

P (∞) = e−Σt , (1.23)

yielding the so called saturation level of the measured polarisation. P (∞) is the fraction
of neutrons that does not scatter when traversing the sample. This level contains
information about both concentrations through φ and the microstructure through ξ as
well as on the chemical composition via the SLD contrast

Δρ0 = ρ1 − ρ2. (1.24)

The individual scattering length densities can be calculated by

ρi =
δNa

M

n∑
j=1

bj , (1.25)

where δ is the solid density of the material, Na is Avogadro’s constant, M is the
molecular mass of the molecule making up the material and finally bj is the bound
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1.4 SESANS measured quantities and standard data interpretation 31

coherent scattering length of element j [73]. The sum is running over all n atoms in
the molecule. The neutron scattering length for deuterium and hydrogen is different,
making it possible to work with contrast variation, either by deuterium labelling of
the molecules or by using proper mixing ratios of light and heavy water. Contrast
matching with heavy/light water can be used in order to simply determine the SLD of
a structure or to ensure proper experimental conditions so that the final transmission
of the polarisation P (∞) is optimal (0.9 < P (∞) < 0.3).

Although, it is the polarisation P (z) that is the raw data outcome of a SESANS
measurement, the focus of this paper will be on G(z) and on the correlation length ξ.
From an experimental point of view:

G(z) = 1 − ln P (z)
ln P (∞)

(1.26)

and
ξ = − ln P (∞)

λ2t(Δρ0)2φ(1 − φ)
, (1.27)

provided that the saturation level P (∞) is well determined and that the sample is well
characterised in terms of Δρ0 and φ.

The differential scattering cross section, i.e., the measured intensities, measured as
a function of q in conventional SANS is

dΣ
dΩ

(q) = (Δρ0)2φ(1 − φ)I(q), (1.28)

and can be related to a SESANS experiment via the formalism described in Sec.1.2
and Eq. (1.20). Note that, when considering measurements, the relationship between
dΣ
dΩ (q) and γ(r), through the Fourier transformation, is only valid within the Born
approximation.

The second moment of dΣ
dΩ(q) is invariant to the structure, i.e.,

Q =
∫ ∞

0

dΣ
dΩ

(q)q2dq = (Δρ0)2φ(1 − φ) =
Σt

λ2tξ
. (1.29)

Q is called the Porod invariant [23]. Normalising the first moment with Q gives the
correlation length, i.e.,

ξ =
π

Q

∫ ∞

0

dΣ
dΩ

(q)qdq. (1.30)

The intensity extrapolated to q = 0 is proportional to the isothermal compressibility,
thus

dΣ
dΩ

(0) = (Δρ0)2φ(1 − φ)
∫

G(z)zdz. (1.31)

1.4.1 Visual interpretation of measurements

A SESANS measurement can often be given an intuitive way of interpretation, which is
useful for experimentalists outside the scattering community. The reason for this is the
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real-space nature of SESANS. A diverse set of measurements are presented in Fig. 1.3,
measurements that illustrate the real-space character of this technique.

From these measurements it is possible to determine the diameter of the sphere
(Fig. 1.3A); nearest neighbour distances in the hard-sphere liquid (Fig. 1.3B); the fractal
dimension of the powder Fig. 1.3C; the width, periodicity and thickness of the ridges
making up the grating in Fig. 1.3D.

1.4.2 The width of the polarisation curve

For dilute isotropic materials without any ordering, γ(r) and therefore G(z) and P (z)
decay at the length scale of the size of the inhomogeneities making up the sample
structure. A plot of P (z) versus z starts at unity, decays and saturates at a spin-echo
length equal to the size that characterises the sample, this is the point at which no more
density correlations are seen in the sample, or the largest size at which correlations exist
in the sample. For a dilute sample of monodisperse spheres this point will be exactly
at the diameter of the sphere (the longest line possibly drawn inside a sphere is the
diameter). For a dilute sample of monodisperse cylinders of length l and diameter D

this point will be strictly
√

l2 + D2.
An illustration regarding the basic interpretation of a SESANS measurement is

made in Fig. 1.4.

1.4.3 The height of the polarisation curve

The level P (∞) of the saturation point will depend on the structure of the sample as
well as on its average compositions, see Eq. (1.23). The saturation level is proportional
to the chemical composition Δρ0, the packing fraction φ and the correlation length ξ of
the sample inhomogeneities, and therefore on the sample structure (see also Fig.1.4).
It is worthwhile to note that ξ is not the same as the saturation point lmax on the
horizontal axis. A conceptual interpretation is that: ξ is the average length of all
lines possibly drawn inside the density fluctuations whilst the saturation point, on the
horizontal axis, is the largest possible line drawn inside the inhomogeneity. A sphere
with diameter D corresponds to a correlation length of ξ = 3/4D. Thus, the difference
between ξ and lmax gives information about the compactness of the distribution.

1.4.4 The initial slope of the polarisation

The initial slope of the polarisation dP (z)/d(z) can be used to analyse a SESANS
measurement. The slope will be proportional to the contrast Δρ0 and the packing
fraction φ of the inhomogeneities. The slope is to some approximation independent on
the arrangement of the inhomogeneities. By dividing Eq. (1.21) with ξ one obtains

−d ln(P (z))
dz

� tλ2(Δρ0)2φ(1 − φ). (1.32)
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This, in some sense, is the SESANS equivalent to the Porod invariant, to be discussed
in Sec. 1.4.6. The argument for this structural invariance is that the two length scales,
the ratio of lmax and the correlation length ξ, have cancelled each other. An illustration
of this can be found in measurements on the structure of food related emulsion gels.
Several gels were prepared and with different processes, but with the same composition.
The initial slope of all measurements was identical [8]. By applying such analysis one
could follow the change in packing fraction and chemical composition as the sample
evolves, provided that the relation between the width lmax and the correlation length
ξ is unchanged throughout the procedure.

The initial slope can also be used to investigate anisotropy in the density distribu-
tion of a sample, provided that the sample can be re-oriented and rotated in the beam
without disturbing its structure. An isotropic sample has to give the same slope in
all directions. The initial slopes have been used to determine the grain density and to
investigate the microstructure structure of a cohesive powder undergoing compression
[2] as well as for the study of anisotropy [3]. It was shown that uniaxial compression of a
nanotube powder induces anisotropy in the density distribution, whereas no anisotropy
was found in a compressed powder composed of isotropic grains. It was also shown
that the powders can be well described by rather simple correlation functions, which
describe fractal or self affine materials.

1.4.5 Extracting the correlation function γ(r) from a SESANS

measurement

For many samples there is no a priori information about the density correlation function
of the sample. In such cases the goal could be to extract directly a correlation function
γ(r) from the SESANS measurement. Such a procedure was applied in the data analysis
of dairy products [79] and emulsion gels [8].

In general, calculating γ(r) from a measurement involves differentiating the mea-
sured data according to Eq. (1.9). This does not seem to be very practical due to the
typically noisy data obtained from measurements, and the errors produced by such a
step will be blown up by the subsequent integration. An alternative is Eq. (1.10) or
one could perform the inverse transformations according to Eq. (1.15) and then using
Eq. (1.13) to calculate γ(r). A numerical problem with such direct methods is that the
value of G(z) for when it approaches zero is not well determined from the experimental
P (z).

The proposed data analysis describes the autocorrelation function of the material
with a sum of n Gaussians having some dimensionless amplitudes Ai and widths ai

(having the dimension of length). It is important to keep n low in order to avoid
over-parameterising the data.

By using this method it is possible to describe a fast changing slope at the shorter z’s
and a final slope, without over parameterising the fit function. This is mathematically
convenient, since the Gaussian function is a self reciprocal [15] function, meaning that
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36 Analysis of Spin-echo small-angle neutron scattering measurements

it survives the Fourier, Hankel and therefore also the Abel transformation.
Measurements are fitted by a sum of Gaussians.

G(z) =
∑n

i=1 Aie
−(r/ai)2∑n

i=1 Ai
, (1.33)

where Ai is the amplitude of the Gaussian and ai is its width. The sum runs over n

Gaussians. The correlation length ξ is

ξ =
√

π
∑n

i=1 ai∑n
i=1 Ai/ai

. (1.34)

Thus, the autocorrelation function in this formalism becomes

γ(r) =
∑n

i=1 Ai/aie
−(r/ai)

2∑n
i=1 Ai/ai

. (1.35)

1.4.6 Porod’s analysis: The invariant and the specific sur-

face

In conventional SANS it is possible to relate the scattered intensity at higher q to the
surface area S of the density distribution

I(q) ∝ S

q4
. (1.36)

This is known as the Porod law. Debye [19] made the connection to the real-space
correlation function and showed that for a two phase material characterised by sharp
phase boundaries

γ(r) = 1 − Sr

4V
. (1.37)

and
lim
r→0

γ′(r) = − S

4V
. (1.38)

Where V is the volume containing the distribution. The Fourier transformation of
such a linear function yields the scaling seen in Eq. (1.36). It is possible to relate the
projection of γ(r) to the specific surface area. Using Eq. (1.10), shifting the integration
boundaries by letting u = z − r and differentiating yields

γ′(r) = (1.39)

− ξ

π

∫ ∞

0

1
u3/2(u + 2r)5/2

([G(r) − G(r + u)](2u + r)+

[(G′(r + u) − G′(r))](u + r)(u + 2r)
)
du.

Evaluating for the limit r → 0 and using Eq. (1.37) gives the specific surface in the
SESANS formalism

S

V
=

8ξ
π

∫ ∞

0

1
z3

[G(0) − G(z) +
1
2
zG′(z)]dz, (1.40)
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1.5 Power-law scattering and the dimensionality of ρ(r) 37

where G′(0) = 0 for all finite distributions. The integral in Eq. (1.40) exists if at least
G(z) ∝ −z2.

The Porod invariant Q introduced in Eq. (1.29) is the mean square fluctuation of the
scattering length density distribution, i.e., φ(1−φ)(Δρ0)2. In a conventional scattering
experiment this is found as an integral over the scattered intensities [23] (the second
moment of the distribution I(q)). The SESANS analogue is found by calculating the
initial slope Sec. 1.4.4, i.e. −d ln(P (z))

dz
1

tλ2 = (Δρ0)2φ(1 − φ) for a two phase material.

1.4.7 Guinier approximation

The Guinier law relates the radius of gyration Rg of the particle to the scattered
intensity. For small q this means that

I(q) � e−q2R2
g/3. (1.41)

An equivalent law for SESANS has been derived by essentially applying the transfor-
mation in Eq. (1.14) to the Gaussian function, therefore yielding a new Gaussian [80].
A series expansion of G(z) confirmed this [39] and is based on the wavenumber repre-
sentation of G(z). It should be stressed, however, that the average size describing the
structure is measured directly as the width of a P (z) versus z plot, providing a very
straightforward way of extracting the size best describing the sample.

1.5 Power-law scattering and the dimensional-

ity of ρ(r)

A scaling-law can be derived for γ(r) based on the dimensionality of the distribution
ρ(r). For a scale invariant density distribution, the mass M(r) falling within a radius
r will scale as

M(r) ∝ rd, (1.42)

where d is the dimensionality of the object (Hausdorff, packing, fractal dimension etc.).
Objects are called fractals if this dimensionality exceeds the topological dimension of
the object [51]. Normalising and differentiating w.r.t. r gives in a 3D envelope space

γ(r) =
dM(r)
2πr2dr

∝ rd−3. (1.43)

In the wavenumber domain the powerlaw reads

I(q) ∝ q−d, (1.44)

sometimes referred to as power-law scattering [72]. Translating the power law into
SESANS means calculating the projection according to Eq. (1.8). For the integral
transformation to converge, γ(r) has to decay faster than r−1, thus the integral in
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38 Analysis of Spin-echo small-angle neutron scattering measurements

Eq. (1.8) does not converge for d > 2, and one is forced to introduced a cutoff function
or a boundary in the integration limit. For d < 2, however, this scaling-law transforms
into

G(z) ∝ zd−2. (1.45)

Thus, the fractal dimension for density distribution which scales with d < 2 can be
found by representing G(z) a on a log-log scale.

After making the correlation function finite by imposing a finite upper integration
boundary a in Eq. (1.8) gives for z < a

G(z) ∝ zd−3
2F1

[
1
2
,
3 − d

2
;
3
2
;−a2

z2

]
for d ≤ 3, (1.46)

where a is a measure of the size of the microstructure structure and 2F1 is the Hyper
geometric function. Examining the limit d = 1 (needles):

G(z) ∝z−1 tan−1[a/z], (1.47)

and for a dimensionality d = 2 (membranes):

G(z) ∝ ln[a + (a2 − z2)] − ln[z]. (1.48)

1.5.1 Finite fractals

Taking into account a finite extension of the fractal structure is commonly done by
introducing an exponential cutoff [72] so that

γ(r) ∝ rd−3e−r/a, (1.49)

where a represents the spatial extension of the fractal. Including a lower building block
size a0 that builds up the fractal can be done by

γ(r) = (r/a0 + 1)d−3e−r/a. (1.50)

This correlation function has the important property of being unity at r = 0. The
proposed correlation function is to the authors knowledge proposed here for the first
time. Using Eq. (1.50) enables the calculation of the correlation length (see Eq. (1.11)),
i.e.,

ξ = 2a0e
a0/aE3−d(a0/a), (1.51)

where En is the generalised Exponential integral. We are unable to express G(z) ana-
lytically, but present numerical results in Fig. 1.5 for d = 2.7, d = 2.5 and d = 2.3, with
a/a0 = 1 × 103. Although, It is possible to calculate an analytical expression for G(z)
using Eq. (1.49) in terms of Hypergeometric functions, this expression is too lengthy
and not shown here.

No direct method (log-log plot, semi-log plot etc) of illustrating the scattering
from fractals with d > 2 in SESANS data seems to exist, but one is forced to use
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40 Analysis of Spin-echo small-angle neutron scattering measurements

numerical techniques or involved analytical formulas in order to fit a d to the measured
data. In Fig 1.5 it is evident that the projection becomes generally narrower for lower
dimensionalities but the projection makes the decay less sharp when comparing with
γ(r). The formalism described here has been used to model SESANS measurements
on dry powders upon compaction [3].

1.5.2 Random two phase media

For a perfectly random inhomogeneous solid Debye, Anderson and Bueche (DAB) [19],
[20] conjectured that

γ(r) = e−r/a, (1.52)

where a represents a measure of the size of the random inhomogeneities. The argument
for its validity is that its series expansion at small r yields Eq. (1.37). The projection
of this correlation function is

G(z) =
z

a
K1(z/a), (1.53)

where Kn is the modified Bessel function of the second kind. The Fourier power spec-
trum is

I(q) =
8a3π

(1 + (qa)2)2
. (1.54)

This can be seen as a special case of a more general correlation function for describing
self-affine random density distributions [41] and [35].

γ(r) =
2

Γ(H)

( r

2a

)H
KH

( r

a

)
, (1.55)

where Kn(x) is the Modified Bessel function of the second kind and Γ is the Gamma
function. H is the so called Hurst exponent, related to the space filling capacity of the
structure (d = dt+1−H), with dt being the topological dimension of the structure. The
limit H = 1 represents a smooth euclidian field and H = 0 is a space filling euclidian
field (see Fig 1.6). For H = 1/2 this reduces to the DAB formula Eq. (1.52), describing
a perfectly random inhomogeneous solid.

Two domains are usually discussed with regards to the Hurst exponent H. First
for H > 1/2 where the distribution is persistent, so that a previous event is likely to be
followed by a similar event, characteristic for smoothness and long-range correlations.
Secondly, when H is below 1/2 the distribution is called anti-persistent, meaning that
the previous event is more likely to be followed by a different event (roughness, short
range correlations).

The projection, measured in a SESANS experiment, has the analytical solution:

G(z) =
2

Γ(H + 1/2)

( z

2a

)H+1/2
KH+1/2

(z

a

)
, (1.56)

and the correlation length is

ξ =
2
√

πaΓ(H + 1/2)
Γ(H)

, (1.57)
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1.5 Power-law scattering and the dimensionality of ρ(r) 41

being a decaying function for decreasing H. This model has been used to investigate
the microstructure development in a cohesive powder undergoing compressive strain
using SESANS [2].

The corresponding wavenumber domain expression measured in SANS is found by
Fourier transforming Eq.(1.55), yielding

I(q) =
4a3π(1 + 2H)

(1 + (qa)2)
3
2
+H

. (1.58)

Fig. 1.6 illustrates the significance of the Hurst exponent. The autocorrelation
function of the 1D curves ρ(x) are given by Eq. (1.55), with a = 1 and H as denoted
in the figure. Note that a is a scaling factor in the exponent and not the maximum
size of the fluctuations, which is rather about 5a. These curves have been calculated
by filtering a uniform deviate (white noise) in the wavenumber domain. The filter
is the Fourier spectrum of the distribution, i.e., the square root of Eq .(1.58). The
inverse Fourier transformation of the filtered noise yields a real-space representation of
a distribution having the correlation Eq. (1.55), see for more information [41].

At least the model correlation function has to satisfy γ(0) = 1, γ(∞) = 0 and to be
realistic γ′(0) < 0 (see Eq. (1.37)). One such correlation function has been proposed
above in Eq. (1.50). Similar, but a more simple function for the projection could be

G(z) = e−(z/a)α
, (1.59)

where 0 < α < 2 is related to the structure of the phase boundary. The limit α = 1
corresponds to H = 0 in the above formalism and would be scattering from a 2D
distribution. The domain 1 < α < 2 corresponds to more compact distributions, let’s
say d > 2 and the lower domain 0 < α < 1 corresponds to the more open and branched
distributions with higher specific surfaces, or d < 1. This correlation function, although
phenomenological, is at least not over-parameterised.

