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ABSTRACT

The challenge of dealing with patients suffering from chronic diseases and an aging
population requires evolving from traditional hospital-based healthcare systems into a
person-centered approach, where patients can be monitored remotely via modern tech-
nologies by cost-effective and reliable solutions based on emerging technologies in the
healthcare domain.

Due to its contactless capabilities, radio-frequency technologies can lead to proac-
tive monitoring of conditions directly related to health statuses. These technologies can
include the tracking and monitoring of vital signs or the identification of abnormalities
and critical life-threatening events, such as strokes or falls, in order to react before more
complex scenarios and non-treatable conditions can appear over time.

This thesis project explores developing, evaluating, and verifying a processing pipeline
based on radar sensing technology, jointly exploring human activity recognition and
breathing frequency estimation, two of the most immediate capabilities to detect and
monitor the general health conditions of a human being.

Through Doppler-Time and Range-Time data domains, the differentiation between
translational and in-place activities, namely walking and sitting, is addressed, aiming
to successfully identify and locate the segments where the test subject is not moving.
This then triggers a proposed pipeline for the continuous estimation of the breathing
frequency for the in-place scenario based on a sequential estimator, specifically the ex-
tended Kalman filter.

vi
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INTRODUCTION

This chapter describes the motivation behind the development of a joint approach for
radar-based human activity recognition (HAR) and vital signs monitoring in Section 1.1.
The problem formulation is defined in Section 1.2 according to the gaps found in existing
research, and Section 1.3 summarizes the main contributions of the proposed HAR and
breathing frequency approach developed in this thesis. Finally, the structure of this thesis
is presented in Section 1.4.

1.1. MOTIVATION
The motivation behind this thesis work is based on the following four questions:

Is it worth exploring emerging technologies for indoor healthcare applications?

Home healthcare devices can significantly improve patients’ quality of life suffer-
ing from chronic, non-communicable diseases like Parkinson’s, dementia, epilepsy, nar-
colepsy, and multiple sclerosis, by minimizing the disruption to their usual routine and
lifestyle [1]. Aging increases the incidence of these diseases, followed by a reduction in
mobility due to cardiovascular and musculoskeletal problems. Additionally, the proba-
bility of critical life-threatening events, such as strokes or falls, increases as well, together
with the incidence of multiple chronic health conditions. In the medical domain, this
condition is referred as “multimorbidity”, where two or even more chronic diseases can
coexist within the same person [2].

The World Health Organization and the United Nations estimate that 30% of the
world population will be older than age 65 by 2050 [3]. The challenges to managing the
health conditions of an aging population are combined with budget limitations, hence
specialized intensive care at hospitals or clinics might result unsustainable for public
healthcare systems. In addition, prolonged periods of hospitalization can be unpleas-
ant for patients and their families and can bring risks of exposure to other infections
such as antibiotic-resistant bacteria. Therefore, the challenge of dealing with an aging
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population is making the case for novel healthcare developments that evolve from the
traditional hospital-based system to a person-centric approach where the patients can
be observed in their homes remotely via modern technologies. Hence, there is a need
to find cost-effective and reliable solutions in the healthcare domain based on emerging
technologies [1].

Why explore radiofrequency (RF) approaches? Why focus on HAR and vital signs
monitoring?

Various sensors have been used for HAR and assisted living (more details in Chapter
2). Nevertheless, RF has increasing popularity due to its capability of contactless moni-
toring to identify basic daily life activities, such as walking, kneeling, sitting, or standing
up. Therefore, this contactless capability might be advantageous for different groups of
people, like those affected by cognitive impairments who might forget to use wearable
sensors properly, and even for users’ acceptance, for instance in comparison to video-
based sensors.

