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SUMMARY

The research in this thesis falls within the realm of optimization under
uncertainty, a crucial area in computer science and mathematics with
broad applications in power systems, finance, machine learning, health-
care, and more. This thesis presents three main contributions across
electric vehicle charging scheduling, decision-focused learning, and re-
inforcement learning. Beyond advancing the state of the art in each
of these domains, our contributions emphasize the importance of effec-
tive problem formulations. Chapters 2-4 demonstrate how efficient so-
lutions can emerge from formulations that address uncertainty, balance
complexity with solution quality, promote computational tractability, and
align with human intuition.

The first contribution addresses partial observability in the context of
Electric Vehicle (EV) charging in DC microgrids, where EV locations are
only known at the cable level. This setup, which may arise due to pri-
vacy concerns or communication constraints, complicates the optimiza-
tion of power flows within the grid. Traditional approaches would require
explicitly modeling every possible assignment of EVs to charging loca-
tions, quickly leading to computational infeasibility. In Chapter 2, we
propose surrogate reformulations that redefine the grid configuration by
treating cables as single nodes or parallel node structures, resulting in
an uncertainty-agnostic formulation. Tested across simulated microgrids,
this approach demonstrates how surrogate models can effectively man-
age aleatoric uncertainty while balancing computational efficiency and
solution quality. In future work, similar techniques could be applied to
other problems in power systems and beyond where partial observabil-
ity arises due to communication limitations.

The second core contribution lies in the field of decision-focused learn-
ing (DFL), where predictive models are trained to estimate unknown
parameters in constrained optimization problems. The essence of the
decision-focused approach is to optimize decision quality rather than
minimize prediction errors as the training objective. In Chapter 3, we
demonstrate, both theoretically and experimentally, that DFL applied to
convex optimization problems suffers from the zero-gradient issue - a
phenomenon previously identified only in the linear case. By reformu-
lating the problem using quadratic approximation and local smoothing,
we mitigate this issue, enabling stable gradient propagation and, con-
sequently, improved learning performance. This advancement broadens
the applicability of decision-focused learning within convex optimization.
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The final contribution introduces the max-reward paradigm in rein-
forcement learning, particularly suited for goal-reaching tasks where op-
timizing cumulative rewards can lead to convergence on suboptimal be-
haviors. By shifting the objective from cumulative to maximum reward,
the proposed approach better aligns with the human interpretation of
the task and offers notable algorithmic benefits. Experimental results
demonstrate the effectiveness of this approach in goal-reaching prob-
lems, motivating further exploration of non-standard reward formulations
in reinforcement learning.

Across these contributions, this thesis illustrates how optimization un-
der uncertainty in various domains can benefit from tailored problem
formulations that address uncertainty without explicit modeling, balance
scalability with solution quality, and enhance the performance of learn-
ing approaches. Overall, this work contributes to various applications of
optimization under uncertainty and highlights the potential for further
research and the broader application of effective problem formulations
across diverse fields.



SAMENVATTING

Het onderzoek in dit proefschrift valt binnen het domein van optimalisa-
tie onder onzekerheid, een cruciaal gebied in de informatica en wiskunde
met brede toepassingen in onder andere energiesystemen, financién, en
machine learning. De drie hoofdbijdragen van dit proefschrift betreffen
het plannen van het laden van elektrische voertuigen, beslissingsgericht
learning, en reinforcement learning. Naast het bevorderen van de state-
of-the-art in elk van deze domeinen, benadrukken onze bijdragen het
belang van effectieve probleemformuleringen. Hoofdstukken 2, 3 en 4
demonstreren hoe efficiénte oplossingen kunnen voortvloeien uit formu-
leringen die rekening houden met onzekerheid, complexiteit met oplos-
singskwaliteit in balans brengen, schaalbaarheid bevorderen, en aanslui-
ten bij menselijke intuitie. Deze resultaten benadrukken de impact van
goed doordachte probleemformulering bij optimalisatie onder onzeker-
heid en kunnen verder onderzoek stimuleren naar optimalisatietechnie-
ken die gebruik maken van op maat gemaakte formuleringen voor com-
plexe, onzekere omgevingen in diverse toepassingen.

De eerste bijdrage behandelt onvolledige observeerbaarheid in de con-
text van het laden van elektrische voertuigen (EV’s) in DC-microgrids,
waarbij EV-locaties alleen op kabelniveau bekend zijn. Dit scenario, dat
kan ontstaan door privacybezwaren of communicatiebeperkingen, com-
pliceert de optimalisatie van energiestromen binnen het netwerk. Tradi-
tionele benaderingen zouden vereisen dat elke mogelijke toewijzing van
EV’'s aan laadlocaties expliciet wordt gemodelleerd, wat snel leidt toton-
schaalbaarheid. In Hoofdstuk 2 stellen we surrogaat-herformuleringen
voor die de netwerkconfiguratie herdefiniéren door kabels als enkelvou-
dige knopenof parallelle knoopstructuren te behandelen, resulterend in
een onzekerheid-agnostische formulering. Op gesimuleerde microgrids
demonstreert deze aanpak hoe surrogaatmodellen effectief met aleato-
rische onzekerheid kunnen omgaan terwijl computationele efficiéntie en
oplossingskwaliteit in balans worden gehouden. In toekomstig werk kun-
nen vergelijkbare technieken worden toegepast op andere problemen in
energiesystemen en andere systemen waar onvolledige observeerbaar-
heid ontstaat door communicatiebeperkingen.

De tweede hoofdijdrage ligt op het gebied van beslissingsgericht learning
(DFL), waarbij modellen worden getraind om onbekende parameters in
optimalisatieproblemen met beperkingen te voorspellen. De essentie
van de beslissingsgerichte aanpak is het optimaliseren van de beslis-
singskwaliteit in plaats van het minimaliseren van voorspellingsfouten

Xi
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als trainingsdoelstelling. In Hoofdstuk 3 demonstreren we, zowel the-
oretisch als experimenteel, dat DFL toegepast op convexe optimalisa-
tieproblemen het nul-gradiént probleem ondervindt — een fenomeen dat
voorheen alleen in het lineaire geval was geidentificeerd. Door twee
herformuleringen te introduceren - een kwadratische benadering en een
lokale smoothing-techniek — verzachten we dit probleem, waardoor sta-
biele gradiéntpropagatie en, als gevolg daarvan, verbeterde leerpresta-
ties mogelijk worden. Deze vooruitgang verbreedt de toepasbaarheid
van beslissingsgericht learning voor convexe optimalisatie.

De laatste bijdrage introduceert het max-reward paradigma in reinfor-
cement learning wat met name geschikt is voor doelgerichte taken waar
het optimaliseren van cumulatieve beloningen kan leiden tot converge-
ren naar suboptimaal gedrag. Door de doelfunctie te veranderen van een
cumulatieve naar een maximale beloning, sluit de voorgestelde aanpak
beter aan bij de menselijke interpretatie van de taak en biedt het opmer-
kelijke algoritmische voordelen. Experimentele resultaten demonstreren
de effectiviteit van deze aanpak in doelgerichte problemen, wat verder
onderzoek naar niet-standaard beloningsformuleringen in reinforcement
learning motiveert.

Door al deze bijdragen illustreert dit proefschrift hoe optimalisatie on-
der onzekerheid in verschillende domeinen kan profiteren van op maat
gemaakte probleemformuleringen die onzekerheid aanpakken zonder ex-
pliciete modellering, schaalbaarheid met oplossingskwaliteit in balans
brengen, en de prestaties van leerbenaderingen verbeteren. In het alge-
meen draagt dit werk bij aan verschillende toepassingen van optimalisa-
tie onder onzekerheid en benadrukt het de potentie voor verder onder-
zoek en de bredere toepassing van effectieve probleemformuleringen in
diverse vakgebieden.



INTRODUCTION

The formulation of a problem is often far more essential than its solution
Albert Einstein



2 1. Introduction

This thesis explores several topics within computer science, including
constrained optimization, decision-focused learning, and reinforcement
learning. Although these areas may appear distinct, they all fall
under the broader umbrella of optimization under uncertainty - a
field in computer science and mathematics with wide-ranging practical
applications. The unifying theme across the contributions in this thesis
is the emphasis on formulating the right problem. Specifically, the focus
lies on deriving problem formulations that are both tractable and yield
solutions aligned with human interpretation of the task.

In this introductory chapter, we establish the foundation for subsequent
research by introducing the concept of optimization under uncertainty
and presenting a framework that contextualizes the contributions of the
thesis. We begin with an informal overview of the field, examining
how real-world tasks are translated into optimization problems and
subsequently solved. This is followed by an analysis of various types of
uncertainty, their influence on optimization, and the role of learning in
addressing these complexities.

To clarify these concepts, we present several practical examples
drawn from diverse fields such as power systems, decision-focused
learning, and natural language processing. These examples illustrate
the wide-ranging challenges posed by optimization under uncertainty
and reinforce the central message of this thesis: effective problem
formulation is crucial to success in optimization under uncertainty.
Finally, we distill the key insights from these examples into a set of
research questions that guide the subsequent chapters.

1.1. OPTIMIZATION UNDER UNCERTAINTY

Optimization is fundamentally the process of determining decisions
that maximize or minimize an objective function while adhering to
constraints [1]. In practical applications, this process begins with
mapping a real-world task onto these components. However, this
translation is often complex, requiring a nuanced interpretation of
empirical realities into precise and tractable mathematical formulations.
Success in this step demands both a deep understanding of the task
itself — ensuring the mathematical model aligns with human expectations
- and expertise in mathematics to guarantee the problem’s solvability.
The challenge lies in bridging the gap between the inherently ambiguous
nature of real-world scenarios and the rigorously precise language of
mathematics.

Once the optimization problem is formulated, the next step involves
selecting a suitable solution method. This decision is guided by
the problem’s structure, scale, and specific requirements. Common
approaches include constrained optimization solvers, which are effective
for well-defined mathematical problems, data-driven methods [2], which
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can adapt to complex or dynamic environments, evolutionary algorithms
[3], which excel when other methods struggle, e.g., with highly complex
or non-convex problems, and many others. Each approach offers distinct
advantages and limitations, and the selection often involves trade-offs
between solution quality, computational efficiency, and problem-specific
needs.

The introduction of uncertainty into optimization problems significantly
complicates both their formulation and solution. Uncertainty challenges
the precise definition of objectives and constraints, as these may
depend on unknown factors. It also complicates the solution process,
as traditional deterministic methods may become inapplicable. Fur-
thermore, uncertainty introduces substantial computational complexity,
requiring consideration of a vast (potentially infinite) set of possible
outcomes. Addressing uncertainty thus demands efficient methods for
both modeling and solving such problems. Given that the nature and
degree of uncertainty can vary significantly across different problems,
a deeper understanding of its properties is essential. In the following
sections, we explore various types of uncertainty and their implications
for optimization.

1.1.1. ALEATORIC AND EPISTEMIC UNCERTAINTY

Uncertainty significantly increases the complexity of optimization
problems. To effectively address it, we must first better understand
its nature. In optimization, the term "uncertainty" refers broadly to
unknown elements, though the reasons for this lack of knowledge
can vary. For example, an unknown element may be stochastic, like
a random variable with a known or unknown probability distribution.
Alternatively, it might be deterministic but simply unknown to us. Based
on this distinction, uncertainty is typically categorized into two types:
aleatoric and epistemic [4, 5].

Aleatoric uncertainty stems from the inherent randomness of a
phenomenon - such as the result of a coin toss — making it irreducible.
In contrast, epistemic uncertainty arises from incomplete knowledge
about the system being modeled, such as uncertainties in scientific
measurements or model parameters. The key distinction between these
two types is that epistemic uncertainty can, in principle, be reduced
by gathering more data, while aleatoric uncertainty is a fundamental
property of the system and cannot be reduced.

In practice, the boundary between aleatoric and epistemic uncertainty
is often unclear [5-7]. When data is limited, distinguishing whether
observed variability results from inherent randomness or insufficient
information becomes challenging.  Moreover, this distinction may
depend on the context and the modeler’s perspective, introducing an
element of subjectivity. Consider weather forecasting as an illustrative
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example. From one perspective, weather is inherently stochastic, with
statistical models used to address aleatoric uncertainty. However, one
could argue that our perception of weather as stochastic largely stems
from limitations in our meteorological models and the availability of
high-resolution data, thus indicating epistemic uncertainty [8].

Another example appears in partially observable systems, where
decision-makers can only observe a portion of the system’s state.
In some cases, the unobserved part may be treated as epistemic
uncertainty, suggesting it could be learned or inferred from available
data. Alternatively, the entire state may be treated as aleatoric
uncertainty, functioning as a random variable conditioned on the
observable parts [7].

While the distinction between aleatoric and epistemic uncertainty
proves useful in certain cases, it is not always straightforward to make.
Therefore, it can be more beneficial to adopt an application-oriented
view and classify uncertainty based on its impact on the optimization
problem.

1.1.2. MANIFESTATIONS OF UNCERTAINTY

Uncertainty - whether aleatoric or epistemic - can manifest in
optimization problems in various ways. To better understand its
influence, we categorize uncertainty based on how it appears in the
problem. Below is a brief overview of common forms of uncertainty [7]:

e Unknown model or parts of the model: We may lack a complete
understanding of the system’s model, which often reflects epistemic
uncertainty. However, it can also be viewed as aleatoric if the
system is considered fundamentally unknowable.

e Parametric uncertainty: Even with knowledge of the system’s
general model, we may not know its exact parameters, which often
reflects epistemic uncertainty.

e Partial observability: We may only have access to a subset of the
system’s state. Depending on the context, this can be treated as
either epistemic or aleatoric uncertainty.

e Innate stochasticity: The system itself may exhibit inherent
stochastic behavior, leading to uncertainty in its outcomes. This is
a classic case of aleatoric uncertainty.

In complex systems, these different manifestations of uncertainty
often overlap. For instance, a model might display innate stochasticity
while also having unknown parameters. Consequently, uncertainties
related to the model, its parameters, the degree of observability, and the
system’s inherent randomness are frequently intertwined. Addressing
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these interconnected uncertainties collectively during the modeling
process is essential.

As highlighted, one of the key challenges in optimization under
uncertainty is finding an effective and tractable way to model the
uncertainty. A powerful tool that often simplifies this process is learning
from past experiences and data. Below, we provide a high-level
overview of how learning can be leveraged to improve optimization
under uncertainty.

11.3. UNCERTAINTY AND LEARNING

Building on our discussion of uncertainty in optimization, it is important
to highlight the role of learning as an important tool for addressing
these challenges [9]. In its broadest sense, learning involves using past
experiences and data to update our understanding of a problem. In the
context of optimization under uncertainty, learning is often pivotal, as
we discuss below.

One common scenario for applying learning arises in the presence
of epistemic uncertainty. Since epistemic uncertainty can be reduced
through the acquisition of new knowledge, learning naturally offers a
solution. A straightforward example is collecting noisy measurements
of a physical parameter, such as weighing an object multiple times
on imprecise scales. While the true value of the object’'s weight is
deterministic, gathering more data allows us to generate increasingly
accurate estimates.

Even in situations where aleatoric uncertainty dominates - where
randomness is inherent - learning remains valuable. Instead of modeling
the random variable directly, learning methods can be employed to
approximate its effects on quantities of interest, such as the objective
function. This approach simplifies the handling of pure randomness,
enabling us to concentrate on the most relevant aspects of the problem
and reducing computational complexity. In some cases, learning can
transform what might otherwise be an intractable problem into one that
is solvable. A typical example of this is found in reinforcement learning,
where the transition function is often bypassed in favor of learning value
functions that guide policy updates.

In sum, learning is an important tool for managing uncertainty in
optimization. By leveraging available data, it can mitigate the effects of
uncertainty, leading to more effective solutions. However, learning itself
is not without challenges. Issues such as non-stationary distributions,
generalization, low-quality data, and scaling to high-dimensional
datasets must be carefully addressed to ensure success.

Having now covered the core concepts of optimization under
uncertainty, we turn to real-world examples that illustrate these ideas
and explore the practical challenges involved in solving such problems.
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1.2. EXAMPLES

We have discussed the main components and challenges of optimization
under uncertainty. In this section, we provide a series of examples
that illustrate these challenges. Through these examples, we also
demonstrate the importance of "formulating the right problem" - a
theme that unifies the contributions of this thesis.

1.2.1. AC-OPF

We begin with a classical example from the field of power systems
control: the AC Optimal Power Flow (AC-OPF) problem [10]. This problem
focuses on optimizing power flows in AC grids. The primary objective
of AC-OPF is to determine the optimal configuration of power, voltage,
and current within the grid to maximize a specified financial goal. This
must be achieved while adhering to safety standards, respecting grid
capacity constraints, and complying with the physical laws that govern
electricity transmission and distribution.

The main challenge in solving AC-OPF stems from its computational
complexity. The non-convex nature of the physical laws governing
power flows makes the problem particularly demanding. Additionally,
in real-world applications, uncertain factors such as fluctuating demand,
variability in renewable energy generation, and changes in generation
costs further complicate the problem, often rendering it intractable. A
common approach to address this challenge is to simplify the power
flow equations using the DC-OPF model [11]. This reformulation is
based on several key assumptions, including flat voltage magnitudes,
negligible reactive power, and minimal power losses, which result in a
linear approximation of the power flow equations. These simplifications
reduce the problem’s complexity substantially, making it manageable
and allowing for explicit modeling of uncertainty. Although the DC-OPF
model introduces some inaccuracies, it is particularly effective for
high-voltage power grids where the assumptions generally hold. In such
cases, DC-OPF provides a computationally efficient approximation that
balances solution quality with feasibility.

The DC-OPF approach illustrates how problem reformulation can play
an important role in optimization under uncertainty. In this case, the
reformulation leverages expert knowledge of power systems to simplify
the problem while maintaining practical relevance. This highlights the
importance of domain-specific expertise in creating effective problem
formulations.

The idea of problem reformulation is not limited to power systems.
It extends to other domains where the underlying model may be less
well understood. In such cases, even without deep domain expertise,
innovative approaches to problem formulation can lead to significantly
improved solutions. In our next discussion, we explore decision-focused
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learning (DFL) — a framework where the model is only partially known,
and learning is used to fill in the missing parts.

1.2.2. SMART “PREDICT, THEN OPTIMIZE"

Consider a linear programming (LP) optimization problem where some
parameters of the objective function are unknown. Instead of having
direct access to these parameters, we are provided with a feature
vector that contains information about them. A common example of
such a problem can be found in navigation apps, where the app needs
to compute the shortest path to the location specified by the user.
In this case, the unknown parameters correspond to travel times on
various route segments, traffic conditions, or public transport delays.
To manage this uncertainty, a two-stage approach is commonly used.
First, a machine learning model predicts the missing parameters based
on the feature vector. Second, these predicted parameters are fed into
a constrained optimization solver to make decisions. The optimization
under uncertainty problem corresponding to this setup is the one of
training a predictive model.

The standard approach is to train the machine learning model to
predict the uncertain parameters by minimizing prediction error -
a typical supervised learning task. However, this approach has a
significant drawback: the true objective should be decision quality,
not prediction accuracy. In the shortest path example, quality of the
traffic condition prediction is irrelevant for the user, unlike the quality
of the provided route. Therefore, optimizing prediction accuracy only
approximates the real task, sacrificing solution quality for computational
simplicity.

Decision-focused learning, also referred to as "predict, then optimize",
addresses this issue by directly optimizing for decision quality rather
than prediction accuracy [12]. The main challenge is that using
decision quality as a training objective usually requires differentiating
the LP solution with respect to the predicted parameters, which
is computationally challenging. The smart "predict, then optimize"
(SPO) approach [12] overcomes this by introducing a differentiable
approximation of decision quality, making it feasible to use as a
learning objective. Empirical results demonstrate that this method
significantly outperforms standard approaches that focus purely on
prediction accuracy.

The SPO approach underscores the importance of aligning problem
formulation with the true objective. By focusing on decision quality
rather than prediction accuracy, it ensures that the solution directly
addresses what truly matters, leading to better outcomes. Furthermore,
the use of differentiable approximations enables SPO to transform a
complex problem into a tractable one, highlighting how thoughtful




8 1. Introduction

reformulation can unlock new potential in machine learning applications.

In the final example, we explore natural language processing (NLP)
through the lens of optimization under uncertainty, demonstrating how
this complex field has benefited from simple yet powerful formulations
like next-token prediction and reinforcement learning from human
feedback.

1.2.3. NATURAL LANGUAGE PROCESSING

Consider the task of creating a "general conversational Al" -— an Al
system capable of engaging in open-ended dialogue across a broad
range of topics. This is an extraordinarily complex optimization
problem under uncertainty, characterized by numerous, multifaceted
uncertainties:

e Epistemic uncertainty:

- Incomplete understanding of human conversation patterns and
language nuances.

— Partial observability of the user’s intent and expectations for a
response.

e Aleatoric uncertainty:

- Inherent variability in human conversations, with multiple valid
responses possible for any given input.

— Stochastic nature of user satisfaction, which serves as the
objective, due to the somewhat chaotic aspects of human
behavior.