1.5.3 Numerical examples of random and fractal media

Fig. 1.7 shows a Diffusion Limited Aggregate (DLA) [52], composed of >18000 particles.
The left part of the figure represents a random density distribution (in 2003 voxels)
according to the DAB formalism.

The random density distribution was simulated in the wavenumber domain by ap-
plying a filter

√
I(q) according to Eq. (1.58) on white noise generated in the wave

number domain (here with H = 1/2). The spatial domain representation is then ob-
tained by inverse fast Fourier transformation. Both distributions are discretised so that
ρ(x, y, z) = {0, 1}, the packing fraction is φ = 0.5 for the random media. And about
φ = 0.01 for the DLA cluster (depending on how the boundary is defined).

The correlation function and G(z) was calculated by means of Fourier transforma-
tions according to Eq. (1.12) and Eq. (1.14). This procedure is computationally more
efficient as compared to calculating the autocorrelation function in real space. Fig. 1.7
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1.6 Form factor and the correlation function of isolated shapes 43

shows the results of this procedure in terms of γ(r), I(q) and G(z) for the two real-space
density distributions illustrated on top.

These examples, where the density distributions are explicitly know, help to high-
light the real space nature of SESANS. The 3D distributions are plotted on the same
scale as the correlation functions. The size of the random heterogeneities in the ran-
dom case is about 20-25 units and rather well defined, the correlation function decays
exponentially according to Eq. (1.52) and saturates around this region. For the DLA
cluster, the initial decay is much sharper and we see a saturation at about half the size
of the entire cluster.

1.6 Form factor and the correlation function of

isolated shapes

For many simple shapes the autocorrelation function γ(r) is known analytically. Its
Fourier transform is called the form factor. The form factor is measured in SANS ex-
periments in non-interacting and typically dilute samples. Important to note is that the
form factor is only defined for a single particle in vacuum, that is to say –a single-particle
treatment, where the correlations are only considered within the finite boundaries of the
particle. Therefore, Eq. (1.5) becomes V φ and Eq. (1.21) reduces to: Σt = λ2t(Δρ0)2φξ.

The challenge in order to calculate γ(r) for a given geometry, is to find the inter-
secting volume between the object and its ghost image after shifting the ghost by a
distance r.

1.6.1 Sphere

For a single sphere with radius R the autocorrelation function is

γ(r) = 1 − 3
4

r

R
+

1
16

( r

R

)3
(1.60)

for r ≤ 2R and zero elsewhere. The corresponding projection G(z) is found by inserting
Eq. (1.60) in Eq. (1.8) and integrating from zero to 2R; this gives for z ≥ 0 [45].

G(z) = (1.61)

�
[√

1 −
( z

2R

)2
(

1 +
1
2

( z

2R

)2
)

+ 2
( z

2R

)2 (
1 − z

4R

)2
ln

(
z/R

2 +
√

4 − (z/R)2

)]
,

where � gives the real part. This removes the condition on z ≤ 2R, since the real part
is zero for z > 2R, which is practical for fitting procedures. The results for G(z) and
γ(r) are shown in Fig. 1.8.
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Eq’s (1.61) and (1.60).

The correlation length for a sphere is found by inserting Eq. (1.60) in Eq. (1.11),
which yields ξ = 3/2R and this is simply the average end-to-end distance one finds
inside a sphere.

G(z) for a sphere can be well approximated by the Gaussian function:

G(z) = e−
9
8
(z/a)2 , (1.62)

where a � R.
Measurements on isolated sterically stabilised silica spheres are shown in Fig. 1.3

and [44].

1.6.2 Spherical shell and multi-shell

An object consisting of concentric shells of different densities ρi (and radii Ri) is a
multi-shell. One extreme is a single spherical shell with some thickness. It can also be
an onion containing many layers. The correlation function of two layers of radius Ri

and Rj is

C(r,Ri, Rj) =
4π
3

R3
j× (1.63)⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 0<r<Ri−Rj[
R3

i +R3
j + 1

8r3−(R2
i + R2

j

)
3
4r

− (R2
i −R2

j

)2 3
8r−1

]
/
(
2R3

j

) Ri−Rj ≤r≤Ri+Rj

0 Ri+Rj ≤r<∞.
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The correlation function γ(r) for a multi-shell is a weighted sum over N layers of
C(r,Ri, Rj)

γ(r) =
1(∑N

i=1 wi

)2

(
N∑

i=1

w2
i C(r,Ri, Ri)2 + (1.64)

2
N−1∑
i=1

N∑
j=i+1

wi wj C(r,Ri, Rj)

⎞
⎠

with wi = ρi−
∑i−1

k=1 ρk being the weight wi and equaling ρi minus the density (SLD
contrast) of the preceding layers.

The projection of Eq. (1.64) is:

P(Ri, Rj , z) = (1.65)

2
3πR4

i

[
H0

(
Ri+Rj

Ri
, z

Ri

)
− H0

(
Ri−Rj

Ri
, z

Ri

)]
+

2
3πR4

j

[
H0

(
Ri+Rj

Rj
, z

Rj

)
− H0

(
Ri−Rj

Rj
, z

Rj

)]
+

4
3πR3

j h0(Ri−Rj , z)−
1
4π
(
R2

i −R2
j

)2 [h0(Ri+Rj, z) − h0(Ri−Rj , z) ] ,

where

h1(α, z) = 2�
[√

α2 − z2
]
, (1.66)

� denotes the real part and

h0(α, z) = �
[
ln
(

2α + h1(α, z)
2α − h1(α, z)

)]
(1.67)

and finally

H0(α, z) = − 3
8z2
(
1 − 1

16z2
)

h0(α, z)+ (1.68)(
1 − 3

8α + 1
64α3 + 3

128αz2
)

h1(α, z).

The un-normalised SESANS correlation function G∗(z) can be calculated from the
individual contributions of each layer i with layer j, weighted respectively with wi and
wj,

G∗(z) =
4
3
π

N∑
i=1

w2
i R4

i H0

(
2,

z

Ri

)
+ 2

N−1∑
i=1

N∑
j=i+1

wi wj P(Ri, Rj , z) (1.69)
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and

G∗(0) =2π
N∑

i=1

w2
i R4

i + 2π
N−1∑
i=1

N∑
j=i+1

wi wj × (1.70)

[
RiRj

(
R2

i + R2
j

)
1
2

(
R2

i − R2
j

)2 ln
Ri + Rj

|Ri − Rj |
]

.

The projection of γ(r) expressed in the normalised form is

G(z) ≡ G∗(z)/G∗(0) (1.71)

A special, relevant case of the above formalism is the spherical shell, i.e., with N = 2
and Ri = Rin < Rj = Rout Fig. 1.9 shows the result for a shell with Rin/Rout = 0.9 (the
ratio between the inner and outer radius). The two regions < 2Rin and z > 2Rin−Rout

are both due to inter shell correlations (equivalent to correlating a sphere of radius
Rout) and the region between is intra shell correlations, which scale as r−1 due to the
2D nature of a shell (rd−3). A decaying linear region is observed when plotting G(z)
vs log(z), the slope is decaying with decreasing shell thickness, see Fig1.10.

The correlation length ξ for a spherical shell is

ξ = Rout

(
3(1 − s)
2(1 − s3)

+
3(1 − s2)2

4
ln
(

1 + s

1 − s

))
, (1.72)

with s = Rin/Rout, meaning that the polarisation saturation level Eq. (1.23) will be
highly sensitive to s.

Some illustrative examples can be found in [11]. They calculated G(z) for shells
and multi-shells numerically, using inverse Fourier transformation.

The density distribution for thick s < 0.5 hollow spheres can be approximated by
a Gaussian function

ρ(r) =
1

π3/2
(

3
2

)
p

e−r2
r2p, (1.73)

where (x)p is the Pochhammer symbol and p = 0, 1, 2, ...∞ has the effect of sharpening
the shell so that zero correspond to filled and higher values to thinner shells. The Fourier
spectrum of ρ(r), its power spectrum I(q), autocorrelation function γ(r) and G(z) can
be analytically calculated using Computer Algebra Systems, such as Mathematica.

1.6.3 Ellipsoids and Spheroids

The ellipsoid is a sphere that has been scaled by a factor along each orthogonal axis
and finding the autocorrelation function of the ellipsoid involves averaging over all
azimuthal and polar angles. The correlation function for an ellipsoid with semi-axes a,
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Figure 1.9: γ(r) (dashed line) and its projection G(z) (solid line) for a spherical shell with s = Rin/Rout = 0.9

b and 1 is

γ(r, a, b) = (1.74)

2
πr2

∫ π/2

0
dθ sin θ

∫ π/2

0

1
fθ,ϕ(a, b)

P

(
r

fθ,ϕ(a, b)

)
dϕ,

where fθ,ϕ(a, b) =
√

[a2 cos2(ϕ) + b2 sin(ϕ)] sin2(θ) + cos2(θ), which represents distances
in spherical coordinates after the scaling. P (x) = x2 − 3/4x3 + 1/16x5 for x < 2 is the
probability distribution function of distances inside a sphere of unit radius. The dou-
ble integral has to be solved numerically, and after this one obtains G(z) by a second
numerical integration according to Eq. (1.8).

The ellipsoid is called a spheroid when a = b and when a > 1 it is called an oblate
(membrane) spheroid and a < 1 produces a prolate spheroid (needle). This simplifies
the problem and produces an analytical solution for the correlation function [25]. The
oblate case (a > 1) yields after normalisation

γ(r) = (1.75)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − 3r
8 + r3

64 + 3r3

128−
3r ln(a+

√
a2−1)

8a
√

a2−1
+ 3r2 ln(a+

√
a2−1)

128a
√

a2−1
, r < 2

3
√

4a2−r2

8r
√

a2−1
+ 3r

√
4a2−r2

64a2
√

a2−1

− 3r ln(U)

8a
√

a2−1
+ 3r3 ln(U)

128a3
√

a2−1
, 2 < r < 2a,

where U = ar−1(2+
√

4 − (r/a)2). For the prolate case when a < 1 it is again possible
to write γ(r) in terms of elementary functions, but these will not be shown here due to
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Figure 1.10: log[γ(r)] vs log(r) and its projection G(z) plotted as a function of log(z) for s = 0.4, 0.5, 0.9.
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their length. The integrals, in the two domains, to be solved in the prolate case are

γ(r) = r−2× (1.76)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1

0
dx

1√
a2 + (1 − a2)x2

P

(
r√

a2 + (1 − a2)x2

)
, r < 2a

∫ 1

s
dx

1√
a2 + (1 − a2)x2

P

(
r√

a2 + (1 − a2)x2

)
, 2a < r < 2,

where the lower bound s =
√

4a2−r2

4a2−4 is given by the condition that x < 2 in P (x) above.
The previous expression for the oblate case is the solution to the same integrals, but
in the domains r < 2 and 2 < r < 2a, and with the integration boundary going form
zero to s.

1.6.4 Infinitely long Cylinder with diameter D

The correlation function γ(r) for a right and infinitely long cylinder with a diameter D

is [27]

γ(r) = (1.77)⎧⎪⎨
⎪⎩

1 − 2F1

(
1
2
, 3
2
;3; r2

D2

)
r3

4D3 − 2F1

(
− 1

2
, 3
2
;2; r2

D2

)
r

D , 0 ≤ r < D

1 − 2F1

(
1
2
, 3
2
;3; D2

r2

)
D2

4r2 −2 F1

(
−1

2 , 3
2 ; 2; D2

r2

)
, D < r < ∞

Where 2F1 is the Hypergeometric function. We are unable to solve the projection G(z)
analytically but present a numerical solution in Fig. 1.11. The correlation function γ(r)
and G(z) show a levelling decay saturating, not surprising, around D on the horizontal
axis.

1.6.5 Cube and cuboid

The autocorrelation function for both the cube and the cuboid is known analytically
[31], [26] and the corresponding projection can be evaluated numerically as will be
shown in Sec. 1.6.8.

1.6.6 Ideal Polymer

A polymer chain can in certain cases be approximated as a random walk, this is called
an Ideal Polymer or a polymer in theta condition. The approximation neglects any
interaction or excluded volume among the monomers. The coil is made up of N uncor-
related monomers of length a0 with a radius of gyration of

Rg =

√
N

6
a0. (1.78)

50



1.6 Form factor and the correlation function of isolated shapes 51

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

γ(r)

G(z)

r/D, z/D

Figure 1.11: γ(r) (dashed line) and its projection G(z) solved numerically (solid line) for a infinitely long cylinder

with diameter D.

Debye [18] calculated the Fourier transform of the autocorrelation of the Ideal Polymer:

I(q) =
e−q2R2

g − 1 + q2R2
g

q4R4
g

. (1.79)

This formulation neglects the size of the monomer, thus a0 = 0. The inverse transfor-
mation is

γ(r) ∝
(r2 + 2R2

g)erf(
r

2Rg
)

rRg
− e

− r2

4R2
g , (1.80)

where erf is the Error function. The projection can be expressed in terms of Exponential
integrals (En-function).

G(z) ∝ E1

[(
r

2Rg

)2
]
− E2

[(
r

2Rg

)2
]

, (1.81)

for z ≥ a0. For Rg >> z and z > a0 the following relation is obtained

G(z) ∝ − ln
(

z

2Rg

)
. (1.82)

Thus, as expected for a random walk in 3D, the Ideal Polymer has the same scaling as
a 2D structure (see Eq. (1.48)).
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Figure 1.12: G(z) and γ(r) calculated numerical for a cube of size a. The largest correlating size of a cube is√
3a and the correlation length is found to be ξ 
 0.9a.

1.6.7 Taking a size-distribution (polydispersity) into ac-

count

Given that there is no interaction between particles (i.e., dilute samples and no long-
range potentials) it is possible to weigh γ(r) and G(z) with a size distribution function.
Such approach was applied on measurements of microemulsions [30]. For poly-disperse
samples the projection becomes

G(z) =
∫ ∞

0
G(z, a)P (a)da (1.83)

and
ξ =
∫ ∞

0
ξ(a)P (a)da. (1.84)

Where P (a) is the normalised probability distribution for the occurrence of size a,
commonly Gaussian or log-normal distributed. It is important to carefully consider
the upper integration boundary in the integrals, so that the “whole” distribution P (a)
is used (the boundary, strictly ∞, depends on distribution widths, expectance values
etc.).

1.6.8 Numerical calculations on isolated shapes

Finding an analytical solution to the spherically averaged autocorrelation γ(r) of a
3D density distribution can be a formidable task. We are, however, able to solve this
problem numerically, which is best done in the wave number domain. After constructing
the density distribution ρ(x, y, z) the Fourier spectrum of ρ(x, y, z) is calculated by
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1.7 Packings of Hard-Spheres 53

using 3D Fast Fourier Transform (FFT); this result is then multiplied with its complex
conjugate to yield I(q) after which γ(r) is calculated by inverse FFT of I(q). G(z) can
be calculated with either Eq. (1.14) or Eq. (1.8).

Fig. 1.12 shows γ(r) for a cube with side a, here the correlation length is calculated
to be ξ/a = 0.92 (mean chord length inside the cube). The longest possible correlation
in a cube is

√
3a and that is the point where no more correlations are seen.

A spheroid is given by (x/a)2 +(y/a)2 +(z/b)2 = 1. The spheroid is oblate if a > b,
prolate when a < b and spherical when a = b. In Fig. 1.13 the numerical results for the
three cases are shown, the horizontal axis is scaled with the largest radius present in
the spheroid. An aspect ratio of a/b = 1.5 was used for the oblate case and the inverse
for the prolate case. The correlation lengths were calculated for the prolate, oblate and
the sphere to be ξp/(2R) = 0.57, ξo/(2R) = 0.65, ξs/(2R) = 0.76.

The examples given here could be solved partly analytically according to Eq’s. (1.76)
and (1.75) for the ellipsoid and the result found in [31] for the cube example. The
method described here is more natural for complicated shapes and other numerical
density distributions, see for instance Sec. 1.5.3.

1.7 Packings of Hard-Spheres

For monodisperse assemblies of hard spheres with radius R one usually introduces the
pair correlation function g(r) where non-interacting dilute hard spheres give g(r) = 1,
but in concentrated samples one observes deviations in g(r) due to the excluded volume
between hard cores. Longer ranged potentials could lead to excluded volume, cluster-
ing etc., which manifests in correlations between particles. Thus, the pair correlation
function gives insight into the interactions between particles and is especially useful for
assemblies of monodisperse spheres.

The pair correlation function is the probability of finding a particle center-of-mass
at a certain distance c away from the origin, given that there is a particle at the origin.
For N particles in a volume V , isotropically distributed, with their center-of-mass
separated by a distance cij the pair correlation function is as a function of distances c

g2(c) =
V

N24πc2
〈
N−1∑
i=1

N∑
j=i+1

δ(c − cij)〉, (1.85)

where δ(c−cij) is the Dirac delta function. For the hard sphere system, this function is
zero when c < 2R and if there is no long-range ordering one expects g2(∞) = 1. The N

particles are forming N(N − 1)/2 pairs, making g2(c) readily calculated on numerical
data. The pair correlation function can be used in order to calculate γ(r) and G(z)
(see in Sec. 1.7.1).

Assuming isotropic distributions, the autocorrelation function of the density distri-
bution can be separated into contributions from pair density-correlations C2(r), found
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Figure 1.13: G(z) (top figure) and γ(r) (bottom figure) calculated numerically for an oblate, prolate and a
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by correlating all distances rij separating the pairs,

C2(r) = 〈ρ(0)ρ(rij)〉V , (1.86)

and secondly the density correlations within the isolated particle C1(r), found by cor-
relating distances ri within the particles

C1(r) = 〈ρ(0)ρ(ri)〉V = φγ1(r), (1.87)

where γ1(r) is the autocorrelation function of the isolated particle shape (see Sec. 1.6).
The density-density correlation function is then the sum of the two contributions.

