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ABSTRACT

In a business network, a company may be encouraged to utilise a new technique when either its

cooperators or its competitors have made their adoption. Nevertheless, its willingness can be re-

duced as more of its competitors start applying the new technique. Inspired by the this scenario, in

this thesis we proposed a viral spreading model in signed networks, in which each link is allocated

with a positive or negative sign, representing, e.g. the cooperative or competitive relation between

two companies. We introduce a dynamic infection rate to capture the influence of negative links

into viral spreadings and explore the performance of our proposed model with respect to the fol-

lowing influential factors: the relative infection rate of negative links with respect to positive links

(relative negative-link infection rate), the correlation between positive and negative degrees, and

the degree distributions of the positive and negative links respectively. To provide analytical ex-

planations, we develop an Individual-Based Mean Field Approximation (IBMFA) method. We show

that IBMFA is a feasible theoretical tool that can well approximate the observations in Monte-Carol

simulations. Our results show that, contrary to our intuition, when positive degree and negative de-

gree of nodes are less correlated in scale-free networks, a larger relative negative-link infection rate

does not always results in more nodes being infected. In addition, compared to networks with only

positive links, viral propagation via negative links can lead to a higher fraction of infected nodes at

small infection rate; whereas the overall spreading starts being suppressed in signed networks as

the infection rate becomes larger than a certain value. We find that this certain infection rate, at

which signed and unsigned networks share the same fraction of infected nodes, is approximately

linearly correlated to the relative negative-link infection rate. Corresponding to the scenario men-

tioned at the beginning, our findings indicate that: (1) Adopting a new technique at a high rate from

competitors does not always lead to a larger percentage of adoption among companies; (2) Com-

pared to networks with only cooperative relations, the competitive relations between companies

may sometimes facilitate a higher percentage of adoption, especially when every company accepts

a new technique at a low rate.

Key words: viral spreading model, signed network, Individual-Based Mean Field Approximation

(IBMFA)
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1
INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

Viral spreading in complex networks has attracted huge interest in past decades. Many propagation

processes, e.g. the propagation of information, epidemics and computer virus [1–3], can be studied

with the help of viral spreading models. The most widely used type of epidemiological models is the

homogeneous model (or the “fully-mixed” model) [4, 5]. In this model, each entity is assumed to

connect to several randomly chosen entities, and all entities have approximately the same number

of connections in the same time. Network topology is ignored in fully-mixed models and every en-

tity tends to be equally likely infected [6]. However, it have been proved in many real networks that

(e.g. [7–9]), the number of connections that an individual has (this is also called the “degree” of an

individual in graph theory) follows a power-law distribution and thus individuals are actually not in-

fected with the same probability. Taking the degree heterogeneity into account, Pastor-Satorras and

Vespignani [10, 11] developed analytic models for approximating epidemic spreading in networks

with power-law degree distribution. Since their model only works well under strict constraints [12],

the N-Intertwined Mean-Field Approximation (NIMFA) [13] is then proposed to more accurately in-

vestigate the influence of network topology on viral spreading, of which the dynamics is modelled

by susceptible-infected-susceptible (SIS) process. Beyond single-layer networks, recently great in-
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2 1. INTRODUCTION

terest has been drawn in exploring the epidemiological performance in interconnected networks

[14–16], where the different infection rates could be applied in different network layers. In classi-

cal SIS model, the infection rate and recovery rate are assumed to be homogeneous, i.e., both rates

are the same for every node in a network. In recent years few papers (e.g., [17–21]) have discussed

the influence of heterogeneous recovery rate and infection rate on viral spreading processes. Many

network metrics, including the betweenness centrality [22], have been studied for investigating net-

work epidemiology. In order to identify a representative set of metrics, the correlations between

network metrics have been investigated during the past few years [23, 24].

All above researches have been concentrated on viral spreading in networks where all the links fa-

cilitate infections (e.g., friends, trusted or alliance), while in reality there also exist negative relations

that may suppress viral spreadings (e.g., rivals, distrusted or competitors) [25–29]. Generally, net-

works that have both types of relationships are called signed networks, in which every link (or edge)

is labelled as a positive link or a negative link, representing, e.g., cooperative or competitive relation

between two entities ([30–32]). Signed networks have been commonly used to model social net-

works, e.g., a customer network on Epinions where customers can trust or distrust others’ reviews

[33]; a participant network on news website Slashdot where users can claim others as “friends” or

“foes” [34]; and a voting network on Wikipedia where each voter express their support or objection

to the promotion of others as an administrator [35].

Great interest has been drawn on the study of signed networks in recent years. In 2006, based on the

concept of structural balance theory [36], Antal et al. studied how relationships can evolve in signed

networks to achieve a social balance [37]. Besides, Kunegis et al. revealed that the Laplacian matrix

of a signed networks is always positive-semidefinite, and it only becomes positive-definite when a

signed network is unbalanced (i.e., it contains cycles with an odd number of negative edges) [38].

In order to predict the sign of links in signed networks, Leskovec et al. studied principles about the

determination of link signs in large social networks and developed a method which was claimed of

high prediction accuracy [31].

Despite the previous constructive research in the field of signed networks, the dynamics of viral

spreading in signed networks has been barely studied. Intuitively, it is believed that negative rela-

tions between individuals can suppress the overall spread of virus. For instance, in a business net-

work, an enterprise may consider to adopt a new technique especially when its cooperators and/or
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its competitors have utilised it. However, as more of its competitors have made their adoption, this

company would be more reluctant to apply this new technique for, e.g., maintaining its indepen-

dence from other competitors.

Inspired by the above scenario, in this thesis we propose an original Signed Susceptible-Infected-

Susceptible (SSIS) viral spreading model to study the dynamics of propagation processes in signed

networks. In the SSIS model, for instance, the adoption of a new technique by a company can be

represented by the infection of a node, and cooperative and competitive relations between compa-

nies can be modelled by positive links and negative links in signed networks respectively. Instead

of a commonly used constant infection rate, we introduce a dynamic infection rate to capture the

possible influence of negative relations on overall viral spreading - The infection rate of an individ-

ual node is proportional to the fraction of negative neighbours that are susceptible. We investigate

the the effect of following parameters on the overall performance of viral spreading in signed net-

works: (1) the relative infection rate on negative links with respect to positive links; (2) the correla-

tion between the number of positive connections and negative connections of nodes; and (3) the

topologies of the positive and negative connections. We develop Monte-Carol (MC) simulations to

observe epidemic threshold and fraction of infected nodes in meta-stable state. In order to the-

oretically analyse the SSIS model, we also derive the Individual-Based Mean-Field Approximation

(IBMFA) method to provide analytical solution of the probability that each node can be infected

over time. Based on the solutions of all nodes, theoretical epidemic threshold and meta-stable frac-

tion of infected nodes can be obtained. We show that, as a satisfying theoretical tool, IBMFA is able

to provide well approximations of MC simulations. We explore the performance of the SSIS model

in Erdös-Rényi and scale-free network models, under the conditions that the degrees in positive

and negative networks are independent and correlated respectively. In order to verify our findings,

we also investigate the performance of the SSIS model in two real-world networks. According to

our best knowledge, our work is the first one that studies the dynamics of viral spreading model in

signed networks.

1.2. THESIS OUTLINE
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The rest of the thesis is organised as follows:

In Chapter 2, some background knowledge in graph theory is introduced. Besides, the concept

of signed network, along with some classic network models, is given as well.

Our original model was developed based on SIS model, and thus we would like firstly introduce

SIS in Chapter 3. This is a classic model that has been broadly used for decades to model dynamic

processes, such as epidemic spreadings, in single-layer networks. As a theoretical tool for analysing

the SIS model, the NIMFA method is also introduced in this chapter.

In Chapter 4 we propose our original SSIS model to characterise viral spreading processes in signed

networks. We also introduce two methods to investigate the performance of the SSIS model: The

Monte-Carol (MC) simulation is used for observing the properties of SSIS; and the Individual-Based

Mean Field Approximation (IBMFA) is used to numerically analyse the model. We conclude this

chapter with the discussion on the accuracy of IBMFA method in approximating the MC simulation

results.

Chapter 5 is focused on investigating the performance of SSIS in degree-independent signed net-

works. We would like to discover the effect of viral spreading via negative links on the epidemic

threshold and meta-stable fraction of infected nodes in signed networks, mainly regarding to the

relative infection rate of negative links with respect to positive links.

In Chapter 6, we study the performance of SSIS in degree-correlated signed networks. Our interest

is mainly concentrated on how can correlations between degrees in positive and negative networks

influence the overall viral spreading in signed networks.

In order to verify the conclusions drawn in the former two chapters, in Chapter 7 we explore the

performance of SSIS in two real-world signed networks.

Finally, we summarise this thesis and give some suggestions on possible future works in Chapter

8.