Enabling the recognition of these fundamental activities is important for well-being
assessment, as health-related activities, such as exercising, are complex activities com-
posed by fundamental daily activities [4]. Moreover, the way these basic activities are
performed has a direct relationship with health statuses, such as arthritis, cardiovascu-
lar, or neurodegenerative diseases [5]. RF monitoring systems can also ease the detection
of critical events such as falls or other potentially dangerous behavior, and alert family
members, caregivers, or first-aid services for immediate support [1]. Furthermore, RF
can potentially lead to proactive monitoring of health conditions to identify abnormali-
ties over time and react before more complex and non-treatable conditions can appear.

Regarding vital signs, breathing frequency and heart rate are the two most immedi-
ate components while detecting or monitoring the health conditions of human beings,
and they can already provide important information on their general health conditions.
Traditional methods of vital signs monitoring, such as electrocardiography (ECG) with
straps and electrodes, are applicable with intrusive or contact devices, which might have
limitations in various scenarios, such as burned skin or sudden infant death syndrome
(SIDS) [6-8]. Consequently, contactless vital signs monitoring is an area of interest, and
RF implementation is one of the most promising approaches to be further explored.

Why radar sensing?

The fundamentals of radar-based HAR is that each human activity has unique kine-
matic patterns, which can be represented by intrinsic kinematic features within the radar
data. On the other hand, contactless vital signs estimation and monitoring through radar
technology is mainly based on capturing the periodic motion of the chest and heart
wall due to cardiopulmonary activity. Specifically, the implementation of radar-based
approaches provides the following advantages compared to other existing technologies
13, 91:

* Radar is a non-invasive device, meaning that privacy can be less of a problem than
for camera-based sensors.
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» Itis anon-wearable sensor, so interaction with the radar from the users’ side is not
required for its functionalities.

e Its functionality is independent of light conditions in the indoor (or outdoor) en-
vironment.

» With suitable techniques, the extracted information from the acquired data is still
accurate and rich in content, even in the presence of noise, clutter, and multipath
effects.

However, it is important to mention that practical implementation of radars is not
wholly feasible yet; further developments in size, costs, and algorithms are still required
to bring the current research activities and systems to an actual deployable product.
Nevertheless, ongoing research in other fields like autonomous driving is substantially
accelerating this process of miniaturization of radar systems and reduction of costs [3].

As a result of the answers obtained from the previous research questions, this thesis
project focuses on the development of a radar-based processing pipeline for joint HAR
and vital signs monitoring (i.e., respiration specifically), aiming to provide an innovative
solution for assisted living technologies in the healthcare domain.

1.2. PROBLEM FORMULATION

By reviewing the literature in Chapter 2, several challenges and limitations of existing so-
lutions for radar-based HAR and vital signs estimation have been found. An overview of
these limitations is briefly discussed, together with the open challenges that radar tech-
nology is currently facing in the healthcare domain for both fields [1, 3, 9, 10].

- For human activity recognition:

¢ Identification of the most suitable radar data domains for the specific classifica-
tion problems to be addressed.

* Dealing with human activities as continuous sequences, where transitions and du-
rations between different movements are not pre-defined.

» Itis notyet clear how to train the classification algorithms for unforeseen activities
or movements not initially present in the dataset (so-called open set problem).

* Processing of complex scenarios that include, besides noise and clutter, multiple
targets and multipath phenomena.

* Implementation of machine learning techniques, which can bring practical chal-
lenges like the acquisition and development of labelled datasets to train and test
the different classification algorithms, and the interpretability and explainability
of the decisions made by these types of classifiers.

* Development of algorithms to combine information from multiple sensors, a pro-
cess known as data fusion or multimodal fusion, to improve the overall classifica-
tion performance.

- For vital signs monitoring:

e Validation of breathing frequency and heart rate monitoring on longer distances
from the radar and different, unfavourable aspect angles is required.
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* More realistic conditions and scenarios need to be tested, in order to extend cur-
rent capabilities to monitor heartbeat and if possible even blood pressure success-
fully.

* Evaluating the impact of different radar frequencies with different layers of cloth-
ing, such as the ones worn by the subjects (shirts, sweaters, coats) or the ones
present in the environment such as blankets or curtains.