C(r) = C1(r) + C2(r) − φ2, (1.88)

where C1(0) = φ, C1(∞) = 0, C2(0) = 0 and C2(∞) = φ2 giving the mean square
fluctuation C(0) = φ(1 − φ). And finally the normalised correlation function is

γ(r) =
C(r)
C(0)

, (1.89)

For hard spheres, C2(r) can be expressed in terms of the pair correlation function [46],
i.e,

C2(r) =
1
V

∫
γD
1 (r, c)g2(c)c2dc. (1.90)

Where γD
1 (r, c) is the autocorrelation of a dumbbell [28]. In other words γD

1 (r, c) gives
the pair density-correlation and g(c)c2 is its probability distribution in the volume V .

1.7.1 The pair correlation function and G(z)

G(z) is related to the pair correlation function through Eq. (1.88), Eq. (1.89) and
Eq. (1.8). For distributions of equal sized spheres G(z) and ξ can be calculated from
analytical γ1(r) and γD

1 (r, c) when the pair correlation function is known. This can be
generalised for polydisperse assemblies of spheres, since the autocorrelation function of
a dumbbell with two unequal sized radii is known [28].

Fig. 1.14 shows C2(r), C1(r), C(r) and ξG(z) for a hard sphere fluid with a particle
radius R = 1/2 and packing fraction φ = 0.25. The Percus-Yevick approximation [59],
[74] for a hard sphere fluid was used to calculate g2(r).

The projection makes excluded volume peaks become more pronounced as compared
to γ(r), making SESANS particularly useful to study ordering in hard sphere systems
as can be seen in [45].

The correlation length for a hard sphere fluid will decrease with increasing packing
fraction and therefore increase the saturation level in a SESANS experiment. The
maximum amount of scattering is found around φ = 1/3, see Fig. 1.15.

These calculations can be done in the wavenumber domain using the form factor
P (q) and the structure factor of the distribution. The Fourier transformation of γ1(r)

55



56 Analysis of Spin-echo small-angle neutron scattering measurements

C1(r)

C2(r)

ξG(z)

γ(r)

r, z
0 0.5 1 1.5 2 2.5 3 3.5 4

-0.1

0

0.2

0.4

0.6

0.8

 

 1.0

Figure 1.14: C1(r), C2(r), C(r) and ξG(z) for a hard sphere fluid calculated with the Percus-Yevick approxi-

mation using φ = 0.25 and R = 1/2.
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1.8 Oriented anisotropic samples 57

and γ2(r) is the form and structure factor respectively. The product of the two yields
I(q) = P (q)S(q) and G(z) can be calculated by the Hankel transformation in Eq. (1.14).

SESANS measurements on the structural transitions in hard-sphere colloid disper-
sions illustrate the significance of ordering when transition occurs from gaseous to liquid
and solid (glassy) state [44].

1.8 Oriented anisotropic samples

Anisotropy in the density distribution of a sample can be studied with SESANS pro-
vided that the sample can be rotated. Writing the projection and the correlation length
in Cartesian coordinates yields again

G(z) =
2
ξ

∫ ∞

0
γ(x, 0, z)dx. (1.91)

and
ξ = 2

∫ ∞

0
γ(x, 0, 0)dx. (1.92)

The projection is along x (i.e., the neutron beam is along x). Note again that SESANS
has no sensitivity along the y direction.

The final level of polarisation Eq. (1.23) is proportional to ξ, meaning that the
end level of the polarisation, for an anisotropic sample, depends on how the sample is
oriented in the beam. The shape of the curve will depend on the microstructure along
the z coordinate (see Fig. 1.2).

1.8.1 The oriented right cylinder

The correlation function of a disk with diameter D in 2-dimensions is

γc(r) =

⎧⎨
⎩

2
π

(
cos−1

(
r
D

)− r
√

D2−r2

D2

)
if r ≤ D

0 otherwise,
(1.93)

with r =
√

x2 + z2, (Eq. (1.93) gives the mean intersecting area between two disks
of equal diameters separated by a distance r). Consider the cylinders illustrated in
Fig. 1.16, here it is possible to separate the correlations across the diameter of the
cylinder from correlations along its length L. The total correlation function is the
product of the two. For example, when r ≤ D and y ≤ L:

γ(r, y) = (1.94)

2
π

(
cos−1

( r

D

)
− r

√
D2 − r2

D2

)(
1 − y

L

)
,

which is the case when the cylinder-face is in the xz-plane and the side is parallel to y

(see Fig. 1.16). For a cylinder with its side parallel to the z-coordinate and its face in

57



58 Analysis of Spin-echo small-angle neutron scattering measurements

the xy-plane (denoted i in Fig. 1.16) gives according to Eq. (1.91) and after shifting
coordinates in Eq. (1.94) so that r =

√
(x2 + y2) and y = z yields for z ≤ L

G(z) = 1 − z/L. (1.95)

Integrating to the diameter D of the cylinder in Eq. (1.92) yields the correlation length

ξ = 2
∫ D

0
γc(x)dx =

8D
3π

, (1.96)

which is the average length of a all chords drawn inside a disk of diameter D.
Having the cylinders side parallel to y and its diameter in the xy-plane (denoted ii

in Fig. 1.16), yields for z ≤ D

G(z) =
∫ D

0
γc(
√

x2 + z2)dx (1.97)

and again the correlation length is ξ = 8D
3π .

If the cylinder is oriented with its side along x and its face in the zy-plane, the
projection along x becomes for z ≤ D

G(z) = γc(z) (1.98)

and the correlation length is in this case

ξ = 2
∫ L

0

(
1 − x

L

)
dx = L. (1.99)

This configuration is denoted iii in Fig.1.16. G(z) for the three different orientations
is also plotted in Fig. 1.16. The plot shows three distinct curve shapes having two
different end levels in P (z) given by Eq. (1.21) and Eq. (1.23).

Note that if the cylinders revolve around the x-axis, then the first two cases (i and
ii) would be symmetric in the yz-plane, giving an identical projection G(z).

1.8.2 The oriented Gaussian spheroid

The correlation function for an ellipsoidal Gaussian distribution can be written as

γ(r) = e

(
−
√

x′2/a2+y′2/b2+z′2/c2
)2

, (1.100)

where the prime distinguishes the ellipsoid’s coordinate frame of reference. The spheroid,
a special case, has two of its radii equal, i.e., a 
= b = c. For an oblate spheroid its
axes are a < b = c and for the prolate spheroid this becomes a > b = c. Orienting the
spheroid in the SESANS coordinate system gives three distinct cases:

ξG(z) = (1.101)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ae−(z2/b2) if x ‖ x′ & z ‖ (z′, y′)

be−(z2/a2) if x ‖ (z′, y′) & z ‖ x′

be−(z2/b2) if (x ‖ z′ & z ‖ y′) or (x ‖ y′ & z ‖ z′)
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Figure 1.16: An oriented cylinder in cartesian coordinates, where z is the correlation direction and the projection

is taken along the x coordinate. D denotes the diameter of the cylinder and L is its length.
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Figure 1.17: ξG(z) plotted for three distinct sample orientations; (i) has a long side parallel to both x and z;

(ii) is with the long side parallel to x and the short side parallel to z; (iii) has the long side parallel to z and x

is along the short side.

where || denotes being parallel oriented. Thus, a SESANS experiment on aligned
spheroids can discriminate between oblate and prolate cases and it would be possi-
ble to determine the aspect ratio a/b of the distribution. Performing the experiment
suggested by Eq. (1.101), would for the oblate case give one curve with a typically high
polarisation end level and two curves with equal but lower levels (vice versa for the
prolate case).

Fig. 1.17 shows the oblate case and plots ξG(z) for three orientations indicated
by the inset. Here it is evident that, depending on orientation, more scattering and
therefore more depolarisation (Eq. (1.23) and Eq. (1.21)) is expected when the long
axis of the spheroid is oriented parallel to the neutron beam, indicated by i and ii in
Fig. 1.17. The width of the curve becomes more narrow when correlations are sampled
across the shorter axis, as seen in configuration ii, conversely a wider curve saturating
at larger length scales is seen when the density distribution is probed over the longer
axis in i and iii.

The aspect ratio of the structure can be determined by comparing the correlation
lengths in the various orientations.

1.9 Grating, oriented periodic beams

Oriented periodic beams, also shown in Fig. 1.18, offer a good way of illustrating
the principles of neutron scattering instruments [37]. SESANS has been applied on
a silicone grating in order to illustrate the technique in [13, 78] and theory [17]. The
autocorrelation function of such a distribution (square wave), if taken across the ridges,
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Figure 1.18: The autocorrelation function of a square wave is a triangle function and if oriented as illustrated
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triangle function with a correlation length ξ equal to the size of the ridges in the beam direction, this has been

illustrated in an experiment shown here in the left figure at the bottom.

is a triangle function. When the measurement is performed with the beam parallel to
the ridges, then the correlation length ξ will be equal to their length.

The actual SESANS measurement, shown in Fig. 1.3 and repeated below in Fig. 1.18,
shows that the ridges that make up the grating were slightly trapezoidal in shape, which
gives rise to a smoother correlation function. Note also that there is no difference in the
shape between γ(z) and G(z), this because correlations along x and z can be separated
in this geometry.

1.10 Summary and concluding remarks

The analysis of Spin-echo small-angle neutron scattering measurements has been dis-
cussed and a toolkit for analysing SESANS data has been developed. Theoretical,
phenomenological, model free as well as visual ways of interpreting and modelling
SESANS measurements have been presented. Once the autocorrelation of the density
distribution or its Fourier transform is known, the corresponding SESANS correlation
function can be calculated through the real-space projection of the correlation function
γ(r) or by performing the Hankel transformation of the Fourier power spectrum I(q).
The relation between the transformations and their inverse γ(r), I(q) and G(z) has
been presented.

In general, the width of the polarisation versus spin-echo length plot represents the
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62 Analysis of Spin-echo small-angle neutron scattering measurements

size of the heterogeneities making up the measured structure. Further more, the final
polarisation transmission or the level at which the polarisation saturates depends on
the packing fraction, chemical composition and the correlation length of the sample
inhomogeneities. The relationship between the SESANS measured quantities and the
ones usually extracted from SANS data has been presented.

For isolated geometries, so called form factors measured in dilute samples, the
correlation function can be expressed as an analytical function or by means of numerical
calculations best done in the wavenumber domain. Models describing random and
fractal media have been translated into the SESANS language, being particularly useful
since the materials characterised by the SESANS accessible length scales often fall in
these random-disordered categories. Packings of equal sized hard spheres, at higher
volume fractions, show oscillations in the correlation function due to excluded volume
among the spheres. This ordering can be studied with SESANS and it was illustrated
using the Percus Yevick approximation for the hard sphere liquid.
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Chapter 2

Stress, strain and bulk

microstructure in a cohesive

powder

This article, By Robert Andersson, Wim G. Bouwman, Stefan Luding and Ignatz M.
de Schepper, appeared in the scientific journal: Physical Review E 77, 051303 (2008).

Abstract

Spin-echo small-angle neutron scattering is able to characterise
powders in terms of their density-density correlation function.
Here we present a micro-structural study on a fine cohesive pow-
der undergoing uniaxial compression. As a function of compres-
sion we measure the autocorrelation function of the density dis-
tribution. From these measurements we quantify the typical sizes
of the heterogeneities as well as the fractal nature of the powder
packing. The fractal dimension increases with increasing stress,
creating a more space-filling structure with rougher phase bound-
aries. The microscopic stress-strain relation showed the same
nonlinear behaviour as the macroscopic relation. In this way it
was possible to link the macroscopic mechanical response with the
evolution of microstructure inside the bulk of the cohesive pow-
der. The total macroscopic compressive strain is in agreement
with a corresponding decrease in microstructural length scales.
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64 Stress, strain and bulk microstructure in a cohesive powder

2.1 Introduction

Rather than being driven by the hard-core exclusion between grains, the structure of
cohesive powders is mainly determined by the van der Waals attraction amongst small
primary particles (<100μm). As a result of these adhesive forces, and the irrelevancy
of body forces, very loosely packed and fluffy structures are seen to form in these
materials. The structures lead to process related issues relevant to industry in a sense
that mass flows become unstable [76]. An increased demand for particulate materials
on the nanoscale makes the understanding of this type of granular materials important.

To precisely understand the macroscopic behaviour of powders, the computer-
modelling and theory-buildup needs the support of experiments on realistic samples.
More specifically, there is a need for experiments that can quantify powders in terms of
their microstructure. Experiments are needed that can look inside the “fluffy” structure
of cohesive powders so that more quantitative statements can be made.

Extracting information from the bulk of powders and granular materials is difficult.
The opacity and the wide range of sizes present in real materials renders most optical
and conventional wave diffraction techniques more or less useless. The opacity can be
overcome by using a penetrating radiation such as x-rays in x-ray tomography [5, 67, 71]
or radio-waves in magnetic resonance imaging [70, 55].

Understanding macroscopic mechanical behaviour can be obtained by investigating
the changes in crystallographic microscopic parameters [33]. Following the microscopic
evolution by using penetrating radiation makes it possible to understand the macro-
scopic development from the microscopic point of view. Methods for studying the
mechanical properties at the grain level of granular packings exist [50] and it is usually
the buildup of force chains that is addressed. Neutron diffraction has been used to
study non linear stress strain behaviour in granular materials [16].

In order to access the bulk of more realistic materials it becomes necessary to use
penetrating radiation and a technique that has enough resolution to analyse the small-
angle scattered radiation.

Spin-echo small-angle neutron scattering (SESANS) is a high resolution technique
which measures the autocorrelation function of the sample density distribution in real
space [12]. SESANS can be used to probe the structure across three orders of magnitude
ranging from 30nm up to 20μm, making it applicable to fine cohesive powders [1],
colloidal systems [45], and dairy products [79], just to name a few.

The autocorrelation function of the density distribution γ(r) can be used to char-
acterise the microstructure of materials. This function is measured in a small-angle
scattering experiment as its Fourier transform (the so-called structure or form fac-
tor). SESANS measures γ(r) via its projection along the neutron beam path, making
SESANS a real-space technique. The typical size, packing fraction, any anisotropy,
scale invariance, ordering etc of the sample heterogeneities are examples of extractable
sample properties.

A stress-strain measurement on a fine cohesive silica powder together with consec-

64



2.1 Introduction 65

utive SESANS measurements has been performed and is reported in this paper. In the
analysis, the cohesive powder is considered as being a self-affine random two-phase ma-
terial. We use a model function for the density-density correlation function containing
a typical size a of the structure and the so-called Hurst exponent H, related to the
fractal dimension of the structure [41, 51]. The Hurst exponent depends on the phase
boundary roughness, and the higher the degree of “surface roughness” the lower is the
Hurst exponent.

From the initial decay of the measured SESANS curve it is possible to extract the
unknown grain density and consequently the grain packing fraction. We find that the
typical size of the inhomogeneities decays in a non linear way with increasing compres-
sive strain and the microscopic stress-strain relationship shows the same exponential
behaviour as the macroscopic stress-strain curve. The Hurst exponent is seen to de-
crease with increasing stress and strain, showing that a more space-filling structure
with rougher interfaces is being formed as a function of compression. All-together,
the study links the non-linear compressive stress-strain relationship to the evolution of
microstructural parameters.
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66 Stress, strain and bulk microstructure in a cohesive powder

2.2 Microstructure and SESANS

2.2.1 Density distribution and its correlation function

The density distribution ρ(r) in a heterogeneous two-phase sample is expected to fluctu-
ate around its mean value. These fluctuations might be characterised by a typical size,
anisotropy, being fractal or self-affine, regular (crystalline), random and so on. Taken
all together, this is what we call the structure of a material. The structure of two phase
systems such as a powder material can be analysed in terms of the autocorrelation
function of its density distribution:

C(r) = 〈Δρ(0)Δρ(r)〉 , (2.1)

where the mean ρ̄ has been subtracted [Δρ(r) = ρ(r)− ρ̄]. The mean square fluctuation
is

C(0) = Δρ0φ1φ2, (2.2)

where φ1 + φ2=1 are the packing-fractions of the two phases and Δρ0 = ρ1 − ρ2

is the solid-density difference between the two phases. The normalised (dimensionless)
correlation function is

γ(r) =
C(r)
C(0)

. (2.3)

The correlation function can be expressed in terms of the pair correlation function
g2(r) [46]. g2(r) gives the probability of finding a particle centre of mass at a distance
r away from an origin given that there is a particle at that origin. This function
is especially useful for the study of monodisperse sphere packings. For spheres the
correlation function becomes

γ(r) = γ0(r) + 2
∫ ∞

0
γD(r, c)g2(c)c2dc, (2.4)

where γD(r, c) is the autocorrelation of a pair of spheres separated by c [28] and γ0(r)
is the autocorrelation function of a sphere.