2
BACKGROUND KNOWLEDGE

In graph theory, a real-world complex system is usually described by a network (or a graph) G=(N ,L),

where N stands for the number of nodes and L denotes the number of links in the network. Objects

in a real-world system are represented by nodes in a graph, and the pairwise relations between ob-

jects are indicated by links connecting nodes. Mathematically, a graph can be represented by an

adjacency matrix which is introduced in Section 2.1. Each element in the adjacency matrix indi-

cates whether one node is connected to another or not. In Section 2.2 we would like to introduce

two network metric: degree and spectral radius. These two metrics are significant in the study of vi-

ral spreadings. Aiming at modelling the complex real-world systems, several random graph models

have been developed in the past decades. In Section 2.3 two classical network models - Erdös-Rényi

random network and scale-free network - are presented. Besides, the concept of multi-layer net-

work and signed network are given as well.

2.1. ADJACENCY MATRIX

In graph theory, an adjacency matrix A is a binary square matrix used to describe the pairwise rela-

5



6 2. BACKGROUND KNOWLEDGE

tions between nodes. For a network with N nodes, its adjacency matrix is shown as below:

A =



a11 a12 a13 · · · a1N

a21 a22 a23 · · · a2N

a31 a32 a33 · · · a3N

...
...

...
. . .

...

aN 1 aN 2 aN 3 · · · aN N


(2.1)

The value of an element ai j indicates the existence or absence of a link between node i and node

j . ai j =1 if there is a link connecting node i and node j ; otherwise the value is 0. For finite simple

graphs, all diagonal values of their adjacency matrices are zeros (i.e. ai i = 0 for i =1,2,· · · ,N), mean-

ing that no self loops are allowed. An adjacency matrix is symmetric, i.e. ai j =a j i , if a network is

undirected.

2.2. NETWORK METRICS

2.2.1. DEGREE

The degree di of node i represents the number of nodes that are connected to i . In other words, di

stands for the number of neighbours that node i has. Given an adjacency matrix A of size N ×N ,

the degree di can be calculated as the summation of all elements in the i -th row of A, i.e.

di =
N∑

k=1
ai k (2.2)

For a graph G(N ,L), the average degree E [D] is obtained as:

E [D] = 2L

N
(2.3)

The degree distribution Pr[D=k], which is the fraction of nodes with degree k in a network, is a

statistical network feature that reflects global network property. Given the degree distribution of a

network, E [D] can also be obtained follows:

E [D] =
kmax∑

k=kmi n

kPr [D = k] (2.4)
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2.2.2. SPECTRAL RADIUS

The spectral radius of a network is defined as the largest eigenvalue λmax (A) of its adjacency ma-

trix A. It is a significant network metric that characterises the performance of epidemic spreading in

networks. For instance, epidemic threshold is an important metric in epidemiology that determines

whether a disease persists or it dies out. According to [39], the epidemic threshold in real networks

can be approximated as 1
λmax (A) .

2.3. NETWORK MODELS

2.3.1. ERDÖS-RÉNYI RANDOM NETWORK

The Erdös-Rényi (ER) random network [40, 41] is one of the popular network models that allows

many problems being analytically solved [42]. In ER networks, every two random nodes can be

equally likely connected with probability p, and all links are independent from each other. Given

that an ER network has N nodes, the average number of links is then determined as E [L] = N (N−1)
2 p,

where Lmax = N (N−1)
2 stands for the maximum number of links may exist in the network. The def-

inition of ER networks implies that each element ai j in an adjacency matrix A (except for ai i ) is a

Bernoulli random variable with mean p, leading to a binomial degree distribution:

Pr [D = k] =
(

N −1

k

)
pk (1−p)N−1−k (2.5)

where Pr [D = k] represents the probability that the degree D of a random node equals to k. As the

size of network enlarges, the degree distribution of ER networks converges to a Poisson distribution:

Pr [D = k] = (pN )k

k !
e−N p (2.6)



8 2. BACKGROUND KNOWLEDGE

(a) Erdös-Rényi random network (b) Scale-free network

Figure 2.1: An example of network models [43]

2.3.2. SCALE-FREE NETWORK

Another classical network model is the scale-free (SF) network [44], of which the property of power-

law degree distribution Pr [D = k] k−γ has been observed in many real-world networks [44–47]. For

most real-world networks, the exponent γ lies between 2 and 3 [48]. In a SF network, the majority

of nodes have small degrees; while only a few nodes, which are called “hubs”, have a great number

of neighbours. For example, in online social networks such as Facebook, most people have a small

number of friends; while a few celebrities can have connections to many other people.

Given a power-law exponent γ, the probability distribution function (PDF) of degree distribution

in SF networks can be expressed as

Pr [D = k] = ck−γ (2.7)

where c is an constant and can be calculated by

c = 1∑kmax

k=kmi n
k−γ (2.8)

We use the configuration model [49] to generate SF networks in simulations. The configuration

model generates a random graph using a given degree sequence. The detailed steps are summarised

as follows:

1. Given the PDF of a desired SF network, the cumulative distribution function (CDF) F (x) =
Pr [D ≤ x] =

(∑x
k=Kmi n

Pr [D = k]
)

is calculated.
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2. Based on the CDF, a degree sequence K = {k1,k2, ...,kN } is generated, where ki stands for the

degree of node i (i = 1,2, ..., N ). For each node, a uniformly distributed random number m ∈
[0,1) is firstly generated, and then ki is obtained according to the following rule.

ki =
 kmi n , 0 ≤ m < F (mmi n)

x, x > kmi n , and F (x −1) ≤ m < F (x)
(2.9)

3. For every node i , ki “stubs” are assigned in preparation for the further establishment of links.

4. Every time two randomly selected spare stubs are connected, and the connecting procedure

continues until all stubs are connected.

5. Finally, all self-loops and duplicated links are removed and the entire generation concludes.

2.3.3. MULTI-LAYER NETWORK

In reality, rather than single networks, many complex systems are modelled by multi-layer interde-

pendent networks. For example, the functioning of a computer network depends on the power sup-

ply from electrical grids; while the operation of power stations in turn relies on computer networks

[50]. Multi-layer networks, also called as multiplex networks, consist of several interdependent or

interconnected network layers. Commonly, connections between the same set of nodes vary in dif-

ferent layers of networks [51–53]. In other words, a node i may have 4 neighbours in layer 1, while in

layer 2 it is possibly connected to other 3 totally different nodes. In general, signed networks, which

will be introduced later, can be regarded as multi-layer networks.

2.3.4. SIGNED NETWORK

As defined in graph theory, a signed graph is a graph in which every link is labelled as as either

“positive (+)” or “negative (-)”. A positive link represents, e.g., the cooperative relationship between

two companies or the friendship between two individuals in the real world; while a negative link

indicates the competitive relationship between two companies or the hostility between two indi-

viduals. Generally, a signed network can be considered as a multi-layer network of two layers - one
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layer consists of only positive links (positive network) and the other layer is comprised by only neg-

ative links (negative network). The positive network and the negative network share the same set

of nodes, while the neighbours of each node are different in positive and negative networks. An

example of signed networks is given in Fig. 2.2. Each pair of nodes are either not connected or are

connected by only one type of link, hence no overlapping link exists in signed networks. In this the-

sis, the term “positive neighbours” denotes the neighbour nodes connecting to a node via positive

links; and “negative neighbours” refers to the neighbours connecting to a node via negative links.

The number of positive and negative neighbours that a node has are called “positive degree” and

“negative degree”, respectively.

Figure 2.2: An example of signed network. Solid lines represent positive links and dash lines represent negative links. The

red dotted lines indicate that the positive network shares the same node set with the negative network. As shown in the

figure, one signed network (on the left) can be considered as a multi-layer network of two layers (on the right) - one layer

only has positive links (positive network) and the other one only has negative links (negative network)

The positive-negative degree correlation pD is a quantity that reflects the probable difference be-

tween degrees in positive networks and negative networks. pD is a linear correlation coefficient and

it is defined as:

pD =
∑N

i=1(d+
i −< d+ >)(d−

i −< d− >)√∑N
i=1(d+

i −< d+ >)2
√∑N

i=1(d−
i −< d− >)2

(2.10)

where d+
i and d−

i are positive and negative degree of node i respectively, and < d+ > and < d− >
denote average positive and negative degree. If pD = 1, d+

i = d−
i holds for every node i ; and when

pD = 0 the positive and negative degree are independent of each other.



3
SIS MODEL

In this chapter we briefly introduce the classical Susceptible-Infected-Susceptible (SIS) model, on

which the proposal of our original viral spreading model is based. Besides, details about the N-

Intertwined Mean-Field Approximation (NIMFA) method, which is used for theoretically analysing

the SIS model, are given as well. NIMFA is a state-of-art mathematical tool used for deriving the

probability of infection over time for each node. Based on the results of NIMFA, some common

problems, including meta-stable fraction of infected nodes and the epidemic threshold, can be

solved.