* The robustness of the implemented algorithms must be further investigated un-
der different subject orientations in azimuth and elevation, such as lying down
or back and side view, rather than frontal and sitting positions typically used in
demonstrations in lab-conditions.

Based on these gaps, the problem to be addressed in this thesis work is formulated
as follows:

"Development, evaluation, and verification of a proof of concept approach based
onradar technology, simultaneously combining HAR and vital signs estimation. Specif-
ically, the proposed approach aims to provide a joint exploration of both aspects, eval-
uating the feasibility of estimating the breathing frequency of a static and moving tar-
get under different test conditions in an indoor environment, while recognizing trans-
lational and in-place human motions in a simple sequence.”

An important point to stress is that HAR and vital signs estimation are often per-
formed separately, treated as two different problems in the current radar literature. From
this comes the wish to implement a unified processing pipeline that can do both tasks
given a sequence of radar data. Further details about the proposed pipeline are dis-
cussed in Chapter 3.

1.3. THESIS CONTRIBUTION

The main contributions of the proposed joint HAR and breathing frequency estimation
system can be summarized as follows:

1. A processing pipeline that can segment a sequence of translational activities and
in-place activities alternated with static postures is formulated based on range-
time and Doppler-time radar data. An extended Kalman filter (EKF) is imple-
mented and used to estimate the breathing frequency when the subject is in a
static position (e.g., sitting).

2. The pipeline is validated in a proof of concept experiment involving 20 volunteers
and simple sequences including walking, sitting, and standing actions. A 60{GHz]
frequency-modulated continuous-wave (FMCW) multiple-input multiple-output
(MIMO) radar is used for this validation, showing acceptable results in the best-
case scenarios (in terms of radar parameters and distance/orientation of the vol-
unteers with respect to the radar).

3. This initial study highlighted the importance of choosing suitable parameters for
the radar waveform in order to get acceptable performance for both human activ-
ity segmentation and estimation of the respiration frequency. A potential trade-off
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is found, in a sense that a radar waveform that obtains good performance for both
tasks may not be easily implementable with the chosen radar.

1.4. THESIS STRUCTURE

This thesis is structured as follows. Chapter 2 reviews the relevant literature related to
radar-based HAR and vital signs monitoring. Chapter 3 introduces the pipeline of the
proposed joint classification and respiration estimation approach, presenting the meth-
ods and models to be implemented. In Chapter 4, the laboratory measurement setup for
data acquisition is fully described. Experimental verification of the joint indoor appli-
cation is then assessed in Chapter 5. Lastly, the corresponding results together with the
outlines for potential future work are summarized in Chapter 6.




LITERATURE REVIEW

In this chapter, the related work regarding HAR and vital signs monitoring through radar
implementation is presented. Section 2.1 introduces different radiofrequency techniques
currently explored as assisted living technologies. Section 2.2 describes the application of
radar systems in the healthcare domain. Recent advances to address HAR and vital signs
are studied correspondingly in sections 2.3 and 2.4. As closure, various remarks based on
the research done in this chapter are shared with the reader in section 2.5.

2.1. RADIOFREQUENCY SENSING TECHNOLOGIES FOR ASSISTED

DAILY LIVING

Recently, as previously mentioned in Chapter 1, there has been significant interest in
applying the most advanced technologies to develop integrated health care systems for
home environments, commonly referred to as assisted living technologies, which have
primarily two objectives [3]:

* A proactive approach to provide continuous and reliable monitoring of signs re-
lated to worsening health conditions, rather than reacting only when severe symp-
toms are present.

 Avoid hospitalization and preserve the autonomy and independence of vulnerable
people, like older or disabled people.

In the literature, several types of technologies have been investigated regarding as-
sisted living [1]:

* Vision-based: Through the implementation of video cameras, a light-dependent
approach.