The projection of γ(r) is given by:

G(z) =
2
ξ

∫ ∞

z

rγ(r)√
r2 − z2

dr (2.5)

and in Cartesian coordinates by

G(z) =
1
ξ

∫ ∞

−∞
γ(x, 0, z)dx. (2.6)

The projection is made dimensionless with the correlation length of the density distri-
bution [23]

ξ =
∫ ∞

−∞
γ(r)dr, (2.7)

so that G(0) = 1.
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2.2 Microstructure and SESANS 67

2.2.2 Spin-echo small-angle neutron scattering

Spin-echo small-angle neutron scattering (SESANS) is based on the Larmor-precession
of neutrons in parallelogram shaped magnetic field regions [24], [66]. In SESANS, the
polarisation of a neutron beam is measured, after transmission through a sample, as
a function of the so-called spin-echo length (30nm<z<20μm, set by the instrument
user). The spin-echo length is a real-space parameter representing the size at which
the correlations are measured (in the z-direction of the laboratory-coordinate system).
In SESANS G(z) is measured through the transmission of polarisation, normalised by
experimental effects, as a function of z.

P (z) = eΣt[G(z)−1], (2.8)

where
Σt = tλ2Δρ2

0φ1φ2ξ. (2.9)

Here t is the sample thickness, λ the neutron wavelength, and Δρ0 the neutron-
scattering-length density difference in the sample (i.e., the contrast between the two
phases in the sample). Note that Eq. (2.8) takes into account the effects of multiple
scattering [65].

The correlation length ξ is measured along the neutron beam-axis of a SESANS
experiment, which is perpendicular to the z direction. ξ is a measure of the width of
the distribution γ(r), which is in principle a measure of the size of the inhomogeneities
in the sample (for a sphere the correlation length is 3/4 of the sphere-diameter). It can
be interpreted as the mean-free-path of a neutron in the sample.

At large z (above the largest size describing the heterogeneities) one expects no
more correlations [G(∞) = 0], this gives a so-called saturation level of the polarisation:

P (∞) = e−Σt . (2.10)

Thus, the logarithm of the polarisation at saturation is proportional to the correlation
length ξ of the sample-inhomogeneities.

2.2.3 Correlation function of a random two-phase system

A cohesive powder is a particular case of a two-phase system that is heterogeneous at
(most likely) many scales. The attractive forces between grains allow for the build up
of connected networks and aggregates of low coordination number, resulting in large
voids of air pockets and, in essence, low densities. In the end we have in mind a very
porous material carrying a low packing fraction of grains that will be far from a random
close packing of hard-spheres, or any other ordered density distribution.

For a perfectly random heterogeneous material made up of three-dimensional (3D)
solids bounded by smooth 2D surfaces the density-density correlation function can be
described by the so-called Debye-Andersson-Bueche (DAB) formalism [20, 19, 84]:
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68 Stress, strain and bulk microstructure in a cohesive powder

γ(r) = e−r/a, (2.11)

where a is a measure of the typical size of the heterogeneities. This function can be
seen as a special case of the more general von Karman correlation function [35, 41]:

γ(r) =
2

Γ(H)

( r

2a

)H
KH

( r

a

)
, (2.12)

where KH is the second-order modified Bessel function and Γ is the Gamma function.
For H = 1/2 this simplifies to the DAB formula in Eq. (2.11).

The so-called Hurst exponent 0 < H < 1 is related to the dimensionality of the
structure. The limits H = 0 and 1 correspond to a space filling and a smooth Euclid-
ian distributions, respectively. In this context it is related to the interface roughness
between the two phases making up the material. One usually discusses two domains
H > 1/2 where the distribution is persistent and characterised by a certain degree
of memory and longer-ranged correlations; and the domain H < 1/2 describing an
anti-persistent distribution, governed by shorter-ranged correlations (i.e., rougher).

The Hurst exponent has been used to analyse the structure of shear bands [77] as
well as for the study of percolation in porous materials [40] and in fracture profiles [6].

A 1D reconstruction of density distributions for various Hurst exponents can be seen
in Fig. 2.1 below. This calculation is done in the wave number domain where a uniform
deviate (white noise) is filtered with a spectral filter. The inverse Fourier transformation
of the filtered white noise yields a real-space representation of the distribution. The
spectral filter is the square root of the Fourier transformation of the autocorrelation
function, in this case Eq. (2.15) below, (see also [41]).

The projection of Eq. (2.12) is found by insertion in Eq. (2.5), which leads too

G(z) =
2

Γ(H + 1/2)

( z

2a

)H+1/2
KH+1/2

(z

a

)
. (2.13)

The corresponding correlation length for this density distribution will be:

ξ =
2
√

πaΓ(H + 1/2)
Γ(H)

. (2.14)

In conventional small-angle neutron scattering one measures the Fourier transform of
Eq. (2.12), which yields the normalised intensities as a function of wave number

I(q) =
1

[1 + (qa)2]
3
2
+H

. (2.15)

2.3 Experiments and sample properties

A powder sample was kindly provided by Degussa (www.degussa.com). The product
is called Sipernat-310, it is a synthetic-precipitated silica used in coatings, cosmetics,
cements, rubbers, as filler etc. It is a typical cohesive powder containing fine grains
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Figure 2.1: The top figure show examples of reconstructed 1D density distributions ρ(x) based on the correlation

function Eq. (2.12). The corresponding correlation functions are shown in the bottom figure. The characteristic

size is here a=1

69



70 Stress, strain and bulk microstructure in a cohesive powder

around 5μm in diameter. The sample was used without any further treatment, in
ambient conditions.

We have used the SESANS setup at the Reactor Institute Delft (Delft University of
Technology in the Netherlands) to perform the measurements. The instrument contains
two parallelogram-shaped magnetic field regions with opposite magnetic induction di-
rections (otherwise identical). The sample is positioned between the field regions. Any
neutron scattering between the two fields will break the symmetry of the setup and
cause the beam to depolarize. The strength of the field defines the so-called spin-echo
length z, which is perpendicular to the beam direction and pointing in the direction
of gravity. The polarisation of the neutron beam is measured as a function of z. The
beam is nearly monochromatic with a wavelength of 0.21nm having a cross section at
the sample position around 1cm2.

A simple uniaxial load-cell was used in order to measure the stress versus strain
function of the powder (see Fig. 2.2). Strain is here defined as being the relative
decrease in thickness of the sample

δt = 1 − t

t0
, (2.16)

where t is the thickness after compressive straining and t0 is the initial sample thick-
ness. The stress and strain tester contains a cylindrical cavity with a movable hollow
plunger that achieves the compression inside the cavity. The plunger was moved by
a separate screwing action (without rotating the plunger) until a desired incremental
strain was reached. We used nine increments of 0.25mm with an initial powder height of
6.5mm. The cylindrical cavity and the plunger are sealed off with aluminium windows
(aluminium is virtually transparent to neutrons). The absolute stress was measured
with Flexiforce load sensors provided by Tekscan (www.tekscan.com).

The initial powder packing is a very soft, low-density material and easily compacted
(weakly aggregated). As seen in the stress-strain curve, which shows an exponential
variation of stress as a function of strain in the probed interval (Fig. 2.3). The goal of
this study is to understand this non linear stress-strain relationship through the bulk
microstructure at each point of the stress-strain curve.

2.4 Results

2.4.1 First interpretation

When analysing the measurements it is often useful to interpret what we simply see by
eye. In Fig. 2.4 the polarisation is plotted as a function of z. In total, ten measurements
at ten different strain levels were carried out. The figure shows only four of the ten
measurements for the sake of clarity.

Increasing the strain moves the saturation polarisation upwards, thus the upper
curves correspond to higher stress and strain than the lower ones. Increasing the
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Plunger with Al-window

Al-window

Neutron beam path

Load sensor

z

Figure 2.2: This figure is illustrating the load cell used in the stress-strain measurements on the cohesive powder.

The initial height of the powder packing was 6.5mm and subsequently strained by nine increments of 0.25mm.

The stress was measured using Flexiforce load sensors situated at the first Al-window.

strain makes the powder packing denser (φ) and thinner (t), both contributing to less
scattering and higher polarisation saturation levels.

The second microstructural parameter contributing to the end level is the correla-
tion length ξ. The rearrangement of particles into a denser state must decrease the size
of the heterogeneities, giving rise to a lower correlation length with increasing strain.

At saturation we are able to read off the largest correlating size of the microstructure
on the horizontal-axis. The measurement saturates around 5μm, which is the size of
grains making up the powder. Thus, no correlations are seen beyond the size of a grain.

The stress versus strain curve can be seen in Fig. 2.3. The curve shows that when
plotting the logarithm of the stress versus strain a linear relationship is obtained. The
powder in its native state is a very soft powder with low density stabilised by adhesive
forces in the form of capillary and van der Waals forces. The hard-core exclusion
between the silica grains finally governs the interaction between grains, as can be seen
in the divergent behaviour of the applied stress for lower characteristic sizes (see the
upper left plot in Fig. 2.6).

2.4.2 Linear initial slopes

The powder is composed of grains having an unknown solid density. The grain density
will be lower as compared with the solid density of pure silica (ρSiO2=2.2g/cm3). From
the grain density it is then possible to calculate the grain packing fraction φgrain rather
than the skeleton packing fraction φsk, which is calculated from solid silica density. To
summarise:

φsk =
ρsample

ρSiO2

(2.17)

and
φgrain =

ρsample

ρgrain
. (2.18)
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Where ρsample is the density of the powder packing and ρSiO2 is the solid density of
pure silica.

The grain density and the grain packing fraction can be determined from the
SESANS measurement by analysing the initial slope of the P (z) vs z curves. The
final amplitude of the polarisation (saturation level) is given by Eq. (2.10) and is read
at a spin-echo length z related to ξ. Thus, the gradient of the initial part of P (z) vs
z yields a quantity that depends only on the sample-thickness, packing fraction φ and
the scattering length density Δρ0. The slope is in a sense independent of structural
arrangement of the density

−d ln(P )
dz

� tλ2Δρ2
0φ(1 − φ). (2.19)

Thus, division of the values of the slopes by the sample thickness and the primary
particle packing-fraction φgrain should yield a constant term for all experiments (see
bottom right figure in Fig. 2.5), because straining the sample does not change Δρ0 or
λ. We find the grain packing fraction φgrain by fitting until a nearly constant term is
found for all measurements. The grain density can then be found by using Eq. (2.18).

This analysis gives a density of ρgrain=1.1g/cm3 and packing fractions ranging from
φgrain=0.34 up to φgrain=0.53 for the highest strain.

2.4.3 Curve shapes and their amplitudes

For a more complete analysis of the SESANS experiment we apply a model that de-
scribes an autocorrelation function of the density distribution. From that model we
are able to calculate the corresponding projection as well as the expected polarisation
-shapes and amplitudes.

The thickness t, packing fraction φ, and neutron wavelength λ are all known ex-
perimental parameters that contribute to the saturation level P (∞). The scattering
length density Δρ0 is a constant parameter given by the chemical composition of the
sample. Thus, in order for the model to be consistent it has to yield a constant scatter-
ing length-density for all ten measurements. In short, we have to find a model capable
of describing γ(r) as well as ξ in such a way that it produces the saturation level and
curve shapes observed in the measurement.

To model the data we use the von Karman correlation function introduced in
Sec. 2.2.3, which describes a statistical self affine density distribution according to
Eqs: (2.12)-(2.14). The model explains the microstructure with two parameters, the
Hurst exponent H and a characteristic size a of the density distribution. This yields,
including experimental parameters, a scattering length density of about 1.1×1014m−2

for all samples.
The model parameters measured at each incremental strain are plotted in Fig. 2.6.

The characteristic size rapidly decreases with increasing strain before it saturates for
strains larger than 20-25%. In order for the powder to be compressed the larger inho-
mogeneities, clusters and voids have to be broken and collapsed. This first stage occurs
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at the lower stress amplitudes and produces relatively large changes in a. When the
larger and weaker heterogeneities have collapsed and produced a denser structure any
further densification is created by the rearrangement of primary grains. This latter
stage is governed by higher stresses and smaller changes in the characteristic size of
the heterogeneities. This “hard-core” behaviour is illustrated when we plot the stress
versus the characteristic size a in Fig. 2.6. The stress diverges at around 1400nm and
no significant changes is seen for higher stresses. The total microscopic strain for the
experiment is given by

δatot = 1 − aend

a0
= 1 − 1290

1780
� 28%, (2.20)

where aend is the characteristic size reached at the maximum applied strain and a0 is
the size at the beginning. This value is comparable with the final macroscopic strain,
being about 35% (see Fig 2.3).

The Hurst exponent decreases with increasing strain, consistent with the formation
of a more space-filling structure as well as with an increase in the phase boundary
roughness. The short range structure becomes more irregular, creating more sliding
contacts which contributes to the non-linear stress-strain behaviour and in particular
makes the structure more resistant towards straining.

The two microscopic strains are

δa = 1 − a

a0
(2.21)

and
δξ = 1 − ξ

ξ0
. (2.22)

The microscopic strain is plotted versus the logarithm of the stress in Fig. 2.7. This
shows that the exponential stress-strain relationship measured macroscopically has its
origin in a similar relationship at the microscopic level.

2.5 Discussion and conclusions

A stress-strain measurement was conducted simultaneously with a bulk microstruc-
tural investigation by using spin-echo small-angle neutron scattering on a cohesive
silica powder (Sipernat-310). The microstructure was characterizes in terms of the
autocorrelation function of the density distribution and the experimental result was
modelled using a correlation function describing a random density distribution. The
correlation function is characterizes the density distribution in terms of its typical size
a and a self-affine parameter called the Hurst exponent H, related to the short-range
correlations, i.e., to the structure of the phase boundaries. The proposed correlation
function proved excellent at describing our measured data.

The primary grain density was determined by analysing the initial slopes of the
SESANS measurements. This yields a density of about a factor of 2 smaller than the
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the macroscopic stress strain relationship.

skeleton density of pure silica. The grain density can be used to calculate the packing
fraction of grains contained in the sample. A divergence of the stress is reported at a
packing-fraction around 0.50.

The fractal nature of the powder can be quantified in terms of the so-called Hurst
exponent. When the powder is compressed, decreasing Hurst exponents are evidenced
as a function of strain. A decreasing Hurst exponent implies that a more “disordered”
density distribution is being formed, and we argue that such a structure can pack more
efficiently, thus facilitating the compression of the powder. The decrease in the Hurst
exponent also indicates the buildup of a rougher, more disordered, interface. Similar
observations have been made in metals [85], shear zones in granular materials [77], and
fracture studies [6]. The increase in interface roughness creates more sliding contacts
and friction between grains, in essence acting against the action of compression, and
contributes to the non linear stress-strain behaviour observed in the macro as well as
in the microscopic domain.

Compression of the powder using relatively small stress levels, breaks and col-
lapses the larger voids and clusters that are stabilised by weaker van der Walls forces.
This phenomenology is supported by the measurement in a sense that microstructural
length scale a decreases quickly for relatively low stresses. Further densification can
be achieved through the movement and rearrangement of hard primary grains. Such a
structural rearrangement calls for larger stress levels. The measurement shows a sharp
diverging stress for smaller characteristic sizes a, and we argue that a domain is reached
where the structural rearrangement is governed by hard core exclusions.
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78 Stress, strain and bulk microstructure in a cohesive powder

The total microscopic strain δatot (28%) observed in the experiment is compara-
ble, but lower, than the value for the total macroscopic strain of the sample ∼35%.
When the microscopic stress-strain relationship is further analyzed it is evident that
the macroscopic exponential behaviour has its origin in a similar microscopic relation-
ship.

It is well established that force networks and chains play an important role in the
physics of granular matter [34]. In the measurements conducted here and elsewhere
[3] no density correlations were observed beyond the size of a single grain. The mea-
surements can lead to the conclusion that (if present) such networks do not create
correlations in the density distribution.

As opposed to discussing the density distribution in terms of a sphere and its
diameter, or any other shape of a grain and its size, we argue that parameters such as
a (the width of the autocorrelation function of the density distribution) and also ξ (the
correlation length of the distribution) represents more general and even well-defined
descriptors of the material’s microstructural size, especially when realistic materials
are considered, materials that typically contain many different shapes having many
different sizes.

An important connection between microstructure and macroscopic mechanical be-
haviour of a powder has been made. The study was made possible by a unique neutron
scattering investigation using SESANS. It was shown that the random media model,
given by the von Karman correlation function, is excellent at describing the structure
of a cohesive powder in a wide range of packing fractions and the model parameters
involved provide insight into the mechanics and microstructure of the compressed pow-
der.
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Chapter 3

Structure, anisotropy and fractals

in compressed cohesive powders

This article, By Robert Andersson, Wim G. Bouwman, Jeroen Plomp, Fokko M. Mul-
der, H. Gijs Schimmel, Ignatz M. De Schepper, was accepted for publication by the
scientific journal : Powder Technology.

Abstract

Correlation functions are commonly used to characterise the mi-
crostructure of materials. The correlation function is then related
to other properties or phenomenology connected to the investi-
gated material. In this paper, we investigate the bulk microstruc-
ture in two cohesive powders –a silica powder containing spheri-
cal grains and a carbon nanotube powder, by means of spin-echo
small-angle neutron scattering technique. We show that, for the
silica powder, the typical size of the heterogeneities decreases with
increasing strain, thus linking microscopic deformations with the
macroscopic ones. Measurements also show that the compressed
silica powder is isotropic in terms of its density distribution. On
the compressed nanotube powder we are able to conclude that
the applied uniaxial stress induces anisotropy in the density dis-
tribution. We are able to link the compressive strain with the
measured anisotropy, thus creating the link between macroscopic
and microscopic behaviours. Both powders are shown to have
a fractal structure, and are characterised in terms of a fractal
dimension.