3.1. INTRODUCTION OF SIS MODEL

The Susceptible-Infected-Susceptible (SIS) model [13, 54–56] is a classical continuous-time model

that has been broadly used to study dynamic processes such as virus spreading in computer net-

works. In a SIS process, the viral state of a node i at time t can be represented by a Bernoulli ran-

dom variable Xi (t ) ∈ {0,1}: Xi (t ) = 0 represents a susceptible node (or a healthy node) and Xi (t ) = 1

11



12 3. SIS MODEL

indicates an infected node. A healthy individual can be infected by a virus and transforms into an

infected node, and vice versa. At time t , node i can be infected with probability vi (t ) = Pr[Xi (t )=1],

or can be healthy but susceptible to infections with probability 1−vi (t ). Once a node is infected, it

becomes an epidemic disseminator and can infect its healthy neighbours till the node recovers. It is

assumed that the curing process, where an infected node i recovers and becomes susceptible again,

is a Poisson process with rate δ. Similarly, the infection process, where a healthy node get infected

by a neighbour, is also a Poisson process with rate β per link. The curing and infection Poisson

processes are independent, and the time that a node can be infected or recovered are i.i.d. (inde-

pendent identically distributed) exponential random variables. Since exponential random variables

are memoryless, i.e. Pr[T > s + t | T > t ] = Pr[T > s], the SIS model has in nature Markov property:

past states have no influences on the conditional probability distribution of future states of a node.

The effective infection rate is defined as τ, β
δ . As mentioned by many researchers (e.g. [3, 4, 10,

57, 58]), there exists a critical infection rate τc , around which an epidemic phase transition can be

observed: When τ > τc , a virus constantly persists and a positive fraction of infected node can be

found in the steady state [59]; whereas when τ ≤ τc , the epidemic rapidly dies out [27, 60]. In SIS

model, any epidemic spreading process will eventually terminate with an absorbing state, where all

nodes are healthy and virus can no longer spread through a network. In general, when τ ≤ τc the

absorbing state is achieved at least exponentially fast [39, 61]. However, when τ> τc , the absorbing

state can only be reached after an extremely long time [59], and instead for the most of the time a

network stays in a long-live state called meta-stable state, in which the epidemic rapidly converge -

the fraction of infected nodes remains relative constant and reduces to zero extremely slowly [59].

3.2. N-INTERTWINED MEAN FIELD APPROXIMATION (NIMFA)

Due to the Poisson property of both curing and infection processes, the entire SIS viral spreading

processes are Markov processes. The two-state Markov chain of the state transition of a node i is

shown as in Fig. 3.1. It can be characterised by a infinitesimal generator Qi (t ) defined as:

Qi (t ) =
 −qi (t ) qi (t )

δ −δ

 (3.1)
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where δ is the recovery rate of each node. The element qi (t ), which is the rate that a susceptible

node i being infected at time t , is defined as:

qi (t ) =β
N∑

j=1
a j i 1{X j (t )=1} (3.2)

which is the summation of infection rates β of all links connecting to infected neighbours of node

i . For an undirected network, the adjacency matrix A is symmetric and hence a j i = ai j . The rate

qi , which couples node i to the rest of the network [13], is a random variable as mentioned in [54].

Since Markov theory requires that qi should be a real number, the randomness in qi needs to be

removed. One method for removing the random nature is to condition all the possible states of the

neighbours of node i . However, this method leads to a dramatic increase in the number of basic

states in the Markov chain. For a network of N nodes, the conditioning ends up with a 2N -state

Markov chain [54], which causes great demanding computational cost.

Figure 3.1: Markov chain of node state in SIS model (Xi (t ) = 0: healthy Xi (t ) = 1: infected)

Instead of conditioning, the mean-field approximation [62] is widely considered as an effective

method for randomness removal [13]. Without considering the combination of states, in the mean-

field approximation the total infection rate qi is replaced by its average E[qi ], which is shown below:

E [qi (t )] = E

[
β

N∑
j=1

a j i 1{X j (t )=1}

]
(3.3)

E[qi ] is a real number and satisfies the condition for implementing Markov theory [63]. Using E[1x ]

= Pr[x], Eq.(3.3) can be written as:

E [qi (t )] =β
N∑

j=1
a j i Pr [X j (t ) = 1] =β

N∑
j=1

a j i v j (t ) (3.4)
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Thus the infinitesimal generator Eq.(3.1) becomes:

Qi (t ) =
 −E [qi (t )] E [qi (t )]

δ −δ

 (3.5)

By mean-field approximation the computational burden is significantly reduced: one only need to

obtain N random variables of vi (t ) rather than computing the 2N -state Markov process.

Since the summation of dependent indicators
∑N

j=1 1{X j (t )=1} is replaced by the average probabil-

ity of node infection vi (t ), the mean-field approximation suffers a cost as a bit loss of accuracy.

Nevertheless, the mean-field approximation is still widely regarded as an effective method for ap-

proximating the SIS viral spreading processes.

By applying (3.4), the NIMFA governing equation [63, pp. 182] can be derived as:



d v1(t )

d t
= (1− v1(t ))β

N∑
j=1

a1 j v j (t )− v1(t )δ

d v2(t )

d t
= (1− v2(t ))β

N∑
j=1

a2 j v j (t )− v2(t )δ

...

d vN (t )

d t
= (1− vN (t ))β

N∑
j=1

aN j v j (t )− vN (t )δ

(3.6)

The physical interpretation of the differential equation is given as follows:

1. When node i is healthy with probability 1− vi (t ), each of its infected neighbours tries to in-

fect this node with rate β; and probability of the event that node i gets infected at time t is∑N
j=1 ai j v j (t ).

2. When node i is infected with probability vi (t ), it recovers with a rate δ.

Eq.(3.6) can also be written in matrix form as [54]:

dV (t )

d t
=βAV (t )−di ag (vi (t ))(βAV (t )+δu) (3.7)

where vector V (t ) = [v1(t ) v2(t ) · · ·vN (t )]T , and u is an all-one vector [54]. By solving Eq.(3.6), the

fraction of infected nodes in steady state, denoted as ρ, is obtained as:

ρ =
∑N

i=1 vi∞
N

(3.8)
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where vi∞ denotes the infection probability of node i in the steady state. The epidemic threshold in

NIMFA is defined as τc = 1
λ1

, where λ1 is the largest eigenvalue of the adjacency matrix. According

to [59], NIMFA generally gives the upper bounds of both meta-stbale fraction of infected nodes and

epidemic threshold in SIS model.





4
SSIS MODEL AND APPROACHES

In this chapter, we propose our original Signed-SIS (SSIS) model that describes the dynamics of

viral spreading in signed networks. We developed two methods to study the performance of SSIS

model. The first one is the Individual-Based Mean Field Approximation (IBMFA) method, which

is used to theoretically analyse the model; and the second one is the Monte-Carol (MC) method,

which is used to simulate the real-time epidemic process in SSIS.

4.1. THE SSIS MODEL

The development of our SSIS model was inspired by the observation of the following real-world

scenario: In a business network, the relation between two companies could be cooperative (posi-

tive link), competitive (negative link) or unrelated (no connection). A company is likely to adopt a

new technique to improve its own business if either its partners or its competitors have utilised this

technique. However, as more of its competitors have made their adoptions, this company may be-

come more reluctant to apply this new technique in order to, e.g., protect their independency from

17
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other competitors.

According to the above observation, we propose the following SSIS model. Instead of a constant

infection rate β in SIS, in SSIS we use a dynamic infection rate βi (t ) for each node: The infection

rate of node i at time (t +∆t ) is determined by the infection status of its negative neighbours at time

t . If a susceptible node has no negative neighbours, it can be infected only at a constant rate of β

per positive link. Otherwise, at time t , node i may be infected by a positive neighbour at a rate of:

β+
i (t ) =β

(
1−

∑N
j=1 bi j X j

d−
i

)
(4.1)

where bi j denotes the element of the adjacency matrix B of negative networks, X j represents the

infection state of node j (0 for susceptible and 1 for infected), and d−
i stands for the negative degree

of i . Similarly, node i can also be infected via a negative link at a rate of:

β−
i (t ) =αβ+

i (t ) =αβ

(
1−

∑N
j=1 bi j X j

d−
i

)
(4.2)

where α is the relative infection rate of negative links with respect to positive links (in the following

text we will call it as “relative negative-link infection rate”, or “RN infection rate”). α> 0 represents

that negative links can make contribution to the overall viral spreading; Otherwise, if α = 0 virus

are not allowed to propagate via negative links. α can also be viewed as the ratio between infection

rates of negative and positive links. For instance, α= 0.5 indicates that the infection rate of negative

links is in general half of the infection rate of positive links.