Given these complexities, formulating the right optimization problem
is crucial. One might initially think that creating such an Al would require
directly modeling the intricacies of human conversation — a challenging
task given the uncertainties involved [13]. However, a surprisingly
effective formulation has emerged: framing the problem as next-token
prediction [14]. In this approach, the Al's task is simply to predict the
next token (word or subword) in a sequence, given all previous tokens.
This formulation creates a clear optimization objective: minimizing
the cross-entropy loss between the model’s predictions and the actual
next tokens in the training data. This objective is both well-defined
and computationally tractable, despite the underlying uncertainties in
language and conversation. Moreover, it allows utilizing vast amounts
of text data, much of which represents human-written conversations or
knowledge.

This seemingly simplistic formulation has led to Al models with
astonishing levels of performance in conversation. LLMs trained
on next-token prediction, such as GPT-3 [15] and its successors,
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have demonstrated an impressive ability to engage in human-like
dialogue, answer questions, and even perform complex reasoning
tasks. Moreover, the development of these models introduced another
innovative problem formulation: Reinforcement Learning from Human
Feedback (RLHF) [16]. RLHF addresses some of the limitations of
pure next-token prediction by adding an additional optimization problem
focused on alignment with human feedback. It can be seen as a method
to reduce uncertainty about human preferences and values, by directly
incorporating human feedback into the optimization process. This
approach allows for fine-tuning the model to better align with human
preferences, addressing issues like safety, coherence, and helpfulness
that are not fully captured by the next-token prediction objective alone.

The combination of two key problem formulations - next-token
prediction and RLHF - has led to Al models with broad capabilities
that align more closely with human values and expectations. Even
though this success was largely enabled by vast amounts of available
data, increased computational power, and the development of the
transformer architecture [17], we find that the essential component in
the remarkable success of LLMs is the problem formulation itself.

Unlike the AC-OPF problem, which relies on expert knowledge for
reformulation, and SPO, which combines expert knowledge of linear
programming with machine learning, LLMs do not utilize any specific
knowledge of the underlying problem structure. Instead, LLMs introduce
an objective function that aligns with desired outcomes, resulting in a
conceptually simple optimization problem that alleviates the need for
explicit modeling of uncertainty.

The three examples presented in this section derive problem
reformulations differently: AC-OPF employs a domain-specific approach,
SPO integrates domain expertise with well-defined learning objectives,
and LLMs rely purely on aligning learning methodologies with the task at
hand. These examples suggest that effective problem formulations can
emerge through different approaches and have a broad impact across
diverse fields. In the last section of this introduction, we generalize the
challenges inherent to the "formulating the right problem" paradigm and
present the central research questions that this thesis aims to address.

1.3. FORMULATING THE RIGHT PROBLEM

The examples above illustrate an important principle in optimization
under uncertainty: the formulation of the problem itself can be as
crucial as the methods used to solve it. This principle, which we term
"formulating the right problem" is a central theme of this thesis and has
broad implications for tackling complex real-world challenges. Hence,
we are aiming to contribute towards answering the following research
question:
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In optimization under uncertainty, what constitutes a "good" problem
formulation, how to obtain it, and what challenges can it resolve?

As this question is too broad to be tackled within a thesis, we derive
more specific research questions that we aim to address with the
individual chapters:

1. Can we address aleatoric partial observability by developing a
problem formulation that is independent of it?

- We address this question in Chapter 2, where we study
the electric vehicle charging problem (EVCP) with partially
observable locations of the EVs. We propose a surrogate
problem formulation that is indifferent to partial observability,
thereby resulting in a better solution, while avoiding modeling
uncertainty explicitly.

2. How can we leverage both data and knowledge of the problem
structure to create better formulations?

- We address this question in Chapter 3 about decision-focused
learning (DFL). There, a predictive model is trained to predict
unknown parameters of an optimization problem. Crucially, the
models in the DFL paradigm are trained to optimize decision
quality, rather than prediction accuracy, as this is the actual
task goal. However, using this objective naively has certain
computational challenges, which we address in this chapter.

3. How can we align the desired properties of the solution with the
mathematical characteristics of the problem formulation?

- We address this question in Chapter 4. There, we introduce
max-reward reinforcement learning — a novel paradigm where
an agent optimizes for the maximum rather than the cumulative
reward. Both experimentally and theoretically, we demonstrate
that this is a better objective in goal-reaching problems.

These research questions can be connected by viewing them as a
spectrum. First, in Chapter 2, we explore an optimization problem
with a known model and partially unknown parameters, where no data
is available to reduce uncertainty. In this setup, neither modeling
uncertainty nor learning or sampling methods are feasible, so we must
address uncertainty exclusively by manually derived reformulations
of the optimization problem. A natural progression from this is
decision-focused learning, which extends the problem by assuming the
availability of data. There, we aim at obtaining a “good” formulation
for the problem of training an ML model, such that it is aware of the
underlying problem structure, while being computationally tractable.
In Chapter 3, we investigate and address the drawbacks of the
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naive formulation of the training problem that cause convergence to
suboptimal solutions. In the final contribution in Chapter 4, we move
further by considering a typical reinforcement learning setup, where we
have no prior knowledge of the problem beyond the task description,
but can gather data through interaction. We demonstrate how the
task objective - "reach the goal" - can be translated into a meaningful
optimization objective — "maximize the reward".

In summary, this thesis focuses on solving various optimization under
uncertainty problems through effective problem formulations, utilizing
different approaches depending on the context. From well-defined
models to machine learning and reinforcement learning frameworks,
the work demonstrates how the nature of the available information -
whether no data, partial data, or data gathered through interaction
- impacts the formulation of the problem. By presenting concrete
examples from various domains, the thesis shows how carefully
designed problem formulations are key to navigating uncertainty and
achieving computationally feasible, high-quality solutions.
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EV CHARGING IN DC MICROGRIDS
WITHPARTIAL OBSERVATIONS

As electric vehicles (EVs) become increasingly common, it is essential
to develop infrastructure that ensures reliable, accessible, and timely
charging. On the electrical engineering side, one promising direction
is the use of direct current (DC) microgrids, which are inherently
better suited for EVs. On the algorithmic side, new methods
are needed to coordinate EV charging in a way that accounts for
uncertainty while maintaining grid safety and stability.

This chapter addresses the challenge of EV charging scheduling
in DC microgrids under incomplete information. In particular, we
study the case where an EV’s charging location within the microgrid
is only partially known - a situation that can arise in practice due to
limited communication, system delays, or privacy constraints. This
partial observability is critical because physical grid limits depend
on the precise locations of power loads and lacking this knowledge
can result in grid overloads and unmet charging demand from EVs.

To tackle this, we propose two reformulations of the scheduling
problem that enable robust planning despite incomplete information.
Simulations show that these models successfully prevent grid
violations, especially when resources are tight. Overall, the results
reveal a clear trade-off between speed and performance - and point
to a practical way forward for making EV charging more resilient in
the real world.

This chapter is based on the article: Veviurko, G., Béhmer, W., Mackay, L., de Weerdt,
M. (2022). Surrogate DC Microgrid Models for Optimization of Charging Electric
Vehicles under Partial Observability. Energies, 15(4), 1389. Compared to the journal
article, Section 2.3 was significantly updated to improve clarity.
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ABSTRACT

Many electric vehicles (EVs) are using today’s distribution grids, and
their flexibility can be highly beneficial for the grid operators. This
flexibility can be best exploited by DC power networks, as they
allow charging and discharging without extra power electronics and
transformation losses. From the grid control perspective, algorithms for
planning EV charging are necessary. This paper studies the problem
of EV charging planning under limited grid capacity and extends it to
the partially observable case. We demonstrate how limited information
about the EV locations in a grid may disrupt the operation planning in
DC grids with tight constraints. We introduce two methods to change
the grid topology such that partial observability of the EV locations is
resolved. The suggested models are evaluated on the IEEE 16 bus
system and multiple randomly generated grids with varying capacities.
The experiments show that these methods efficiently solve the partially
observable EV charging planning problem and offer a trade-off between
computational time and performance. The code is made public [1].

2.1. INTRODUCTION

The increasing penetration of electric vehicles (EVs) and renewable
energy sources (RES) into distribution grids provides new opportunities,
but also poses new challenges for the system operators. As EVs and
some of the RES inherently use DC, they can be integrated into DC grids
without additional converters and with smaller power losses [2]. For this
reason, DC in distribution grids is considered to be a suitable alternative
to the currently used AC [3]. Unlike conventional loads, EVs are flexible
in terms of when their demand should be served. This flexibility is
provided by a special entity, the EV aggregator [4], which coordinates
the charging of EVs. The goal of the aggregator is to solve the EV
charging planning (EVCP) problem, i.e., to minimize the sum of unmet
demand and operation costs, while not violating the physical constraints
of the grid.

In practice, there are two main challenges related to solving the EVCP
problem. First, information about the EV parameters (e.g., arrival and
departure times, demand and locations in the grid) and/or the grid state
(topology, physical properties of the nodes or lines) may not be fully
available to the EV aggregator. Hence, the aggregator might have to
operate using incomplete information. Second, as the relation between
current and voltage is hyperbolic, the power flow equation makes the
EVCP problem non-convex [5]. That means not only that there is no
theoretical guarantee of obtaining the globally optimal solution, but also
that the problem may become computationally intractable for large
grids and long planning horizons.

A popular perspective on the EVCP problem is to simplify or even
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omit the power flow equations and grid constraints, in order to make
the problem tractable. Various studies have pursued this approach
and focused on dealing with the uncertainty of the future EV arrivals.
Sadeghianpourhamami, Deleu, and Develder [6] applied a reinforcement
learning algorithm to coordinate the EV charging in a constraint-free grid.
Yang et al. [7] minimized the problem’s Lagrangian in a decentralized
fashion to optimize the charging of the EVs located in a single building
with stochastic wind power supply. Wu and Sioshansi [8] designed a
two-stage optimization algorithm with a sample-average approximation
technique to solve the EVCP problem using a linearization of the AC
power flow. On the other hand, some studies have combined the EVCP
with the non-convex optimal power flow (OPF) problem and included
the exact power flow equations and grid constraints in it. Kayacik,
Kocuk, and Yiksel [9] formulated the EVCP problem as a multi-timestep
OPF problem extended with additional constraints on the CO, emissions
and derived a convex second-order cone programming relaxation that
can be solved efficiently. In the work by Azizipanah-Abarghooee et al.
[10], a fuzzy-logic controller was developed to minimize power costs
and emissions simultaneously. Chen, Quek, and Tan [11] solved the
EVCP+OPF problem by decoupling the OPF part from the planning
and using the convex dual problem for it. However, no studies have
included both incomplete information or EV uncertainties and power
flow equations in the EVCP problem.

While the uncertainty of the EV parameters and non-convexity of
the OPF are usually considered separately in the existing literature,
in reality the EV aggregator should solve both problems simultaneously.
The direct combination of the existing solutions for these problems does
not seem possible: two-stage optimization of a non-convex problem
easily becomes intractable. On the other hand, model-free methods,
such as reinforcement learning, are generally hard to apply to constraint
optimization problems. Moreover, if the present, rather than the future,
is not fully known (e.g., due to privacy concerns), the standard EVCP
formulation becomes irrelevant, and further research is required to
formulate and solve the partially observable version of the problem.

An important input parameters for the EVCP problem are the locations
of the EVs in the grid, as they are necessary to compute the power
flow required for charging. This study investigates the EVCP with
partial observability of the EV locations. The problem is reformulated to
account for partial observability, and we investigate how it affects the
EV aggregator by answering the following questions:

e How crucial is it for the EV aggregator to know exact locations of
the EVs in the grid?

e How can one obtain a well-performing, scalable solution when the
EV locations are known only up to certain degree?
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In order to answer the first question, we conducted experiments
on DC grids with various topologies and capacities to evaluate how
different degrees of awareness about EV locations affect the planning.
The experimental results demonstrate that a lack of information about
the locations of the EVs currently present in the grid considerably
disrupts the performance, whereas locations of the EVs that are yet to
arrive are much less vital. To deal with this issue, this paper introduces
two alternatives for modeling the grid topology without knowing the
exact locations of the EVs. Experiments on both real and randomly
generated grids show that the suggested models perform better than
a naive baseline and offer a trade-off between computational cost
and performance.

2.2. BACKGROUND
2.2.1. EVCP PROBLEM FORMULATION

Existing studies consider various formulations of the EVCP problem
depending on the optimization objective, EV charging approach,
and optimization approach [4]. This study adopts the perspective of an
EV aggregator that represents the combined interest of all the EVs in a
grid. Its goal is to maximize the social welfare—the sum of the demand
provided to the EVs—with minimal operation costs. In line with earlier
work [11, 12], EV charging optimization is combined with power flow
equations and grid constraints. Unlike most existing studies, this work
does not assume that all vehicles can be charged fully. To account for
that, all EVs have a linear utility function quantifying how much value
each car assigns to being charged for one Watt Hour.

Advances in power electronics allow for new solutions in the microgrid
design. Various aspects of DC microgrids’ control, protection, and energy
management are being studied in the literature (e.g., see the work
by Kaur et al. [13] for an overview). As this paper aims at solving
the charging planning problem with partial observability, we employ
the relatively simple DC microgrid model suggested by Li et al. [14].
For the same reason, this work does not consider the properties of the
EV batteries, as they do not affect the charging planning algorithm.
This study considers DC microgrids that consist of multiple EV charging
stations and one or several generators that can represent connections
to an external power grid or distributed generators (DGs). Prior to
defining the optimization problem for the EVCP in DC grids, we introduce
the necessary notation.

The set N = LUG of nodes in the grid (the squared cup symbol U
is the disjoint union operator) is a disjoint union of the loads £ and
generators G. For convenience, we use n and m as subscripts when
we mean an arbitrary node and use subscripts [ and g to highlight the
difference between the loads and generators. The set of lines £ c N x N/
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contains the node pairs (n, m) that are connected by a line. The set
{to, t1,...,tr} is the set of planning timesteps, each timestep having
a constant length, being defined as At :=ts4y1—ts,Vs€{0,..., T—1}.
At each timestep t, voltage and power in the loads [ and generators
g are denoted by Vv{, p} and v;, pg correspondingly. Line current and

conductance between nodes n and m are denoted by iflm and ynm,
respectively. For each generator g € G, we define energy supply costs as
a linear function of the generator’s power with coefficient c;. We use a

convention that power at the generators is negative and power at the
loads is positive. The bounds for the voltages, power, and currents are
denoted by Vp, Vi, P, Pn, Inm. The set of the electric vehicles is denoted

by K, and each EV k € K has several parameters. Let tZ'", tgep be the

arrival and departure times, Ex be the desired state-of-charge (SOC)
at departure, and ukx be the coefficient of the linear utility function
specifying the priority of the particular EV. SOC at timestep t is denoted
by ei. For simplicity, we use [(k) to denote the load where EV k is being
charged and k({) for the EV at load L.

First, the power flow constraints are defined as follows:

VISVi<Vi, Pi<p{<P, VleL (2.1a)

Vg< Vi <Vg Pg<p)<Pg Vgeg (2.1b)

—Inm <&, <Ipm, Y(n,m)eé (2.1c)

i = =V )ynm, V(n,m)e& (2.1d)

pt =—vt Z Yam(VE—Vvi), VneN (2.1e)
{ml(n,m)e&}

Then, the EV state-of-charge is subject to the following constraints:

arr

t
ef =0, Vkek (2.2a)
O<el <E, Vkek, Vte[td, ti] (2.2b)
d
eftl=el + Atp[t(k), VkeK, Vte[td, t.P) (2.2¢)

The optimization objective of the EVCP problem is defined as

J(p) =Z(ZUk(1)P,tAt+ Z C;P;At)- (2.3)

t lel geg

We call J the social welfare as it combines the fulfilled demand
weighted by the EV utility coefficients and the negative of the operation
costs. The coefficients c; can represent the generation costs or price
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for buying power from the external grid. The utility coefficients ux are
defined per EV and represent the importance of each vehicle. It is worth
mentioning that it is possible to define the utility coefficients per load
rather than per EV. In that case, it can be used to model the pricing tariff
in the grid. However, the problem will not change mathematically, and
hence we do not deliberately study this case. The constraints (2.1a -
2.1e) and (2.2a - 2.2c) and the objective (2.3) define the EVCP problem:

max J(p)
v,i,p,e
subjectto: 2.1la—2.le (Exact EVCP)
2.2a—2.2¢c

2.2.2. SOCP RELAXATION

Due to Equation 2.1e, the OPF problem and hence the EVCP problem
are non-convex. Several methods to convexify the OPF problem are
suggested in the literature, including semi-definite programming (SDP)
[5] and second-order convex programming (SOCP) [14] formulations.
As the latter has been shown to perform optimally in multiple real DC
grids [14], we adapt it to the EVCP problem. The SOCP relaxation can
be obtained by the following change of variables:

vt — (Vt )2
g nt 2 t,,t
Prm = ((Vi)5— VLV )Ynm
It — y2 (Vt —yt )2
nm nm*"n m

The constraints (2.1a - 2.1e) can be relaxed to the following quadratic
cone constraints:

VI<Vi<VE, Pi<pl<P, Vier (2.4a)
Vg <Vg<Vg, Pg<py<Pg Vgeg (2.4b)
—I, <G, <D V(mn)ee (2.4¢)
lt

yr,:_n; =P+ Prpy V(0. M) EE (2.4d)
Ynm(VE =Vt y=pl —pt . V(n,m)ee (2.4e)
pt= > P, Vnenx (2.4f)

{m|(n,m)e&}

t wt t 2
£ v =(p, ), Y(n,m)eE (2.49)
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Then, the SOCP relaxation of the EVCP problem is the following
optimization problem:

max J(p)
v,lL,p,e
subject to:  2.4a—2.4g (Relaxed EVCP)
2.2a—2.2c

2.2.3. INCLUDING UNCERTAINTIES

If the full information about the EVs and the grid is available to the
EV aggregator, then the only challenge for solving the exact EVCP
problem is its non-convexity. As discussed in the previous section,
convex relaxation techniques such as SDP or SOCP are demonstrated
to be effective solutions for that. In practice, however, the information
that the aggregator has access to might be limited. For example, due
to causality, parameters of an EV usually become known only after it
arrives in the grid, hence making the EVCP a stochastic optimization
problem. Moreover, if RES [7] or inelastic loads [11] are included in
the problem, their generation and demand are usually also modeled as
random variables. A common approach to solving the EVCP problem
with uncertainties is online planning, where the problem is repeatedly
solved at each timestep.

An important feature of online planning is that it allows one to obtain
a feasible solution of the EVCP problem even in the presence of future
uncertainties. However, a conceptually different example emerges when
the state of the grid is only partially observable. For example, changes
in the grid topology, variations in nodal and line limits, or locations of
the EVs in the grid might be reported to the aggregator with a delay.
In this case, the EVCP problem cannot be formulated in the standard
way, because its constraints are unknown. Furthermore, as the solution
is not guaranteed to be feasible, the objective value cannot be used
to evaluate the solution’s quality. The next section presents a way
to define the EVCP problem with partial observability and introduce an
evaluation framework that can be used with it.

2.3. PARTIALLY OBSERVABLE EVCP

In a partially observable EVCP (PO-EVCP) problem, the EV aggregator
may lack knowledge of certain input parameters of the EVCP. In this
study, we consider a scenario where the locations of the EVs within the
grid are only partially known. Specifically, the loads in the grid are
grouped into several regions, referred to as cables. The EV aggregator
has access only to cable-level information about where the EVs are
parked. In practice, these cables may correspond to charging stations
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on different streets or EV parking lots. This setup is particularly relevant
in cases where EV privacy is a concern or when communication between
the EV aggregator and the grid operator is limited.

First, we introduce additional notation to formalize the notion of a
cable mathematically. The grid loads are split into cables, £ =] |.c-C,
where C is the set of cables, and each cable c € C is a subset of loads,
c Cc L. For convenience, we write ¢c(l) to denote the cable containing
load L

For an EV k € K charging at load ((k), the EV aggregator observes only
the cable c(l(k)) (also denoted as c(k)), not the specific load (k) itself.
The latter is treated as a random variable, uniformly distributed over
the unoccupied loads on that cable.

In the PO-EVCP problem, the feasibility region defined by (2.1a-2.1¢e)
and (2.2a-2.2c) is uncertain and therefore cannot be directly used in
a constrained optimization solver and hence a method to address this
uncertainty is needed. The remainder of this section introduces three
approaches that handle the partial observability of the problem through
problem reformulations.