79



80 Structure, anisotropy and fractals in compressed cohesive powders

3.1 Introduction

Granular and powder materials show a range of interesting phenomenology and com-
plicated behaviour yet to be explained by a unified granular theory [36, 38]. Pow-
ders are normally characterised by history dependence, non-linearity, inhomogeneity,
anisotropy etc. Powders are usually cohesive, meaning that for assemblies of small
grains (<100μm), electrostatic, capillary and van der Waals interactions become in-
creasingly relevant to consider. All together making the cohesive powder very different
from dry frictional granular media [76]. Cohesive powders are widely handled through-
out industry, producing a variety of costly process-related problems such as clustering,
bridging and channelling, leading to, for example, oscillating mass flows in silos [82, 76].

The increase in computational capacity has made the field of granular physics and
the study of powders mainstream, so that detailed analysis of the dynamics and struc-
ture can be routinely done on numerical data [61, 47]. Alongside computer simulations
and modelling, the field needs experimental observations that supports the buildup of
models and theory. In particular, the field is in the need for microstructural investiga-
tions.

To experimentally extract the microstructure from granular and powder materials
is a challenging task –new techniques and methods are needed. Until now, such ex-
periments have been done in the framework of X-ray tomography [5, 67, 71], Magnetic
Resonance Imaging [70, 55] or as a 2D imaging investigation [50]. Although the most
general way to study structure in any material is by means of conventional wave diffrac-
tion methods, the current resolution (reciprocal space) of such instruments does not
allow for the study of powders and granular materials at the grain level and beyond.

Opaque materials characterised by inhomogeneities at mesoscopic length scales (col-
loids, polymers, macromolecules etc.) are commonly investigated with Small-Angle
Neutron Scattering techniques (SANS) [23]. Conventional SANS is limited in measur-
able length scales to a few hundred nanometer and multiple scattering complicates the
data analysis [68]. A modified SANS technique, Spin-Echo Small Angle Neutron Scat-
tering (SESANS) [9], increases the resolution so that structures up to 20μm become
accessible, and therefore being applicable to the study of microstructure in fine cohesive
powder-materials [1]. A SESANS experiment measures the samples microstructure in
terms of the projection of the density-density correlation function [45].

We have successfully applied SESANS on a uniaxially compressed cohesive powder
as well as on a nanotube powder. We found that the measured correlation function
is well described by the dimensionality of the structure, either being fractal or having
integer dimensionality within a cutoff length. We are able to show that straining the
sample by uniaxial compression induces anisotropy in the microstructure of a nanotube
powder. A measurement on a uniaxially compressed silica powder, made up of isotropic
spherical grains, shows no anisotropy in the density distribution.
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3.2 Theory and method

3.2.1 The density-Density correlation function

The density distribution ρ(r) in a two phase material fluctuates around its mean value.
These fluctuations might have some characteristic size (particle radius), being scale
invariant (fractal), regular (crystalline), random etc. All together, that is the structure
of a sample. Characterising the density distribution can be done by analysing its
autocorrelation function. After subtracting the mean density Δρ(r) = ρ(r) − ρ we
have:

C(r) = 〈Δρ(0)Δρ(r)〉 (3.1)

where the mean square fluctuation term is

C(0) = Δρ2
sφ(1 − φ). (3.2)

φ is the packing-fraction

φ =
1
V

∫
ρ(r) (3.3)

and Δρs = ρ1−ρ2 is the solid density difference between the two phases. The normalised
correlation function is the density-density correlation function:

γ(r) =
C(r)
C(0)

. (3.4)

The projection of a circular symmetric γ(r) along lines separated by a distance z

from the origin is

G(z) =
2
ξ

∫ ∞

z

rγ(r)√
r2 − z2

dr (3.5)

The projection is made dimensionless with the correlation length of the density distri-
bution [23].

ξ = 2
∫ ∞

0
γ(r)dr. (3.6)

G(z) and ξ are the microstructural quantities that are measured in a SESANS
experiment.

The correlation length ξ is measured along the neutron beam-axis of a SESANS
experiment, which is perpendicular to the correlating direction z. If the beam direction
is along the x coordinate, then the projection in Cartesian coordinates become

G(z) =
2
ξ

∫ ∞

0
γ(x, 0, z)dx (3.7)

where the correlation length is

ξ = 2
∫ ∞

0
γ(x, 0, 0)dx. (3.8)
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82 Structure, anisotropy and fractals in compressed cohesive powders

And there is no sensitivity in along the y coordinate. The correlation length is a
measure of the width of the distribution γ(r), this is a non trivial quantity but can
be understood as a measure of the size of the inhomogeneities in the sample (for a
hard-sphere gas the correlation length is 3/4 of the sphere-diameter).

3.2.2 Spin-Echo Small Angle Neutron Scattering (SESANS)

Spin-echo Small Angle Neutron scattering (SESANS) is based on the Larmor precession
of neutrons in parallelogram shaped magnetic field regions [66], [24], [79]. In SESANS,
the polarisation of a neutron beam is measured, after transmission through a sample, as
a function of the so called spin-echo length, z (30nm<z<20μm). The spin-echo length is
a real-space parameter being the size at which correlations are measured. The neutron
detector situated after the sample and after the polarisation analyser. Scattering from
large micro structures, as considered here easily falls within the detector acceptance
angles. A discussion can be found in [63].

The polarisation of the neutron beam is normalised with an empty beam measure-
ment. As a function of z the normalised polarisation is

P (z) = eΣt(G(z)−1), (3.9)

where
Σt = tλ2Δρ2

0φ1φ2ξ. (3.10)

Here t is the sample thickness, λ being the neutron wavelength and Δρ0 is the neutron
scattering length density difference in the sample (directly related to the chemical
composition of the sample).

For a structure with no long range order we have G(∞) = 0, so that at some
finite length scale we expect no more correlations. This gives a constant saturation
level/amplitude of the polarisation:

P (∞) = e−Σt . (3.11)

Thus, the polarisation at saturation is proportional to the packing fraction and the
correlation length of the sample-inhomogeneities, according to Eq. 3.10.

For dense monodisperse hard-sphere packings one would, due to excluded volume,
observe correlations in the form of nearest neighbour peaks. This is, however, not the
case for disordered materials made up of random shapes and sizes.

3.2.3 Random and fractal microstructures

For scattering from a perfectly random distribution of solids and holes –a Swiss-cheese,
we use the correlation function given by the Debye, Anderson and Bueche (DAB)
formalism [20], [19], so that

γ(r) = e−r/a (3.12)
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Figure 3.1: The figure is showing the auto correlation function γ(r) = e−r/a (dashed line) for perfectly random

porous material. G(z) (solid line) is the projection of γ(r).

where a is a measure of the size of the inhomogeneities contained in the sample. The
corresponding SESANS correlation function for such material is found by inserting
Eq. (3.12) in Eq. (3.5), giving

G(z) =
z

a
K1

(z

a

)
(3.13)

where Kn is the modified Bessel function of the second kind (see Fig. 3.1). This
expression has been derived from the reciprocal space counterpart of Eq. (3.12) in [80].
The correlation length for such density distribution leads to:

ξ = 2
∫ ∞

0
e−r/adr = 2a. (3.14)

Thus, there are two relevant length scales involved in a SESANS measurement: first
ξ as the correlation length measured along the neutron beam axis, and secondly, the
typical size of the inhomogeneities a, measured perpendicular to the beam.

Although, in the DAB formalism we see that these two quantities are trivially
related, it is not generally the case, since ξ will depend on the shape/dimensionality
of the inhomogeneities. In order to consistently describe the measurements one has
to find both quantities a and ξ, bearing in mind that they are not the same or easily
related.
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Figure 3.2: The figure shows the auto correlation function γ(r) of a self similar -fractal material with d=2.80.

G(z) (solid line) is the projection of γ(r) (dashed line). The dotted line shows G(z) for a random inhomogeneous

solid (i.e, d=3), according to Eq. (3.13)

Eq. (3.12) is valid for a structure with randomly distributed solids bounded by
smooth 2D surfaces [84]. For a material with a structure that is self-similar or self-affine,
we expect the correlation function to depend on the dimensionality of the structure (see
for instance [69], [72]):

γ(r) ∝ rd−3, (3.15)

where d is the so called fractal dimension. Taking into account the finite extension of
the fractal, one usually introduces an exponential cutoff given by the DAB formalism.
[72], so that:

γ(r) = (r/a)d−3e−r/a (3.16)

In the special case of the integer dimensionality of d=3 we see that Eq. (3.16) reduces to
Eq. (3.12). The SESANS counterpart for a fractal dimensionality is found by numerical
integration of Eq. (3.5) (see Fig. (3.2)).

Any realistic material will have a finite extension, in a sense that it is made up from
building-blocks of some size a0. Taking into account the two finite sizes a and a0 we are
able to derive an expression for the correlation length (i.e., normalising and integrating
from a0 to ∞ in Eq. (3.6) using Eq. (3.16)). The correlation length becomes:

ξ = 2a0e
a0/aE3−d(a0/a), (3.17)

where

En(x) =
∫ ∞

1

e−xtdt

tn
. (3.18)
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lower dimensionalities (see Eq:s 3.10 and 3.11).

is the so called generalised exponential integral. This shows that the correlation length
ξ is decreasing with decreasing dimensionality d for a given characteristic size a. Thus,
the end level of polarisation will increase with decreasing dimensionality, see Fig. 3.3.
This expression makes it possible to interpret the level of the saturation level in SESANS
experiment, since it will depend also on the dimensionality of the structure.

3.2.4 Anisotropy

The 3D density distributions in Fig. 3.4 are examples of self affine structures. The
correlation function γ(r) for the isotropic figure is given by Eq.3.16, with d = 2.8. The
bottom figure is anisotropic in its density distribution in a sense that its characteristic
size is smaller along the z′ coordinate.

The density distributions in Fig. 3.4 are calculated in the wavenumber domain q ,
where a uniform white noise is filtered by a self affine spectral filter (i.e., the Fourier
transform I(q) of γ(r)). This is the power spectrum of the density distribution (i.e., the
square of the fourier amplitudes of Δρ(r)). A real space representation of this random
media is then calculated by inverse fast Fourier transform to yield Δρ(r). We used a
spectral filter according to the Fourier transform of Eq. (3.16) found in [72]. For the
anisotropic case we used a coordinate transformation q =

√
(qxax)2 + (qyay)2 + (qzaz)2.

The calculation is fast and straightforward, and more details about the procedure can
be found in [41].

Anisotropy in the density distribution can be studied with SESANS, provided that
the sample can be re-oriented and rotated in the neutron beam. When fixing the
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SESANS coordinate system so that the projection is along the x coordinate and the
correlations are measured in the z coordinate, we get that:

G(z) =
1
ξ

∫
γ(x, 0, z)dx. (3.19)

and

ξ =
∫

γ(x, 0, 0)dx. (3.20)

Consider Fig. 3.4, the two illustrations represents: top an isotropic density distribution,
and the bottom illustration is an anisotropic counterpart.

The three orthogonal projections will produce two correlation lengths, related to
az′ when the projection is along the z′ coordinate and if the projection is along either x′

or y′ coordinates the correlation length will be proportional to ax′ and ay′ . The shape
and width of G(z) will depend on which of the coordinate, x’, y’ or z’ is parallel to the
z coordinate. Thus the width of the G(z) curve is related to ax′ when z is parallel to x′

and ay′ if parallel to y′ and related to az′ when parallel to the z’ coordinate in Fig. 3.4.

We can formulate the correlation functions in a more general way with having the
SESANS coordinate system fixed so that the spin echo-length is along the z coordinate
and the projection (beam direction) is in along the x coordinate. The correlation
function for the three distinct cases is, with ζap,ac =

√
(x/ap)2 + (z/ac)2:

ξG(z) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
ζd−3
az′ ,ax′ e

−ζa
z′ ,ax′ dx if x ‖ z′ & z ‖ x′ (i)∫

ζd−3
ax′ ,ay′e

−ζa
x′ ,ay′ dx if x ‖ x′ & z ‖ y′ (ii)∫

ζd−3
ax′ ,az′e

−ζa
x′ ,az′ dx if x ‖ x′ & z ‖ z′ (iii)

(3.21)

where the subscript p and c means projection direction and correlation direction, re-
spectively. For a density distribution that is rotational invariant (isotropic) in one plane
(the x′y′-plane in Fig. 3.4), the three measurements noted by Eq.3.21 will be enough
to characterise the anisotropy. Although, in total, six orthogonal measurements can
be carried out (two correlation directions for each three projections), we have that the
projection along y′ will equal the projection along x′. From the rotational invariance
in the x′y′-plane it follows that only one measurement along z′ is needed.

In SESANS it is the polarisation that is measured, according to Eq.3.9. We plot
the results expected for the polarisation in Fig 3.5.
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Figure 3.6: Stress-strain curve for the uniaxially compressed nanotube powder. The line (guide to the eye)

indicates the applied stress path. Note that the powder packing expands when relaxing the stress for the larger

applied stresses.

3.3 Samples and experiments

3.3.1 Silica powder

A silica (SiO2) powder was kindly provided by Kobo Products, Inc (traded as MSS3H).
The powder contains porous spherical grains with an average size around 3μm, centred
on a wide lognormal distribution. The silica powder was characterised in terms of
primary particle porosity. The porosity measurement showed that the primary spherical
grains have a density of 0.45g/cm3, which is in good agreement with that stated by
the manufacturer (0.5). We use the particle density in order to calculate the equivalent
sphere packing-fraction

φsph =
ρsample

ρgrain
(3.22)

where ρsample is the density in g/cm3 of the sample and ρgrain is the density of a primary
grain. This ”grain” packing fraction is different from the skeleton packing fraction

φsk =
ρsample

ρbulk
, (3.23)

derived from the solid silica density ρbulk=2.2g/cm3 (see also Table 3.1).
We used a simple uniaxial compression scheme to strain the sample. A pressure cell

having a cylindrical geometry was filled with powder, by carefully raining the powder
into the cavity. The powder was uniaxially compressed with a plunger until a desired
strain was achieved.
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With strain being

δ = 1 − t

t0
, (3.24)

where t0 and t is the sample thickness before and after compression, respectively.
Four different stress levels were used: 3kPa, 21kPa, 35kPa and 700kPa. The applied

stresses yielded, with increasing stress, a sphere packing-fraction of φsph = 0.60, 0.65,
0.77, 0.85.

The sample was mounted with the neutron beam parallel to the compression di-
rection so that the correlation function was sampled perpendicular to the compression
direction. We did not observe any large structural changes (cracks, holes, settling
etc.) of the compressed powders during the measurement, indicating a macroscopically
stable packing throughout the measurement. The measurement was done in ambient
conditions and the moist content was determined (by drying followed by weighing) to
11% by weight.

Another sample was uniaxially compressed in a cylindrical pressure cell, resulting
in a compressive strain of δ=47%. This sample was prepared in order to investigate
the density distribution in different directions w.r.t the applied compression direction,
i.e., anisotropy.

A measurement was also performed on an uncompressed powder packing, from now
on referred to as the poured-sample (φsph = 0.5) (see Table 3.1). This sample was
prepared by carefully raining the powder into the container. Measurements on P (z)
show that the preparation procedure is reproducible.

3.3.2 Nanotube powder

A nanotube sample (Single Walled NanoTube) was obtained from Carbon Nanotechnol-
ogy, Inc. and used without further treatment and in ambient conditions. Single walled
nanotubes are cylindrical graphene sheets with fullerene endcaps. The tube lengths
can be between 10-100nm (typically 10-20nm) having diameters of 1-2nm (see for in-
stance [81], [21]). In the SESANS experiments conducted here, the nanotube powder
was uniaxially compressed in a cuboid with 100kPa uniaxial stress. This produced a
volumetric strain of about 60%.

Three measurements were carried out in three different directions with respect
to the compression direction. We measured the correlation function with z either
either parallel or perpendicular to the stress direction in combination with having the
beam-axis either parallel or perpendicular, see also the illustration in Fig. 3.9. One
measurement was conducted on a uncompressed sample.

A stress-strain measurement was conducted to further characterise the nanotube
powder (see Fig. 3.6). The measurement shows that the powder is expanding upon
releasing the applied stress. The SESANS experiment was conducted on a sample
having a fixed top plate that hindered such elastic relaxation. The thickness of the
sample, (i.e., the neutron transmission length t) was the same for all three measured
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Table 3.1: Experimental parameters and results from SESANS experiments on the silica powder. ∗ the correla-

tion length ξ was calculated with Eq. (3.14). For the poured sample ξ was calculated by fixing Δρ0=2.22×1014

m−2, being the average of the other four measurements (a0 could not be determined from the measurement).
∗∗ The effective scattering length density Δρ0 was calculated from fitted/measured parameters and Eq. (3.10).

σ δb φsk φsph t a ∗ξ d ∗∗Δρ0

[kPa] [g/cm3] [-] [-] [mm] [nm] [nm] [nm] [1014 m−2]

0 0.25 0.11 0.5 5.0 930 ±74 1100 ±40 2.91 ± 0.02 1.22

3 0.30 0.14 0.6 4.3 647 ±10 1290 ±50 3 1.27±0.11

21 0.33 0.15 0.66 3.9 575 ±10 1148 ±54 3 1.23±0.05

35 0.39 0.18 0.78 3.3 543 ±10 1082 ±54 3 1.21±0.05

700 0.42 0.19 0.84 3.0 427 ±13 855 ±20 3 1.18±0.02

directions, 6.2mm, meaning that the measurement is reduced to only two parameters,
G(z) and ξ, when comparing the different directions. For the poured-sample we used
a 12.3mm thick sample.

3.4 Results and discussion

3.4.1 Silica powder

We used three parameters to describe the structure of the compressed silica powder,
a dimensionality d of the structure, the characteristic size a of the heterogeneities and
Δρ0 being the constant scattering-length-density of the silica.

For the compressed powders we find that the randomly heterogeneous structure
described in the DAB formalism models our data well, reducing the problem to two
parameters (see Eq. (3.13) and Eq. (3.9)).