Note thatβ/αβ is the rate that a virus transmits through a positive/negative link; whereasβ+
i (t )/β−

i (t ))

is the actual rate the node i can be infected by a positive/negative neighbour. According to the

definition in Eq.(4.1) and Eq.(4.2), β and αβ are the maximum rate that one node can be infected

via a positive and negative link respectively. As the viral spreading proceeds, with more negative

neighbours being infected, a single susceptible node would be infected at a lower rate, and thus this

node can become more resistant to infection. In other words, β+
i (t ) and β−

i (t ) are proportional to

the number of uninfected negative neighbours. In the following text, without specific instructions

the term “infection rate” always refers to the maximum positive infection rate β. In the real world,

Eq.(4.1) and Eq.(4.2) can be interpreted as an “aware” mechanism: A company’s willingness of util-

ising a new technique can decrease as they have collected sufficient information to find out that
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more competitors are using it.

4.2. APPROACHES FOR INVESTIGATING SSIS MODEL

4.2.1. INDIVIDUAL-BASED MEAN FIELD APPROXIMATION

Aiming at theoretically analysing the SSIS model, we develop the Individual-Based Mean Field Ap-

proximation (IBMFA), which is inspired by NIMFA introduced in Section 3.2 [13]. IBMFA can be

used to compute the infection probability vi (t ) of node i at any time t , including the meta-stable

state. Based on the infection probabilities of all nodes, we can solve the meta-stable fraction of

infection ρ. The epidemic threshold τc in signed networks can also be obtained with the help of

IBMFA.

THE GOVERNING EQUATION OF IBMFA

The IBMFA governing equation for a node i in our SSIS model is given as:

d vi (t )

d t
=−vi (t )δ+(1−vi (t ))

[
αβ

(
1−

∑N
j=1 bi j v j (t )∑N

j=1 bi j

)
N∑

j=1
bi j v j (t )+β

(
1−

∑N
j=1 bi j v j (t )∑N

j=1 bi j

)
N∑

j=1
ai j v j (t )

]
(4.3)

The interpretation of the equation is given as follows:

• Term (−vi (t )δ): When node i is infected with probability vi (t ), it can recover at a rate of δ.

• Term (1−vi (t ))

[
β

(
1−

∑N
j=1 bi j v j (t )∑N

j=1 bi j

)∑N
j=1 ai j v j (t )

]
: When node i is healthy with probability 1−

vi (t ), each of its infected positive neighbours attempts to infect this node at rateβ

(
1−

∑N
j=1 bi j v j (t )∑N

j=1 bi j

)
,

where bi j is the element in the adjacency matrix of a negative network (denoted as B).
∑N

j=1 bi j

is the negative degree of node i and
∑N

j=1 bi j v j (t ) denotes the number of infected negative

neighbours of node i at time t . The probability that node i is infected by its positive neigh-

bours at time t is
∑N

j=1 ai j v j (t ).

• Term (1− vi (t ))

[
αβ

(
1−

∑N
j=1 bi j v j (t )∑N

j=1 bi j

)∑N
j=1 ai j v j (t )

]
: When node i is healthy with probability
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1−vi (t ), each of its infected negative neighbours tries to infect this node at rateαβ

(
1−

∑N
j=1 bi j v j (t )∑N

j=1 bi j

)
,

whereα represents the RN infection rate. The probability that node i is infected by its negative

neighbours at time t is given by
∑N

j=1 bi j v j (t ).

According to Eq.(4.3), the more negative neighbours of a susceptible node i are infected, the less

probable i can be infected. The IBMFA governing equation can also be written in the matrix form

as:

dV (t )

d t
=−δV (t )+di ag (u −V (t )) ·β(A+αB) ·V (t )

−di ag (B ·V (t )) ·di ag (D−) ·di ag (u −V (t )) ·β(A+αB) ·V (t )

(4.4)

where u is an all-one vector, A is the adjacency matrix a positive network, B is the adjacency matrix

of a negative network. D− is an N -element vector of which each element d−i is the reciprocal of

negative degree d−
i of node i if d−

i >0, or d−i = 0 if d−
i =0.

THE SOLUTION OF IBMFA

The actual steady state of a Markovian process is the absorbing state, where the epidemic dies out.

However, for realistic sizes of networks, when τ > τc to reach the absorbing state an unrealistically

long time is required [61]. We are interested in the meta-stable state which can be reached fast and

maintained for an extremely long time [59]. With d vi
d t =0, a trivial solution vi∞ = 0 is always obtained

corresponding to the absorbing state, as well as a possible non-zero solution vi∞ > 0 which stands

for the probability of infection in meta-stable state.

The numerical solution of vi∞ could be computed by using the ode45 function in MATLAB. The

ode45 function is used to solve non-stiff ordinary differential equations. It is a commonly preferred

method to solve numerical problems in complex network models. Since the meta-stable state of

a Markov chain does not depend on the initial condition [59, pp. 191], any value between 0 and 1

could be set as initial value for solving Eq.(4.4). In our IBMFA realisations the initial values vi (0)

were chosen to be 0.5 for all nodes. For a network of N nodes, the final solution V (t ) consists of N

elements, and the meta-stable fraction of infection ρ is calculated as the average of V (t ).

ρ =
∑N

i=1 vi∞
N

(4.5)
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4.2.2. MONTE-CAROL SIMULATION

We developed discrete-time Monte-Carol simulations to approximate the SSIS epidemic processes.

Although in reality epidemic processes are continuous-time Markov, as pointed out in [59], with

a sample rate 1
∆t larger than the maximum transition rate maxi qi in Markov processes, the meta-

stable state in discrete-time Markov process is guaranteed to be equivalent to that in continuous-

time Markov process [59, Section 10.4]. In our simulations, each final result is obtained as the aver-

age over at least 200 realizations. During every realisation, we first generate a new signed network

based on the given network parameters, such as number of nodes, average positive and negative

degrees particularly for ER networks, and power-law exponent particularly for SF networks, etc..

We use a sample time of ∆t = 0.01s when β < 1 (which means that each time step in our simula-

tion stands for 0.01s in real world), and ∆t = 0.001s when β> 1. Initially, 10% of randomly selected

nodes are set to be infected at time t = 0. At each time step, every healthy node i could be infected

by an infected positive neighbour with a probability of ∆t ·β+
i , or by an infected negative neighbour

with a probability of ∆t ·αβ−
i ; β+

i and β−
i are calculated according to Eq.(4.1) and Eq.(4.2) respec-

tively. At the same time step, each infected node may be recovered with a probability of ∆t ·δ. We

run enough time steps to achieve the precise meta-stable fraction of infection ρ. We record ρ for

every 20 time steps and check the difference between adjacent records. If the difference is small

than a pre-determined value for at least five consecutive times of check, we would confirm that the

meta-stable state has been reached. In this thesis, all networks used in both MC and IBMFA are

undirected.

4.3. COMPARISON BETWEEN MC AND IBMFA

The comparison between Monte-Carol simulation results and IBMFA approximations are shown

in Fig. 4.1 and Fig. 4.2. Despite different epidemic thresholds and meta-stable fractions of infected

nodes, the results of IBMFA approximation are consistent with those of MC simulation. In other

words, IBMFA can approximately reflect the effects of different α on the performance of SSIS model

in both ER and SF networks. Although we has further verified that IBMFA method is generally able

to give good approximation of MC simulation results (results are shown in Appendix A.1), we would
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like to mainly use the precise MC simulation results to discover properties of SSIS model in the fol-

lowing chapters.

(a) MC simulation (b) IBMFA

Figure 4.1: Comparison between results of Monte-Carol simulation and IBMFA approximation. The network size is N =
1000 nodes. Both positive and negative networks are ER networks with average degree E [D+] = E [D−] = 4. The unsigned

network is obtained by removing all negative links in the negative network. The degree correlation between positive and

negative networks is pD ≈ 0. RN infection rate α are 0, 0.25, 0.5, 1 and 2 respectively

(a) MC simulation (b) IBMFA

Figure 4.2: Comparison between results of Monte-Carol simulation and IBMFA approximation. The network size is

N = 1000 nodes. Both positive and negative networks are SF networks with power-law exponent γ = 2.5. The unsigned

network is obtained by removing all negative links in the negative network. The degree correlation between positive and

negative networks is pD ≈ 0. RN infection rate α are 0, 0.25, 0.5, 1 and 2 respectively



5
SSIS MODEL IN DEGREE-INDEPENDENT

SIGNED NETWORKS

In this chapter we explore the performance of the SSIS model in degree-independent signed net-

works. The term “degree-independent” refers to that the positive degree of a random node d+
i is not

correlated to its negative degree d−
i , i.e. pD = 0. We apply the SSIS model in both signed Erdös-Rényi

random (ER) networks and scale-free (SF) networks. In signed ER networks, we study the epidemic

performance of SSIS under two control parameters - the average negative degree E [D−] and the RN

infection rate α. Our attention is mainly focused on the influence of these two parameters on the

epidemic threshold τc and the fraction of infected nodes in meta-stable state ρ. We also investigate

the statistical relation betweenα and a particular infection rateβ∗, at which the meta-stable fraction

of infected nodes in signed networks ρsi g ned is equal to the one in unsigned networks ρunsi g ned . As

to signed SF networks, the influence of α on ρ is mainly studied.