* Sensor-based: Based on body-worn sensors, such as magnetic sensors, which the
monitored subject must wear.
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* Motion-based: Employing accelerometers and gyroscopes, usually integrated and
carried by the subject in wearable devices.

* Sound-based: Applying ultrasonic acoustic audio, a realization commonly sensi-
tive to noise and interference.

RF offers contactless monitoring capabilities with typically no interaction required
from users, and the possibility of leveraging existing communication signals and avail-
able infrastructure (like Wi-Fi routers).

The use of RF sensing has also been considered in recent years in the context of as-
sisted living, where the most explored technologies have been [10]:

* Wi-Fi-based: Monitoring a particular area of interest and the subjects there, aim-
ing to detect the temporal amplitude and phase variations from information re-
trieved from multiple wireless channels.

* radio-frequency identification (RFID)-based: Identifying objects and movements
utilizing electromagnetic fields to transmit digital encoded data from the RFID
tags to tags deployed on subjects’ bodies or surroundings.

* Radar-based: Emitting different electromagnetic waveforms and analyzing the re-
ceived echoes to characterize the location and movements of the subjects under
the illuminated area.

A more comprehensive comparison between the technologies mentioned above is
presented in Table 2.1.

Table 2.1: Comparison between different technologies for assisted daily living [1, 10]

Sensor

Main advantages

Main disadvantages

Vision-based

a) Very effective security measure
b) Storage of records

a) Privacy interference
b) Dependance of light conditions
c) High computational cost

Sensor-based

a) High detection accuracy
b) Not related with privacy issues

a) Expensive
b) Disturb activities of the users
¢) Requires sensors installation and calibration

Motion-based

a) High detection accuracy
b) Not related with privacy issues
c) Low cost

a) Raise physical discomfort
b) No direct linear or angular position information
c) Prone to false detection
d) Insensitive to very slow motions

Sound-based

a) Sensitive to motion
b) It allows to determine precisely objects and distances
¢) Inexpensive (audio)

a) Directional functionality (ultrasonic)
b) Sensitive to target temperature and angle (ultrasonic)
¢) It can be influenced by audio signals/noise
d) Prone to false detections

a) Cost-efficiency: almost everywhere is equipped with Wi-Fi

a) Adjustment is needed in different environments

b) Respect to privacy

'Wi-Fi based b) High detection accuracy b) Computationally complex
c) Acceptable performance in complex environments ) Sensitive to the noise interference
. . a) Adjustment is needed in different environments
RFID-based @) High detection accuracy b) Computationally complex

c) Reduced performance in complex environments

Radar-based

a) Functionality in darkness
b) Respect to privacy
c) Accurate range measurements

a) Directional functionality
b) Sensitivity to temperature and direction of arrival
¢) Required installation and calibration

Compared to other radiofrequency technologies in the healthcare domain, radars
offer privacy in sensitive environments, like bedrooms or bathrooms. At the same time,
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users do not need to wear or interact with any external device to modify their daily rou-
tine or expected behavior [1]. Further explanation about the use of radars in healthcare
applications will be described in the upcoming sections.

2.2. RADARS IN THE HEALTHCARE DOMAIN
Applications of radar in the healthcare domain can be subdivided into three areas [9]:

° Human activity recognition (HAR): To monitor and classify human motions in
indoor environments, including but not limited to walking, sitting, standing up,
kneeling, carrying objects, crawling, as well as short-term activity pattern moni-
toring like fall detection for critical events [11-15]. These movements can also be
combined to represent daily life activities and more complex scenarios.

* Gait analysis: To estimate parameters of gait that can be clinically relevant, such
as limping, dragging feet, and frozen gait. Additionally, radar signatures have been
implemented to identify irregular gait patterns related to the physical or cognitive
worsening of health conditions [16-18].

* Vitals signs: To estimate variables related to physiological movements of the body
like respiration rate, heart rate, and blood pressure [19-22].