As the stress amplitude and the compressive strain is increased we see that the
characteristic size a of the inhomogeneities decreases (see Table 3.1). By compressing
the sample, voids and clusters will collapse, grains will arrange in a more space filling
system. This is consistent with a decreasing characteristic size and a high dimension.

The uncompressed sample, shown at the bottom in Fig. 3.7, was best fitted by
using Eq. (3.16) in Eq. (3.5) with a fractal dimension of 2.91, and a characteristic size
a=930nm. We were unable to determine the fractal building-block size a0 from the
model since it is outside the resolution of the instrument.

We fixed Δρ0 to the average of the other four measurements since a model has to
yield the same Δρ0’s for all five measurements in order to be consistent. Note that ξ

can be calculated from Eq. (3.11) and the model parameters.
The uncompressed sample shows a relatively low depolarisation (low Σt), meaning

that the simple ξ=2a relationship does not hold here. We argue that it is the dimension-
ality of this microstructure that gives rise to the relatively low depolarisation. Thus,
together with the shape of the curve, we get another strong indicator of the fractal
nature of this poured powder state.

For the uncompressed sample we note that the correlations extend outside the
measured range in z. This shows that the major heterogeneities are larger than the
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Figure 3.7: The figure shows the measured polarisation as a function of spin-echo length, z for the compressed

silica powder. In the top figure the symbols correspond to different uniaxial stresses: triangles 3kPa, squares

21kPa, diamonds 35kPa and circles 700kPa. The lower figure represents the poured-sample. The illustration

in top graph illustrates the experiment so that the beam is parallel to the stress direction and the spin-echo

z direction is perpendicular to the applied stress. Lines are fits according to Eq. (3.9), having the parameters

quoted in Table 3.1. The inset in the figures show the initial linear slopes of the measurement. Unless shown,

all errors fall within the markers.
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reported grain size. We attribute these scales to voids and clusters created by van der
Waals attraction, and capillary forces, acting between fine grains.

In Fig. 3.8 we show a sample that was uniaxially compressed δ = 47% giving a
packing fraction φsph 70%. The lines drawn through the points are fits using Eq. (3.13).
The sample was arranged in three different ways: first with the neutron beam parallel
(ξ is measured along the beam) to the applied compression direction and measuring
correlations z perpendicular. Secondly, the sample was oriented so that the beam
is perpendicular to the applied compression direction and z being parallel. A third
orientation was measured, with both z and the neutron beam being perpendicular to
the compression. From the measurement, although scattered, we conclude that the
uniaxial strain does not produce any significant anisotropy in the density distribution,
at least not at this magnitude of compression. The fitted length scales, in terms of
a, are 540nm for the sample denoted by diamonds, 570nm for the circles and finally
550nm for the sample denoted by the crosses (all within ±10nm). The correlation
length, i.e., the end level, is found by multiplying a by a factor of two. In Fig. 3.8 we
use the convention that x is the neutron beam path, along which ξ is measured. The
sample has, after compression, the same thickness (neutron transmission length) in all
measured directions.

Experiments using a cuboidal sample container gave indications on anisotropy. The
same procedure was used and the powder was uniaxially compressed to yield a strain
of about 50%. The correlation lengths measured along the compression direction re-
vealed a longer length scale along. This length scale could, however, not be verified by
measuring its correlation (i.e., aligning the compression direction with z).

3.4.2 Nanotube powder

In Fig. 3.9 we show the measurements on the compacted nanotube powder, strained
by δ = 0.6. A measurement was done on an uncompressed powder, see the bottom
of Fig. 3.9. We measured the polarisation, and consequently the correlation function
G(z) and the correlation length ξ in three different directions by rotating the sample
with respect to the neutron beam. First with the beam axis x perpendicular and z

parallel to the compression axis (squares in Fig 3.9), secondly with the beam parallel
and z perpendicular (diamonds), and finally both with the beam and the correlation
direction perpendicular to the stress direction (circles). The procedure is schematically
illustrated in Fig. 3.9.

The only difference between the three directions is the microscopic arrangement of
the density, i.e., the microstructure of the sample. Since the three curves does not fall
on top of eachother we are able to conclude that this sample is anisotropic in terms of
its density distribution. The interpretation is that the compressive straining creates a
long length scale perpendicular to the applied stress.

When the sample is aligned so that the stress direction is parallel to the beam axis
we get a curve with higher amplitudes, this means that a shorter length scale along the
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beam.
Furthermore, we note that any characteristic sizes a are outside the measurable scale

(the curves do not saturate), therefore it is difficult to make quantitative statements
about the size of the structures.

By visual interpretation we can conclude that anisotropy is present in both the
width and the amplitudes of the curves (compare also with the example in Fig. 3.5).
When the correlations are probed parallel to the applied stress (squares in Fig. 3.9)
we get a relatively fast decaying curve. This suggests that, in the stress direction, the
typical size a is smaller as compared with the size seen perpendicular to the applied
stress direction.

We use the correlation function for a fractal material to describe the measurement.
The parameters that best describe our data are presented in Table 3.2. We are not
able to quantify the upper cutoff a since it is outside the measured range and does not
contribute to the fit (a was fixed outside the resolution).

Rather than determining Σt, we determine Σt/a by varying a outside the experi-
mental range. This makes it possible to quantify the microscopic anisotropy present in
the nanotube powder packing. We recall that a is measured in the z direction and ξ is
a length measured along the beam.

We see that when we measure with the beam parallel to the stress (diamonds) the
lowest value for Σt/a is observed (see also Table 3.2). This analysis conclude that
the sample heterogeneities has a long axis perpendicular to the stress direction and a
short axis aligned parallel to the applied stress. Furthermore, when looking at the two
orientations where Σt/a is probed perpendicular to the stress (squares and circles) we
see, as expected, larger correlation lengths.

Since a � ξ, the ratio between these values is an indicator of the aspect ratio of the
heterogeneities (see also Table 3.2).

Σ⊥
t /a‖

Σ‖
t /a⊥

=
ξ⊥a⊥
ξ‖a‖

= 0.09/0.05 = 1.8 ± 0.2 (3.25)

and
Σ⊥

t /a⊥
Σ‖

t /a⊥
=

ξ⊥a⊥
ξ‖a⊥

= 0.10/0.05 = 2 ± 0.22, (3.26)

and finally
Σ⊥

t /a⊥
Σ⊥

t /a‖
=

ξ⊥a‖
ξ‖a⊥

= 0.10/0.09 = 1.1 ± 0.12. (3.27)

We see that the aspect ratio of the structure is about 2, which agrees well with the
measured macroscopic strain of 60%.

An unperturbed poured-sample of nanotube powder was measured as a reference.
We regard this sample to be isotropic as far as the density distribution is concerned.
After correcting for the thickness we see that this sample combines the slope of the
diamond − sample with the Σt of the square − sample (see Fig. 3.9 for notation
and illustration), thus it is the isotropic equivalent having a size equal to long axis.
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96 Structure, anisotropy and fractals in compressed cohesive powders

Therefore, we argue that the anisotropy is induced by the applied stress and enforced
by the inherent anisotropy on the nanotube level.

The density distribution of the nanotube powder was found to be fractal, meaning
that the correlation function shows a power law behaviour in r. We find consistently a
fractal dimension ranging between 2.77-2.8 for all directions together with the uncom-
pressed sample.

The initial slope of the measurement

A parameter free analysis can be done by analysing the slopes ∇ of the initial part of
the curves (see the left corner inset in Fig. 3.9 and Table 3.2). The slopes are directly
related to the anisotropy in the density distribution of the sample by the following
linear approximation.

∇ =
−d ln(P )

dz
� tλ2Δρ2

0φ1φ2

(
ax

az

)
(3.28)

Where ax/az gives the an aspect ratio between the size along the beam x and
perpendicular to the beam z direction. Dividing the slopes with the slope for the
perpendicular-perpendicular case (circles in Fig. 3.9) yields a normalised aspect ration
quantity. So that unity means that we probe the same scale along and perpendicular
to the beam (ax = az), above unity means that the long length scale is parallel to the
beam and finally below unity indicates that the shorter scale present along the beam.
This analysis yields (with s and l denoting a short and a long axis of the anisotropic
structure):

∇x⊥&z‖
∇x⊥&z⊥

=
a⊥/a‖
a⊥/a⊥

=
l

s
=

0.12
0.08

= 1.5 ± 0.2 (3.29)

and ∇x‖&z⊥
∇x⊥&z⊥

=
a‖/a⊥
a⊥/a⊥

=
s

l
=

0.06
0.08

= 0.8. ± 0.1 (3.30)

and ∇x‖&z⊥
∇x⊥&z‖

=
a‖/a⊥
a⊥/a‖

=
s2

l2
=

0.06
0.12

= 0.5 ± 0.07. (3.31)

Thus, this simple analysis of the initial slopes yields a fairly good agreement with
both the fractal model and explains about 30% of the macroscopic strain.

3.5 Conclusions

We have investigated the bulk microstructure in a uniaxially-compressed silica powder
as well as for a nanotube powder. Measurements were carried out on the uncompressed
powders as well. The structure were characterised in terms of the autocorrelation
function of the powders density distribution. Spin-echo small angle neutron scattering
(SESANS) was used to perform the measurements.
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Figure 3.9: The two figures show the measured polarisation as a function of spin-echo length, z for the nanotube

powder. Top figure is the compressed sample and the bottom figure shows the uncompressed sample. Diamond
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Table 3.2: Results from the nanotube powder experiments. δb is the sample bulk density of solids in the

sample. The linear slope ∇ was calculated from the initial part of the polarisation curve. ∗Corrected for a larger

thickness. The value for a was fixed outside the experimental range.

Direction t δb d Σt/a ∇
[−] [cm] [g/cm3] [-] [μm−1] [μm−1]

x ⊥ σ & z ‖ σ, squares 0.62 1 2.81±0.01 0.09±0.01 0.12±0.01

x ⊥ σ & z ⊥ σ, circles 0.62 1 2.77±0.03 0.10±0.03 0.08±0.01

x ‖ σ & z ⊥ σ, diamonds 0.62 1 2.78±0.01 0.05±0.01 0.06±0.01

Uncompressed 1.23 0.6 2.82±0.006 ∗0.09±0.01 ∗0.05±0.01

The microstructure of both powders can be well described as being self affine within
a cutoff length scale. The characteristic size, i.e., the cutoff length, of the density dis-
tribution decreases as a function of compression. Uniaxial compression of the nanotube
powder induces anisotropy in the density distribution, so that the density fluctuations
are larger perpendicular to the applied compression direction as compared to the fluc-
tuations parallel to the compression. The silica powder, composed of isotropic grains,
on the other hand, remains isotropic upon uniaxial compression. The uncompressed
or poured-sample was best described as a fractal material with a fractal dimension of
about 2.9 for the silica powder and 2.8 in the nanotube case.

We could, by using both the initial slopes of the raw data and the model fit parame-
ters, quantify the aspect ratio of the anisotropic microstructure, yielding an aspect-ratio
of � 2.

No correlations was observed beyond the size of a grain in the silica powder. Thus,
the buildup of force chains among grains [34] does not lead to extended density cor-
relations. It can be concluded that the nanotube powder is composed of aggregated
bundles, being tens of micron in size. The strong van der Waals attraction amongst
nanotube particles would facilitate such aggregation.
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Chapter 4

Structure in cohesive powders

studied with Spin-Echo Small

Angle Neutron Scattering

This article, By Robert Andersson, Wim G. Bouwman, Stefan Luding and Ignatz M. de
Schepper, was published by the scientific journal: Granular Matter. (http://dx.doi.org/10.1007/s10035-
008-0109-z)

Abstract

Extracting structure and ordering information from the bulk of
granular materials is a challenging task. Here we present Spin-
Echo Small Angle Neutron Scattering (SESANS) measurements
in combination with computer simulations on a fine powder of
silica, before and after uniaxial compression. The cohesive powder
packing is modeled by using molecular dynamics simulations and
the structure, in terms of the density-density correlation function,
is calculated from the simulation and compared with experiment.
In the dense case, both quantitative and qualitative agreement
between measurement and simulations is observed, thus creating
the desired link between experiment and computer simulation.
Further simulations with appropriate attractive potentials and
adequate preparation procedures are needed in order to capture
the very loose-packed cohesive powders.
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4.1 Introduction

The macroscopic properties of a granular material are given by the mutual arrange-
ment of the grains and its geometry, i.e., its structure. However, structure in granular
materials is usually discussed in the framework of random sphere-packings [7], the clas-
sification and underlying theory describing the packings of grains are yet to be found,
and more experiments are needed. The structure in granular materials is not only of
fundamental importance, but also of great practical relevance in industry related ap-
plications. Powders with cohesive properties are widely handled throughout industry,
either as a raw material, by-products, or as the desired end product. Considering fine
powders (micro meter sized), inter-particle forces such as van der Waals, electrostatic
and capillary forces influences the structure of the packing [82], leading to clustering
[48], channelling and tunnelling effects in fluidised beds, and oscillating mass flows in
general [76].

Various experimental methods to extract structural information in granular mate-
rials do exist. Magnetic Resonance Imaging has been proven successful in determining
the structure of non-cohesive granular packings [70], and even dynamic measurements
have been carried out [55]. Confocal microscopy has been applied to construct 3D im-
ages of granular materials immersed in a refraction-index matched liquid [75, 43]. X-ray
computed microtomography followed by a tomographic reconstruction is a powerful 3D
method that maps out the density in dry packings of, usually, model granular materials
[5, 67, 71].

Cohesive powders are complex systems with a typical grain size not readily acces-
sible with the techniques mentioned above. The use of conventional wave diffraction
techniques such as Small-Angle Neutron Scattering (SANS) are commonly applied for
the study of mesoscopic bulk structures (colloids, polymers, macromolecules etc.) [23].
The resolution of a conventional SANS instrument does not allow for the study of pow-
ders at the grain level, and one is usually limited to a few 100nm. At the Delft University
of Technology a novel SANS technique has been developed [63, 64]. Spin-Echo Small
Angle Neutron Scattering (SESANS) enables measurements over three orders of mag-
nitude, ranging from 30nm-20μm in length [66], making this technique applicable for
probing the bulk-structure in fine powders [1, 2].

Here we report measurements on a fine cohesive powder of silica before and after
uniaxial compression. The measurement shows how larger structures disappear upon
compression. In the loose-packed state we observe correlations extending far beyond
the average size of a single grain. Molecular dynamics simulations were carried out
in order to model the measurement. We find, in the dense case, good quantitative
and qualitative agreement with the measurement. A loose packed sample is only in
qualitative agreement, showing that more computational work is needed in order to
capture the structures formed with low packing fractions.
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4.2 Experiment, the sample and measured quan-

tities

4.2.1 SESANS: Measured quantities

Spin-Echo Small Angle Neutron Scattering, SESANS, is based on the Larmor precession
of neutrons in tilted magnetic fields [24], [79]. In SESANS, the polarisation of a neutron
beam is measured, after transmission through a sample, as a function of the so-called
spin-echo length, z (30nm<z<20μm). The spin-echo length is the length at which
density correlations are measured. The measured polarisation is directly related to the
projection of the sample density-density correlation function along the neutron beam
path. In particular, for a two-phase system we have, for the transmission of polarisation,
normalised with experimental effects:

P (z) = etλ2φ(1−φ)Δρ2
0ξ(G(z)−1) (4.1)

where G(z) is the normalised SESANS correlation function, representing the projec-
tion of the density-density correlation function of the sample (see Fig. 4.1). φ is the
volume-fraction, t the sample thickness, λ is the neutron wavelength and finally we
have Δρ0 being the neutron scattering length density (SLD) [73] difference between
the two phases. We write the projection of the density-density correlation function,
γ(r), as:

G(z) =
2
ξ

∫ ∞

z

rγ(r)√
r2 − z2

dr (4.2)

and
γ(r) = 2

∫ ∞

0
Δρ(r′)Δρ(r′ + r)dr′, (4.3)

being defined so that γ(0) = 1. G(z) is measured around the mean-square fluctuations
of the sample inhomogeneities. Above the characteristic size of the sample inhomo-
geneities no more correlations are expected and therefore we have that G(∞) = 0. The
amplitude of the saturation level is

P (∞) = e−tλ2φ(1−φ)Δρ2
0ξ (4.4)

and depends on the correlation length ξ, the volume fraction φ of the sample inho-
mogeneities, on the chemical composition of the sample via Δρ0 and on the neutron
wavelength λ=2Å as well as on the sample thickness t.

The correlation length of the sample inhomogeneities is:

ξ = 2
∫ ∞

0
γ(r)dr (4.5)

For a dilute gas of hard spheres we calculate ξ = 3a/2, with radius a. Note that the
interaction between neutrons and the sample takes place on the SLD differences in the
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Figure 4.1: γ(r) is the autocorrelation function of the density distribution. The correlation function γ(r) depends

on the shape/geometry and the structure of the sample. The function is a measure of the probability of being

in the same phase after shifting from a point r1 to a point r2 in the sample (r = |r1 − r2|). This is equivalent

to calculate the mean shared volume between an ”image” and its ghost after shifting the ghost image some

distance, r. For simple systems like a sphere and others, the correlation function is known analytically, but

normally this function is calculated by numerical integration.

sample Δρ, being in this study between air (treated as vacuum) and the silica spheres.
Correlations are measured around the excess SLD along the beam and for systems with
high packing fractions or ordered system G(z) may even exhibit negative values due to
the excluded volume at the vicinity of particle surfaces.