23
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5.1. SSIS MODEL IN SIGNED ER RANDOM NETWORKS

In this section we explore the performance of SSIS model in signed degree-independent ER random

networks. We focus on the influence of two main parameters on the overall viral spreading: the av-

erage negative degree E [D−] (in Section 5.1.1) and the RN infection rate α (in Section 5.1.2). Finally

in Section 5.1.3 we prove that the particular infection rate β∗, at which we have ρsi g ned = ρunsi g ned ,

is approximately linearly related to α.

5.1.1. INFLUENCE OF AVERAGE NEGATIVE DEGREE E [D−]

The meta-stable fractions of infected nodes ρ, corresponding to different infection rate β, are plot-

ted in Fig. 5.1 for three signed ER networks of the same average positive degree E [D+] but different

average negative degree E [D−]. As a benchmark, we also plot ρ in the unsigned network of which

the negative networks are null. It can be seen that all signed networks have smaller epidemic thresh-

olds than the unsigned network; and the threshold decreases as E [D−] rises up. This observation

can be analytically explained as follows: The epidemic threshold can be approximated as the recip-

rocal of the spectral radius of a network, where spectral radius is defined as the largest eigenvalue

of an adjacency matrix [1]. Since a signed network can be regarded as a two-layer interconnected

network, the epidemic threshold can be approximated as τsi g ned
c = 1

λmax (A+αB) , where A +αB is the

adjacency matrix of a interconnected network [64]. An unsigned network can also be considered

as a signed network, in which the negative network is null. Thus the epidemic threshold of an un-

signed network can be derived as τunsi g ned
c = 1

λmax (A) = 1
λmax (A+0B) . According to [64–66], we have

the following lemma stands:

λmax (A) ≤λmax (A+αB) ≤λmax (A)+λmax (αB) (5.1)

Therefore, if α> 0 it is certain to find that τsi g ned
c ≤ τ

unsi g ned
c . In addition, it is also observed that as

E [D+] andα remain constant, τsi g ned
c reduces as E [D−] increases. This is because of that, according

to [60], in ER graphs τc converges logarithmically fast towards zero as the number of links increases.

Since we have E [D] = 2L
N , the increase in number of negative links is equivalent to a higher E [D−].
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Figure 5.1: Effect of different average negative degree E [D−] on the performance of SSIS in degree-independent signed

ER networks. α is a constant of 0.5, meaning that the infection rate of negative links is generally half of the rate of positive

links. The average degree of positive networks is E [D+]=4 in all signed networks. The unsigned network can be considered

as a signed network of which average positive degree is 4 and the negative network is null.

It is also noticed that, compared to other signed networks, at the same infection rate a signed net-

work with a more dense negative network always has a larger ρ in meta-stable state. To our analysis,

this observation can be explained as follows. The dynamic infection rate β+
i and β−

i of node i are

both proportional to the number of susceptible negative neighbours of i . When the number of neg-

ative links increases, on average each node can have more negative neighbours (since E [D] = 2L
N ),

and thus the infection of every negative neighbours would contribute less to the decline of dynamic

infection rates. As a result, the individual meta-stable probability of infection vi∞ can be increased

correspondingly, resulting in a greater ρ.

Although IBMFA can numerically explain the above observation, here we would like to derive a

closed-form analytical expression of vi∞ to prove our analysis. For simplicity, we apply the fully-

mixed assumption where the network topology has been ignored [6]. In other words, all nodes have

approximately the same positive (equals to E [D+]) and negative degree (equals to E [D−]) at any time

t , and thus in meta-stable state (if exists) all nodes have the same positive probability of infection.

Based on this assumption, Eq.(4.3) can be simplified as:

d vi (t )

d t
= (1− vi (t ))[αβ(1− vi (t )) ·E [D−] · vi (t )+β(1− vi (t )) ·E [D+] · vi (t )]−δvi (t ) (5.2)
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In meta-stable state, we have d vi∞
d t = 0 and the Eq.(5.2) can be written as:

δvi∞ = (1− vi∞)2 · vi∞ ·β(α ·E [D−]+E [D+]) (5.3)

Let δ= 1, by omitting the trivial solution vi∞ = 0 (which represents the absorbing state) Eq.(5.3) can

be further simplified as:

(1− vi∞)2 = 1

β(α ·E [D−]+E [D+])
(5.4)

Taking into account that vi∞ ≤ 1, the solution of Eq.(5.3) is given as:

vi∞ = 1−
√

1

β(α ·E [D−]+E [D+])
(5.5)

As indicated by Eq.(5.5), with all the other parameters remaining constant, in signed ER networks

vi∞ grows along with the increase in E [D−]. Since ρ =
∑N

i=1 vi∞
N , we have proved that with the same

numbers of positive links and the same RN infection rate α, more negative links may facilitate vi-

ral spreadings in signed ER networks. This is consistent with the simulation results shown in Fig. 5.1.

Interestingly, we observe some crossing points (β∗, ρ∗) between the β−ρ curves of signed and un-

signed networks in Fig. 5.1. When the infection rateβ is smaller thanβ∗, more nodes can be infected

in signed networks than in unsigned network; whereas when β> β∗, ρsi g ned becomes smaller that

ρunsi g ned . We found that there is a approximate linear relation between β∗ and α, and more discus-

sion will be given in Section 5.1.3.

5.1.2. INFLUENCE OF RN INFECTION RATE α

Besides E [D−], we have found that the RN infection rate α is another key factor that can affect the

performance of SSIS model. Fig. 5.2 shows that almost all signed networks with positive α have

smaller epidemic thresholds than the unsigned network, and the threshold decreases as α rises up.

To explain this observation, given α1 <α2, we slightly modify the lemma in Eq.(5.1) into the follow-

ing form:

λmax (A+α1B) ≤λmax (A+α1B +α′B) ≤λmax (A+α2B) (5.6)

where α′ =α2−α1. When α= 0, 1
λmax (A+αB) is equivalent to 1

λmax (A) , and under this condition signed

and unsigned networks undoubtedly share the same epidemic threshold, as shown in Fig. 5.2.
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(a) E(D−) = 2 (b) E(D−) = 6

Figure 5.2: Effect of different α on the performance of SSIS in degree-independent signed ER networks. α=0, 0.25, 0.5,

1 and 2 respectively. The constant average positive degree is E [D+] = 4, and E [D−] are set as 2 in (a) and 6 in (b). The

unsigned network can be considered as a signed network of which the average positive degree is 4 and the negative

network is null.

It is also found that in signed ER networks, with all other parameters remaining constant, the meta-

stable fraction of infected nodes ρ tends to grow along with the increase in α. As implied in Eq.(5.5),

as long as one node is not totally blocked from further infection (i.e., β+
i (t ) 6= 0 and β−

i (t ) 6= 0), a

larger α should always result in a higher meta-stable infection possibility vi∞ and thus a higher

ρ. However, we have found that this conclusion only holds when the infection rate β is small, and

more details will be given in Section 5.2. In addition, it is also inferred in Eq.(5.5) that in an extreme

case, as α→ ∞, vi∞ (and thus ρ) may converge to 1. Table 5.1 and Table 5.2 demonstrate results

from IBMFA computation. It can be seen that even with a small β, vi∞ becomes closer to 1 as α

increases. What’s more, the denser networks are, the easier vi∞ converges towards 1.

Table 5.1: IBMFA meta-stable fraction of infected nodes at large α (β=0.5,δ=1)

α 50 100 200 500

E [D−] = 2,E [D+] = 4 0.7644 0.7943 0.8157 0.8349

E [D−] = 6,E [D+] = 4 0.8916 0.9185 0.9386 0.9575

E [D−] = 10,E [D+] = 10 0.9288 0.9487 0.9632 0.9764
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Table 5.2: IBMFA meta-stable fraction of infected nodes at large α (β=1,δ=1)

α 50 100 200 500

E [D−] = 2,E [D+] = 4 0.8157 0.8359 0.8506 0.8640

E [D−] = 6,E [D+] = 4 0.9194 0.9392 0.9540 0.9681

E [D−] = 10,E [D+] = 10 0.9491 0.9634 0.9737 0.9832

5.1.3. CROSSING POINTS (β∗, ρ∗) BETWEEN β-ρ CURVES OF SIGNED AND UNSIGNED NET-

WORKS

In both Fig. 5.1 and Fig. 5.2 we have observed crossing points (β∗,ρ∗) between β-ρ curves of signed

and unsigned networks, where at β = β∗ the meta-stable fraction of infected nodes is the same in

both signed and unsigned networks, i.e. ρsi ng ed = ρunsi ng ed = ρ∗. When the infection rate β < β∗,

ρsi ng ed is larger than ρunsi ng ed ; While ρunsi ng ed becomes overwhelming when β>β∗.