All these applications could potentially be combined to develop an overall health
status of the subjects under study and detect anomalies and critical events for indoor
scenarios. As this thesis project will focus on addressing HAR and vital signs estimation
through the implementation of radar, advances and current tradeoffs from both research
fields will be covered in sections 2.3 and 2.4, respectively.

In the literature, the most typical radar architectures used in the domain of health-
care have been [9]:

* Continuous-wave (CW) radar, often referred to as Doppler radar.
e Ultra-wideband (UWB) radar, often referred to as pulse-Doppler or pulsed radar.
* FMCW radar, often referred to as range-Doppler radar.

While a detailed discussion about the operating principle behind these types of ar-
chitectures goes beyond this thesis’s scope, it is essential to mention that one of the main
differences between FMCW and UWB radars lies in the possibility of measuring Doppler
and range to the target, in contrast to a simple CW radar where only Doppler informa-
tion can be retrieved. Therefore, further discussions will focus only on FMCW and UWB
architectures for HAR and monitoring of vital signs.

2.3. RADAR-BASED HUMAN ACTIVITY RECOGNITION

HAR typically relies on different data domains and machine learning algorithms to clas-
sify patterns corresponding to different activities, based at the same time on patterns
observed in the radar data [23-27]. This section analyzes radar-based HAR’s problem
from two mutually dependent perspectives: data domains and analyzed activities. Fur-
ther information regarding features extraction and algorithms currently applied for HAR
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and classification tasks based on machine learning techniques are shared in Appendix
6.2.

2.3.1. DATA DOMAINS
Activity recognition and vital signs estimation can be related to the detection and char-
acterization of movements from the human body, either by:

» Large movements of the body and limbs while performing daily tasks.

* Small chest movements (for breathing frequency) and internal organs (for heart
rate or blood pressure).

Signal processing techniques on radar data aim to characterize these types of move-
ments principally based on three variables [3]:

- Time: To evaluate the position of the subject and all the movements involved
over the time domain.

- Range: To locate the target and its body parts with respect to the radar on a dis-
tance base.

- Velocity: To estimate the radial velocity at which all these changes occur. This
velocity estimation is typically performed based on the Doppler effect.

The combination between these variables leads to represent the radar raw data in
different matrix forms, known as data domains [3]:

» a) Range-Time: Also known as range-time information (RTI) matrix, where each
radar pulse is digitized, and samples inside the matrix represent the time and dis-
tance to the target under study according to the temporal sequence of the pulses.
The time or pulse number axis is usually referred to as the slow-time axis, while
the range axis is also known as the fast-time axis.

* b) Range-Doppler: Obtained applying a fast Fourier transform (FFT) across the
time dimension (across the sequence of radar pulses) of the range-time matrix.
This range-doppler (RD) matrix characterizes the overall Doppler pattern of the
target in the frequency domain.

* c) Doppler-Time: The RD matrix does not include information about how the
body and limbs move over time. Therefore, to generate Doppler-time patterns
(also known as spectrograms), a short time Fourier transform (STFT) is typically
applied. This signal processing technique performs several FFTs on the radar data
using shorter and overlapped time windows, producing a column of the spectro-
gram over time every time an FFT is done. The patterns obtained typically rep-
resent the movement of the whole body, torso, and limbs, such as arms and legs.
In the literature, signatures related to these micromotions’ dynamics are often re-
ferred to as the micro-Doppler effect due to the induced Doppler modulations in
addition to the constant Doppler frequency shift from the bulk motion.
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The three data domains described above represent (after clutter filtering, denoising,
and interference suppression) the initial input for radar signal processing algorithms
aiming to perform HAR and vital signs estimation. Typically, micro-Doppler signatures
have been utilized as the primary domain to perform HAR since the past decade [11, 12].
However, research considering other data domains rather than micro-Doppler, and/or
the combination between them, is emerging and currently under development, as shown
in Table 2.2.