2.3.1. BLIND GUESSING MODEL

The simplest way to resolve the partial observability of the PO-EVCP
problem is to sample the positions of incoming EV uniformly from the
unoccupied loads. Note that the sampled and the actual positions will
rarely coincide. Let [ and k be vectors of the loads and EVs, respectively,
and let (k) be the true unknown assignment of grid loads to EVs. Blind
guessing is defined as this random sampling of an assignment T (k),
and we denote the resulting EV-to-load and load-to-EV maps as l’(k)
and k’(), respectively. In the EVCP problem, only constraint 2.2c and
objective 2.3 depend on (k). Hence, they can be rewritten as follows:

t+1

€

d ’
= el + Atp}, kek, tel[td", t) (2.2¢")

(ky’
in) = t t ot ,
Jpy= 21> uwwp)+ D chpll. (2.3
t lel geg
Then, the PO-EVCP problem with blind guessing can be defined:
max J(p)

v,i,p,e

subject to: 2.1a—2.1e (Guessing PO-EVCP)
2.2a,2.2b,2.2¢’

Essentially, the blind guessing model resolves the uncertainty in the
PO-EVCP problem by randomly assuming where EVs are parked within
the corresponding cable. Then, the problem is reduced to the standard
exact EVCP problem, defined in Section 2.2.1.
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2.3.2. SURROGATE GRID MODELS

As an alternative to blindly guessing the EV assignments, it is
possible to instead modify the grid topology used in the optimization
problem. The goal is to derive a surrogate grid with such topology
that the optimization problem becomes agnostic to the non-observable
information. In other words, such surrogate grid should be invariant
over different EV assignments, as it effectively makes the problem
deterministic. This section presents two different surrogate grid models
with this property. Before defining these models, some additional
notation is introduced. Let (m, n) € N be a pair of nodes and let P(m, n)
be a set of all paths between m and n without cycles. Then, let

p=((m, n1),(n1,n2),...,(ny N)) €P(m,n)

be one such path. Its current limit I, and conductance y, are defined as

I, = min I and  1/yp = 1/yi.
o) (a,bl)ep ab /Yp Z /Yij
(if)ep

Then, we can define the path with highest conductance as

*=arg max .
p gpeP(m,n)yp

We denote its conductance as y2 %" and its current limit as 22", Then,
the conductance between a cable ¢ € C and an external node m & c is
defined as the average conductance over the paths from m to all loads
inc:
ypath = i Z ypath.
mc mn

|cl A=t

The current limit between ¢ and m is defined as

path .— mjn Jpath,
m nec mn

Essentially, y’,';,acth and quantify how current can flow from a node m

into cable ¢ assuming the exact destination node is unknown.

Parallel nodes model. The parallel nodes model transforms each
cable c into a set of nodes connected in parallel. In this way, the model
becomes invariant to permutations of EV assignments to loads within
each cable. To derive the parallel nodes surrogate grid, all lines that
connect nodes within ¢ are removed. For each connection (m, n) from
an external node m ¢ c to n € ¢, a new node # is added and connected to
m with Iys = Imn and ymn = 00. Then, node /i is connected to all loads in

the cable n; € ¢ with new lines, such that Isn, =Imn and yan, =ypma,'7tl.h. The

spath
Imc
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load#2 DGO

Figure 2.1: An example of the parallel nodes surrogate model. The
original grid is on the left, the surrogate is on the right.
Rectangles are loads, circles are generators. Line capacity is
y and current limit is i.

new node A is passive; i.e., P4 = P5 = 0. The parallel nodes’ surrogate
grid is illustrated in Figure 2.1.

Let Npar = Lpar U Gpar and Epar be the sets of nodes and lines in the
parallel nodes surrogate grid. Then, the optimization problem for the
parallel nodes models is the same as the exact EVCP problem with
bearlgbar:

max Z( Z uk(l)pltAt+ Z cgp;At)

v,i,p,e

£ Sk 9€Gpar (Parallel PO-EVCP)
subject to: 2.1la—2.1e for Npar, Epar
2.2a—2.2c

Crucially, the parallel nodes model is, by construction, independent of
the exact assignment of EVs to loads within each corresponding cable.
Therefore, it effectively addresses the partial observability challenge.

Single node model. The single node model transforms each cable
c into a single node n. that aggregates information about all nodes
within c. For each neighboring node m ¢ ¢, such that 3iec, (m,i) €¢,

a line (m, n¢) is added. Its parameters are defined as Ipmn, =122 and

Ymnc =yfnacth. The power bounds for n. are defined as the sum over

original nodes: Pp. =Y P,, Pn. =Y. nec Pn. Voltage bounds are defined
as the average: V, = %Znec Vi, Vi, = %Znecyn. The parallel nodes’
surrogate grid is illustrated in Figure 2.2.
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load#2 DGO DGO

Figure 2.2: An example of a single node surrogate grid. Rectangles are loads,
circles are generators. The original grid is on the left, the surrogate
is on the right. Line capacity is y and current limit is i.

In the single node surrogate model, all nodes from a cable ¢ are
mapped to new node n.. Hence, there are multiple EVs charging at nc.
Prior to defining the optimization problem, new notation is introduced.
Let pi be the power provided to EV k at timestep t. Then, there are the

following constraints on pi and EVs’ SOC.

t+1 _ ot t dep
eft=e +Atp, Vkek, Vte[t]”, t") (2.5a)
pt =0, Vkek, Vtg[td, ) (2.5b)
pL=pi. Vcec, vt e [ta, t0°P) (2.5¢)

ke{keK|c(k)=c}

Let Nsng = Lsng U Gsng and Espg be the sets of nodes and lines in the
single node surrogate grid. Then, the optimization problem for the single
node model is defined as follows:

max Z( Z uk(l)pltAt+ Z cgp;At)
vibp.€ t  l€Lsng 9€Gsng

subject to: 2.1a—2.1e for Nsng,
2.2a,2.2b,2.5a—2.5¢

(Single PO-EVCP)

Since all EVs belonging to a cable c¢ in the original problem are
charged at the same node n¢ in the single node model, the value of the
true assignment I(k) does not affect the problem. Hence, the partial
observability is resolved.

2.3.3. PLANNING AND EXECUTION

Crucially, the charging schedules produced by blind guessing, single-
node, and parallel-node models can violate the true grid constraints
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2.1a-2.1e and 2.2a-2.2¢, rendering them infeasible and thus impossible
to execute. Moreover, while Li et al. [14] demonstrate that SOCP
relaxations are often exact for real-world grids, these guarantees do
not extend to scenarios with line current constraints. Therefore,
solutions obtained via SOCP relaxation of the PO-EVCP problem are not
guaranteed to be feasible in the actual grid.

To address this challenge, we propose a planning and execution
framework that splits the solution process into two stages:

e The planner, implemented by the EV aggregator, computes an
optimal charging schedule under partial observability, solving an
SOCP relaxation of the PO-EVCP problem.

e The executor, a control algorithm embedded in the grid, has full
observability and is responsible for enforcing physical constraints.
It solves a single-timestep OPF problem to safely implement the
planner’s proposed schedule.

This division enables robust and adaptive grid operation. At each
timestep t, the planner computes a proposed charging schedule based
on limited information, possibly using blind guessing or a surrogate grid
model. However, due to the relaxation and partial observability, the
resulting plan may be infeasible. To account for this, planning and
execution proceed in an online fashion: at each timestep, the planner
generates a schedule, and the executor attempts to implement it while
ensuring grid safety.

Let Ki={kek|tdT"<t< tgep} denote the set of EVs present at time

t, and let ﬁlf be the planned power at each load [ where an EV from Kt is
parked. The executor then solves the following OPF problem:

max  J'(p") =D ukopt + D kot
vh it pt lec geg

subject to:  grid constraints 2.1a—2.1e (Executor)

plt(k) <p, forallkek!

This problem seeks to implement the planned schedule ﬁ,t( as closely
as possible, while ensuring all physical constraints are satisfied. For
example, if the planner's proposed ﬁlt( is feasible with respect to
2.1a-2.1e, and if user utility ux significantly outweighs generator cost
Cg, then the executor will match the planner’s schedule exactly.

The complete interaction between planner and executor is summarized
in Algorithm 1.
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Algorithm 1 Planning and execution framework.

Initialize total social welfare Jex =0
Initialize EVs’ SOC ex =0, for ke K
forte {tg,t1,...,tr} do
For active EVs k € Kt, obtain ﬁlt( by solving the planner problem
Create the executor problem using ﬁlt(
Solve the executor problem, get loads power p! and objective J'(p")
Jex < Jex +JH(pY)
for k e Kt do
ek «— ex + At x p[t(k)
end for
end for

The planning and execution framework guarantees that each grid
state is always feasible, and hence allows for evaluation of inexact
planners, such as surrogate grid models and blind guessing planners.

2.4. EXPERIMENTS

We simulated the EVCP problem using the planning and execu-
tion framework with different planners in order to answer the two
following questions:

e How important is the knowledge of the precise EV locations in
different DC grids for the EV aggregator to solve the EVCP problem?

e Which approach should the EV aggregator use when EV locations
are known only at the cable level?

This section describes the details of the simulations and presents
the results. Two main components of each simulation are the grid
configuration and the scenario. The grid is defined by the numbers of
loads, generators, and lines between them; the voltage and power limits
of the nodes; and the current limits and conductance of lines. In the
experiments, the grid topology was either sampled from the random
topology classes (Figure 2.3) or taken from the real IEEE16 grid [14]
(Figure 2.4). For both meshed and radial topologies of the IEEE16 grid,
we considered two cases: with and without connection to the external
grid. In the former case, capacities of the feeders A, B, and C were
infinite Pg = c0. In the disconnected case, the feeder capacities were
set to zero Py = 0. For all nodes, the voltage limits were defined as Vj
= 300 V, V, = 400 V. The load power bounds were set to P =0, P,
10,000 W. The generators power upper bound was set to zero F’g
0 W (meaning generators cannot consume power), and the lower
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(c) (d)

Figure 2.3: Random grid topologies. Rectangular nodes are loads, red circles
are generators. Colors of the loads encode the cables they belong
to. (a) Radial grid with single generator. (b) Radial grid with DGs.
(c) Meshed grid with DGs between cables. (d) Meshed grid with
DGs between and at cables.

bound P4 varied across the experiments. The line current limits Imn also
varied. The conductance was equal for all lines in all grids, yom = 15 S.
We always set all generators to have the same capacity Py and cost
coefficient ¢4. The line capacities Inm were also equal for all lines. In the
experiments with random grids, we sampled one random topology per
value of Py and Imp.
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Figure 2.4: IEEE16 grid [14]. Rectangular nodes are loads, red circles are
generators. Colors of the loads encode the cables they belong to.
(a) Radial version. (b) Meshed version.

Each scenario contained a power price and EV parameters. The power
price for each scenario was sampled from the day-ahead price data
for the Netherlands [15]. Figure 2.5a shows an example of the power
price curve for a single day. To sample the EV arrival times, we
simulated a non-homogeneous Poisson process independently in each
load. The arrival rate was similar across the loads and scenarios
and derived from the dataset of EV charging sessions in Dundee,
Scotland [16]. Figure 2.5b demonstrates the dynamics of the EV
arrival rate.

The demand, parking time, and utility coefficient were sampled from
the normal distributions described in Table 2.1. It is worth mentioning
that we chose values for the utility coefficients cx such that they were at
least an order of magnitude larger than the power price clt(. In this case,
the objectives in the executor and planner problems were monotonically
increasing, i.e., charging an EV always increases the social welfare.

The planning horizon was set to 24 hours for all simulations,

Table 2.1: Distributions of the EV parameters.

Distribution Unit
Desired SOC £t N(8500,500) Watt
Charging time t0P —t3"  A/(3.75,0.5) Hour

Utility coefficient ux N(5x1074,5x 1077) $/Watt
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Figure 2.5: (a) An example of the power price curve for a single day. (b)
Poisson process rate used to model the EV arrivals.

and timestep size to 30 min. For each grid topology and parameters, we
used 6 scenarios to evaluate the performance of the planners.

The optimization routine was performed by MOSEK Fusion API for
Python 9.3.10 [17] on a single machine with Intel® Core i7-10700K
Processor. We used default solver parameters except for setting
basisRelTolS, basisTolS, and intpntCoTolDfeas to 10~2. The initial
conditions and convergence criteria were also default for MOSEK.

2.4.1. IMPORTANCE OF THE LOCATIONS

To estimate the importance of knowing the precise EV locations, we
tested a blind guessing SOCP planner on the PO-EVCP problem using
different degrees of observability of the EV locations (Table 2.2).
The planners were obtaining the assignments [(K) by first fixing the
precisely known locations and then randomly sampling the remaining
locations within the corresponding cables.

We evaluated all four planners by sampling random meshed grids
(Figure 2.3c) with 12 nodes and 4 generators and varying generation
capacity Pg and the lines’ current limit Imp. Figure 2.6 demonstrates

Table 2.2: Four degrees of observability of the EV locations.

Observability Precisely Known EVs EVs Known to Cable

Full All EVs None
Present EVs that already arrived EVs yet to arrive
Past EVs that stayed for at EVs that have just arrived

least one timestep and future EVs

Blind None All EVs
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Figure 2.6: Results of random guessing planners with different degree of
knowledge of the EV locations. Values are normalized relative
to the full planner. Horizontal axis is the lines current limit.
(a) Normalized social welfare over varying lines current limit,
per-generator capacity is fixed at 72 kW. (b) Normalized social
welfare over varying single generator’'s capacity, per-line current
limit is fixed at 56 A.

the provided social welfare as a function of Py and Imn. For better
comparability between different topologies, the social welfare is
normalized relative to the full planner.

The simulations imply that knowing EV locations becomes important
when the line current constraints are tight. On the contrary, the tighter
the generation constraints are, less effect is caused by the partial
observability. Moreover, the planner with access to the present, but not
the future, EV locations (labelled SOCP_present) performed almost
optimally, while past and blind planners (SOCP_past and SOCP_blind,
respectively) provided considerably less social welfare. Practically, that
means that knowing locations of the EVs arriving in the future is not
crucial and knowing currently present EVs locations is enough for the
EV aggregator to compute the charging schedule. However, when the
locations are unavailable even for the active EVs in the grid, the EV
aggregator might want to use surrogate grid models for planning.

2.4.2. SURROGATE GRID MODELS

As demonstrated in the previous section, the blind planner performs
suboptimally for tight line constraints. In this section we compare single
node and parallel nodes models with the blind planner and demonstrate
their benefits for the EV aggregator.

We used all four random topologies from Figure 2.3 and two versions
of the IEEE 16 buses grid (Figure 2.4) for the simulations. We varied Imn




32 2. EV charging in DC Microgrids with Partial Observations

1.000 1.000
0.975 .

0.950

o
©
N
o

0.925

0.900

o o o o
© © © ©
N o N I
o S 3 =)

0.875

Social welfare normalized
Social welfare normalized

—4— socP_full —4— SOCP_full
0.850 SOCP_blind 0.850 SOCP_blind
4 SOCP_single-node 4 SOCP_single-node
0.825 —4- SOCP_parallel 0.825 —4- SOCP_parallel
50 100 150 200 50 100 150
Line capacity (A) Line capacity (A)

(a) (b)

Social welfare normalized
Social welfare normalized

—4— socp_full —4§— SOCP_full
SOCP_blind SOCP_blind
0.80 —— SOCP_single-node 0.80 —— SOCP_single-node
—4— SOCP_parallel —§— SOCP_parallel
20 40 60 80 100 120 20 40 60 80 100 120
Line capacity (A) Line capacity (A)
(c) (d)

Figure 2.7: Social welfare provided the surrogate models, full and blind
planners. Values are normalized relative to the full planner.
Horizontal axis is the lines current limit. (a) Radial grid with single
generator. (b) Radial grid with DGs. (c) Meshed grid with DGs
between cables. (d) Meshed grid with DGs between and at cables.

to determine how the tightness of the line constraints affects planing.
Importantly, we used different ranges for Iy, in different grids, such
that the highest value in each range represents the case when the line
constraints in the full planner’s solution were not binding. The results
for random grids and IEEE16 grids are presented in Figures 2.7 and 2.8,
respectively. Appendix A also shows the solutions achieved by different
planners at one planning timestep.

The results in Figure 2.7 suggest that all three planners reach
nearly optimal performances as the line current constraints become
irrelevant. In the tight constraints case, however, the parallel nodes
planner (labeled SOCP_parallel) is clearly dominant. The single node
(SOCP_single) performs slightly worse than the blind planner in the
radial grids, but the gap decreases when the number of generators
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Figure 2.8: Social welfare provided by the surrogate models, full and blind
planners. Values are normalized relative to the full planner.
Horizontal axis is the lines’ current limit. (a) Radial IEEE16 grid
connected to the external grid. (b) Disconnected radial IEEE16
grid. (c) Meshed IEEE16 grid connected to the external grid. (d)
Disconnected meshed IEEE16 grid.

increases. In the meshed grids with additional DGs, the single node
planner outperforms the blind guessing planner.

The results in Figure 2.8 demonstrate similar behavior. Interestingly,
the parallel nodes planner is much more dominant in the radial version
of the grid. In the meshed case, when more generators are connected to
each cable, the single node model again slightly outperforms the blind
planner.

Based on Figures 2.7 and 2.8, we may conclude that the parallel
nodes planner seems to be the best choice for tightly constrained grids
in terms of performance. In practice, however, the computational time
may also be an important factor for the EV aggregator. Larger grids and
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Figure 2.9: Planning time per timestep for different grid sizes. (a) Random
radial grid with DGs with 3 cables each of equal length varying
from 4 to 14 (b) Random radial grid with DGs with cables of length
6. The amount of cables varied from 2 to 7.

longer planning horizons may make the EVCP problem hardly tractable
even using the SOCP relaxation. Since the parallel nodes’ surrogate grid
uses more lines and passive nodes than the original grid, it is expected
to be the slowest method. Similarly, the single node model should scale
best. Figure 2.9 compares the planning time of different planners as a
function of the grid size. For that experiment, we used random radial
grids with DGs from Figure 2.3b. We investigated the planning time in
the grids with three cables of varying cable lengths (Figure 2.9a) and in
the grids with varying numbers of cables with six loads (Figure 2.9b).
The results in Figure 2.9 confirm the poor scalability of the parallel
nodes planner and show the superiority of the single node solution.

2.5. CONCLUSIONS

In this paper, we have extended the EVCP problem for DC microgrids
by including partial observability of the EV locations (PO-EVCP). We
have studied the effects of partial observability on the performance of
planners and suggested two solutions tailored to deal with the unknown
EV locations. The experiments in this study lead to the following
conclusions about the PO-EVCP:

1. In DC grids with tight line constraints, knowing the locations of
the active EVs in the grid is important for computing charging
schedules which maximize the social welfare. Practically, this
should be considered when designing a communication protocol
between EV owners and the EV aggregator.
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2. If, due to the limitations of the communication scheme or privacy
concerns, the EV aggregator can only partially observe the EV
locations, it may prefer to use parallel nodes or single node
models. The former model is clearly dominant performance-wise,
but requires more resources, and the latter offers great scalability
at the cost of a tiny performance drop.

To ensure realistic conditions, the experiments in this work included
a wide range of line capacities and demands, and also randomly
generated topologies. Therefore, we are confident that the conclusions
drawn from these simulation results are quite general and will also hold
in practice.
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APPENDIX

This appendix demonstrates an example solution for the PO-EVCP
problem obtained by different planners. This example is taken from
the IEEE16 meshed grid connected to the external grid (Figure 2.4b).
The generation capacitiy Py in the feeders was unlimited, and set to

-144444W for the distributed generators. The line current limit, Inm, was
equal for all lines and set to 17A. Tables 2.3 and 2.4 demonstrate the
solutions obtained by different planners at a single timestep during the
simulation.

Table 2.3: One timestep of the simulation of the IEEE16 meshed grid with
exernal grid connection. Comparison of the exact (fully-observable)
and blind planners. Columns voltage(V) and p(W) correspond to the
nodal voltage and power obtained by the executor; planned p(W) is
the solution derived by the corresponding planner.

Exact Blind

voltage | p (W) planned || voltage | p (W) planned

(V) p (W) (V) p (W)
Feeder A | 400.0 -7000 -7000 399.1 -6984 -7000
Feeder B | 399.9 -6999 -6999 400.0 -7000 -6998
Feeder C | 400.0 -7000 -7000 399.7 -6994 -7000
load_4 398.8 6626 6626 397.9 6965 6965
load_5 398.8 6962 6962 398.4 19 19
load_6 398.8 3756 3756 397.4 5374 5374
load_7 398.2 526 526 396.7 4995 4995
load_8 398.8 3753 3753 398.8 30 30
load_9 398.9 6610 6610 398.2 6215 6215
load_10 398.2 7495 7495 398.4 6980 6980
load 11 398.8 35 35 397.8 6325 6325
load_12 398.8 6980 6980 397.7 9450 9450
load_13 398.8 0 0 398.5 0 0.0
load_14 397.7 10000 10000 397.9 6403 6403
load_15 398.8 0 0 397.9 0 0.0
load_16 397.7 10000 10000.0 || 396.7 6483 10000
DG_17 399.9 -6999 -6999 398.6 -6975 -6995
DG_18 400.0 -7000 -7000 399.6 -6993 -7000
DG_19 400.0 -7000 -7000 399.3 -6988 -7000
DG_20 399.3 -6989 -6989 399.5 -6992 -6994
DG_21 400.0 -7000 -7000 398.9 -6981 -7000
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Table 2.4: One timestep of the simulation of the IEEE16 meshed grid with
exernal grid connection. Comparison of the single-node and parallel

nodes planners.

Columns voltage(V) and p(W) correspond to the

nodal voltage and power obtained by the executor; planned p(W) is
the solution derived by the corresponding planner.