4.2.2 Sample and experiment

In the experiment we used a fine spherical silica powder, kindly provided by Kobo
Products Inc. The manufacturer reported a wide lognormal size distribution with
a peak at 3-4μm spanning across a decade. The density of the primary grain does
not necessarily correspond to the density of the material making up that grain. We
performed N2 porosimetry measurements that concluded a primary grain density ρg �
0.45g/cm3 to be compared to 2.2g/cm3 for the density of pure silica. This density is
in good agreement with the porosity stated by the manufacturer (0.5g/cm3).

SESANS experiments were carried out on a hollow cylindrical sample container
filled with powder of known mass. Two samples were prepared with the same thickness
(5mm) but holding different mass of material, thus giving different volume fractions,
φ � 0.33 and φ � 0.75 for the loose and the dense case respectively. The packing
fractions are quoted in terms of their grain packing fractions, being

φ =
ρs

ρg
, (4.6)

where ρs is the density of the sample (i.e., mass powder per volume sample container).
A simple uniaxial compression was applied to prepare the sample. The straining of

the powder was done by hand. The rate of straining was a few millimeters per second.
To produce the loose sample, φ � 0.33, we carefully rained the powder into a

cylindrical mould and sealed it off with glass and aluminium windows (Aluminium and
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quartz are transparent for neutrons).
The second measurement was conducted on a compressed sample, where the con-

tainer was filled with more material, and the packing fraction was increased by com-
pressing the powder along the neutron beam direction, φ � 0.75. We note that such a
high packing fraction is possible due to the polydispersity in grain sizes. We also recog-
nise an uncertainty in the measured porosity and in the determined volume-fractions,
estimated to ±5%.

The experiments were conducted in ambient conditions and the moist level in the
powder was determined to be 13% by weight (6% by volume), determined by weighing
before and after drying. A reasonable value, given the amount of surface available for
moist-adsorption.

The microstructure of the loose packed sample will be mainly given by the attractive
van der Waals and capillary forces, rather than be driven by gravitational body forces
and hard core repulsion. We do not expect the loose packed sample to settle or undergo
compaction during the measurement.

The samples were left for several hours in the neutron beam in order to improve
statistics in the recorded spectra. Because of the long measurement time we moni-
tored the stability (cracking, settling, compaction etc) of the powder packing by visual
inspection throughout the measurement. No compaction was observed on the loose
packed sample during the measurement and the dense sample appeared homogeneous
as far as one can see by eye. The pressure applied on the dense sample was about
100kPa, determined by the constant weight acting on the plunger used to compress the
powder.

A few points on the stress strain relationship for the powder was measured and is
shown in Fig. 4.2. Plotting the volumetric strain (ΔV/V0, change in volume over initial
volume) as a function of the logarithm of the stress shows a linear relationship. It is a
soft powder, easily strained, with an initially very low grain packing fraction.

4.3 Molecular Dynamics: Method and model

The interaction between grains in a granular material involves deformations at the
contact point and in certain cases an attraction in the form of van der Waals attraction,
capillary forces and electrostatic forces. Any computational attempt that convincingly
models all possible interactions and deformations would be, to say the least, time
consuming. Therefore we relate the interaction force to the overlap between particle
pairs and particles interact only at contact (i.e., short-range forces). We used Molecular
Dynamics simulations (MD) [61], [47], [49] to model the experiment. From the MD
generated particle configuration we are able to calculate the corresponding SESANS
correlation function G(z) according to Eq. (4.2), and finally the expected polarisation
with Eq. (4.1).

The MD code uses a linear hysteretic contact law, which allows for attractive/cohesive
forces upon unloading [47], [49], see Fig. 4.3. Three stiffness parameters govern the
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Figure 4.2: Stress-strain curve obtained from uniaxial compression experiments on the silica powder.

particle-particle contact model; k1, k2 and kc for loading, unloading and cohesive stiff-
ness respectively. The initial loading path follows a linear increase k1δ until a maximum
overlap δmax is reached where δmax is a history parameter to be updated for each load
cycle. For unloading, the force decreases along k2δ until δ0

δ0 = (1 − k1/k2)δmax. (4.7)

Attractive/adhesive forces are activated when unloading below δ0. The force can be
cast into one equation:

fh = (4.8)⎧⎪⎨
⎪⎩

k1δ loading, if k2(δ − δ0) ≥ k1δ

k2(δ − δ0) un/reload, if k1δ > k2(δ − δ0) > kcδ

−kcδ unloading, if −kcδ ≥ k2(δ − δ0)

To allow for a stable integration of the equations of motion the timestep was chosen
so that it resolves about 70 times the typical contact duration time, tc, between a
typical particle pair.

tc =
π

ω
=

π√
k2/m12 − η2

, (4.9)

where ω is the eigen-frequency of the contact, k2 the stiffness, m12 = m1m2/(m1 +m2)
the reduced mass of the particle pair and η = γ/(2m12) a damping coefficient. Energy is
dissipated upon particle contacts and collisions, and also through the viscous damping
coefficient γ, which (alone) leads to the coefficient of restitution, rc:
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Figure 4.3: Linear hysteretic force model. The left illustrates that at the contact point between two particles

plastic deformations takes place in the form of permanent overlap. Unloading below δ0 gives rise to attraction

between contacting pairs. The figure to the right shows two particles in contact producing an overlapping region.

rc = v′/v = exp(−ηtc) (4.10)

where v and v′ denotes the particle velocity before and after a collision respectively.
The particle size-distribution was chosen to be lognormal distributed with a mean

at 3μm in terms of a sphere diameter (Rmax/Rmin=15), see Fig. 4.4. The particles was
divided into five size-classes, indicated by the horizontal lines in Fig. 4.4, each holding
a range of sizes of the lognormal distribution. The average coefficient of restitution
for each size-class was set around rc = 0.85 by giving the particles different stiffness
depending on their size.

Coulomb’s law gives the tangential forces acting between particles, so that in the
static case the tangential force is given by a static friction coefficient i.e., f t ≤ μsf

n

and the sliding case is governed by a dynamic counter part fd = μdf
n. In general the

relationship is μd ≤ μs and we use μd = μs = 0.4.
An artificial background viscosity to dissipate the long-wavelength modes of motion

is added; this damping can be attributed to a dispersion medium such as air, thus giving
it a physical meaning rather than just enhancing the efficiency of the simulation [47].

The MD simulation carried out here contains two steps. First the initial preparation
where we go from a packing fraction φ = 0.08 configuration to φ = 0.33 by increasing
the radius of the particles. For an assembly of N spheres with radius a contained in
volume V we have φ = V −1

∑N
i 4/3πa3

i . This preparatory step is followed by a uniaxial
compression until we reach φ = 0.75. Table 4.1 summarizes the material properties and
simulation characteristics at the start of wall movements. It is beyond the scope of this
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Table 4.1: Material parameters and simulation parameters used in the MD simulation at the start of the wall

movement. The stiffness and viscosity parameters are averages. ‡This is the average distance that the particles

have travelled from the start of the simulation. † The timestep of the integration is chosen so that it can resolve

the duration of a particle contact.

Parameter Meaning MD unit SI unit (prefixed)

t time unit 1 1μs

l length unit 1 1m

m mass unit 1 1kg

〈D〉 mean particle diameter 3×10−6 3μm

δ particle density 500 500kg/m2

V total volume 3×10−12 3×10−3mm3

〈tc/Δt〉† particle contact response time over MD timestep (average) 70 -

〈lend〉/〈D〉‡ particle dist. travelled 900 0.9mm

φ packing fraction 0.33 -

k2 elastic stiffness 2×10−7 2×105kg/s2

k1 plastic stiffness 0.2k2

kc cohesive stiffness 10k2

kt friction stiffness 0.2k2

kr rolling stiffness 0.2k2

ks spinning stiffness 0.2k2

μd = μs Coulumb friction coefficient 0.4

μr rolling friction μd

γn viscosity (normal) 1×10−12 1×10−6kg/s

γf viscosity (tangential) 0.25γn

γr viscosity (rolling) 0.25γn

γs viscosity (spinning) 0.25γn

γbgt visc. acting on translations (background) 0.1γn

γbgr visc. acting on rotations (background ) 0.05γn

paper to discuss all parameters, details about the parameters can be found in [49].

4.4 Results

4.4.1 Results: SESANS Experiment

We have used the SESANS setup at the Delft University of Technology to perform
the SESANS experiments shown here. Two experiments were carried out on a loosely
packed sample (φ = 0.33) and on a uniaxially compressed powder (φ = 0.75) of porous
spherical silica particles.

We note that the loose-packed sample shows (see the bottom figure in Fig. 4.5)
correlation extending beyond the measured scale, indicating inhomogeneities above four
particle diameters, see Fig. 4.5. The experimental result for the loose packed sample
contain two seemingly linear branches (separated at z=2μm). This behaviour cannot
be explained by any simple scaling or power laws. We attribute this to originate from
different scales present in the powder, being the size of grains ( 3μm) and the size of
clusters of grains (>12μm).
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Figure 4.4: The lognormal size distribution used in the simulation. The inset shows the cumulative probability

distribution of sizes

The longer ranged correlations are credited to the presence of clusters and voids
with an average size above four particle diameters. Upon compacting, one expects the
clusters to break up and voids will collapse. As can be seen in the top figure in Fig. 4.5
we reach a saturation in the correlations �3μm for the dense sample with φ = 0.75, we
attribute this size to the diameter of the particles, reported to be centred at 3μm. The
applied stress does not only break clusters and collapse voids, but it also give rise to
excluded volume correlation among the grains as seen in the small dip around 2-3μm.

The amplitude of the saturation is proportional to the correlation length ξ and the
packing fraction φ of inhomogeneities in the sample according to Eq.(4.4) and Eq.(4.5).
Since the loose-packed sample never shows any saturation on the measured scale, it is
hard to draw any quantitative conclusions; however, we note that the saturation level
is below that of the compact sample leading to a higher correlation length, which is to
be expected for a sample with larger voids.

4.4.2 Results: Molecular Dynamics

We have used the MD method described in a previous section to carry out a uniaxial
compression test on a low-volume fraction (33%) cohesive powder packing. Simulations
were carried out using a periodic cuboid undergoing a cosinusoidal (half period) com-
pression along one dimension in zero gravity. The initial state was a random granular
gas of low volume fraction (φ = 0.08); with a gaussian velocity distribution and in total
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Figure 4.5: Measurements on fine powders of silica, polarisation, P (z), as function of spin-echo length z. The

topmost plot is results obtained from the dense-packed sample and the lower figure represents the loose-packed

sample. If not shown, all errors fall within markers.
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carrying 3000 particles. The initial state was allowed to grow (without compromising
the size distribution) until a specified volume fraction was reached at φ = 0.33, and the
final radius was 1.5μm. On average the particle has travelled 900 average particle di-
ameters at the end of the growth process. At this stage the simulation should represent
the loose-packed sample in our experiment, holding a low volume fraction in a more
clustered or open structure. We note that at the end of the simulation at φ = 0.33 the
packing is not stable, but containing residual kinetic energy.

The loose-packed sample was compressed along one dimension to yield the final
compressed state at φ = 0.75, for an illustration of the packings, see Fig. 4.7. In general,
we conclude from Fig. 4.6 that the shapes of the curves are rather well reproduced when
comparing the simulation with the experiments. The excluded volume feature seen in
the experiment is also seen in the simulation in the dense case.

For the compressed state we calculate the correlation length to ξ=1μm, representing
the typical size of inhomogeneities projected along the neutron beam, this is in excellent
agreement with our measurement when taking into account the measured volume frac-
tion, known SLD, the neutron wavelength and the sample thickness. The correlation
function saturates on the horizontal axis around z=3μm and this size represents the
typical diameter of the spherical grains. All together, giving good agreement in both
shape and amplitude of the polarisation in the dense case.

When comparing the uncompressed and compressed state in terms of G(z) we note
that the dense packing show a faster decay in the correlations thus, representing a
sample with shorter range in correlations, in essence a more closed system with smaller
inhomogeneities.

For the simulation representing a loose-packed structure the calculated polarisation
does not reproduce our experiment; however, we clearly see a correlation function with
a good qualitative agreement in the overall shape (see the lower-left figure in Fig. 4.6).
Note also the slope seen for higher z in the experiment and seen in simulation on the
loose-packed sample. The amplitude of the polarisation is given by the total amount
of scattering according to Eq. (4.4) where mainly ξ contributes to the amplitude (the
other terms are constants, and φ(1 − φ) in this case, gives only a minor contribution.
We extract from our simulation a correlation length, ξ, of 2.5μm and 1μm for the loose
and dense packing respectively. For a hard sphere gas we have ξ=1.5 times the sphere
radius. We expect this correlation length to drop with increasing packing fraction.

We explain the discrepancy between measured and simulated polarisation on the
loose packing by arguing that: in the experiment, we have a two-phase system of
low/empty and -high density phases of particles so that the high-dense regions will
contribute to a low-scattering amplitude via low ξ and the low packing fraction is
given by the large voids. At low length scales, 0.1μm ≤ z ≤ 3μm, when comparing
the experiment with our simulation result, we see in Fig. 4.6 a steeper slope in the
correlation function (i.e., a more close-packed structure) and the argument here is that
dense regions are giving this behaviour. When we further compress the system we
expect, at some stage, all clusters to break and larger voids to collapse, all together
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giving a final random dense-packing of polydisperse spheres.

4.5 Conclusions

The use of spin-echo small angle neutron scattering for the study of structure in fine
powders captures the structural differences in terms of the correlation function be-
tween loose and dense packings. The SESANS correlation function can be calculated
from molecular dynamics simulations and compared with experiments. For the dense
packing, we obtain a good quantitative agreement between measurements and simula-
tions, whereas a qualitative agreement is obtained for the loose-packed system. In the
loose packing we see no saturation of the correlations at larger length scales both in
simulation and in experiment.

The SESANS correlation function is directly related to the density-density distri-
bution function of the sample, through the projection along the neutron beam path.
SESANS captures the transition between a loosely packed powder and a dense packing
via a hard-core repulsion (excluded volume) feature in the correlation as well as in the
correlation length and the overall curve-shape. The average size of the inhomogeneities
can be extracted from the correlation function in the form of correlation length, ξ. The
experiments show that the dense packing carries lower correlation length when com-
pared to the loosely packed sample. This is expected, since the loose packed sample
would mean a higher degree of clustering, giving rise to inhomogeneities and voids at
larger length scale (this can also be concluded by visual inspection and by the fact that
no saturation is observed). Interestingly, the correlations do not extend beyond the
size of a grain in the dense packing. One expects the dense case to carry so called force
networks, these networks (if they are present in the packing) do not create correlations
in the density distribution.

The lognormal size distribution, used in the simulation, leads to the loss of ex-
cluded volume effects and nearest-neighbour peaks in the correlation function, thus
contributing to the agreement between measurement and the simulation.

We acknowledge that the structure of the loose packed sample was not reproduced
in our simulation. A stronger clustering mechanism than used in the simulation is
needed, possibly by introducing an attractive potential. The simulation predicts a
higher correlation length for the uncompressed state, which is expected for a more
open and porous system. The total amount of neutron scattering and the correlation
length is over-estimated when compared to our experiment. We argue that in the loose
packed experiment we have a two-phase system with large voids and large dense-clusters
of particles (sub-millimeter sized). The dense clusters of particles would, in this case,
contribute to a low correlation length and the voids give rise to the low packing fraction
seen in the experiment.

We believe to have made a valuable connection between simulations and experi-
ments, showing that in dense sphere packings with wide size distributions, the proposed
MD model is in excellent agreement with the experiment. For loose cohesive powders,
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Figure 4.6: Experimental and MD-simulation results. The top figure represents all measured and simulated

results. Note that in the clustered case (diamonds) the simulation result (dashed line) is re-scaled to collapse on

the measured points. We separate the two cases at the bottom and note only a qualitative agreement, on the

shape, between the simulation and experiment for the loose-packed sample (rightmost figure). On the dense-

packing we see a good quantitative agreement between measurement and simulations (leftmost figure). If not

shown, all errors fall within the markers.
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Figure 4.7: Visualisation of: Top, the final compressed packing (φ = 0.75)and bottom, the initial loosely packed

state (φ = 0.33).
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we need new models and larger simulations if we want capture the structure seen in
real experiments.
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Summary

Microstructure in powders
Spin-echo small-angle neutron scattering measurements

By Robert Andersson

Industrial relevance, fundamental interest, and a curiosity sparked by a very rich
phenomenology, have turned the scientists towards the study of powders and granular
materials. Also, next to water, granular matter is the most manipulated and processed
state of matter found. The basic unit of a granular material is the grain –in the same
way as the water molecule is the basic unit of water –the gold atom is for the gold ring,
and so on. The grains in a granular material interact through the action of force. Forces
can have their origin in gravity, meaning that the mass of the grain give rise to a body
force acting on other grains, which acts on other grains and so on. Other forces are
electrostatic in nature, for example, the van der Waals force which is, essentially, related
to surfaces in contact. For powders made up of smaller grains, e.g., less than 100μm in
diameter, the van der Waals force becomes the dominant one (i.e., its strength exceeds
that of gravity). A liquid capable of wetting the grains is another important source
of grain-grain attraction, and such capillary forces can cluster truly macroscopic sized
grains; for example, millimeter sized particles. When the attractive forces dominate
the grain-grain interaction the powder is classified as being cohesive. The grains are
otherwise impenetrable and their mutual arrangement, size and shapes makes up what
is called the microstructure of the granular material.