Table 2.2: Examples of data domains used for HAR from the literature

Paper Data domains
Jokanovi¢ et al. [23] Range information + Micro-Doppler
Lietal. [24] Range-time + Micro-Doppler + cadence velocity diagram (CVD)
Guendel et al. [25] Phase information from range map + Micro-Doppler
Aziz et al. [26] Micro-angular velocity + Micro-Doppler
Ding et al. [27] Range + Doppler + radar cross section (RCS) information

Jokanovié et al. [23] studied a combination of range information and micro-Doppler
signatures to improve fall detection accuracy through the implementation of deep learn-
ing techniques. Li et al. [24] investigated three domains of radar data, namely range-
time, micro-Doppler, and CVD, evaluating which ones were best suited to classify spe-
cific daily human movements. CVD is a data domain obtained by taking a further FFT
along the Doppler frequency bins spectrograms. This representation normally facilitates
highlighting the periodicity of the micro-Doppler modulations over time. Guendel et al.
[25] explored the phase information directly extracted from a high-resolution range to
classify six different arm gestures and eight gross-motor activities performed bidirec-
tionally. Aziz et al. [26] utilized a MIMO radar for activity recognition, capturing the
angle of arrival (AoA) of the scattered waves to characterize the body micro angular dis-
placements, known as micro-angular signatures, based on calculating the rate of change
of the AoA with respect to time. Ding et al. [27] incorporated the RCS information from
the test subject as a data domain to distinguish falls from other movements like jumping
and squatting.

As it can be deduced, different domains can be evaluated and combined to find the
ones that best suit the classification of the specific human activities to be addressed.
Moreover, different domains have distinctive sensitivity to particular movements, mean-
ing that each domain has its own limitations and advantages. In addition, information
fusion between different domains can also be applied to enhance the classification ac-
curacy, compared to the results of using a single data domain.

2.3.2. ACTIVITIES

Postures and activities analyzed for HAR vary from work to work. Table 2.3 presents a
brief summary of the different and total number of activities for several works in the lit-
erature reviewed in this thesis.
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Table 2.3: Activities studied in different works in the literature of radar-based HAR

Paper No. of activities Activities
1. Running, 2. Walking
3. Walking without moving arms
4. Crawling, 5. Boxing
6. Boxing while moving forward, 7. Sitting
1. Running, 2. Walking
3. Walking while holding a stick
Kim et al. [12] 7 4. Crawling
5. Boxing while moving forward
6. Boxing while standing in place, 7. Sitting
1. Walking, 2. Running
Cagliyan et al. [28] 4 3. Crawling directly toward the radar
4. Walking at an aspect angle of 75 degrees
1. Walking, 2. Sitting

Kimetal. [11] 7

Jokanovi¢ et al. [29] 4 3. Bending and straightening, 4. Falling
1. Boxing, 2. Climbing
Du et al. [30] 8 3. Walking, 4. Running, 5. Jumping up

6. Jumping forward, 7. Kicking
8. Standing with slight movement
1. Jumping, 2. Running
Yangetal. [31] 6 3. Walking, 4. Crawling
5. Creeping, 6. Boxing
1. Walking, 2. Running
3. Walking while holding a stick, 4. Boxing
5. Boxing while moving forward
6. Falling, 7. Sitting down
1. Walking, 2. Sitting down
Jia etal. [33] 6 3. Standing up, 4. Picking up an object
5. Drinking, 6. Falling
1. Bending and picking up an object from the floor
2. Waving with one hand
3. Sitting and standing up
4. Walking back and forth
1. Walking back and forth
2. Standing up and sitting
Yang et al. [35] 6 3. Bending down and standing back up
4. Moving one arm in a circle while standing
5. Pushing, 6. Pulling
1. Running forward, 2. Walking forward
Lietal. [36] 6 3. Boxing in place, 4. Running in a circle
5. Jumping forward, 6. Sitting
1. Running, 2. Walking
3. Walking while holding a stick, 4. Crawling
Kim et al. [37] 7 5. Boxing while moving forward
6. Boxing while standing in place
7. Sitting

Shao et al. [32] 7

Fioranelli et al. [34] 4




12 2. LITERATURE REVIEW

Based on the information from Table 2.3, activities typically studied are:

* Walking

e Sitting down
 Standing up
* Bending over
¢ Falling down
* Running

* Crawling

In most studies the average number of classes, defined as the output category of the
acquired data, ranges around 6 classes, varying from binary cases for fall detection [29]
to cases with even 7 or 8 different classes [30].