Single- Parallel
node nodes

voltage | p (W) planned || voltage | p (W) planned

\2 p (W) (V) p (W)
Feeder A | 398.8 -6978 -6996 397.3 -6952 -6993
Feeder B | 398.9 -6981 -6995 398.8 -6979 -6994
Feeder C | 400.0 -7000 -7000 400.0 -7000 -6999
load 4 397.6 2788 2788 396.1 7121 7121
load_5 397.1 8250 8250 396.1 7133 7133
load_6 397.4 4835 4835 396.2 5866 5866
load_7 396.9 4997 4997 396.0 7788 8292
load_8 397.7 7661 7661 397.7 5536 5536
load_9 397.4 6457 6457 397.1 5537 5537
load_10 398.2 3669 3669 397.9 6742 6742
load_11 396.8 5708 5708 396.1 5711 5711
load_12 397.6 5680 5680 397.4 5533 5533
load 13 398.8 0 0 398.83 0 0
load_14 398.1 4768 4768 398.2 2552 2552
load_15 398.4 0 0 398.33 0 0
load_16 397.2 5071 7824 397.2 0 2844
DG_17 398.6 -6975 -6996 397.3 -6953 -6993
DG_18 398.2 -6969 -7000 397.3 -6952 -7000
DG_19 398.6 -6975 -6992 398.3 -6970 -6993
DG_20 399.4 -6989 -7000 399.1 -6984 -7000
DG 21 398.8 -6979 -6999 398.5 -6974 -6995







ZERO-GRADIENTSIN PREDICT

AND OPTIMIZE FOR CONVEX
OPTIMIZATION

Many real-world problems — from logistics and scheduling to
finance and energy management — can be modeled as constrained
optimization problems, a classical area in computer science. In
practice, however, key inputs to these problems are often uncertain
or unknown. A common solution is to use machine learning (ML)
models to predict these inputs and plug the predictions into the
optimization problem. This raises a natural question: how should
we train these ML models? The standard approach is to optimize
for prediction accuracy. However, what usually truly matters is
not how accurate the predictions are, but how good the resulting
decisions turn out to be. This idea underpins the field of predict-
and-optimize, or decision-focused learning, which reformulates the
learning problem to directly optimize decision quality.

In this chapter, we explore how this can be done when decisions
are made via convex optimization. We identify a key technical issue:
in many settings, backpropagation through a convex optimization
solver yields zero gradients, causing learning to get stuck. We
explain the origin of this problem, show when and why it occurs, and
propose a practical solution that enables more reliable gradient flow.
Our approach improves learning in several applications, paving the
way for more robust decision-aware ML systems.

This chapter is currently under revision for a publication and is available at Arxiv:
Veviurko, G., Béhmer, W., de Weerdt, M. (2023). You Shall Pass: Dealing with
the Zero-Gradient Problem in Predict and Optimize for Convex Optimization. arXiv

preprint arXiv:2307.16304..
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ABSTRACT

In predict and optimize (P&0O), machine learning models predict pa-
rameters of constrained optimization problems, using task performance
as the learning objective. This approach requires differentiating the
optimization problem’s solution with respect to the predicted parame-
ters. Unlike in linear and combinatorial problems, where the gradient
is always zero or undefined, exact differentiation is possible and
widely used for non-linear convex problems. However, we demonstrate
that this approach suffers from the zero-gradient problem, leading to
suboptimal solutions. Through formal proofs, we show that the severity
of this phenomenon depends on the number of active constraints. To
address this issue, we introduce a constraint smoothing technique.
By combining this with existing ideas from the literature, we develop
a theoretically sound algorithm to approximately differentiate convex
optimization problems without encountering the zero-gradient problem.
Our experiments confirm that the zero-gradient problem indeed occurs
in practice and demonstrate that our proposed solution resolves it
efficiently. The code for the paper is publicly available [1].

3.1. INTRODUCTION

Predict and optimize (P&O) [2], also referred to as decision-focused
learning [3], is a decision-making paradigm that combines machine
learning (ML) with constrained optimization. It considers a setup
where an ML model first outputs the parameters of an optimization
problem, and then the solution is computed using a suitable solver. The
distinctive feature of P&O is that it uses the solution quality as the
learning objective, rather than optimizing for auxiliary metrics such as
prediction accuracy.

Gradient-based optimization methods, such as stochastic gradient
descent [4], are by far the most common approach to training ML
models. To apply them within the P&O context, we need to differentiate
through the solution of an optimization problem with respect to its
parameters. The properties of the corresponding Jacobian matrix are
known to depend on the problem class. For linear and combinatorial
problems, it is always either a zero matrix or undefined. To address
this, various approximations have been introduced [2, 5, 6]. For the
non-linear case, Agrawal et al. [7] developed a method to compute the
exact Jacobian for a large class of convex optimization problems. Their
approach has found numerous applications and is now considered the
standard choice for non-linear convex problems.

In this paper, we demonstrate that using the exact Jacobian of
non-linear convex optimization problems may lead to poor results.
Specifically, we show that the size of the null space of this Jacobian
depends on the number of active constraints. Consequently, the
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gradient of the loss function can be zero far from the optimal
solution, thereby causing the zero-gradient problem. We mathematically
investigate the nature of this phenomenon and conclude that it may
occur independently of the problem class, essentially for any application
of the differential optimization method developed by Agrawal et al. [7].

Existing methods to compute an approximation of the Jacobian are
designed for linear and combinatorial optimization problems, where the
ill properties of the Jacobian are known and acknowledged. In this
work, we propose a method that combines quadratic approximation,
similar to the method by Wilder, Dilkina, and Tambe [8], with projection
distance regularization [9] and a novel idea of constraint smoothing.
The resulting algorithm has a simple geometric interpretation and offers
theoretical guarantees on performance. Through extensive benchmarks,
we demonstrate that this method resolves the zero-gradient problem
for both linear and non-linear problems. In the former case, it performs
on par with existing methods for linear problems. In the latter case, it
significantly outperforms the sole existing approach of using the exact
Jacobian.

3.2. PREDICT AND OPTIMIZE

In this section, we first give an overview of the related work in the predict
and optimize domain. Then, we define the P&O problem, introduce the
mathematical terminology, and provide the necessary background.

3.2.1. RELATED WORK

The predict and optimize (P&O) framework was introduced by Elmach-
toub and Grigas [2]. The authors considered combinatorial optimization
problems for which the exact Jacobian is always zero or undefined
and derived a convex, sub-differentiable approximation of the task
performance function to enable training. Subsequent studies have pro-
posed various alternative approximations: Vlastelica et al. [5] derived
a differentiable, piecewise-linear approximation for task performance;
Berthet et al. [10] used stochastic perturbations to approximate the
Jacobian of combinatorial problems; and Sahoo et al. [6] showed that
using simple projections on top of the predictor enables the use of the
identity matrix as an approximation of the Jacobian.

For convex optimization, exact differentiation through the optimization
problem is possible. Amos and Kolter [11] initially developed an approach
to compute the Jacobian of quadratic programs (QPs) analytically by
implicit differentiation of the KKT conditions. Later, Agrawal et al.
[7] used a similar technique and developed a differentiable solver,
cvxpylayers, for disciplined convex programs [12].
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The differentiable optimization method by Agrawal et al. [7] has found
several applications within P&O: Wilder, Dilkina, and Tambe [8] used it
to differentiate a QP relaxation of linear problems; [13] differentiated
through logarithmic relaxations; and Ferber et al. [14] combined the QP
relaxation with the cutting-plane method to differentiate combinatorial
optimization problems. In the continuous domain, Uysal, Li, and Mulvey
[15] applied differentiable optimization to the risk-budgeting portfolio
optimization problem, while Wang et al. [16] utilized it to learn surrogate
models for P&O.

Beyond P&O, differentiable optimization has found applications in
other fields: Chen et al. [9] used it as an action projection layer in
reinforcement learning; Dawson, Gao, and Fan [17] employed it for
safe optimal control; and Lee et al. [18] applied it to meta-supervised
learning.

In summary, analytic differentiation through convex optimization
problems is immensely useful and can be utilized in various ways.
However, the properties of this process have not been thoroughly
studied. Specifically, the question of whether and under what conditions
the Jacobian of non-linear convex problems can be zero has not been
addressed, even though it is a well-known issue for linear convex
problems. In this paper, we aim to investigate this question and
demonstrate that there are inherent challenges associated with using
the exact Jacobian that are not addressed in the existing literature.

3.2.2. PROBLEM FORMULATION

In this section, we introduce the P&O problem. We refer readers to the
work by Elmachtoub and Grigas [2] for further details. In predict and
optimize, the true problem we are attempting to solve is of the following
form:
argmaxf(x,w) s. t. x e, (3.1)
X

where x € R" is the decision variable, w € R is a vector of unknown
parameters, f : R" x RY — R is the objective function, and C is the feasible
set. The defining feature of this problem is that the parameters w are
unknown at the moment when the decision must be made. Therefore,
the true optimization problem is under-defined and cannot be solved
directly.

One way to deal with the unknown parameters w is to use a prediction
W instead. Then, the decision can be computed by solving the decision
problem:

x* (W) =argmaxf(x, w) s. t. x eC. (3.2)
X

In P&0O, we assume that instead of the unknown parameters w, we
observe a feature vector o that contains some information about w.
Besides, we assume a dataset D = {(ox, W)}, e.g., of historical data,
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which we can use to learn the relation between w and o. This setup
enables the use of ML models for making predictions. We denote the
prediction model by ¢g, and thus we have W = ¢¢(0).

The problem described above is not specific to predict and optimize.
What separates the P&0O paradigm from earlier works is the approach
to training the model ¢g. In the past, machine learning models would
be trained to predict w as accurately as possible [19]. However, the
parameter prediction error is merely an artificial objective and our true
goal is to derive a decision x that maximizes the task performance
f(x, w). The main goal of the P&0O approach is to utilize this objective
for training the model ¢g. The task performance achieved by ¢g on the
dataset D can be quantified by the following loss function:

1
L@)=—— > f(x*(¢e(0)) w) (3.3)
lDl (o,w)eD

To train ¢p with a gradient-based algorithm, we need to differentiate
L over 6, and hence we need to compute the gradient ng(x*(vT/), w),

where W = ¢g(0). Applying the chain rule, it can be decomposed into
three terms:

Vof (X* (W), W) =Vxf (X * (W), W) Vyyx* (W) VoW (3.4)

The second term, Vyx*(W), is the Jacobian of the solution of the
optimization problem with respect to the prediction w. As discussed in
the previous section, this term is the primary object of study in most P&O
works. For combinatorial problems, it is undefined, and for linear convex
problems, it is zero at all points except for a measure-zero set, where
it is undefined. Hence, approximations are used for these two cases.
For strictly convex optimization problems, it is common to compute this
Jacobian exactly [7]. In the next section, we study the Jacobian Vyx* (W)
and demonstrate that even for strictly convex problems, it can have a
large null space, thereby causing the total gradient in Eq. (3.4) to be
zero in arbitrary regions outside of the optimum.

3.3. DIFFERENTIABLE OPTIMIZATION

Without loss of generality, we consider a single instance of the problem,
i.e., one sample (o, w) € D, for the theoretical analysis. Everywhere in
this section, we denote the prediction by W = ¢¢(0). Then, the decision
is computed as a solution of the decision problem in Eq. (3.2). We
use X to denote the value of x*(w) for a given prediction W. As we
are interested in convex optimization problems, we make the following
assumptions:
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Assumption 3.3.1. The objective function f(x, w) is concave and twice
continuously differentiable in x for any w.

Assumption 3.3.2. The feasible set C is convex, i.e., {C = {x]gi(x) <
0,i=1,...,1}, where gi(x) are convex differentiable functions. Moreover,
for any x € C, the gradients {Vxgi(x)|gi(x) = 0} of the active constraints
are linearly independent. *

Additionally, we make an assumption about how f depends on w,
which holds for many real-world problems, including linear and quadratic
optimization problems.

Assumption 3.3.3. The objective function f(x, w) is twice continuously
differentiable in w.

Throughout this paper, we use derivatives of different objects: the
gradient of the true objective function with respect to the decision,
Vxf(X, w); the Jacobian of the decision with respect to the prediction,
Vi x*(W); the Jacobian of the prediction with respect to the ML model
parameters, VoWw; and the gradient of the predicted objective in the
decision problem, Vxf(x, W). In the next section, we demonstrate that
the null space of Vy;x* (W) depends on the number of active constraints
at x* (W) and hence can result in gradient-based optimization methods
getting stuck in suboptimal solutions.

3.3.1. THE ZERO-GRADIENT THEOREM

We begin by investigating the relation between the values of the
function x* (W) and the gradient of the internal objective, Vxf(x, W). Let
ni:=Vxgi(x),i=1,..., [ be the normal vectors of the constraints at X,
Then, the KKT conditions [20] at X state that there exist real values
a1, ..., ap such that the following holds:

l
Unf(%, W) =D auni,  aigi(%) =0,
=1

ai=>0, gi(x)<0, i=1,...,L

Under Assumptions 3.3.1 and 3.3.2, the KKT multipliers a; are uniquely
defined by w and X. Thus, as X is defined by W, we sometimes write
ai(Ww) to emphasize that it is, in fact, a function of Ww. To provide
a geometrical perspective on the KKT conditions, we introduce the
following definition:

1As is, Assumption 3.3.2 does not allow equality constraints since they would violate
linear independence property. For clarity, we use this formulation in the main body of
the paper. In the appendix, we show that our results hold for the equality constraints
as well.
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Definition 3.3.4. Let x € ¢ and let I(x) = {ilgi(x) =0} be the set
of indices of the constraints active at x. Let n; = Vxgi(x), Vi € I(x),
be the normal vectors of these constraints. The gradient cone,

G(x):= {Z,-el ainila; = O}, is the positive linear span of normal vectors
nj.

Combining the KKT conditions with Definition 3.3.4, we immediately
arrive at the following property:

Property 3.3.5. Let x € C and let Vxf(x, W) be the internal gradient
at x. Then, x is a solution to the problem in Eq. (3.2) if and only if
30; 2 0, { €I(x) such that Vxf(x, W) = Xicrx) @ini € G(x), where I(x) is
the set of indices of active constraints, I(x) = {i|gi(x) =0}.

This property provides a geometrical interpretation of the problem.
Effectively, a point x is a solution to the problem in Eq. (3.2) if and only
if the internal gradient at this point is inside its gradient cone. Figure 3.1
illustrates this property.

Before studying the Jacobian V;x* (W), we first need to address the
question of when this Jacobian exists. Sufficient conditions for existence
are given by [21]. Under Assumptions 3.3.1-3.3.3, these conditions can
be reformulated as follows:

Lemma 3.3.6 (Theorem 2.1 by [21]). Let Assumptions 3.3.1-3.3.3 hold
and let
Vf (X, W)= D> a(W)n
i€I(X)

be the representation of the internal gradient with the normals of
the active constraints. Let the strict complementary slackness (SCS)
conditions hold, i.e., ai(Ww) > 0, Vi € I(X). Then, the Jacobian Vyx* (W)
exists at w. Moreover, a;(-) is continuous around W for any i € I(X).

Figure 3.1: Gradient cones X + G(X) (orange cones) and internal gradients
Vxf(X, W) (black arrows) at different points X (red dots) in different
feasible sets C (blue cube and cylinder). The points X can not be
moved in the dimensions spanned by the cones.



48 3. Zero-Gradients in Predict and Optimize for Convex Optimization

The proof can be found in the work by Fiacco [21]. This result
establishes that SCS is sufficient for the Jacobian Vx* (W) to exist. In
most cases, the points that violate strict complementary slackness form
a measure-zero set and hence can be neglected in practice.

We have all the necessary tools to describe the structure of the
Jacobian Vy;x*(W). Suppose that the SCS conditions hold at X and hence
the Jacobian exists. Assume that we perturb W and obtain W’. Let
X’ = x*(wW’) denote the solution corresponding to W’/. What can be said
about X’? Strict complementary slackness implies that the constraints
active at x will remain active at X’ if the difference ||W’ — Wll% is small

enough. Therefore, the decision X’ can only move within the tangent
space of C at X, i.e., orthogonally to all n;, i € I(X.) Hence, when more
constraints are active, X’ can move in less directions. Formally, we
obtain the following:

Lemma 3.3.7. Suppose that the SCS conditions hold at X and let
Vf (X, W) = 3ieix) @ini, i > 0, Vi€ I(X) be the internal gradient. Let
N(X) = span({n;|i € I(X)}) be the linear span of the gradient cone.
Then N(X) is contained in the left null space of Vyx*(w), i.e.,
vVix*(W) =0, Vv eN(X)

The formal proof of this result can be found in the appendix. Lemma
3.3.7 is very important, as it specifies in what directions x* (W) can move
as a consequence of changing w. Now, the first term in the chain rule
in Eq. (3.4), Vxf(X, w), specifies in what directions x* (W) should move
in order for the true objective to increase. Naturally, if these directions
are contained in the null space of V;x* (W), then the total gradient in
Eq. (3.4) is zero. This observation constitutes the main theorem of this
paper - the zero-gradient theorem.

Theorem 3.3.8 (Zero-gradient theorem). Let W be a prediction, and let
X be the solution of the decision problem defined in Eq. (3.2). Suppose
that the strict complementary slackness conditions hold at X and let
N(X)=span({n;|i€I(x)}) be the linear span of the gradient cone at X.
Then, Vxf(X, w) € N(X) = Vuf(X, w) =0.

The proof of this theorem is obtained by simply applying Lemma 3.3.7
to the chain rule in Eq. (3.4). The theorem claims that the gradient of
the P&O loss in Eq. (3.3) can be zero in the points outside of the optimal
solution. Hence, any gradient-following method “shall not pass” these
points. In particular, the zero-gradient phenomenon occurs in such
points X where the true gradient V4f(X, w) is contained in the space
N(X) spanned by the gradient cone G(X). As the dimensionality of this
space grows with the number of active constraints, the zero-gradient
issue is particularly important for problems with a large number of
constraints. In the worst case, N(X) can be as big as the whole decision
space R", thereby making the total gradient Vgf(X, w) from Eq. (3.4)
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zero for any value of the true gradient Vyxf(X, w). In the following
sections, we introduce a method that resolves the zero-gradient problem
and provides theoretical guarantees for its performance.

3.3.2. QUADRATIC APPROXIMATION

The fundamental assumption of the predict and optimize framework is
that training ¢g using the task performance loss is better than fitting
it to the true values of w. Hence, the models trained with predict and
optimize might output W that is significantly different from the true w
and yet produces good decisions. Taking this argument one step further,
we claim that the objective function of the decision problem in Eq. (3.2)
does not need to be the same as the true objective f(x, w). In particular,
we suggest computing decisions using a simple quadratic problem (QP)
resembling the one proposed for linear problems by Wilder, Dilkina, and
Tambe [8]:

x5p(W) = arg max—[|x — W[l s.t. x €C. (3.5)

X

The reasons for this choice are manyfold. First, the internal objective
for(x, W) = —||x — W||2, is strictly concave and hence X(’SP(W) is always
uniquely-defined. Moreover, the range of xop(W) is C, i.e., Vx € C, AW
such that x = x(’SP(W). Hence, it can represent any optimal solution.

Wilder, Dilkina, and Tambe [8] proposed to use the QP approximation
to differentiate through linear problems. However, as shown in Theorem
3.3.8, the Jacobian of x(’;P(w) can still be non-informative. We see

the main advantage of using QP in the fact that it uses the smallest
reasonable prediction vector W (one scalar per decision variable).
Besides, QP approximation can represent any solution, and, as we show
below, its Jacobian has a simple analytic form, which allows computing
it cheaply and enables studying its theoretical properties.

The problem in Eq. (3.5) has a simple geometrical interpretation: the
point x = W is the unconstrained maximum of fop(x, W) and XSP(W) is
its Euclidean projection on the feasible set C, see Figure 3.2. To compute
the Jacobian wagp, we need to understand how perturbations of W
affect xép. Employing the geometrical intuition above, we obtain the

following lemma:

Lemma 3.3.9. Let W be a prediction and X be the optimal solution
of the QP problem defined in Eq. (3.5). Let the strict complementary
slackness condition hold and let {n|i € I(X)} be the normals of the active
constraints. Let {ejlj=1,...,n—|I(X])} be an orthogonal complement
of vectors {nili € I(X)} to a basis of R". Then, representation of the
Jacobian Vyxqp(W) in the basis {n;} U {e;} is a diagonal matrix. Its first
|I(X)| diagonal entries are zero, and the others are one.
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Proof of this lemma can be found in the appendix. Lemma 3.3.9
implies that the Jacobian Vy;,xop(W) has a simple form and can be easily
computed by hand.

QP approximation does not address the zero-gradient problem and
we introduce it for computational reasons: it is sufficiently powerful
and its simple Jacobian can be computed cheaply. In the next section,
we introduce the novel constraint smoothing method that computes an
approximate Jacobian with the null-space of the maximum size one.
Although this method addresses zero-gradient issues in any optimization
problem, demonstrating that the resulting approximation aligns with the
true Jacobian in general is challenging. For the QP approximations,
however, it is possible to derive strong theoretical guarantees.

3.3.3. CONSTRAINT SMOOTHING

We identified that the zero-gradient problem is a fundamental issue
of differential optimization that also appears in non-linear convex
optimization. We showed that the size of the null space of the Jacobian
Vi x(W) depends on the number of constraints active at X. Generally,
this number can be as large as the number of optimized variables n,
and the gradient-descent algorithms can get stuck in certain points on
the boundary of the feasible set.