In this section, we are going to investigate how does β∗ changes as a function of α. To derive this

statistical relation, first we need to solve the NIMFA governing equation Eq.(3.6) to find the meta-

stable probability of infection vi∞ in an unsigned network. Similar to Eq.(5.2), with the additional

fully-mixed assumption [6] Eq.(3.6) can be simplified as:

d vi∞
d t

= (1− vi∞)β ·E [D+] · vi∞−δvi∞ (5.7)

With d vi∞
d t = 0 and δ=1, by omitting the trivial solution vi∞=0 the meta-stable infection probability

is given as:

vi∞ = 1− 1

β ·E [D+]
(5.8)

When β= β∗, under the fully-mixed assumption ρsi g ned = ρunsi g ned is equivalent to v si g ned
i∞ =

vunsi g ned
i∞ . Hence, by substituting Eq.(5.8) into Eq.(5.4) we have:

β∗ = E [D−]

E [D+]2α+ 1

E [D+]
(5.9)

According to Eq.(5.9), β∗ tends to be linearly correlated with α. This is consistent with results

demonstrated in Fig. 5.3. Note that when α = 0 a signed network and an unsigned networks share

the same epidemic threshold, and this is the only point where the β−ρ curves of these two net-

works “cross”. Hence, we define the point (τc ,0) as the crossing point under α= 0 (in our case, since
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δ = 1 we have τc = βc ). Fig. 5.3 shows that in both MC and IBMFA results β∗ is generally a linear

function of α, and IBMFA can better approximate the MC simulation results as the average degree

of positive and/or negative networks increases. This is, in general, in line with our understanding

that the mean-field approximation performs better in dense networks. In addition, it is indicated in

Fig. 5.3(c) and Fig. 5.3(d) that our theoretical β∗−α linear function Eq.(5.9) also works well in dense

signed ER networks.

(a) E(D+) = 4,E(D−) = 2 (b) E(D+) = 4,E(D−) = 4

(c) E(D+) = 4,E(D−) = 6 (d) E(D+) = 10,E(D−) = 10

Figure 5.3: Infection rate β∗ at crossing point corresponding to different α in degree-independent signed ER networks.

Solid markers show the results from MC simulations and the hollow markers represent results from IBMFA approxima-

tion. Fitting curves are provided for both MC (solid lines) and IBMFA results (dash lines). The dotted lines depict the

theoretical equation β∗ = E [D−]
E [D+]2 α+ 1

E [D+]



30 5. SSIS MODEL IN DEGREE-INDEPENDENT SIGNED NETWORKS

5.2. SSIS MODEL IN SIGNED SF NETWORKS

In this section the performance of SSIS in degree-independent signed SF networks will be discussed,

with respect to the influence ofα on τc and ρ, and to theβ∗-α relation. In our simulations, given the

network size N = 1000 nodes and the connectivity exponent γ = 2.5, the average positive and neg-

ative degrees are approximately E [D+] = E [D−] = 4. As a benchmark, results of unsigned networks,

of which the negative networks are null, are presented as well We set the minimum degree kmi n=2

and the maximum degree kmax =100 when generating the networks.

As shown in Fig. 5.4(a), under α > 0 signed networks have smaller epidemic thresholds than un-

signed network, and τc declines along the increase in α. Similar to the case in signed ER networks,

this observation can also be explained by the lemma presented in Eq.(5.6). Compared to signed ER

networks (Fig. 5.4(b)), the epidemic thresholds of signed SF networks are much smaller. The reason

is that, given the similar average degree, due to the existence of hubs [60, 67], τc can converge to

0 much faster than in ER networks. At small infection rate (β < 1), ρα1 < ρα2 always holds given

α1 <α2. In addition, crossing points (β∗,ρ∗) exist between β−ρ curves of signed and unsigned SF

networks. Comparing Fig. 5.5(a) to Fig. 5.5(b), in signed SF networks β∗ is still generally linearly

correlated to α, while the linearity between β∗ and α is a bit weaker than in signed ER networks.

We used to expect that regardless of β, with a larger α, a higher meta-stable fraction of infected

nodes should always be observed as shown in Fig. 5.6(a). However, we surprisingly find that, in

degree-independent signed SF networks as shown in Fig. 5.6(b), at large β, a higher ρ can possibly

be obtained when negative links do not participate in viral propagation (α = 0). We believe that

such observation is mainly caused by the topological feature of SF networks. When α > 0, hubs in

negative networks would have dominantly high probability of infection at large β. In SSIS model,

the probability of infection of a susceptible node declines as more of its negative neighbours be-

come infected. Since hubs are neighbours of the majority of other nodes in networks, the infections

of these negative hubs can in general contribute more to the decrease in infection probability of

other nodes, and thus help suppress overall infection. On the other hand, when negative links are

not allowed to transmit virus, the infection probability of negative hubs could be reduced, since in

degree-independent signed networks negative hubs tend to have small positive degree. As a result,
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(a) SF networks (b) ER networks

Figure 5.4: Comparison between the performance of SSIS model in signed SF networks and ER networks. Both types of

networks are degree-independent. α=0, 0.25, 0.5, 1 and 2 respectively. The average degrees of ER networks are E [D+] =
E [D−] = 4, and the power-law exponent of SF positive and negative networks is γ = 2.5. The unsigned network is an SF

network with null negative network in (a) and an ER network with null negative network in (b).

(a) SF networks (b) ER networks

Figure 5.5: Infection rate at crossing point β∗ corresponding to different α in degree-independent signed SF networks

and ER networks. Solid markers show the results from MC simulations and the hollow markers represent results from

IBMFA approximation. Fitting curves are provided for both MC (solid lines) and IBMFA results (dash lines). The average

degrees of positive and negative ER networks are E [D+] = E [D−] = 4, and the power-law exponent of SF positive and

negative networks is γ= 2.5.

most nodes could have higher infection probabilities, leading to a possible higher meta-stable frac-

tion of infected nodes at large β. As to degree-independent signed ER networks, distributions of

both positive and negative degree are relatively homogeneous. Hence, regardless of α, the infection

probability are approximately the same for each node. In this case, a higher α appears to result in
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a higher meta-stable fraction of infected nodes at any β. Our finding can be further supported by

the results of SF-ER signed networks in Fig. 5.6(c) (positive network is SF and negative network is

ER) and ER-SF signed networks in Fig. 5.6(d). It can be seen that a smaller α can possibly lead to a

higher ρ only when negative networks are SF networks. Otherwise, when negative networks are ER

networks, a higher ρ tend to be obtained with a larger α at any infection rate.

(a) ER-ER (b) SF-SF

(c) SF-ER (d) ER-SF

Figure 5.6: Influence of RN infection rate α on the performance of SSIS in different types of degree-independent signed

networks. α=0, 0.5, and 2 respectively. The average degree of ER networks are E [D+] = E [D−] = 4, and the power-law

exponent of SF positive and negative networks is γ= 2.5.

To conclude this chapter, we summarise the main discoveries in degree-independent signed net-

works as follows.

1. With the participant of negative links in viral spreading (i.e. α> 0), signed networks can give
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smaller epidemic threshold τc compared to unsigned networks. When the infection rate β is

less than a particular value β∗, the meta-stable fraction of infected nodes in signed networks

ρsi g ned is larger than ρunsi g ned . However, when β > β∗, ρunsi g ned < ρunsi g ned always holds

unless α→∞. We have proved that β∗ is approximately linearly related to α,

2. Compare to other signed networks, when α is positive and constant, a signed ER network

with more negative links tends to give a lower τc and a higher meta-stable fraction of infected

nodes ρ.

3. In the same signed network, a higher α can lead to a lower τc . In signed ER network, a higher

α tends to result in a larger ρ at any β; While in signed SF networks, compared to α= 0, when

α> 0 the overall viral spreading can be suppressed at large β.





6
SSIS MODEL IN DEGREE-CORRELATED

SIGNED NETWORKS

This chapter is focused on the performance of SSIS in degree-correlated signed networks, in which

the positive degree d+
i of node i is related to its negative degree d−

i . We develop a method for gen-

erating degree-correlated signed networks (Section 6.1) and investigate how degree correlation pD ,

along with RN infection rate α, may influence epidemic threshold τc and the meta-stable fraction

of infected nodes ρ (Section 6.2).