This thesis presents a series of bulk microstructural experiments made on cohesive
powders alongside with phenomenological modelling and molecular dynamics simula-
tions. The modelling serves as explanations of the experimental observations. The
measurements were carried out with neutrons, using their penetrating capability to
see the powders from the inside; and this in a spin-echo small angle neutron scatter-
ing (SESANS, spin-echo small-angle neutron scattering) setup at the Reactor Institute
Delft at Delft University of Technology –the Netherlands. This particular scattering
technique uses the Larmor precession of neutrons in magnetic fields in order to ‘deter-
mine’ the scattering ‘angles’. The instrument, which uses a polarised neutron beam,
contains two identical magnetic field regions situated before and after the sample posi-
tion. Any neutron scattering at the sample breaks this symmetry, and this gives rise to
depolarisation of the neutron beam. The SESANS machine measures the projection of
the autocorrelation function of the density distribution of the sample, i.e., it measures
its microstructure. The motivation of constructing a SESANS instrument is to increase
the momentum resolution so that the study of micron sized domains is possible. This
thesis shows SESANS applicability on realistic samples –samples for which it was built
for.

Many of the correlation functions, phenomenological or theoretical, describing a
variety of density distributions, particle types etc. were investigated and, finally, their
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corresponding SESANS formalism was developed. These calculations yielded, when
possible, an analytical result or were carried out as a numerical calculation or method.
All together, a toolbox for the analysis of SESANS data was developed during this
thesis work.

The powders used in the experiments were mainly made of silicone dioxide (SiO2),
carrying a broad distribution of grain sizes. From the experiments it was concluded
that the density distribution is disordered at a wide range of packing fractions. No
ordering was observed in the microstructure and a single length scale was enough to
attribute a size to the microstructure. This is the typical size of the density fluctuations
and it was shown that this does not exceed the average particle size; the only exception
was observed for the very loose packed samples, where particle clustering extends the
density correlations. Compressing the powders leads to a decrease in the range of
correlations, i.e., the typical size of the density fluctuations decreases. In particular in
one experiment, the evolution of the microstructure was followed during a stress versus
(compressive) strain experiment. The non linear behavior of the macroscopic stress
versus strain could be traced back to the similar microscopic relationship, since the
measured correlation length was observed experimentally as a function of strain.

A relatively simple phenomenological correlation function could be used to fit many
experiments. This model is based on a self-affine description of the density distribution;
a model parameterised by the so called Hurst exponent and with a finite size, related to
the typical size of the density fluctuations. This model provides an analytical solution
to the measured SESANS projection, the correlation function itself, and also to the
corresponding wavenumber-domain spectrum.

Anisotropy in the density distribution of a uniaxial compressed powder was investi-
gated too. This concluded that when grains are isotropic in their geometry, the uniaxial
compressed powder remains isotropic in the overall density distribution. A similar ex-
periment was carried out using anisotropic primary grains (nanotube powder), which
resulted in an anisotropic density distribution in the final uniaxially compressed state.

Molecular dynamics computer simulations were carried out to model a uniaxial
compression of a ‘isotropic’ cohesive powder. The simulation showed good agreement
on the dense packing fraction, i.e., after compression of the powder. A quantitative
agreement was seen between the simulation and the experiment at a packing fraction
above 70%. The lower unperturbed, uncompressed and loosely packed powder saw a
qualitative agreement in terms of the curve shape. Stronger attraction between grains
in the model would enable the creation of fractal aggregates, which would have lead to
better agreement. The study shows that improvements in models are needed.
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Sammanfattning

Microstruktur i pulver
Spin-echo small-angle neutron scattering mätningar

Av Robert Andersson

Industriell relevans, fundamentalt intresse och en nyfikenhet, väckt av en rik fenomenologi,
har vänt vetenskapens blickar mot studiet av pulver och andra granulära material.
Ocks̊a, vid sidan av vatten s̊a är de granulära materialen de mest manipulerade och bear-
betade materialen p̊a jorden. Den grundläggande enheten som beskriver ett granulärt
material är kornet (den mikroskopiska partikeln), p̊a samma sätt som H2O är vat-
tnets grundlaggande enhet, guldatomen är guldringens osv. Partiklarna som bygger
upp det granulära materialet växelverkar genom utövandet av kraft. Krafter kan ha
sitt ursprung i gravitationen, vilket betyder att partikelns massa ger upphov till en
volymkraft som verkar p̊a angränsande partiklar vilka i sin tur verkar p̊a andra partik-
lar osv. Krafter kan ocks̊a ha sitt ursprung i elektrostatisk växelverkan, t.ex. van der
Waals kraften, vilken är mer eller mindre relaterad till ytor i kontakt. För pulver ma-
terial som best̊ar av mindre partiklar (100μm eller mindre) kan van der Waals kraften
bli den mer dominanta (dvs. dess styrka överkommer gravitationen). En annan viktig
källa för interaktion mellan makroskopiska partiklar är kapillärkrafter. Kapillärkrafter
uppst̊ar d̊a en vätska som kan väta partikelns yta ansamlas i gränssnittet mellan par-
tiklar. Kapillärkraften kan aggregera verkligt makroskopiska partiklar, t.ex. millimeter
stora korn. D̊a attraktiva krafter dominerar interaktionen mellan partiklar i ett pulver-
material talar man om ett kohesivt pulver (cohesive powders). Partiklarna är annars
openetrerbara och deras ömsesidiga arrangemang, storlek och form bygger upp vad som
kallas mikrostrukturen av det granulära materialet eller pulvret.

Denna avhandling behandlar mikrostrukturella under-sökningar av kohesiva pul-
ver och med fenomenologisk modellering och ‘molecular-dynamics’ datorsimuleringar.
Modelleringen och simuleringarna har för avsikt att förklara de experimentella ob-
servationerna. Experimenten utfördes med hjälp av neutroner, där deras pentrerande
egenskaper använts för att se materialen fr̊an ‘insidan’. Tekniken kallas spin-echo small-
angle neutron scattering (SESANS, spin-echo small-angle neutron scattering) och in-
strumentet finns p̊a Reactor Institute Delft vilket är en del av Technische Universiteit
Delft. Denna neutron spridnings teknik använder neutronens förmåga att rotera (Lar-
mor precession) i ett magnetfält. Instrumentet använder polariserade neutroner och
best̊ar av tv̊a identiska magnetiska fält, formade som parallelogram, placerade före och
efter prov-miljön. I det fall d̊a provet ger upphov till neutronspridning registreras detta
som depolarisering av neutronstr̊alen. SESANS mäter provmaterialets mikrostruktur
genom projektionen av autokorrelationen av provets densitets-distribution (eller au-
tokorrelationen av materialets projekterade densitetsdistribution). SESANS är utveck-
lad för att möjligöra studier av strukturer i mikrometer domänen och upp̊at, allts̊a
relativt stora structurer. SESANS är ett sätt att öka momentum-resolutionen i small-
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angle neutron scattering. Denna avhandling visar SESANS tillämplighet för studier av
realistiska material –material som SESANS var byggt för att kunna studera.

Flera av de korrelationsfunktioner, fenomenologiska och teoretiska, som beskriver
en rad densitets distributioner, partikel typer etc. har undersökts i detta arbete, och
en korresponderande SESANS formalismen har utvecklats. Beräkningarna gav många
g̊anger ett analytiskt resultat men d̊a det inte var möjligt s̊a undersöktes resultaten
numeriskt. Sammantaget s̊a har en “verktygsl̊ada” för SESANS dataanalys utvecklats
under detta arbete.

De pulver som använts i experimenten var av kiseldioxid (SiO2) och oftast h̊allande
en bred distribution av partikelstorlekar. Experimenten visade att densitetsdistribu-
tionen är oordnad över en rad volymfraktioner. Ingen organisering av partiklar kunde
p̊avisas och endast en längd var tillräckligt för att tillskriva mikrostructuren dess stor-
lek. Detta är den karakteristiska storleken p̊a densitets-fluktuationerna och denna stor-
lek överstiger inte storleken p̊a partiklarna som bygger upp pulver materialet. Endast i
särskilda fall observerades korrealtioner över längder som översteg storleken p̊a pulver
partiklarna, detta återfanns vid l̊aga volymfraktioner där kluster av partiklar förlänger
korrelationen. D̊a pulvret komprimeras genom tryck s̊a leder detta till en minskning
av korrelationernas räckvidd, storleken p̊a densitetsfluktuationerna avtar d̊a volymfrac-
tionen material ökar. Speciellt i ett experiment s̊a följdes mikrostrukturens evolution
under ett kompressivt-dragprov. Det icke-linjära makroskopiska beteendet mellan tryck
och kompression som observerades kunde sp̊aras till en liknande mikroskopisk relation.
Korrelationslängden följdes allts̊a i SESANS experimentet som funktion av kompres-
sion.

En relativt enkel fenomenologisk modell och funktion kunde användas för att an-
passa de mätta punkterna. Modellen beskriver ett s.k. ‘self-affine material’, en modell
parametriserad med en Hurst-exponent och en längd som beskriver den karakteristiska
storleken av mikrostrukturen. Funktionen som beskriver autokorrelationen av densitets
distributionen leder ocks̊a till en analytisk lösning av dess projektion s̊aväl. Ocks̊a dis-
tributionens spectrum i reciprokal rymd är analytisk.

Anisotropi i densitetsdistributionen av uniaxialt komprimerade pulver studerades
ocks̊a. Experimenten konkluderade att i de fall d̊a pulver-partiklarna var isotropiska d̊a
förblir ocks̊a den totala densitetsdistributionen isotropisk efter uniaxial kompression.
Ett liknande experiment utfördes p̊a ett pulver av anisotropiska partiklar (nanotube
powder), detta resulterade i en anisotropisk densitetsdistribution efter uniaxial kom-
pression.

Datorsimuleringar baserade p̊a Molecular Dynamics ufördes med syftet att mod-
ellera en uniaxiell kompression av ett ‘isotropiskt’ kohesivt pulver Simuleringen visade
god överensstämmelse med experimentella observationer vid högre volymfraktioner –
allts̊a efter kompression. En kvantitativ överensstämmelse s̊ags mellan simulering och
experiment vid en volymfraktion över 70%. Vid lägre volymfraktion, okomprimerad,
ostörd och löst packat pulver återfanns endast en kvalitativ överensstämmelse. Starkare
attraktion mellan partiklarna i datormodellen skulle leda till ett bättre resultat. Stu-
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dien visar att datormodeller måste förbättras.
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Samenvatting

Microstructuur in poeders
Spin-echo small-angle neutron scattering metingen

Door Robert Andersson

Industriële toepasbaarheid, fundamentele interesse, en nieuwsgierigheid die gevoed
wordt door een rijke fenomenologie, hebben wetenschappers tot het bestuderen van
poeders en granulaire materialen aangezet. Bovendien is na water, granulaire materie
de meest voorkomende gemanipuleerde en bewerkte toestand van materie. De basis
eenheid van granulair materiaal is de korrel - op dezelfde manier als het water molecuul
de basis eenheid van water is - het goud atoom dat voor de gouden ring is, enzovoort. De
korrels in een granulair materiaal wisselwerken door het optreden van krachten. Een van
de krachten wordt veroorzaakt door de zwaartekracht, hetgeen betekent dat de massa
van de korrel aanleiding geeft tot een kracht van de korrel op andere korrels, welke weer
op andere korrels krachten uitoefent, enzovoort. Andere krachten zijn elektrostatisch
van aard, bijvoorbeeld de van der Waals krachten, welke, in essentie, evenredig zijn
met de contactoppervlakken tussen de korrels. Voor poeders die uit kleinere korrels
bestaan, d.w.z., minder dan 100 μm in diameter, is de van der Waalskracht de domi-
nante kracht (dat betekent dat deze kracht sterker is dan die van de zwaartekracht).
De aanwezigheid van een vloeistof die de korrels bevochtigt, is een andere belangrijke
bron van aantrekking tussen korrels, en zulke capillaire krachten kunnen de korrels
doen clusteren tot werkelijk macroscopische afmetingen, bijvoorbeeld tot deeltjes met
een grootte in de orde van enkele millimeters. Wanneer de aantrekkende krachten de
korrel-korrel interaktie domineren, wordt het poeder geclassificeerd als zijnde cohesief.
De korrels zijn verdere onvervormbaar en hun wederzijdse rangschikking, grootte en
vorm bepalen de microstructuur van het granulaire materiaal.

Dit proefschrift presenteert een serie microstructuur experimenten van cohesieve
poeders, samen met het fenomenologisch modelleren en simuleren met zgn. molec-
ulaire dynamica simulaties. Het modelleren dient om verklaringen te vinden voor de
experimentele waarnemingen. De metingen zijn uitgevoerd met neutronen, waarbij hun
doordringende vermogen gebruikt is om de poeders van binnenuit te bekijken. Meer
specifiek heeft dit plaatsgevonden in een spin-echo kleine hoek neutron verstrooiingsap-
paraat (SESANS, spin-echo small-angle neutron scattering) op het Reactor Instituut
Delft van de Technische Universiteit Delft. Deze bijzondere verstrooiingstechniek ge-
bruikt de Larmor precessie van neutronen in magnetische velden om ‘de verstrooiing-
shoeken te bepalen’. Het instrument, waarin gepolariseerde neutronen worden gebruikt,
bevat twee identieke magnetische veld gebieden, waarvan er zich n voor en éen voor en
een achter het te onderzoeken sample bevindt. Elke verstrooiing van een neutron in
het sample verbreekt de symmetrie van de afgelegde paden en veroorzaakt depolarisatie
van de neutronen bundel. De SESANS machine meet de projectie van de autocorrelatie
functie van de dichtheidsdistributie van het sample, d.w.z., het meet zijn microstruc-
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tuur. De motivatie om een SESANS instrument te ontwikkelen lag in de wens om de
impuls resolutie te vergroten, zodat de studie van domeinen in de orde van een microm-
eter mogelijk zou worden. Dit proefschrift toont de toepasbaarheid van SESANS voor
realistische samples - samples waarvoor het was ontwikkeld.

Veel van de correlatiefuncties, fenomenologisch en theoretisch, die een veelheid van
dichtheidsverdelingen, deeltjes typen, etc., beschrijven, werden onderzocht en uitein-
delijk werd hun corresponderende SESANS expressie ontwikkeld. Waar mogelijk lever-
den deze berekeningen analytische resultaten op of ze werden uitgevoerd als numerieke
berekening of methode. Al met al werd gedurende deze promotietijd een gereedschap-
skist voor de analyse van SESANS gegevens ontwikkeld.

De poeders die in de experimenten zijn gebruikt, bestonden hoofdzakelijk uit sili-
cium dioxyde (SiO2), over een groot bereik van korrel groottes. Uit de experimenten
werd geconcludeerd dat de dichtheids verdeling niet-geordend is in een groot gebied
van pakkingsfracties. Er werd geen ordening waargenomen in de microstructuur en een
enkele lengteschaal was genoeg om een grootte toe te kennen aan de microstructuur.
Dit is de kenmerkende grootte van de dichtheid fluctuaties en het werd aangetoond
dat deze de gemiddelde deeltjes grootte niet overschrijdt; de enige uitzondering werd
waargenomen voor zeer luchtig opeengestapelde samples, waar het klonteren van deelt-
jes de dichtheidscorrelaties groter maakt. Het samendrukken van de poeders leidt tot
een afname van de correlaties, d.w.z., de typische afmetingen van de dichheidsfluctuaties
neemt af. In éen experiment in het bijzonder werd de evolutie van de microstructuur
gevolgd tijdens een spanning versus (compressieve) vervorming experiment. Het niet-
lineaire gedrag van de macroscopische spanning tegen vervorming kon teruggevoerd
worden naar de gelijkwaardige microscopische relatie, omdat de gemeten correlatie-
lengte experimenteel waargenomen was als een functie van de vervorming.

Er kon een betrekkelijk eenvoudige fenomenologische correlatiefunctie gebruikt wor-
den voor het fitten van veel van de experimenten. Dit model is gebaseerd op een zelf-
bevestigende beschrijving van de dichtheidsdistributie; een model dat geparametriseerd
is door de zgn. Hurst exponent en met een eindige grootte, gerelateerd aan de typische
grootte van de dichheidsfluctuaties. Dit model verschaft een analytische oplossing voor
de gemeten SESANS projektie, de correlatiefunctie zelf, en ook voor het correspon-
derende golfnummer-domein spectrum.

De anisotropie in de dichtheidsdistributie van een uniaxiaal samengepersd poeder
werd ook onderzocht. Hieruit werd de conclusie getrokken dat wanneer de korrels in
alle richtingen dezelfde geometrie hebben (isotroop zijn), de uniaxiaal samengepersde
korrels isotroop blijven in de globale dichtheidsdistributie. Een vergelijkbaar exper-
iment is uitgevoerd waarin anisotrope korrels werden gebruikt (nanotube poeder),
wat resulteerde in een anisotrope dichtheidsdistributie in de uiteindelijke uniaxiaal
samengepersde toestand.

Moleculaire dynamica computersimulaties werden uitgevoerd om de uniaxiale com-
pressie van een ‘isotroop’ cohesief poeder te modelleren. De simulatie vertoonde een
goede overeenkomst voor de hoge vullingsverhouding, d.w.z., na compressie van het
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poeder. Een kwantitatieve overeenkomst werd gevonden tussen simulatie en experi-
ment in geval van een vullingsverhouding boven de 70%. Het lagere onverstoorde, niet
samengedrukte en luchtig gestapelde poeder leverde een kwalitatieve overeenkomst op
in termen van de vorm van de grafiek. Sterkere aantrekking tussen korrels in het model
zouden de vorming van fraktale aggregaten mogelijk moeten maken, hetgeen tot een
betere overeenkomst zou moeten leiden. Het onderzoek toont aan dat de modellen
verbetering behoeven.
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