A potential solution to this issue is to approximate the feasible set C
in such a way that all gradient cones become one-dimensional. It is
known that any convex set can be approximated with a convex polytope
[22], and a convex polytope can be approximated with a smooth convex
set [23]. By combining these results we can approximate C with a
smooth C’. Then, the null space of the Jacobian of the resulting problem
over C’ becomes strictly one-dimensional. Therefore, it is possible to
derive an arbitrarily close approximation of the problem such that the
null space of its Jacobian is at most one-dimensional everywhere. In
practice, however, this approach requires a computationally efficient
way to derive an approximation of C, and hence we leave it as a
potential future work direction. Instead, we propose a simple way to
modify the feasible set - we smooth C locally around the point for
which we compute the Jacobian, thereby ensuring that its null space is
one-dimensional. Combining this approach with the QP approximation
yields a theoretically sound algorithm.

Let Vxf(X, W) = X icixy @ini be the internal gradient at X for some
a; =0, YieI(x). Then, we introduce the following definition:

Definition 3.3.10. Let r > 0 be a positive real number and

— o _ VS RW) ;
let ¢ =x A NI Then, the locally smoothed feasible set,

Cr(x, w) :={ylyeR", |ly—cll2 <r}, is a ball of radius r around c. The
corresponding locally smoothed problem P.(x, W) with parameters X, w
is defined as x} (W) := arg maxyec,(z,w)f (X, W).
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Figure 3.2: Left: Illustration of the QP approximation. The internal gradient
(black arrow) at the solution of the QP X (red point) is orthogonal to
the feasible set C (blue area) and points towards the unconstrained
maximum W (purple cross). Right: lllustration of the smoothed
problem. The internal gradient (black arrow) is orthogonal to the
smoothed feasible set C-(X, W) (green circle) at the decision X (red
point).
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Figure 3.2 shows an example of the local smooth problem. Now, let
Xr = xr*(W) denote the solution of P-(X, W). By construction, the internal
gradient at X, lies in the one-dimensional gradient cone, and hence, by
Property 3.3.5, X, = X. The main purpose of smoothing is to approximate
the gradient in Eq. (3.4) by substituting Vyx* (W) with Vyx*(W). We
highlight that the decisions are still computed using the non-smoothed
problem x* (W) and x ¥ (X, W) is used exclusively to perform the gradient
update step. In other words, we use the following expression to compute
the gradient:

Vof (x* (W), w) = Vxf(X, W) Vyx ) (W) VoW (3.6)

Applying Lemma 3.3.7 we see that the null-space of V,;.,xr*(vT/) is at most
one dimensional.

Next, we demonstrate that the approximate Jacobian wa:(ﬁ/) of the
locally smoothed problem is consistent with the true Jacobian if QP
approximation is used. Specifically, we show that performing gradient
steps using locally smoothed QP problem is guaranteed to not decrease
the objective. To prove that, we first use Lemma 3.3.9 to describe the
Jacobian of the smoothed QP problem:

Property 3.3.11. Let x = xSP(W) be a decision derived via QP. Suppose

that the complementary slackness conditions hold for P.(X, W) and
let e1 = Vxfop(X, W) be the internal gradient. Let {ez,...,en} be a
complement of e1 to an orthogonal basis of R". Then, the Jacobian
war*(v?/) of the locally smoothed problem expressed in the basis
{e1,e2,...,en} is a diagonal matrix. Its first entry is zero, others are
ones.

As we see from Property 3.3.11, the value of r does not affect the
Jacobian. We keep it only for notation clarity. Property 3.3.11 reveals a
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connection to the work by Sahoo et al. [6], where the authors propose to
substitute the Jacobian of linear problems by identity matrix. Then, they
apply projection operators, chosen by a human, to eliminate certain
directions. The constraint smoothing approach can be seen as an
extension of this approach to the more general convex case. Finally,
we can prove that the Jacobian of the smoothed QP problem yields a
“good” direction for the gradient update.

Theorem 3.3.12. et X = xSP(W) be the decision obtained via QP and
let wa;"(vT/) be the Jacobian of the locally smoothed QP problem. Let
AW = Vi f(X, w) V,;er*(vT/) be the prediction perturbation obtained by
using this Jacobian and let W/(t) = w + tAw be the updated prediction.
Then, for t — 0%, using W/(t) results in a non-decrease in the task
performance, i.e., f(xép(w'(t))' w) zf(x(’sp(v?/), w).

Theorem 3.3.12 shows that using constraint smoothing together with
the QP approximation results in an analytically computable Jacobian
with a one-dimensional null space that results in good gradient steps.
Therefore, we are much less likely to encounter the zero-gradient
problem when using this approximation. However, the resulting one-
dimensional null space contains the only direction that can move the
prediction W, and hence the decision X, inside C. This might become
crucial, for example, when the optimal solution with respect to the true
objective lies in the interior of C. To resolve this problem, we use the
projection distance regularization method first suggested by Chen et al.
[9]. Specifically, we add a penalty term

p(W) = allx — wl|?, (3.7)

where a € R* is a hyperparameter. Minimizing this term, we push
w along the null space of the Jacobian towards the feasible set and
eventually move X inside C.

3.4. EXPERIMENTS

We derived the zero-gradient theorem describing when the gradient
of the P&O objective for non-linear convex optimization can be zero
outside of the optimum. To deal with this, we proposed a solution that
combines QP approximation with constraint smoothing and projection
distance regularization. Below, we conduct experiments to verify our
theoretical results. Specifically, we address the following:

1. Does the zero-gradient indeed occur in practice?
2. Does our method solve the zero-gradient problem?

3. Does QP approximation still work if the original problem is not
quadratic?
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Figure 3.3: Results on the standard portfolio optimization problem: (a) the
final test regret for each of the algorithms for varying A’'s. The
smoothed QP performs the best. (b) Evolution of the [ norm of the
gradient during training for A =0.1 and A = 1. Unlike standalone
QP and differentiation of the true problem, smoothed QP does not
have the zero-gradient issue.

3.4.1. PORTFOLIO OPTIMIZATION

Following Wang et al. [16], we study the portfolio optimization problem,
where we aim to maximize the immediate return but minimize the risk
under the budget constraint:

argmax p'x—Ax'Qx s.t.
X N——
f(x,p,Q)

The decision x € R" is the investment, p € R" is the immediate return,
and Q € R™" is the covariance matrix. The unknown parameters are
defined as w :=(p, Q) and A = 0 is the risk-aversion weight. We refer the
readers to the appendix and to the code for further details regarding the
implementation of this and all other benchmarks. We consider different
values of A from the set {0,0.1,0.25,0.5,1, 2}, in order to generate a
spectrum of problems, from the linear (A = 0) to the “strongly quadratic”
(A=2).

n
xi=1, x>0. (3.8)
=1

i




54 3. Zero-Gradients in Predict and Optimize for Convex Optimization

Identity
—— Perturbed
—— sPO+
—— Smoothed QP

Identity Identity Identity
—— Perturbed 0.09 —— Perturbed —— Perturbed
—— SPO+ —— SPO+ | —— SPO+

—— Smoothed QP —— Smoothed QP —— Smoothed QP
— o 0.07

Regret|

0.05;

0.03:

0 10 20 30 40 50 60 6 10 20 30 40 50 60 70 %16 10 20 30 40 50 60 6 50 100 150 200 250
Training epoch Training epoch Training epoch Training epoch

(a) (b) (c) (d)

Figure 3.4: The test regret of linear P&O algorithms, QP approximation, and
smoothed QP on four benchmark problems on a) Linear portfolio;
b) Portfolio with A = 0.1; c) OPF; d) Knapsack.

We compare the performance of four methods: naive minimization of
the mean-squared error of the prediction (labeled “MSE"); differentiation
through the true problem in Eq (3.8) (“True problem”); differentiation
through the QP approximation (“QP”); and our approach that combines
QP approximation, smoothing, and projection distance regularization
(“Smoothed QP”). Importantly, smoothed QP uses different values of the
projection distance regularization weight a from Eq (3.7) for different
A’s. Specifically, a =0 for A € {0,0.1}, a=0.01 for A € {0.25,0.5},
and a=0.1for A € {1,2}. The remaining hyperparameter values for all
methods are provided in the appendix. For the performance metric, we
use regret [2], defined as follows:

regret(o, w) = m)c(le(x, w)—f(x* (¢e(0)), w). (3.9)

The results in Figure 3.3 demonstrate that the smoothed QP approach
is dominant - it outperforms the competitors by a significant margin
across all values of A. Figure 3.3 (b) suggests the reason for this is
indeed the zero-gradient problem: for the methods using the exact
Jacobian (QP and true problem), the gradient norm decreases rapidly
with training.

Figure 3.3 suggests that the QP approximation is sufficient in portfolio
optimization. However, it might be explained by the fact that the true
problem in Eqg. (3.8) is also quadratic. To gain more insight into the
performance of our method in non-quadratic cases, we introduce an
artificial modification of the problem’s objective using the LogSumExp
function:

fise(x,p, Q) =—log > e PXi— xxTQx (3.10)
L

The LogSumExp function acts as a soft maximum, and the corresponding
optimization problem can be interpreted as the maximization of the
most profitable investment. The results in Table 3.1 demonstrate that
the QP approximation outperforms the true problem in terms of regret
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and significantly reduces the computation time. Moreover, smoothed
QP again outperforms the other approaches, which suggests that the
zero-gradient problem occurs in the LogSumExp case as well.

3.4.2. COMPARISON TO LINEAR METHODS

As discussed earlier, the non-linear convex P&O problems were
considered to be solvable solely by exact differentiation. Above, we
show that this is not the case as the zero-gradient phenomenon causes
the training process to get stuck. In the linear case, on the other hand,
the zero-gradient is a well-known issue and there exist various methods
to approximate the Jacobian of linear optimization problems.

We implement several state-of-the-art methods for linear P&0O and
compare them to the smoothed/standalone QP approaches. Specifically,
we use the SPO+ loss [2], the perturbed optimizers approach [10],
and the identity-with-projection method [6]. Besides, using the QP
approximation alone is equivalent to the approach suggested by Wilder,
Dilkina, and Tambe [8]. We ran these methods on the linear (A = 0) and
“almost linear” (A = 0.1) portfolio optimization problems, on the linear
optimal power flow (OPF) problem, and on the continuous knapsack
problem. The OPF problem is based on the linear model for the power
flow in DC grids ([24, 25]; the knapsack is adapted from the PyEPO
package [26]. For further details regarding these problems, we refer
the readers to the appendix. The results in Figure 3.4 show that our
smoothed QP approach can compete with the existing algorithms in
linear problems.

3.4.3. META SUPERVISED LEARNING

In the last experiment, we use the meta-learning setup by Lee et al.
[18]. In this setup, we have a feature extractor, ¢ (typically, a large
CNN), and a base classifier class A (in our case, SVM). Then, we have a

meta-training set, {D{"%", D[}V ' sampled from the task distribution.

Each tuple (D@, Dest) describes a training and a test task. Typically,
D" is small, as we are interested in the few-shot learning. For
each pair of tasks, we train an instance of A on ¢(D{"®") and test

it on rp(DfeSt) to measure the test performance. The meta learning
objective is to derive such ¢, that the features it extracts lead good test
performance. The approach used by [18] builds upon the fact that SVM
training is a convex optimization problem. Therefore, this process can
be differentiated and the feature extractor ¢ can be trained end-to-end.

In our experiment, we rerun the code provided by Lee et al. [18]
for CIFAR-FS dataset [27] with and without our constraint smoothing
method. The results in Table 3.2 demonstrate that smoothing improves
the performance, thereby indicating that the zero-gradient problems
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| Regret | Runtime (sec)
True problem | 0.834 + 0.120 7965 + 52
QP 0.506 £ 0.009 762 £ 52

Smoothed QP | 0.438 + 0.009 801 + 54

Table 3.1: Final (normalized) test regret and training time for the different
methods on the LogSumExp portfolio problem.

occurs in this setup as well. Importantly, in the reported runs, we
do not use QP approximation and apply smoothing to the original SVM
problem, which is a quadratic program. The reason for this is that the
QP approximation method learns slower than the true SVM problem, as
the latter is specifically designed for classification. For more details on
the experiment details, we refer the readers to the appendix and the
paper by Lee et al. [18].

In summary, the experiments provide significant evidence that the
zero-gradient problem occurs in non-linear convex P&O problems, such
as portfolio optimization and meta supervised learning. The proposed
solution is shown to be effective in resolving the problem in these cases
as well as to be competitive in in the case of linear P&O.

3.5. CONCLUSION

In this work, we provide theoretical evidence for the zero-gradient
problem in the non-linear convex P&0O setting. We show that this
problem can occur for any convex problem, as long as constraints are
activated during training. This result affects various applications of
the differential optimization method - the main tool for the non-linear
convex P&0O problems. To resolve this issue, we introduce a method
to approximate of the Jacobian. It is done by smoothing the feasible
set around the current solution, thereby reducing the null space’s
dimensionality to one. We prove that the combination of smoothing
with the QP approximation results in the gradient update steps that
do not decrease the task performance, but often allow to escape the
zero-gradient cones.

To support our theoretical findings, we conduct various experiments.
Using the portfolio optimization problem, we demonstrate that the
zero-gradient indeed occurs in practice and our solution consistently
improves upon the exact differentiation. We also show that our
approach works for linear problems and matches the performance of
the state-of-the-art methods. Moreover, we showed that our smoothing
techniques helps meta-learning with differentiable optimization.

In future work, we aim to investigate alternative approaches to
smoothing, such as global smoothing of the constraints. Besides,
we want to study what theoretical guarantees can be obtained for



3.5. Conclusion 57

| SVM | Smoothed SVM
1-shot accuracy | 58.74% £ 0.88% | 65.15% £ 0.54%
5-shot accuracy | 70.95% + 0.33% | 76.42% + 0.26%

Table 3.2: Test accuracy of meta-learning with differentiable optimization using
exact/smoothed Jacobian of the SVM

smoothing of non-quadratic problems. Moreover, we want to further
investigate the applicability of QP approximation to general convex
problems
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3.6. APPENDIX

3.6.1. PROOFS

Proof of Lemma 3.3.7. Let AW denote an arbitrary direction and let
d = Vyx*(W)AW be the corresponding directional derivative of the
decision. The existence of d is guaranteed by the strict complementary
slackness conditions and Lemma 3.3.6. Let t — 0*. Then, we have

X/ (t) ;= x* (W + tAW) = X + td + ox(1),

where ox(t) is the “little 0" notation, i.e., limy_q+ w = 0. To prove

the lemma, we first want to show that d"n; =0, Vi € I(X). Then, we will
show that it implies the lemma’s claim.

By definition, n; = Vxgi(X). Then, since g;(-) is differentiable and
gi(X) =0, Vi e I(x), we have the following first-order approximation for

gi(X (1) :
gi(X'(t)) = gi(x + td + o(t)) =
gi(%) + tn] d + og(t) = tn] d + 04(t).

Since X’ is the solution of the internal optimization problem, the
inequality g;(X’(t)) < 0 holds. Hence, the equation above implies that
nld < 0. Now, we want to show that, in fact, nTd = 0. For a proof by
contradiction, suppose that nl.Td < 0. Then, by definition of o4(t), there
exists € > 0, such that

O<t<e = gi(X'(t) <o0.

Now, we will to show that g;(X’(t)) < 0 contradicts the complementary
slackness condition at X. From Lemma 3.3.6, we know the KKT multiplier,
a{(t) = ay(W+ tAW), is a continuous function of t. On the one hand, from
the KKT conditions, we know that g;(X’(t)) <0 = orlf(t) = 0. Therefore,
cxlf(t) =0 for t < €. Hence, we have

: Frey
tl_|)r(§1+ al.(t) =0.

On the other hand, the continuity implies that lim¢_o+ a{(t) = a{(0) = a;
and, due to strict complementary slackness, a; > 0. Hence, we also have

H /
t'ﬂgl a;(t) > 0.

We arrived at a contradiction and therefore can claim that d"n;=0
for all n;. Since {n;li € I(X)} is a basis of N (X), this implies that for any
direction v € N(X) and for any AW, we have v'Vyx*(W)AW = 0. In
other words, vector v Vi, x* (W) is orthogonal to the whole space of w
and hence it must be zero, v V4 x* (W) =0, Vv € N(X). Hence N (X) is
contained in the left null space of Vy;, x*(W). O
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Proof of Lemma 3.3.9. First, consider the case when the unconstrained
maximum W is in the interior of C. By definition of XZ)P’ it means that
X =X5P(W) is also in the interior of C and X = w. Then, x(")‘P is the
identity function around W, and hence xéP(W+ AW) = x(W) + Aw for
small enough Aw. Hence, VWXC’SP(W) =1I. Since no constraints are active

in this case (I(X) = @), the lemma'’s claim holds.

Now, consider the case when some constraints are active, and thus
X lies on the boundary of C. To get the exact form of the Jacobian
Vxxgp(v“v), we will compute Iimt_,oxsp(W+ tAw) for all possible AWw. As

in the QP case the predictions W lie in the same space as X, we can do
it first for AW € N(X) and then for Aw L NV (X).

1. AW eN(X). For AW e N(x), we want to show that the corresponding
directional derivative is zero. We begin by computing the internal
gradient Vxfop(X, W) :

Vxfop(X, W) = —Vx [Ix — w||2 = 2(W — ).

Using this formula, we can write the internal gradient for the perturbed
prediction W + tAWw at the same point X:

Vxfor(X, W + tAW) = Vxfop(X, W) + 2tAW.

By definition, A(X) is a linear span of the vectors {n;|i € I(X)}. Hence,
since AW € N(X), it can be expressed as

AW = Zéim, 6 €R. (%)
iel(%)
By Property 3.3.5, the internal gradient has the following representa-
tion:
Usfor(k, W)= D aini, a;> 0. (% %)
iel(x)
Then, combining (*) and (* *), we obtain
Vxfor(X, W + tAW) =Vxfop(X, W) + 2tAW =

Z (a;+ 2td)n;

i€I(x)

Since a; > 0, Vi € I(X), there exists € > 0, such that a;— 2t§; > 0 for
[t| < €. Therefore, Vxfop(X, W + tAW) lies in the gradient cone of X, and
hence, by Property 3.5, xéP(W+ tAW) = x for |t| < €. Therefore, the

directional derivative of xép(\fv) along AW € N(X) is zero.
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2. AW L N(X). Next, let AW be orthogonal to A'(X). We begin with the
first order approximation of X’(t) :

X'(t) =X + td + o(t).

From the proof of Lemma 3.3.7, we know that d L N. By definition of
XZ)P' we know that X is the point on C closest to w. Likewise, X’/(t) is
the point on C closest to W + tAWw. Hence, d = Aw. Therefore, for any
Aw 1 N, the directional derivative of xop(W) along AW is one. So, we

have shown that

0 for AW € N(X)

Vi XX (W)AW = N " .
wXgp(W) AW {Aw for AW L N (X).

Therefore, the lemma is proven. O

Proof of Theorem 3.3.8. First, we want to construct an orthogonal
basis {e1,...en} of R" that will greatly simplify the calculations.
We start by including the internal gradient in this basis, i.e., we
define e; = Vxfop(X, W). Then, let I(X) = {i|lgi(X) = 0} be the set
of indices of the active constraints of the original problem and let
N(X) = span({n;li € I(X)}) be a linear span of their normals. By the
liner independence condition from Assumption 3.3.2, dt'm(/\/(f()) = |I(X)].
Moreover, by Property 3.3.5, we know that e; € AV(Xx). Then, we can
choose vectors ey,..., e that complement e; to an orthogonal
basis of N(X). The remaining vectors ex)+1,...,€n, are chosen to
complement e, ..., e(x) to an orthogonal basis of R". The choice of
this basis is motivated by Lemma 3.9: e; is a basis of the null-space of
the r—smoothed Jacobian, e, ..., e form a basis of the null space of
the true QP Jacobian, and the remaining vectors form a basis of space in
which we can move x(’;P(W).