6.1. GENERATION OF DEGREE-CORRELATED SIGNED NETWORKS

First of all, we would like to introduce our method for generating degree-correlated networks. This

method was inspired by the generation of indegree-outdegree correlated networks proposed by Qu

et al. [20, 68]. The details for generating degree-correlated signed networks are given as follows:

1. We firstly generate the positive network. ER network is generated by randomly selecting and
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connecting nodes; As to SF network, it is generated using the method described in Section

2.3.2.

2. Next, we copy the degree sequence of the positive network for generating the negative net-

work.

3. Given the degree correlation pD , we randomly select pD fraction of nodes, of which the neg-

ative degrees are kept be the same as the positive degrees. After that, the rest elements of

the degree sequence are shuffled, and the negative degrees of the remaining 1-pD fraction of

nodes are then randomly re-allocated.

4. We repeat step 1 to generate the negative network.

6.2. RESULTS AND ANALYSIS

According to the MC simulation results (shown in Appendix A.2), regardless of pD , the influence

ofα on τc and ρ (at small infection rate β) in degree-correlated networks is similar to that in degree-

independent networks. Hence in this section we mainly focus on, when β is large, how can different

pD influence the meta-stable fraction of infected nodes with differentα in degree-correlated signed

networks.

Based on the findings in Section 5.2, we speculate that when pD is large, the absence of negative

links in viral spreading (α = 0) might no longer lead to a larger meta-stable fraction of infected

nodes in degree-correlated signed SF networks. Results in Fig. 6.1 show that, as pD increases, the

β−ρ curve ofα= 0 and α= 2 start intersecting at larger β. In addition, when pD = 0.8 even no inter-

section between two curves can be observed in Fig. 6.1(d). This indicates that, in a less correlated

signed SF network, viral spreadings tend to be more encouraged at large β, when nodes are not al-

lowed to be infected by their negative neighbours (i.e., α= 0); On the contrary, in a highly correlated

signed SF network, regardless of β, more nodes tend to be infected when negative links participate

in transmitting virus (i.e., α> 0).
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The above observations can be explained as follows. As discussed in Section 5.2, a hub node in a

negative network usually has small positive degree when pD is small. Hence, compared to α > 0,

hubs in negative networks are less likely to be infected when α = 0. Since hubs have many neigh-

bours, lower probabilities of infection of hubs can facilitate higher infection rates of many other

nodes, leading to a higher meta-stable fraction of infected nodes at large β, i.e. ρα=0 > ρα>0. On

the other hand, when pD becomes larger, hubs in the negative network are more likely to have high

positive degree, and they also tend to be highly likely infected when α= 0. As a result, ρα=0 < ρα>0

tend to hold at any β.

(a) pD =0 (b) pD =0.2

(c) pD =0.5 (d) pD =0.8

Figure 6.1: Effect of degree correlation pD on the performance of SSIS in degree-correlated SF networks. RN infection

rate α=0 and 2 respectively. The power-law exponent of both positive and negative networks is γ= 2.5.
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The above interpretation of the observation in Fig. 6.1 can be further supported by results shown in

Fig. 6.2. We respectively computed the infection probability of low-negative-degree (0 ≤ d−
i ≤ 5) and

high-negative-degree nodes (d−
i ≥ 6) at β=7. As shown in Fig. 6.2, when α= 2, high-negative-degree

nodes always have significantly high probability of being infected, regardless of pD . Along with the

increase in pD , the infection probability of high-negative-degree nodes under α = 0 starts increas-

ing, leading to the reduction in infection probability of nodes with small negative degree. It was

found that about 90% of the nodes in our generated signed SF networks have low negative degree,

and the infection probability of these nodes can, to a large extent, determine the overall ρ. Hence, in

highly degree-correlated SF networks, viral spreadings tend to be relatively suppressed when nega-

tive links does not transmit virus, as less small-negative-degree can be infected under this condition.

(a) pD =0 (b) pD =0.2

(c) pD =0.5 (d) pD =0.8

Figure 6.2: Infection probability of nodes with different degrees in degree-correlated SF networks
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On the other hand, Fig. 6.3 shows that no intersection between β−ρ infection curves can be ob-

served in degree-correlated signed ER networks within β ∈ [1.5,10], regardless of the value of pD .

About 80% of the nodes have negative degree between 0-5 in our generated signed ER networks.

As shown in Fig. 6.4, although the infection probability of high-negative-degree nodes at α = 0

increases as pD rises up, the infection probability of low-negative-degree nodes always maintains

lower than α> 0 and hence ρα=0 < ρα>0 holds for all pD presented in this figure. Taking the fact that

the maximum negative degree in ER networks (≈ 12) is much smaller than in SF networks (≈ 80),

it is not hard to understand that the infection of the so-called “high-negative-degree nodes” in ER

networks appear to have very limited influence on the infection of low-negative-degree nodes.

(a) pD =0 (b) pD =0.2

(c) pD =0.5 (d) pD =0.8

Figure 6.3: Infection of nodes in degree-correlated ER networks. RN infection rate α=0 and 2 respectively. The average

degree of positive and negative networks are E [D+] = E [D−] = 4.
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(a) pD =0 (b) pD =0.2

(c) pD =0.5 (d) pD =0.8

Figure 6.4: Infection probability of nodes with different degrees in degree-correlated ER networks

In a nutshell, at high infection rateβ, degree correlation is a main factor that can determine whether

the participant of negative links in virus propagation may encourage or suppress the overall spread-

ing in degree-correlated signed SF networks. In networks of small pD , the overall viral spreading can

be encouraged at highβ if negative links are not allowed to transmit virus (i.e. α= 0); While in highly

degree-correlated networks, α= 0 tends to always result in relative suppression of viral spreadings,

comparing to the case when virus can propagate via negative links. As to degree-correlated signed

ER networks, due to the relative homogenous degree distribution, a higher α tends to result in a

larger ρ at any β, regardless of pD .



7
SSIS MODEL IN REAL-WORLD SIGNED

NETWORKS

In this chapter we aim at verifying the previously discovered properties of SSIS model in two real-

world signed networks. We are interested in the influence of RN infection rate α and the degree cor-

relation pD on viral spreading in real-world networks. The simulation result indicates that the per-

formance of our SSIS model in real-world networks completely agree with conclusions that drawn

in Chapter 5 and 6.

7.1. DESCRIPTION OF SELECTED REAL-WORLD NETWORKS

The first considered real-world network is the voting network of Wikipedia (Wiki network) [35],

where a signed link represents one user’s support (positive) or objection (negative) to another user

being promoted to an administrator. The original Wiki networks is directed, and we take the fol-

lowing measures to remove link directions and simplify the network. First, we check the number of

directed links between every two nodes: If there is only one directed link between two nodes, then

41



42 7. SSIS MODEL IN REAL-WORLD SIGNED NETWORKS

we simply remove the direction and keep its original sign; If there are two directed link between two

nodes, then we further check the signs of these two links. One of these two link would be kept and

changed to be undirected if the signs are the same; otherwise both links would be deleted. More-

over, there also exist several neutral links in the Wiki network and they are all discarded.

The second real-world network is a product relationship network based on Amazon dataset (Ama-

zon network) [69]. Relationships between products are modelled and predicted by the SCEPTRE

(Substitute and Complementary Edges between Products from Topics in REviews) system, based on

reviews and descriptions of products. A positive link denotes the complementary relation between

two products, i.e., these might be viewed/purchased together; and a negative link stands for the

substitutable relation between two products, which are interchangeable - such as one jacket for an-

other. In [69] several product relationship networks based on different categories of products were

provided, and we select the one that based on baby product database.

The basic topological features of the two networks are summarised in Table 7.1. Both networks

have approximately hundreds of thousand links, and thousands of nodes. In Wiki network roughly

80% of links are positive and in Amazon network the positive-negative proportion is about 50%-

50%. The average degrees of all networks are around 20, except the negative network of Wiki, of

which the average degree is 10. The logarithmic degree distributions of all networks are given in Fig.

7.1. It can be seen that the degree distributions of all networks approximately follow power law.

Table 7.1: Topological features of real networks

Network Nodes Links “+”Links “-”Links E [D−] E [D+] pD

Wiki 7066 100390 78479(78.2%) 21911(21.8%) 25 10 0.63

Amazon 4217 77242 37769(48.9%) 39473(51.1%) 19 19 0.39
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(a) Wiki - Positive network (b) Wiki - Negative network

(c) Amazon - Positive network (d) Amazon - Negative network

Figure 7.1: Degree distribution of signed real-world networks.

7.2. PERFORMANCE OF SSIS MODEL IN REAL-WORLD NETWORKS

For real-world networks, we are interested in the following four questions: (1) Does a higher RN

infection rate α lead to a lower epidemic threshold τc ? (2) Does a higher α tend to lead to a larger

meta-stable fraction of infected nodes ρ at any infection rate? (3) What is the influence of degree

correlation pD on ρ with different α? (4) Do signed-unsigned crossing points (β∗,ρ∗) still exist for

SSIS real-world networks?