It is worth mentioning that walking is an activity always included in any dataset for
HAR, with variants like walking without moving the arms [11], walking while holding a
stick [32], or walking at an aspect angle of 75 degrees to the line of sight (LoS) of the
radar [28]. Additionally, activities such as sitting, bending, standing up, and falling are
frequently present [33] [34] [35], since they can show indoor daily life activities that could
potentially be applied for human life assistance. Furthermore, most of the related work
adopts indoor scenarios with a single radar, and Doppler signatures from activities per-
formed in the LoS, which can be unrealistic constraints for true daily life assistance ap-
plications. Exceptions can be found in Cagliyan et al. [28], where several aspect angles
are evaluated for different human activities, and in Guendel et al. [38], where continu-
ous human activity recognition is proposed through the implementation of a network of
radars.

As it can be seen, the choice of activities is inherently dependent on the desired ap-
plication. Therefore, as one of the aims of this thesis project is the development, eval-
uation, and verification of an indoor healthcare application for daily life assistance, the
three common activities of walking, sitting, and standing will be considered in this work
for an initial simple proof of concept.

2.4. RADAR-BASED VITAL SIGNS MONITORING

Similar to human activity recognition and classification, radar has also been used to es-
timate and monitor vital human signs, such as breathing frequency, heart rate, and even
blood pressure [21]. Information regarding these biological functions could potentially
assess respiratory conditions and the worsening of human health over time.

The analysis of the reflected signals from the human body is generally simplified due
to the penetration depth into the skin being 1 mm at most with a 60 GHz radar [39].
In the literature, range displacement of the human body has been measured with UWB
radar by Yarovoy et al. [40] and induced Doppler frequency shift with a CW radar by Li et
al. [41] to estimate the parameters of chest movement. Moreover, successful monitoring
of vital signs has also been demonstrated by Li et al. [41] for different aspect angles and
sides from the human body to the radar.
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Nevertheless, the application of mm-wave FMCW radars (60 GHz and 77 GHz bands)
has recently and widely been investigated as mentioned by Su et al. [22] due to their high
Doppler sensitivity. Estimation of respiration movements for contactless monitoring of
vital signs utilizing an 80 GHz FMCW radar by Wang et al. [42] showed the possibility to
detect respiration rate from the left side of the human body with a relatively low error,
and measurements of vital signs with a 96 GHz radar with time and frequency methods
were demonstrated by Ayhan et al. [43]. As the estimation of vital signs often has to deal
with low signal to noise ratio (SNR) and signal to clutter ratio (SCR) of the received signal,
a MIMO system was used by Sakamoto et al. [44] for instantaneous heartrate in a multi-
ple people scenario to estimate their direction of arrival (DoA) while focusing the signals
on desired directions to reduce the clutter interference. Range compression and beam-
forming were applied by Ahmad et al. [45] for vital signs monitoring of multiple people
and further extended with a 120 GHz MIMO architecture for 3D localization by Wang
et al. [46]. It has been demonstrated that vital signs measurements can be performed
with a multiple antenna system and various adaptive signal processing techniques to
increase the SNR and enhance the accuracy of the measurements by Aho et al. [47]. Un-
desired clutter can be suppressed by applying the principle component Analysis (PCA),
as shown by Singh et al. [48]. Arctangent demodulation is proposed by Park et al. [49] to
solve the problem of DC offset compensation at the in-phase and quadrature channels
for Doppler radar systems.