For brevity, let fx = Vxf(X, w) denote the true gradient vector. By
definition, AW = fx wa: (X, W) is obtained via the r—smoothed problem.
From Property 3.3.11, we know that AW is a projection of fx on the
vectors e3,...,en. Then, since e, ..., en is an orthogonal basis, we have

n
AW = Z,B’ie(, Bi =fXTei, i=2,...,n.
=2

Now, let’'s see how this Aw affects the true decision xéP(W+ tAW) for
t — O*. First, we have a first-order approximation

Xép(w+ tAW) = X + td + o(t),

for some d € R. From Lemma 3.3.9, we know that d is actually a
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projection of AW onto the vectors ejx)j+1., ..., €n. Therefore, we have

n
X5p(W + tAW) = X + > Biei+o(b).
i=)I(X|+1

Finally, the change in the true objective can be expressed as
F(xGp0W + tAW), W) — F(xZ,(4), w) =

tfl( D Bie)+o(t)=

i=[I(x|+1

t Y. Bif]ei+o(t)

i=lI(%|+1

=t > BZ+o(t)=0.

i=[I(X|+1

Therefore, perturbing prediction along AW does not decrease the true
objective f(x, w), and hence

F(xGpOW + tAW), W) 2 f(x 7, (W), w)

fort— 0™. O

3.7. EQUALITY CONSTRAINTS

Assumption 3.3.2 postulates that for any x € C, the gradients of
active constraints, {Vxgi(x)|gi(x) = 0}, are linearly independent. Now,
suppose we include equality constraints in our problem. e.g., we
have a constraint g®9(x) < 0 and —g®9(x) < 0 for some g. Clearly, the
gradients of g€9(x) and —g€9(x) violate the independence assumption.
However, we claim that it does not affect our results. Let w and X
be a prediction and a corresponding decision and let n®9 = V, g®9(Xx).
Suppose the equality constraint g€9(x) = 0 is active. Let I(X) be the set
of indices of the active constraints not including g€9(x). Then, we have
a representation of the internal gradient,

Vxf(X, W) = oriqneq - agqneq + Z ain;.
{€I(X)

q €q

Suppose that aiq £ agq, e.g., without loss of generality, 0(‘1E >a, .
Then,
Vxf (X, W) = (a7 —a57)n®9 + Z ain;

€I(X)
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and hence removing the constraint —g€9(x) < 0 would not change the
optimality of X. The remaining problem would satisfy complementary
slackness and hence would have all the properties demonstrated in
Section 3. Therefore, for the case with equality constraints, we
ncgg:d toegxtend the complementary slackness conditions by demanding
o Fay.

3.7.1. EXPERIMENTAL DETAILS

In this section, we provide the details of the experiments reported
in the paper. All experiments were conducted on a single machine
with 32gb RAM and NVIDIA GeForce RTX 3070. The code is written
in Python 3.8, and neural networks are implemented in PyTorch 1.11.
For methods requiring differentiation of optimization problems, we use
the implementation by Agrawal et al. [7]. The linear methods (SPO+,
perturbed optimizers, identity-with-projection) were re-implemented by
us.

Experimental results reported in Figures 3.3 and 3.4 show the average
and the standard deviation (shaded region) of the measured quantities
across 4 random seeds. For each seed, we randomly split data into
train, validation, and test sets by using 70%, 20%, and 10% of the whole
dataset respectively. In Figure 3a, for each method and at each run, we
take the model version corresponding to the best performance on the
validation set and report its performance on the test set. In Figure 4, we
do the same procedure at each training iteration.

For all experiments except for meta learning, the predictor ¢g is
represented by a fully connected neural network with two hidden layers
of 256 neurons each, and LeakyRelLU activation functions. The output
layer has no activation function. Instead, the output of the neural
network is scaled by the factor xscqie and shifted by xspit. For linear
methods and methods using QP approximation, the output layer predicts
vector w of the same dimensionality as the decision variable. For
the method using the true model, the prediction size is defined by
the number of unknown parameters in the true objective function.
For training, we used the Adam optimizer from PyTorch, with custom
learning rate and otherwise default parameters. Hyperparameters of all
methods were chosen based on the results of the grid search reported
in Tables 2-6. Configuration files to reproduce the experiments and the
code are publicly available [1].

For the meta learning experiments, we used the official code by
Lee et al. [18]. We modified it by implementing a the constraint
smoothing method and otherwise left unchanged. We did not tune the
hyperparameters and used value provided by the authors.
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Parameter Search space Value
Learning rate {0.5,1,5,10} x 107> | 5x 10>
Training epochs {40,80,160} 80
Batch size {1,4,8,32} 1

Xshift {0,0.1,1} 0.1
Xscale {0.1,1} 1

Table 3.3: Hyperparameters for methods from Figure 3 for standard portfolio
optimization problem with different A’s.

PORTFOLIO OPTIMIZATION PROBLEM

Following Wang et al. [16], we use historical data from QUANDL WIKI
prices [28] for 505 largest companies on the American market for the
period 2014-2017. The dataset is processed and for every day we
obtain a feature vector summarizing the recent price dynamic. For
further details on the processing, we refer readers to the code and to
the original paper by Wang et al. [16]. The processed dataset contained
historical data describing the past price dynamics for each of the 505
securities. For every random seed, 50 securities (thus, 50 decision
variables) were chosen randomly. The experiments on the LogSumExp
variation of the portfolio optimization problem were conducted similarly.
The hyperparameters for normal and LogSumExp portfolio problems are
reported in Tables 2, 3, and 4.

OPTIMAL POWER floW PROBLEM

We considered a linearized DC-OPF problem that represents a DC grid
without power losses. The decision variable is the vector of nodal
voltages v € R", and the unknown parameter w represents either the
value gained by serving power to a customer or the price paid for
utilizing a generator. The reference voltage vg € R, the admittance
matrix Y, and the constraint bounds represent the physical properties of
the grid.
max  f(v, w) = —vow ' (YV)

subject to: VvV
P<—voYV<P
I<Yj(vi—vj)<I

Data for the DC OPF problem is generated artificially.  First, we
randomly generate a grid topology, see Figure 3.5 for an example. For
each line, its admittance is set to 6S. Nodal voltages are bounded
between 325V and 375V, and the reference node has a fixed voltage
of vg = 350V. The demand in loads (power upper-bound), generators
capacity (power lower-bound), and line current limits are sampled
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Parameter | Search space | Value |
Learning rate {0.5,1,5,10} x 10~> | 5x 10>
Batch size {1,4,8,32} 1

Xshift {0,0.1,1} 0.1

Xscale {0.1, 1} 0.1

Table 3.4: Hyperparameters for methods from the LogSumExp portfolio
optimization problem.

randomly from the following normal distributions: A (8000, 2500)x watt-
hour, N(—14000, 2500)x watt-hour, A/(25, 5)xampere. The coefficients
w are also sampled form the normal distributions: A/(1.2, 1) for loads,
and AN(0.8,0.1) for generators. Finally, all values are normalized such
that vo becomes 7V (surprisingly, it performed better numerically than
scaling vo to 1V). The observations o is a concatenation of the true
coefficients w, demand of the loads, the capacity of the generators,
and line current limits plus normally distributed noise with mean 0 and
standard deviation 0.5.

KNAPSACK PROBLEM

For the knapsack problem, we used the data generation process from
the PyEPO package [26] The true problem is defined by the number
of decision variables n, objective coefficients w € R?, and m resource
constraints represented by W e R™", b e R™ :

load1l3

loadl4

Figure 3.5: Example of randomly generated grid topology. Red triangles
represent generator nodes, and purple squares represent loads.
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Parameter Search space Value
Learning rate {0.5,1,5,10} x 107> | 5x 10>
Batch size {1,4,8,32} 1

Xshift {0,0.1,1} 0.1
Xscale {0.1, 1} 0.1

ID: projection {mean, norm, both} norm
Perturbed: n samples {1,4,8,32} 4
Perturbed: o {0.05,0.1,0.5} 0.05

Table 3.5: Hyperparameters for linear methods from Figure 4c for power
flow problem.

Parameter Search space Value
Learning rate {0.5,1,5,10} x 10> | 5x 10~>
Batch size {1,4,8,32} 1

Xshift {0,0.1,1} 0.1
Xscale {0.1,1} 0.1

ID: projection {mean, norm, both} norm
Perturbed: n samples {1,4,8,32} 4
Perturbed: o {0.05,0.1,0.5} 0.05

Table 3.6: Hyperparameters for linear methods from Figure 4a, b for standard
portfolio optimization problem with A =0 and A =0.1.

max  f(x, w) = w'x

subject to: 0<x<1
Wx <b

In the experiments, we used n =20, m=15. Weights W were sampled
uniformly from the interval (3,8) and b was sampled uniformly from
(20, 80). The constraints are fixed for all instances of the dataset
(i.e., defined by the random seed). For each seed, we construct a
dataset of 512 samples. To do so we first sample the observation,
0 ~N(0,1), 0 € R°12%16  Then, for each sample i= {1,...,512}, we
compute the coefficients w as

. 1 )
w!= ((ZBo‘ +3)2+1) % 0.4+¢€,

where B € R™P is sampled from the Bernoulli distribution with
k=1,p=0.5 (fixed across samples) and € € R>12%20 js noise uniformly
sampled from (0.5, 1.5) (different for each sample).
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META SUPERVISED LEARNING

For completeness, we provide a more detailed description of the meta
learning experiment. For further details, we refer reader to the original
paper by Lee et al. [18].

We have a feature extractor network, ¢, that we train on the
meta-training set, {D{"", D{**'}N . Assuming for simplicity batch size
of one, the training process goes as follows:

1. A pair, (DI, Dfest), of train and test tasks is sampled

2. All samples within each task are embedded using ¢ to obtain

(6(D;" ™), $(D{**)).

3. An SVM base learner is trained on qb(Dl.“a"”), by solving the following
problem: ,
9* =arg mein LSVM((P(D[tram))

Importantly, it is a convex quadratic problem, and hence is
differentiable.

4. The trained SVM 6* is applied to the test task Df®* to obtain the
cross-entropy loss Lmeta(piest g+, ¢)

5. The weights of ¢ are updated by performing a gradient step on

Lmeta

Similarly to other experiments, we use meta-training, meta-validation,
and meta-test sets. The training lasts for 30 epochs and the best model
is chosen based on the accuracy on the meta-validation set. Then, the
accuracy on the meta-test set is reported.
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Parameter Search space Value
Learning rate {0.5,1,5,10} x 10> | 5x 10>
Batch size {1,4,8,32} 1

Xshift {0,0.1,1} 0.1
Xscale {0.1,1} 0.1

ID: projection {mean, norm, both} norm
Perturbed: n samples {1,4,8,32} 4
Perturbed: o {0.05,0.1,0.5} 0.05

problem

Table 3.7: Hyperparameters for linear methods from Figure 4d for the knapsack




MAXIMUM REWARD
REINFORCEMENT LEARNING

Reinforcement learning (RL) is a framework for training agents to
make decisions by interacting with their environment and learning
from feedback, or rewards. The learning objective is to accumulate
as much reward as possible during each interaction. While elegant
in theory, RL often struggles in practice when rewards are sparse
or delayed, making it hard to link actions to outcomes. A common
workaround is to design a surrogate reward that provides more
regular feedback. However, this solution is fragile: even small
design errors can lead to reward “hacking” and unintended behavior.

In this chapter, we explore a fundamentally different problem
reformulation of RL. Instead of focusing on maximizing the total
reward collected over time, we study how to optimize the maximum
reward an agent obtains within an episode. This objective shifts the
focus from cumulative reward to discovering and reliably achieving
the best possible outcome. It can be particularly natural in settings
where a single high-reward event is the main goal - for example,
a robot reaching a destination. Although this idea has intuitive
appeal, prior attempts to formalize it have encountered major
technical challenges, particularly in settings involving uncertainty in
the environment or the agent’s policy. This chapter presents the
first rigorous and general formulation of max-reward RL, along with
algorithms and insights that make it practical.

This chapter is based on the publication in the conference proceedings: Veviurko,
G., Boehmer, W., de Weerdt, M. To the Max: Reinventing Reward in Reinforcement
Learning. In Forty-first International Conference on Machine Learning. Compared
to the published version, Section 4.1 is adjusted for broader audience, minor
adjustments made in Sections 4.2, 4.3.

71
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ABSTRACT

In reinforcement learning (RL), different reward functions can define
the same optimal policy but result in drastically different learning
performance. For some, the agent gets stuck with a suboptimal
behavior, and for others, it solves the task efficiently. Choosing a
good reward function is hence an extremely important yet challenging
problem. In this paper, we explore an alternative approach for
using rewards for learning. We introduce max-reward RL, where an
agent optimizes the maximum rather than the cumulative reward.
Unlike earlier works, our approach works for both deterministic and
stochastic environments and can be easily combined with state-of-the-
art RL algorithms. In the experiments, we study the performance
of max-reward RL algorithms in two goal-reaching environments from
Gymnasium-Robotics and demonstrate its benefits over standard RL.
The code is publicly available [1].

4.1. INTRODUCTION

Reinforcement Learning (RL) is a machine learning paradigm in which
an agent learns to make decisions by interacting with its environment.
The agent observes the state of the environment, takes actions, and
receives feedback in the form of rewards. Over time, it uses this
feedback to learn a policy - a strategy for choosing actions - that
maximizes its performance. The standard objective in RL is to maximize
the cumulative return, which is the total reward the agent expects to
collect over time, typically with future rewards discounted to reflect
their decreasing importance. This makes the reward a crucial element
of the problem, as it defines the optimal decision-making policy that the
agent will try to learn.

It is well known [2] that there are infinitely many ways to define the
reward function under which a desired policy is optimal. Practically,
however, these rewards often result in drastically different learning
processes. For example, many major successes of RL required
meticulous engineering of the reward: by hand [3] or by learning it from
a human example [4]. Hence, designing a reward function that enables
learning and corresponds to a certain optimal policy is a challenging
problem in modern reinforcement learning.

Many tasks in reinforcement learning (RL) involve reaching a specific
goal state - for example, navigating a maze, grasping an object, or
completing a level in a game. These are known as goal-reaching tasks,
and the most intuitive reward in such problems is sparse: the agent
receives a reward only upon reaching the goal, and zero otherwise.
[5-7]. Sparse reward problems are notoriously hard to solve with
standard RL. A popular and simple solution is to introduce a dense
surrogate reward that represents some sort of distance between the
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agent and the goal [8, 9]. However, this approach is very sensitive
and should be carefully tailored to each problem individually, in order to
not change the induced optimal policy. Specifically, this dense artificial
dense reward should a) increase when the agent gets closer to the goal,
and b) not distract the agent from the reaching the goal. Designing a
function that satisfies both criteria can be tricky for a human expert,
as it requires estimating the (discounted) cumulative returns in various
states.

In this work, we propose max-reward RL, where the agent optimizes
the maximum reward achieved in the episode rather than the cumulative
return. This paradigms makes the reward design process much more
intuitive and straightforward, as it only requires that “better” states
correspond to larger rewards. Hence, as long as the goal-reaching
action has the highest reward, the optimal policy does not change.
Besides simplifying the reward design, the maximum reward objective
can also be easier to optimize for. In standard RL, learning a value of
a non-terminal state involves bootstrapping, and hence has a moving
target. On the contrary, in max-reward RL, bootstrapping only happens
when encountered reward is larger than what was expected. Therefore,
max-reward RL bootstraps less and hence, potentially, learns better.

One of the key properties of the cumulative return is that it satisfies
the Bellman equation [10] and hence can be efficiently approximated
and optimized by iteratively applying the Bellman operator. To make the
max-reward RL approach viable, an analogous learning rule is required.
However, Cui and Yu [11] prove that naively changing summation into
a max operator in the standard Bellman update rule works only in a
deterministic setting and hence cannot be used in most RL problems
and algorithms.

Inspired by results from stochastic optimal control theory [12], this
paper introduces a theoretically justified framework for max-reward RL
in the general stochastic setting. We introduce a Bellman-like equation,
prove the stochastic and deterministic policy gradient theorems, and
reformulate some of the state-of-the-art algorithms (PPO, TD3) for the
max-reward case. Using the Maze environment [9] with different
surrogate dense rewards, we experimentally demonstrate that max-
reward algorithms outperform their cumulative counterparts. Finally,
experiments with a challenging Fetch environment [9] show the promise
of max-reward RL in more realistic goal-reaching problems.

4.2. RELATED WORK

The first attempt to formulate max-reward RL was made by Quah and
Quek [13], where the authors derived a learning rule for the maximum
reward state-action value function. However, as it was shown later
[14], that work made a technical error of interchanging expectation
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and maximum operators. Gottipati et al. [14] corrected this error, but
the value functions learned via their approach differ from the expected
maximum reward if stochasticity is present. Independently, Wang et al.
[15] derived a similar method in the context of planning in deterministic
Markov Decision Processes (MDPs). Later, Cui and Yu [11] demonstrated
that the presence of stochasticity poses a problem not only for the
max-reward RL but also for other non-cumulative rewards.

There exists a parallel branch of research that (re)discovered maximum
reward value functions in the context of safe RL for reach-avoid problems
[16]. In their work, Fisac et al. [17] considered a deterministic open-loop
dynamic system, where the agent’s goal is to avoid constraint violations.
The authors derived a contraction operator, similar to the one by
Gottipati et al. [14], to learn the max-cost safe value function. Hsu
et al. [18] extended this approach to reach-avoid problems, where
the goal is to reach the goal while not violating constraints. Later,
max-cost value functions were utilized within the safe RL context to
learn the best-performing policy that does not violate the constraints
[19]. The main limitation of the three aforementioned works is the same
as for Gottipati et al. [14] — their methods only apply to deterministic
environments and policies.

Effective reward design is a long-standing challenge in reinforcement
learning which dates back to at least as early as 1994 [20]. In this
paragraph, we briefly summarize the existing work related to the reward
design problem. For further reading, we refer the reader to Eschmann
[21]. Some of the big successes of RL utilize a hand-designed reward
function, e.qg., in the game of DOTA [3] or robots playing soccer [22].
However, manually designed rewards often lead to undesirable behavior
[23]. Alternatively, the reward can be designed in an automated fashion.
For example, based on state novelty to encourage exploration [24-26],
by learning it from the experiences [27], or by using human data [28].

To conclude, reward design and reward shaping remain challenging
topics. In this work, we propose a new way to think about the reward
- the max-reward RL framework. While self-sufficient in some cases,
this approach can also be combined with various existing methods for
reward design.

4.3. BACKGROUND

We consider a standard reinforcement learning setup for continuous
environments. An agent interacts with an MDP defined by a tuple
(S, A R,P.po,v), where S is the continuous state space, A is the
continuous action space, and R:Sx Ax S —[0,R] is a non-negative
and bounded reward function.' For each state-action pair, (s, a) € S x A,

INon-negativity of reward can be achieved in any MDP with bounded reward function.
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the transition function P(:|s, a) € P(S) is a probability density function
(PDF) of the next state s’ and po(-) € P(S) is the PDF of the initial
state sg. Scalar 0 <y < 1 is the discount factor. We use m:S — P(A)
to denote a stochastic policy and u: S — A to denote a deterministic
policy. The time is discrete and starts at zero, i.e., teNuU {0}. For
each timestep t, the state is denoted by s;, the action by a¢, and the
reward by ri+1 := R(St, at, St+1). Everywhere in the text, the expectation
over policy, Er, denotes the expectation over the joint distribution of
St, at, re+1 for te NU {0} induced by m, P, and pg. Sometimes, we use
such notation as Ex~; (or just Ex) to emphasize that the expectation is
taken only over x.

In standard RL, the main quantlty being optimized is the cumulative
return, defined as G¢ = Z[ o Y'rt+1+i.  To maximize En[Gt], most RL
algorithms learn state and/or state-action value functions defined as
follows:

V() = Eq[Ge[st=s], Vv*(s)= max vT(s).

q"(s, a) =Eq[Gt|a'Za]. g*(s,a)= max q"(s, Q).

Crucially, these functions are solutions to the corresponding Bellman
equations:

vT(s) = [Esat [rt+1 + YVH(5t+1)|5f=SJ
t+1

q"(s,a) = [Eét+1 [rt+1 +vYq"(St+1, at+1)}g§zfz]
t+1

a*(s, a)—[Est+1[rt+1+7maxq (st+1, a")|atZal

The defining feature of these equations is that they can be solved
by repeatedly applying Bellman operators. These operators are
contractions and hence each of them has a unique fixed point that
corresponds to one of the value functions above. For example, the
optimal state-action value function g*(s,a) is the fixed point of the
Bellman optimality operator T*:

(T*9)(s, @) = Eses [rees + ymaxa(ses1, a |sezs] (4.1)

The Bellman equation is foundational for all state-of-the-art RL algorithms
as it allows training neural networks to approximate value functions.
Therefore, for the max-reward framework to be usable, it is necessary to
derive an analog of the Bellman equation. Below, we describe such an
attempt made by Gottipati et al. [14] and demonstrate that it is limited
to purely deterministic problems.
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4.3.1. DETERMINISTIC MAX-REWARD RL

Instead of cumulative return, max-reward RL aims at optimizing the
max-reward return:

ét=max{rt+1,7rt+2,Y2ft+3---} (4.2)

Similarly to cumulative returns, G: uses the discount factor ¥ which
is necessary for learning with Bellman-like updates, as we show later.
To approximate En[G¢], Gottipati et al. [14] introduced the following
definition of the state-action value functions:

St=S
at=a

dget(sl a) = [Ele-l [rt+1 vV Yq(St+1, At+1)
t+1

st=s]

Gle(s @) =Ess[res1 v Y MAX q(strr, )|

where v denotes the binary max operator, i.e., av b:=max{a, b}. By
construction, é/:;et and éget satisfy Bellman-like recursive equations. In
their work, Gottipati et al. [14] proved that the following operator is a
contraction:

(Trec@)(s @) = E [ree1 v ymaxq(se, a)|a=a] (4.3)
+

Therefore, é;et is the unique fixed point of 7Ajj*et and can be learned, e.g.,
with Q-learning.

Chain environment example. Before going into the limitations of the
approach above, we conduct a simple experiment to motivate the use
of max-reward reinforcement learning. We show that max-reward RL is
a better approach in a goal-reaching problem where the agent needs to
learn to reach the goal state. Specifically, it dominates the standard
cumulative RL when transitions into the goal state occur infrequently in
the training data, which is often the case in larger-scale goal-reaching
problems.