First, we focus on the influence of α on viral spreadings and try to verify the existence of signed-

unsigned crossing points. As discussed in Chapter 5 and 6, in SSIS model the epidemic threshold
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of signed SF networks is reduced as α increases. For networks with power-law degree distributions,

there always exist non-zero epidemic thresholds as long as the sizes of networks are finite [11]. In

addition, signed-unsigned crossing points (β∗,ρ∗) can be observed in both degree-independent

and degree-correlated signed SF networks. Hence, it is expected that such influence of α on epi-

demic threshold may be observed, and crossing points between β−ρ infection curves of signed

and unsigned networks could also be detected in real-world signed networks. As shwon in Fig. 7.2,

results of both MC and IBMFA methods confirm the existence of crossing points in both Wiki and

Amazon networks. The unsigned networks are obtained by removing all negative links in each of

the real-world negative networks. It is also observed that in Amazon network τc obviously reduces

along with the increase in α; While in Wiki network, precise epidemic thresholds of different α can

hardly be seen, possibly due to the high dense of links in this network.

Next, we are going to explore the influence of pD on the epidemiological performance of SSIS model.

It has been observed in Chapter 6 that: (i) In SF networks of small degree correlation, at small infec-

tion rate β, we can observe a higher ρ under a larger α, i.e. ρα1 < ρα2 where α1 <α2; However, as β

increases, ρα1 starts taking the overwhelming position. (ii) In highly degree-correlated SF networks,

it appears that at any β we have ρα1 < ρα2 for α1 <α2. Since both Wiki and Amazon networks have

power-law degree distribution, we expect that the viral spreading performance in Amazon network

(pD = 0.39) follows observation (i); while observation (ii) holds in Wiki network (pD = 0.63). Results

shown in Fig. 7.3 are completely consistent with our expectation.
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(a) Amazon network - MC (b) Amazon network - IBMFA

(c) Wiki network - MC (d) Wiki network - IBMFA

Figure 7.2: Influence of α on the performance of SSIS in real-world networks. α=0, 0.5, 1 and 2 respectively. The unsigned

networks are obtained by removing all negative links in each of the real-world negative networks.
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(a) Amazon network - MC (b) Amazon network - IBMFA

(c) Wiki network - MC (d) Wiki network - IBMFA

Figure 7.3: Influence of pD on the performance of SSIS in real-world networks. α=0, 0.5, 1 and 2 respectively. The un-

signed networks are obtained by removing all negative links in each of the real-world negative networks.
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SUMMARY AND FUTURE WORKS

8.1. SUMMARY

In this thesis, we propose a SSIS model to capture the influence of negative links on viral propaga-

tion in signed networks. In SSIS model, the dynamic infection rate of each node is determined by

the infection status of its negative neighbours. We suppose that both positive and negative neigh-

bours would participate in transmitting virus, while the infection rate via positive/negative links of

a node reduces as more of its negative neighbours have been infected.

Our focus is to understand how can negative links influence the epidemiological performance in

signed networks, with respect to epidemic threshold τc and meta-stable fraction of infected nodes

ρ. We have found that three main factors can substantially contribute to different epidemic per-

formance of SSIS: the relative infection rate of negative links with respect to positive links (α), the

degree correlation between positive and negative networks (pD ) and degree distributions of the

positive and negative links respectively (signed ER network vs. signed SF network). We develop

Monte-Carol simulations to observe the performance of SSIS in different scenarios. In addition, we
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also derive the IBMFA method to theoretically analyse the SSIS model, based on the solutions of

meta-stable infection probability of nodes. We show that IBMFA can in general accurately approxi-

mate the MC simulation results.

According to our simulation results, we draw the following main conclusions.

1. In signed ER networks, a larger α tends to result in a greater meta-stable fraction of infected

nodes at any infection rate β; While in degree-independent signed SF networks, at large β,

viral propagation via negative links may in turn lead to a smaller ρ. The main reason is given

as follows. When the degree correlation pD is small in signed SF networks, when α > 0 the

hub nodes are usually highly likely to be infected at large β, leading to low probabilities of

infection of the rest nodes (which are the majority of entire nodes) in general. However, when

negative links are not allowed to transmit virus (α= 0), since negative hubs usually have small

positive degrees in degree-independent signed SF networks, they are less likely being infected

and thus more of the rest nodes can be infected in meta-stable state. As pD rises up, negative

hubs become more likely to have bigger positive degree, and in general they can be infected

with high probability with any α. As a result, higher ρ might be achieved only with higher

α at any β. Since the degree distribution is relatively homogeneous in signed ER network,

regardless of β, a higher meta-stable fraction of infected nodes can hardly be obtained when

α= 0.

2. Compared to networks with only positive relations, the viral propagation via negative links

can lead to a lower epidemic threshold in signed networks. Whenβ is smaller than a particular

rate β∗, viral propagation via negative links can facilitate a higher ρ in signed networks than

in unsigned networks (i.e. ρsi g ned > ρunsi g ned when β < β∗). However, ρunsi g ned becomes

superior as β > β∗. As a result, crossing point (β∗,ρ∗) can be observed between β-ρ curves

of signed and unsigned networks, where ρsi g ned = ρunsi g ned = ρ∗. We have found that β∗ is

approximately linearly related to α.

With regard to the real-world scenario on the technique adoptions of companies mentioned in

Chapter 1, these above conclusions indicate that: (1) Even when every company adopts a new tech-

nique at a higher rate in response to the utilisations of its competitors (reflected by a higher α), it

would be not always possible to have a larger percentage of companies adopting a new technique;

(2) Compared to networks with only cooperative relations (unsigned networks), the competitive re-

lations between companies may sometimes result in a higher percentage of adoption among com-
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panies, especially when a company accepts a new technique at a small rate.

8.2. FUTURE WORKS

Taking the possible development of SSIS model into account, some suggestions on future works are

given as follows:

• It has been found that IBMFA does not give a perfect approximation of SF signed networks at

high β (See Fig. A.5). Therefore, an advanced IBMFA method which is particularly designed

for SF networks may be required.

• The dynamic infection rate β+(t ) and β−(t ) we have proposed in Eq.(4.1) and Eq.(4.2) may be

optimised in future works in order to better characterise the influence of negative links on the

overall viral spreadings in real world.

• The proposed viral propagation model might be extended to the field of SIR model, where

the immunisation processes are introduced to remove infected nodes permanently from the

virus (disease).





A
APPENDIX

A.1. COMPARISON BETWEEN MC AND IBMFA RESULTS IN DEGREE-INDEPENDENT

SIGNED NETWORKS

(a) MC (b) IBMFA

Figure A.1: Influence of α on performance of SSIS model in signed degree-independent ER networks. Network size

N =1000 nodes. Average positive degree is E [D+] = 4, and average negative degree is E [D−] = 2. The unsigned network is

obtained by removing all negative links in negative networks. α=0, 0.25, 0.5, 1 and 2 respectively.
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(a) MC (b) IBMFA

Figure A.2: Influence of α on performance of SSIS model in signed degree-independent ER networks. Network size

N =1000 nodes. Average positive degree is E [D+] = 4, and average negative degree is E [D−] = 6. The unsigned network is

obtained by removing all negative links in negative networks. α=0, 0.25, 0.5, 1 and 2 respectively

(a) MC (b) IBMFA

Figure A.3: Influence of α on performance of SSIS model in signed degree-independent ER networks. Network size

N =1000 nodes. Average positive degree is E [D+] = 4, and average negative degree is E [D−] = 4. α=0, 0.5 and 2 respectively.
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(a) MC (b) IBMFA

Figure A.4: Influence of α on performance of SSIS model in signed degree-independent ER networks. Network size

N =1000 nodes. Average positive degree is E [D+] = 4, and average negative degree is E [D−] = 6. α=0, 0.5 and 2 respectively.

(a) MC (b) IBMFA

Figure A.5: Influence of α on performance of SSIS model in signed degree-independent SF networks. Network size

N =1000 nodes. The power law exponent in both positive and negative networks is γ= 2.5. α=0, 0.5 and 2 respectively.
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A.2. SOME MC RESULTS IN DEGREE-CORRELATION NETWORKS

(a) pD =0.2 (b) pD =0.8

Figure A.6: Influence of α on performance of SSIS model in signed degree-correlated ER networks. Network size N =1000

nodes. Average positive degree is E [D+] = 4, and average negative degree is E [D−] = 4. The unsigned network is obtained

by removing all negative links in negative networks. α=0, 0.25, 0.5, 1 and 2 respectively

(a) pD =0.2 (b) pD =0.8

Figure A.7: Influence of α on performance of SSIS model in signed degree-correlated SF networks. Network size N =1000

nodes. The power law exponent in both positive and negative networks is γ= 2.5. α=0, 0.25, 0.5, 1 and 2 respectively.
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