Consider the five-state chain environment in Figure 4.1. Transitions
leading into s4 have reward of 1, transitions into s, have a reward
parametrized by x € (0,1), and other rewards are zero. Hence, the
optimal policy, concerning both max-reward and cumulative returns, is
to go to s4 and stay there. We run tabular Q—value iteration algorithm
using standard (Eqg. (4.1)) and max-reward (Eq. (4.3)) Bellman operators
for different values of the intermediate reward x. In each training epoch,
we iterate over all possible transitions. For each transition, we compute
the target value using one of the Bellman operators and update the
Q-table. Crucially, we randomly skip some of the transitions into s
with a certain probability. In the experiment, we consider four values
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Figure 4.1: Five-state chain MDP with three actions (left, stay, right) in each
state and the results for cumulative (in green) and max-reward
(in violet) value iteration. The y—axis is the number of training
epochs to recover the optimal policy; the x—axis are the values of
the intermediate reward x. The four panels correspond to different
probabilities of skipping transitions into s4.

for the skip probability — pskijp € {0, 0.3,0.6,0.9}. During training, when
a transition into s4 is sampled, the Q-table is updated with probability
1—pskip and otherwise left unchanged. Transitions into other states
are never skipped. In this way, we can control how often the agent is
exposed to the transitions into the optimal state and thereby simulate
problems where goal-reaching transitions are rarely encountered.

The results in Figure 4.1 indicate that for larger values of the skip
probability, the max-reward approach converges to the optimal policy
significantly faster than the cumulative approach. We believe that
this phenomenon can be explained by differences in bootstrapping. In
standard RL, the target for the g—value is a sum of the immediate
reward and the g—value at the next timestep. Therefore, this target
changes in each epoch until convergence. In the max-reward case, on
the other hand, the target in the max-reward state is just the reward and
does not change with time. This example suggests that the max-reward
approach is a better choice in environments where the task of the agent
is to reach the goal state.

Issues when stochasticity is present. Unfortunately, the max-
reward approach described above has a serious theoretical drawback.
Expanding the definition of dget for more timesteps, we obtain a nested
sequence of non-interchangeable v and E:

st=s]

G2 oi(s, @) =En[rec1 v VEn[ree2 v .. ]|555




78 4. Maximum Reward Reinforcement Learning

Y (7Pr.=05
"2=Y9pPr=05

Figure 4.2: A three-state MDP with deterministic transitions and stochastic
rewards. Two policies, m; and m, perform first action ai, but then
have different az, resulting in different reward distributions.

Using Jensen’s inequality [29], we conclude the following:
Gop(s, @) < Ene[Gelgi=a] (4.4)

When both the policy and the transition model are deterministic,
Eg. (4.4) becomes an equality. However, if stochasticity is present,
the value of &;et(s, a) is merely a lower bound of the expected return.
Hence, it can induce suboptimal policies.

In Figure 4.2, we show an example where the policy maximizing d;et
is suboptimal. The figure demonstrates a three-state MDP and two
policies, m; (red arrows) and m, (blue arrows). Let y =1 for simplicity.
For the state sg, the expected max-reward return is higher for the policy
M

[Enl[GO] =[E1T1[rl vr]=9>

En,[Gol =En,[r1 v 2] =8

So m is better in terms of the expected max-reward return, but the
value functions have the following values:

agét(so) = [ETfl[rl \4 [ET[1[r2]] = [E1T1[rl v6]=6

Ggei(50) = Eny[r1 V En,[r2]] = En,[r1 v 8] = 8
Based on the values of c“]get, we would conclude that m; is better, which
we already showed to be incorrect. This example demonstrates that
even in a simple stochastic environment, the operator T;et can lead to
incorrect policies. Therefore, it is an open question whether there exists
a Bellman-like operator that would enable learning max-reward returns
in the stochastic setting.

4.4. MAX-REWARD RL

In this section, we introduce a novel approach to max-reward RL that is
theoretically sound, works for both stochastic and deterministic cases,
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and can be combined with state-of-the-art RL algorithms. First, we
expand the definition of the max-reward return given in Eq. (4.2):

En[Gel =En[re+1 Vv YGre1] (4.5)

Since E and v do not commute, it is impossible to extract the term
Ex[Gt+1] on the right-hand side of Eq. (4.5). Because of that, we cannot
obtain an equation involving only Eq[G¢], Ex[Gt+1], and res1. Instead,
we will utilize an approach from stochastic optimal control theory [12]
and define the max-reward value function using an auxiliary variable
that allows propagating information between timesteps:

Definition 4.4.1. Let y € R be an auxiliary real variable. The
max-reward value functions are defined as follows:

V(s,y) =Enly v Gtst=s]

4"(s,a,y) =Eqly v G¢|aiZa]

Since reward is lower-bounded, rt+1 = 0, we can always recover the

expected max-reward return En[G:] by substituting y = 0 into the value
functions: .

V"(s, 0) = En[ Gtst=s]

4™(s, a, 0) = En[ G| 31251

Hence, if we find an efficient method of learning the max-reward value
functions, we will be able to optimize E4[G¢].

The auxiliary variable y is crucial when dealing with the max-reward
returns. When we look at the value of the state s’ from the perspective
of the state s, we must consider the immediate reward r = r(s, a, s’).
Specifically, we should treat low reward trajectories from s’ as if they still
yield the reward of r. Expanding upon this observation, we conclude that
maximization of the maximum reward requires propagating information
about the past rewards. This is achieved via the auxiliary variable y.

By combining the definition of the max-reward value functions with
Eq. (4.5), we obtain the following recursive equations:

(4.6)

Lemma 4.4.2. Lety e Rand lety’ := R(SLYM)W Then, the max-reward
value functions are subject to the following Bellman-like equations:

V(s y) = ¥E at [y’ v VT (Sts1, y)|se=s]
t+1
q"(s,a,y) = Y[E5t+1[y Vv §"(st+1. at+1, ¥')|ai e
Proof of this lemma, as well as all other proofs, can be found in

Appendix 4.6.1. The extra term y’v might seem redundant, but it is
important since it enforces the boundary conditions. Without it, the
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functions v =0 and g = 0 would be solutions to these equations. Using
Lemma 4.4.2, we can define Bellman-like operators for the max-reward
value functions:

Definition 4.4.3. let v:SxR—->R, g: Sx Ax R — R be real-valued

functions and let y’ := w Then, the max-reward Bellman

operator 7™ is defined as follows:
TMv(s, ¥) :=YE at [y" v V(sts1, y)|se=s]
t+1

St=S

Tmq(s, a,y) := Y[E(Slﬁ[y/ v q(st+1, ats1, Y')|atzal
+

In the following theorem, we prove that this operator is a contraction
and that the max-reward state and state-action value functions are its
fixed points.

Theorem 4.4.4. 7™ is a y—contraction with respect to the Lo norm,
and v™(or @™) is its fixed point.

Theorem 4.4.4 implies that the max-reward value functions can be
learned in the same way as the standard value functions - by sampling
from the environment and applying Bellman operators. In the next
section, we define the objective function of the max-reward RL problem
and discuss how the presence of the auxiliary variable y impacts the
notion of optimal policy.

4.4.1. MAX-REWARD OBJECTIVE

Similarly to standard RL, the main objective in the max-reward RL
problems is to maximize the expected (max-reward) return from the
initial state, defined as follows:

J(m) = Esgmpo[ V7 (50, 0)] (4.7)
Then, the optimal policy is naturally defined as :
n* =arg mgxf(n). (4.8)
To better understand the properties of the max-reward optimal policy,
consider again the MDP in Figure 4.2. Let vy = 1. Then, the values of the
objective function for m; and m, can be computed as follows:

J(m) =Em[6Vr2]=9

J(m2) =En,[6 v 2] =8
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Hence, m; is optimal. However, if we consider the max-reward return
from t =1, we have

2+0 9+7
=6 ErlG1]=——=8

[Enl[Gl] =

and hence m, obtains higher expected max-reward return starting at
s =s1. Seemingly, there is a contradiction: m; is optimal but m; is better
from the state s;. However, the explanation is simple: the maximum
reward is the highest reward encountered anywhere along the trajectory.
An optimal decision thus not only depends on the current state, as with
the cumulative reward, but also on the maximum reward that has been
acquired thus far. In the example, if we start from s1, then we haven’t
encountered any reward yet. Hence, following w1, we will have r; =0 as
the maximum reward half of the time. If we start from sg, we receive a
reward of r; = 6 when going to s;. Then, the maximum reward will not
be lower than 6, even if we get r = 0. Thus, we conclude:

In max-reward RL, the optimal policy m* maximizing J(-) should depend
not only on the current state, but also on the rewards obtained so far.

To formalize this observation, we introduce additional notation. We
define the extended state space as S := S x R and we denote extended
states by S=(s,y), s€ S, y €R. Then, for an extended state (s,y) € S
and for an action a € A, the extended transition model P(-,:|s,y,a) is a
PDF over (s’,y’) € S, defined as

R(s,a,s’) vy)

(s’ y'ls,y, @) =P(s'|s, a) 8(y’ — "

where §(:) is the Dirac delta function. The initial distribution of (sg, yo)
is given by po(so, yo) = p(s0)d(yo) thereby ensuring yo = 0. Combining
everything, we introduce the following definition:

Definition 4.4.5. Let M = (S, A R, P, po, Y) be an MDP. Then, the ex-
tended max-reward MDP is an MDP M given by the tuple (S, A, R, P, Bo, 7).

Essentially, the extended MDP defined above tracks the (inversely)
discounted maximum reward obtained so far. For example, if the
maX|mum reward so far is r, then the extended state at timestep t is
(st, =). Hence, to |mprovej we need rep1 > = 7

Usmg the notion of extended MDP, we can redefine policy for the
max-reward RL:

Definition 4.4.6. Let M be an MDP and let M be its induced extended
max-reward MDP. Then, any policy 7 in M is an extended max-reward

policy.
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After we have defined optimality in the max-reward sense, we can
introduce the max-reward Bellman optimality operator:

Definition 4.4.7. Let g: Sx Ax R — R be a real-valued function and let
y' = R(SL;”M’ Then, the max-reward Bellman optimality operator T *
is defined as follows:

T7a(s, a,y) = VEsus[y' v maxq(see1, o, y)|ai=a]

Similarly to 7™, this operator is also a contraction:

Theorem 4.4.8. 7* is a y—contraction with respect to the Lo norm,
and G* is its fixed point.

We have most of the pieces of the max-reward RL framework.
We established that it operates on the extended max-reward MDP
M, where the extended states preserve information about the past
rewards. Then, both the max-reward optimal and on-policy value
functions can be learned by sampling transitions from M. Therefore,
all DQN-based methods [30] can be used under the max-reward RL
paradigm directly. However, most state-of-the-art RL algorithms utilize
policies parametrized by neural networks. This is possible due to the
policy gradient theorems [31, 32], as they allow estimating the objective
function gradient with respect to the policy parameters via sampling. In
the next section, we formulate and prove max-reward policy gradient
theorems for both deterministic and stochastic extended max-reward
policies.

4.4.2. POLICY GRADIENT THEOREMS

First, we define ;ﬁf(so,yo, s,y) — the probability measure of arriving in
the extended state (s, y) after t timesteps, starting from (sg, yo) and
executing the extended policy 1. Let

P(s’,y'ls, y) = f fi(als, y)P(s’,y'ls, y, a)da

a

be the “on-policy” transition model. Then, ﬁf(so,yo,s,y) is defined as
follows:

Po(s0, Y0, 5, y) =86(s—50)6(y — yo)

p(s0. y0,5,y) = f At (s0.y0. 5, 9)P(s, yI5, §) d5 dy
5y



4.4. Max-reward RL 83

The discounted stationary state distribution of an extended max-reward
MDP is then given by

oo
d(s,y) = f Po(So0, o) Z Y' B (50, Yo, S, y) dso dyo.
t=0
50,¥0

As such, d™ is not a distribution. However, it can be normalized into one
by dividing it by C = [ d"(s,y)dsdy.

Finally, we can formulate and prove the max-reward policy gradient
theorems. Consider a neural network with weights 6 that represents a
stochastic policy. Then, we have the following result:

Theorem 4.4.9. Let 7g : S x R — P(A) be a stochastic extended max-
reward policy parameterized with 6. Then, the following holds for
Vol(6): A )
Vo J(6) x Es y)-at[4™ (s, @, y)Ve InTig(als, y)]
a~ﬁ9
The deterministic max-reward policy gradient follows from the
stochastic version:

Corollary 4.4.10. Let [lg: SxR —> A be a deAterministic extended
max-reward policy parameterized with 6. Then Vg/(8) can be computed
as follows:

Vej(8) o Ega[Valla(s, y)VadPe (s, a, ¥)la=ue(s.y) ]

The policy gradient theorems allow us to use various algorithms from
standard RL, such as REINFORCE [33], A2C [31], A3C [34], TRPO [35],
PPO [36], DDPG [37], and TD3 [38], to optimize maximum rewards.
In this work, we focus on PPO and TD3, as they are considered to
be the best-performing algorithms within their corresponding families.
For max-reward PPO, the only difference compared to the standard
version is that the advantage estimation uses max-reward returns. For
max-reward TD3, the target value for the Q functions is computed using
the max-reward Bellman optimality operator (4.4.7). In Appendix, we
provide descriptions of max-reward TD3 and PPO in pseudocode.

Figure 4.3: Left: Single-goal maze, where the goal (red ball) is always in the
same location. Right: Two-goals maze with two spawn locations of
the goal (red balls).
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4.5. EXPERIMENTS

To empirically evaluate the benefits of using the maximum instead of
the cumulative reward, we compare the max-reward TD3 and PPO with
their cumulative counterparts using two goal-reaching environments
from Gymnasium-Robotics [9] under different dense reward functions.

4.5.1. MAZE WITH SHORTEST PATH REWARDS

First, we consider the Maze environment from Gym Robotics [9]
illustrated in Figure 4.3, where the agent controls a ball by applying
acceleration in two dimensions. The objective is to reach the goal
position in the maze. Episodes last 1000 timesteps and there are no
terminal states. We use two mazes: single-goal maze, where the goal
is always in the same location, and the two-goals maze where at each
episode the goal location is chosen randomly from the two possible
options. The main metric in this environment is success ratio — a binary
value indicating whether the goal was reached during the episode.

We consider several reward functions that induce the same optimal
policy of reaching and then remaining in the goal state (due to absence
of terminal states):

1. Sparse reward - only reaching the goal is rewarded with r =1.

2. Dense [, reward - default dense reward, defined as the exponent
of the negative of the [>-distance to the goal. Reaching the goal is
rewarded with r =1.
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3. Discrete shortest path (DSP) — our custom reward that represents
the true, topology aware distance to the goal. To compute it, the
maze is split into n x m cells. Then, the distance matrix D € R"™*™M
is computed such that for each cell (i,j), D[i,j] is the number of
cells between (i,j) and the goal-containing cell. The DSP reward
with parameter k € N is then defined as

K (L)) = BPLLI+1 if D[i,j]=0 mod k
asp“J) =, otherwise

where B € (0,1) is a hyperparameter. The value of k controls the
sparsity of the reward, i.e., for larger k fewer cells have a non-zero
reward. Reaching the goal is rewarded with r=1.

For the DSP reward, we first tune the value of B by running standard
TD3 and PPO on the single-goal maze. We set k =1 and run 10 random
seeds for each algorithm for 8 € {0.65,0.7,0.75,0.8,0.85,0.9,0.95}.
Additionally, we test the negative version of the DSP reward, r’ésp(i,j)—l,
which, in theory, should cause better exploration. For TD3, the
best-performing reward was the negative DSP with Brp3 = 0.9, and for
PPO - negative DSP with Bppo = 0.95. In all other runs involving DSP
reward we use these values of 3.

Finally, we compare TD3, PPO, max-reward TD3, and max-reward PPO
on the single-goal and two-goals mazes using sparse, dense [, and DSP
reward for k =1, 2, 3, 4 (for cumulative methods, negative DSP reward
is used). Figure 4.4 demonstrates the learning curves. The sparse
reward performs inconsistently due to insufficient exploration. Dense [,
reward has local maximums (especially in the single-goal maze) and its
performance greatly depends on the maze topology. The DSP reward,
which represents the true distance to the goal, overall performs better.

Importantly, we see that the max-reward approaches work for all
values of k, while the standard RL methods do not. For larger
k, the reward becomes sparser, and cumulative approaches tend to
converge to suboptimal policies. We believe that the nature of this
phenomenon is the same as in the chain environment example discussed
in Section 4.3.1. Specifically, the Maze environment can be seen as
a larger chain with multiple intermediate rewards. During training, all
methods quickly learn to stay in one of the cells with non-zero reward.
Then, to update the policy, samples of transitions to a better state are
needed. For larger k, these transitions become less frequent, as the
cells with non-zero reward become further from one another. In line with
the chain environment results, max-reward methods require fewer such
transitions and therefore perform more efficiently.

Another potential reason for the superiority of max-reward methods
lies in the way how they handle local optima. Since max-reward policy is
conditioned on the discounted max-reward so far, y, it has no incentive
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to stay in the local optima. As y “remembers” the reward at a local
optimum, any trajectory leaving this optimum is at least as good as
staying in the optimum. Combined with exploration techniques, e.qg.,
entropy regularization in PPO, this causes the agent to leave local
optima after visiting them.

Stochastic Maze. One of the strengths of our RL formulation is that it
works with stochastic environments and/or policies. To experimentally
verify that, we conduct an additional experiment using a stochastic
variation of the single-goal maze. Specifically, we introduce a parameter
psiip Which regulates the level of stochasticity. Whenever the agent
makes an action, it is replaced with a random action with probability
Psiip- We compare max-reward and standard versions of TD3 and PPO
on this environment. Additionally, we implement and test deterministic
max-reward TD3 [14]. In this experiment, we use the DSP reward with
k =3, as it is a case where the max-reward paradigm demonstrates
improvement over standard RL in a deterministic Maze. The results
presented in Figure 4.5 confirm the theory: our max-reward TD3 solves
this stochastic environment while the deterministic max-reward TD3 is
highly inconsistent. Therefore, we conclude that our method indeed can
be used for stochastic environments.
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45.2. FETCH ENVIRONMENT

In the second experiment, we consider more challenging robotics
problems.  Specifically, we study the Fetch-Slide and Fetch-Push
environments depicted in Figure 4.6. The agent controls a 7-DoF
manipulator and its goal is to move the puck into the target location.
In Fetch-Slide, the goal is located beyond agent’s reach and hence it
needs to slide the puck into the goal. In Fetch-Push, the agent needs
to push the puck into the goal which can be anywhere on the platform.
Each episode is truncated after 100 timesteps and there are no terminal
states. We use the standard dense reward for this problem defined
as negative of the [b—distance between the puck and the goal. The
performance metric for this environment is again the success ratio — a
binary value that indicates whether the goal was reached during the
episode. This environment is known to be challenging for standard RL,
and it cannot be solved without special approaches [5].

The plot in Figure 4.6 demonstrates that the max-reward TD3 achieves
a goal-reaching policy in both environments, while the standard version,
in line with the prior work, fails to learn completely. We believe that this
happens due to the difference in bootstrapping mentioned earlier. The
environment is complex and multidimensional and the goal-reaching
transitions are rare which makes the learning problem really hard for
the standard methods. We believe that this experiment shows the great
potential of max-reward RL in more realistic goal-reaching environments.

4.6. CONCLUSIONS AND FUTURE WORK

In this work, we provide a theoretical description of the max-reward
reinforcement learning paradigm and verify it experimentally. Our
theoretical contributions include a novel formulation of the max-reward
value functions and a Bellman-like contraction operator that enables
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efficient learning. Besides, we prove the policy gradient theorems for
max-reward policies and hence enable using the state-of-the-art RL
algorithms in the context of max-reward RL.

In the experiments with two robotic environments, we show that
max-reward RL works better for sparse reward problems with surrogate
dense reward. This result confirms our intuition that maximum
reward is a better choice for goal-reaching environments. Moreover,
we demonstrate that our max-reward RL, unlike prior work, is also
consistent in stochastic environments.

Qualitatively, we believe that the main strengths of the max-reward
algorithms can be summarized as follows:

1. In max-reward RL, bootstrapping works differently than in the
standard RL. Specifically, it allows for more efficient propagation of
reward from the goal states.

2. Max-reward agents are less prone to getting stuck in local optima.
Since the maximum reward obtained so far is a part of the extended
state space, the agents do not have any incentive to stay in these
optima.

3. Due to the auxiliary variable y, max-reward value functions are
of distributional nature. Specifically, differences of the form
v(s,y + A)—V(s, y) can be used to approximate the distribution of
the max-reward return. As reported in prior work [39], learning
distributional value functions can have positive impact even in
deterministic problems.

In future work, we aim to study how max-reward RL can be combined
with the existing methods for automated reward design and explore its
potential in other problems.
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APPENDIX

4.6.1. PROOFS

Proof of Lemma 4.4.2. First, we prove the equation for the state value
function VT :

V(s,y) =En[y v Ge|st=s] = En[y V res1 V ¥Gre1|st=s]
= Y[En[y/ v GAt+1|5t=5} = Y[En[y/ vy'v GAt+1|5f=5]
= 'Y[Esat [y, vV VT (Str1, y,)}5f=5]
t+1

Then, for the state-action value function g™

4"(s, a,y) =Enly v Gt|aiZa] = Ea[y v ree1 v ¥Ger1|aiZa]
=YEr[y’' v Ges1|aial = VE&[Y' VY Vv Ge1|aiZa]

= 'y[EsHl[y vV §"(St+10t+1, Y )|3§_3

O

Proof of Theorem 4.4.4. First, we demonstrate a simple property of the
v operator that we will use later. Let a,x,y € R. Then, using equation
xVvy=0.5(x+y+|x—y|), we obtain the following:

avx—avy=0.5(a+x+|x—al—a—y—|y—al)
=05(x—y+|x—al—-ly—al)

<0.5(x—y+|x—a—(y—a)]) (4.9)
=0.5(x—y+|x—yl)
<Ix—yl

Now, we can prove that 77 is a contraction. We begin with the
state-action case. Let g, z: S x Ax R be two-real valued functions. Then,
we can expand ||7™g—T"z||lw as follows:

17"q—T"2lleo
=Y sup ESt+1[}’ VvV q(st+1, at+1, Y )=y v 2(St+1, At+1, Y )|§§§Z]
s€S,aeA,yeR! at+1

<Yy sup [ESt+1[ Y’ v a(se+1,ae+1, ¥) = y' v 2(St+1, Aes1, ¥)

s€S,aeA,yeR At+l

(*)

St=S
at=a]|

<y sup y' v q(st+1, at+1, YY) =y’ v z(St+1, at+1,y’)|
St+1€S,at+1€A,y’eR
=Y sup yvaq(say)—yvzs,a, y)|
seS,aeA,yeR
<y _sup lats,an)—2s,a)|=lg—zle

seS,aeA,yeR
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The first inequality follows from the fact that |[Ex[x]‘ < [Ex[lxl] and the last

inequality follows from Eq. (4.9). In (*), we use the following property
of the expectation: sup, {E[x|y]1} < supyx{x}. Now, we demonstrate the
contraction property for the state value function: Let v,u:S8 xR be
two-real valued functions. Then, we expand ||7™v —7"ul|« as follows:

17" —T"ullo =7y sup
seS,yeR

E a: [y’ v V(st+1, Y )=y v u(5t+1,y’)|st:s]

St+1
|Sf=5]

<y sup Ea
seS,yeR St+1

[l v v(sts1,y) =y v ulsts1,y")

<Y sup
St+1€S,y’eR

=7 sup
seS,yeR

Y' v v(seen, Y)—y vu(se y')

yVvv(s,y)—yvu(s, y)’

<Y sup
seS,yeR

v(s, )= u(s,y)| = IV —ulles

Therefore, the max-reward Bellman operator is a contraction. Hence,
by the Banach fixed-point theorem, it has unique fixed-point(s).

From Lemma 4.4.2, we conclude that this is the max-reward value
function(s). O

Proof of Lemma 4.4.8.

N17*q—T*2llw
=y sup |Eswa[y’ v maxq(see1, a’,y)—y' v maxz(see1, @, y')|5Z5]
s€eS,aeA, yeR a a
<y sup  Eswfly’v maxq(se1, @',y )=y’ v maxz(ses1, @', y') )
seS,ae A, yeR a a
<Y sup [E5t+1[ max ‘Y' v q(st+1, 0,y )=y’ v z(ste1,a, y') 3§§Z]
seS,aeA,yeR a
<Y sup Y'va(se+1, ate1, Y') =y’ v 2(St+1, Qe+ 1, y’)(
St+1€S,at1€A,y’eR
=y sup yvga(say)—yvzs, a,y)|
seS,ae A, yeR
<y _sup la(s,ay)—2s,a,9)|=llg— 2zl
seS,aeA,yeR
(4.10)
O

Proof of Theorem 4.4.9. First of all, we notice that the max-reward
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Bellman equation implies another recursive equation for v™ and g™

4"(s, A, ¥) = VEsealy’ v V" (Ser1, y)|se=s] = ¥E ae [V"(se+1,¥)[5i=e]

(4.11)
As discussed in the main paper, we use the version with extra vy’ to
enforce boundary conditions. However, we can still use the equation
above as it is a property of the max-reward value function.

Before proving the theorem, we introduce simplified notation to
improve readability - for all functions, we use subscripts to denote the
input variables. For example, Vi := V™(st, yt). The proof follows the
one for the standard policy gradient theorem. We begin by obtaining a
recurrent equation for Vgvyg :

VeVo =Ve(f ﬁo@odao)=f (Veﬁo)ﬁodao+f f0(Veq)odao
ap ao

ao

do

Eq.(4.11) , R ,
N $o +Yf ﬂo(VeJ p(s1,y1ls0, Yo, ao)V1ds1dy )dag
ao S1.Y1

= ¢o + YJ f oP(S1, y1lSo, Yo, ao)(VeVvi)dsidyidag
S1,y1Jao

=do+7 f p1(s0, y0, 51, y1)(VeV1)ds1dy1,
S1,Y1

where we introduced the shorthand ¢: = ¢(st, yt) = [, Vett(alst, yt) g(st, a, yr) da.
Expanding this recurrence further, we obtain

VoVo= . f Y B2 (s0, Yo, St, ye)p(St, yr)dsedyt

%'ﬁ"
o

(Z VPl (s0, ¥o,5,¥))d(s, y)dsdy
Sy t=

o« f d™(s, ylso, yo)o(s, y)dsdy
Sy

= J d"(s, ylso. yo)(f (Veti(als, y))4(s, a, y)da)dsdy
sy

a

Above, d®(s, y|so, yo) is the discounted stationary distribution of s, y for
policy m given sg, yo. Finally, we substitute this formula for VgVvq into the
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definition of j(6) and conclude the proof:
Voj(6)

=J Po(so, ¥o) f aﬁ(s,y|so,yo)(f(v9ﬁ(a|s,y))a(s,a,y)da)dsdydsodyo
50,Y0 sy a

=f d(s, y)(f (Veti(als, ¥))4(s, a, y)da)dsdy
S,y a

=E 4,4t [4"(s,a,y)VeInt(als,y)]
a~fi(:|s,y)
(4.12)

4.6.2. EXPERIMENTAL DETAILS

For all experiments, we used our implementation of TD3 and PPO that
we verified on several MuJoco domains. The implementation of the
max-reward algorithms is similar to their cumulative versions except for
the following differences:

1. The input layer of all neural networks has an extra dimension to
work with the extended states (s, y).

2. The output layer of the value networks uses Tanh activation and is
rescaled to u €[0,R]. Then, it is transformed with ReLU(u—y)+y
to enforce VT(s,y) > y.

Hyperparameters of all runs are reported in Tables 4.1-4.2.

4.6.3. ALGORITHMS
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Parameter PPO PPOMax | TD3 TD3Max
Parallel environments | 16 16 16 16
Discount factor y 0.99 0.999 0.99 0.995
Learning rate 3e-4 3e-4 3e-4 3e-4
Lr. annealing No No No No
Entropy weight 5e-2 5e-2

Value loss weight 0.5 0.5

Clip coef. 0.2 0.2

GAE A 0.95 1

Policy update freq. 2 2
Target soft update T 0.005 0.005
Expl. noise type pink pink
Expl. noise std 0.7 0.7
Expl. noise clip 0.5 0.5
Target noise scale 0.2 0.2
Initial expl. steps 25000 25000
Tr. epochs per rollout 10 10

Rollout length 1024 2048

Minibatch size 32 32 256 256

Table 4.1: Hyperparameters for the experiments with Maze environment.

Parameter TD3 TD3Max
Parallel environments | 16 16
Discount factor y 0.99 0.995
Learning rate 3e-4 3e-4
Lr. annealing No No
Policy update freq. 2 2
Target soft update T 0.005 0.005
Expl. noise type pink pink
Expl. noise std 0.1 0.1
Expl. noise clip 0.5 0.5
Target noise scale 0.2 0.2
Initial expl. steps 25000 25000
Minibatch size 256 256

Table 4.2: Hyperparameters for the experiments with Fetch environment.
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Algorithm 2 Max-reward TD3

1: Initialize critic networks §¢,, G4, and actor network g
2: Initialize target networks ¢] « ¢1, ¢} — ¢2, 6’ <~ 6

3: Initialize replay buffer D

4: for episode=1,2,... do

5
6:
7:
8

9:
10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

Initialize sg, yo ~ Po
fort=0,1,..., T—1do
Sample exploration noise €;
Execute a; = u(st, yt) + €+ and get s¢41, re+1
Update yt+1 = (¥t V re+1)/y
Save (St, yt, Qt, St+1, lt+1, Yt+1) into D
if initial exploration is over then
Sample a mini-batch of size N from D
Sample target actions noise n
G ue(s’.y)+n
zey' vyminiz1,2Gy(s’, 4, y’)
Critic loss L, = %2,-2:1(2_ Goi(s,a,¥))?
Perform gradient update step on L¢
if time to update policy then
La < E[Gg: (s, po(s, ¥), )]
Perform gradient update step on L4
¢{<—T¢,~+(1—T)¢[{, i=1,2
0 —T10+(1—1)0
end if
end if
end for

26: end for
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Algorithm 3 Max-reward PPO

1: Initialize actor ftg and critic Vg
2: for iteration=1,2,... do

3:

O NU A

10:
11:

12:
13:
14.
15:
16:
17:

18:
19:

Initialize trajectories buffer D
for actor=1,2,...,N do
Initialize sg, yo ~ Po
fort=0,1,...,T—1do
Execute at ~ mg(-|st, yt) and get sty1, re+1
Update yt+1 = (Yt V re+1)/y
Save (St, yt, Qt, St+1, t+1, Yt+1) into D
end for
G? —Y"¢(Stsn, Yt+n), n=1,..., T—t
Gi(A) =(1—N) XS A16]
Compute advantages A; = G¢(A) — Vg(st, yt)
end for
fork=1,2...K do A
Critic loss: L¢ « %Zt(GtT_t —Ve(s, ¥))?
Actor loss: Lq « Lppo(me, {At}]_,)
Perform gradient update step on Lq + L,
end for

20: end for




<

CONCLUSION

101



102 5. Conclusion

Throughout this thesis, we explore various challenges in optimization
under uncertainty and propose novel approaches to address them. While
our contributions span diverse domains, they are unified by a focus on
efficient problem formulations. The research presented in Chapters 2-4
illustrates how these formulations can be developed for power systems,
decision-focused learning, and reinforcement learning, demonstrating
their theoretical and experimental advantages.

In this concluding chapter, we review the key results from each chap-
ter and discuss their implications for future research. We then synthesize
these findings to draw broader conclusions about the pivotal role of prob-
lem formulation in optimization under uncertainty and consider how the
research presented in this thesis can contribute to advancing the field.

5.1. SURROGATE MODELS AND PARTIAL OBSERVABILITY

In Chapter 2, we address the challenge of optimizing electric vehicle (EV)
charging in DC microgrids under partial observability, where EV locations
within the grid are known only at the cable level. This setup is particularly
relevant for preserving privacy, when EV owners wish to maintain loca-
tion confidentiality. Additionally, it can also be relevant when communi-
cation between microgrid nodes is limited due to technical constraints.

Beyond the challenges posed by partial observability, the equations
governing power flows in DC microgrids are inherently non-convex, which
further increases computational complexity. A direct approach to this
problem would involve explicitly modeling all possible assignments of
EVs to charging locations, making the problem intractable even for mod-
erately sized grids. The key challenge, therefore, is to handle both the
aleatoric uncertainty in EV locations and the computational complexity
of the optimization problem.

The core contributions of our work are two novel surrogate problem for-
mulations that redefine the microgrid model in an uncertainty-indifferent
manner. Both reformulations address the issue of partial observability,
albeit in different ways: one represents each cable as a single large node,
while the other models each cable as multiple nodes connected in par-
allel. Both reformulations are invariant to permutations of EVs within
cables, making them uncertainty-agnostic. By combining these surro-
gates with an existing convex relaxation technique and introducing a
planning-execution separation, we obtain solutions that address partial
observability while ensuring that the grid constraints are never violated.
This approach allows us to manage aleatoric uncertainty in EV locations
without explicitly modeling it, relying instead on specifically designed re-
formulations.

Experiments conducted on various simulated microgrids demonstrate
that our surrogate models significantly outperform the baseline. Specifi-
cally, the parallel nodes model produces high-quality solutions but incurs
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a higher computational cost, while the single-node approach is compu-
tationally lightweight and still yields good solutions. Thus, our contri-
butions highlight how designing reformulations can involve a trade-off
between solution quality and computational requirements.

The surrogate models proposed in Chapter 2 have direct applications in
privacy-respecting EV charging scheduling and can inspire the develop-
ment of surrogate-based approaches for other power system challenges.
For instance, problems like multi-timestep optimal power flow or unit
commitment often become intractable when explicitly modeling uncer-
tainty. These problems could benefit from surrogate models that resolve
uncertainty while ensuring the satisfaction of system constraints.

In a broader sense, Chapter 2 demonstrates how problem reformula-
tions can provide practical solutions for managing uncertainty in compu-
tationally challenging problems, where neither explicit uncertainty mod-
eling nor learning-based approaches are feasible. This work highlights
the potential of leveraging domain expertise to address problems char-
acterized by high degrees of uncertainty, such as resource allocation or
task scheduling. It shows that targeted reformulations can reduce the
reliance on complex modeling while still delivering reliable and effective
results.

5.2. ADDRESSING ZERO GRADIENTS

The core idea of decision-focused learning is to train machine learning
models based on decision quality rather than prediction accuracy when
estimating missing parameters in optimization problems. In Chapter 3,
we address a key technical challenge in applying this framework to con-
vex optimization: the zero-gradient issue that arises when differentiating
through such problems. Previously identified only in the linear case, this
issue severely limits the practical application of decision-focused learn-
ing, as it causes convergence to suboptimal solutions.

We tackle this challenge by proposing a problem reformulation that
remains consistent with the original formulation while avoiding the zero-
gradient issue. This reformulation involves two key steps: quadratic ap-
proximation and local smoothing. Quadratic approximation provides the
problem with a universal and tractable structure, offering computational
simplicity and facilitating theoretical analysis. Local smoothing modi-
fies the gradient computation by smoothing regions where the gradient
would otherwise vanish, enabling proper gradient propagation even in
areas where traditional methods fail.

Our extensive experiments and theoretical analysis underscore the
practical significance of the zero-gradient problem and demonstrate the
effectiveness of the proposed solutions. These experiments highlight the
limitations of conventional decision-focused learning methods, where the
zero-gradient issue severely restricts performance. In contrast, our refor-
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mulation successfully addresses these limitations, offering a reliable gra-
dient propagation framework that improves model training and decision
quality. By resolving these challenges, we extend the practical scope
of decision-focused learning to a broader range of convex optimization
problems.

This work suggests that analyzing the loss function landscape and
identifying regions with poor behavior, such as vanishing gradients, is
a promising approach to improving decision-focused learning. Further-
more, our use of surrogate reformulation demonstrates the potential to
address more complex applications, such as non-convex optimization,
using similar techniques. By smoothing or approximating problem struc-
tures, decision-focused learning could potentially be extended beyond
the convex case, opening new opportunities for tackling challenging op-
timization problems.

Looking ahead, an exciting direction for future research lies in applying
decision-focused learning to sequential decision-making tasks. In many
real-world applications, such as energy management or robotics, deci-
sions are interconnected and significantly influence subsequent choices.
These dependencies often result in computationally intractable prob-
lems, which we believe could benefit from novel reformulations that sim-
plify and streamline the solution process. Extending decision-focused
learning to this domain represents a promising avenue for research, of-
fering substantial value for practitioners.

5.3. MAX-REWARD REINFORCEMENT LEARNING

In Chapter 4, we address the challenge of aligning the optimization ob-
jective in reinforcement learning with the desired behavior, particularly
in goal-reaching tasks. We begin by examining the limitations of using
cumulative return as the standard objective for these tasks. Although
policies optimized for cumulative return are mathematically guaranteed
to be optimal goal-reaching policies, learning such policies in practice of-
ten presents significant challenges. In particular, agents may converge
to suboptimal policies that exploit the reward function rather than ex-
hibiting the intended goal-reaching behavior.

To address these challenges, we introduce max-reward reinforcement
learning as a more intuitive and mathematically advantageous formu-
lation for goal-reaching tasks. Unlike cumulative return, max-reward
RL focuses solely on the singular goal of reaching the target state in
the fewest possible steps, aligning more closely with how humans nat-
urally approach such tasks. Furthermore, max-reward RL offers compu-
tational benefits, enabling agents to learn goal-reaching behaviors more
efficiently. As demonstrated through extensive experiments, this formu-
lation results in more stable learning of goal-reaching policies.

While the max-reward formulation proves highly effective for certain
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problems, it is not universally applicable and may be unsuitable for many
tasks. Nevertheless, it presents exciting opportunities as a foundational
building block for improved reinforcement learning algorithms. For ex-
ample, future research could explore combining max-reward with cu-
mulative return to leverage the strengths of both approaches. Another
promising application of max-reward lies in safe RL, where safety con-
straints are often defined in terms of distance to obstacles. In such sce-
narios, safety can be expressed through max-reward—or in this context,
max-cost—value functions.

In a broader sense, Chapter 4 underscores the importance of care-
ful problem formulation in reinforcement learning, demonstrating that
even small modifications to the optimization objective can have a sub-
stantial impact on an agent’s performance and learning process. The
max-reward RL framework offers a practical approach for goal-reaching
tasks and motivates researchers to explore the applicability of other non-
cumulative objective functions across diverse tasks.

5.4. FUTURE DIRECTIONS

The contributions of each chapter lay a foundation for further exploration
into effective problem formulations in optimization under uncertainty. In
this final section of the thesis, we summarize the key lessons learned
and outline directions for future research.

The surrogate models for EV charging presented in Chapter 2 sug-
gest that similar approaches could be extended to other domains, such
as decentralized systems with limited communication or privacy con-
straints. Specifically, these methods could facilitate the development
of lightweight models, informed by human domain expertise, that effec-
tively handle aleatoric uncertainty in complex environments. In Chapter
3, the proposed approach to decision-focused learning demonstrates the
potential for extending these ideas to more complex scenarios where
exact differentiation of constrained optimization problems is not feasi-
ble. For example, this approach could benefit decision-focused learning
for non-convex and/or sequential problems that arise in various applica-
tions, such as robotics or job scheduling. Developing tractable formu-
lations that enable efficient learning in such settings could significantly
broaden the applicability of decision-focused approaches. Similarly, the
max-reward reinforcement learning framework introduced in Chapter 4
provides a novel perspective on task-specific formulations in RL. This
framework shows particular promise for tasks where aligning learning
objectives with desired outcomes is challenging. Further exploration of
max-reward RL, including its applications in safety and exploration, as
well as its integration with cumulative returns, could offer valuable in-
sights and drive meaningful advancements in the field.

Collectively, the contributions of this thesis emphasize a broader prin-
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ciple: effective optimization under uncertainty often depends on how
the problem is framed. Across power systems, decision-focused learn-
ing, and reinforcement learning, this work demonstrates that carefully
crafted problem formulations can address diverse challenges in optimiza-
tion under uncertainty, leading to more tractable and effective solutions.
These findings suggest that placing greater emphasis on problem for-
mulation could drive significant progress in the field. The key lessons
distilled from this thesis are as follows:

1. Formulations can address uncertainty: Instead of explicitly mod
eling uncertainty, well-designed formulations can efficiently man-
age it, as demonstrated by the surrogate models in Chapter 2.

2. Balancing competing objectives: Problem reformulations can
balance competing metrics, such as scalability and solution qual-
ity, as illustrated by the surrogate models in Chapter 2.

3. Solution-aware formulations: Effective formulations should con-
sider the solution method, as seen in Chapter 3, where the quadratic
approximation and local smoothing enable efficient gradient-based
training.

4. Task-aligned objectives: Aligning formulations with the specific
structure of a task, rather than relying on generic approaches, can
improve performance, as demonstrated by decision-focused learn-
ing and max-reward RL in Chapters 3 and 4.

Looking ahead, structured research into effective problem formula-
tions offers intriguing possibilities. While this thesis focused on deriv-
ing reformulations through human knowledge and intuition, future work
could investigate automated techniques for identifying effective formula-
tions, drawing inspiration from machine learning methods such as auto-
mated hyperparameter tuning or neural architecture search. For exam-
ple, learning-based approaches could identify patterns common to effec-
tive formulations, facilitating their systematic discovery. Formal methods
might also be employed to verify the equivalence of alternative formu-
lations or rigorously analyze their differences. Additionally, recent ad-
vances in language models could enable tools that translate natural lan-
guage problem descriptions into precise mathematical representations.
Such tools could help craft formulations that more accurately reflect the
nature of the task or seamlessly integrate domain knowledge and heuris-
tics into problem definitions and solutions.

In conclusion, this thesis demonstrates that problem formulation is not
merely a preliminary step in optimization under uncertainty but a criti-
cal tool for managing complexity and improving solution quality. As real-
world challenges grow increasingly intricate, the insights and approaches
developed here advocate for a continued search for innovative formula-
tions that can drive more effective and robust solutions.
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