Furthermore, random body movement cancellation is addressed by Li et al. [50]
through the implementation of two demodulation techniques: complex signal demod-
ulation and arctangent demodulation, showing that vital signs detection can be feasible
with both demodulation techniques if the dc offset of the baseband signal is accurately
calibrated; and by taking data simultaneously from both sides, front and back, of the
human body to cancel out the random frequency drift derived from the target’s random
behavior, which can introduce a significant source of noise and affect an accurate de-
tection. Estimation of vital signs has also been explored through empirical mode de-
composition and independent component analysis (ICA) by Weishaupt and Mercuri et
al. [51, 52], techniques that process the radar data over a long observation time which
can oscillate between ten seconds and above one minute. Additionally, Mikhelson et
al. [53] used wavelet decomposition to analyze the heartbeat in terms of the phase his-
tory. Extraction of vital signs, such as breathing or heartbeat frequencies, is typically
based on frequency peak searching in the Doppler power spectrum and/or by unwrap-
ping the phase history of the received signal from which the range history is computed
[22]. Therefore, proper signal processing techniques must be implemented to extract
this information from the received signals, as addressed by Adib et al. [54], where the
Doppler phase history was extracted to estimate breathing and heart rate frequencies.

As continuous information about the targets state is usually required for assisted liv-
ing technologies, a rapid reaction from the monitoring system is necessary to capture the
human body’s behavior. However, sequential tracking of vital signs has not been widely
investigated yet. Closely related to the fields of tracking human motions and activities,
dynamic estimation of vital signs has been addressed by applying estimators, such as the
Kalman filter (KF) and the particle filter (PF), to the radar data [55-58].
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Further details about these possible estimators for vital signs monitoring are pre-
sented in the following sections.

2.4.1. KALMAN FILTER

The key assumptions behind the derivation of the Kalman filter are that the estimation
problem to be solved must be linear and Gaussian. Once these conditions are satisfied,
the Kalman filter computes the mean and covariance of the true posterior density. How-
ever, many practical problems are nonlinear, and several variants of the Kalman filter
have been proposed for dealing with these nonlinearities.

In the literature, variants of the Kalman filter have been derived for vital signs moni-
toring. An adaptive Kalman filter (AKF) technique for heart rate monitoring was imple-
mented by Xu et al. [56], and vital sign integrated tracking through a Kalman filter with
UWB radars was performed by Yu et al. [57]. Similarly, heartbeat estimation with an
FMCW radar architecture was done via a Kalman filter by Arsalan et al. [58], and dynam-
ical changes in vital signs using a switching Kalman filter were addressed by Almeida et
al. [59]. A modified robust Kalman filter for the estimation of heartbeat and respiration
rate is discussed by Khan et al. [60], and the estimation of breathing frequency with a
modified joint unscented Kalman filter is presented by Uysal et al. [61].

As it can be deduced, the motion of vital signs is an example of a nonlinear problem
estimation. An approximate solution has been done by linearizing the state and/or the
observation functions of these nonlinear problems. This approximation results in a sub-
sequent application of the Kalman filter for a linear case based on the linearization of
a nonlinear model, an implementation referred to as the EKF. Su et al. [22] utilized an
EKF for the dynamic estimation of breathing parameters based on the chest movement
due to breathing and the unwrapped phase history of the received data, focusing on the
sequential estimation of the breathing frequency through the adoption of a nearly con-
stant frequency (NCF) model for the displacement of the chest with an mm-wave FMCW
radar, showing that the proposed method can provide accurate information about hu-
man breathing after collecting a few seconds of raw data.

In many practical cases, the EKF is a sufficient algorithm for its simplicity and effi-
cient implementation, and for this reason it is used in the proof of concept implemented
in this thesis to estimate the respiration frequency. However, its optimality cannot al-
ways be guaranteed due to the linearization assumptions [62]; for this reason particle
filters are briefly introduced in the next sub-section as a possible hint to future work.

2.4.2. PARTICLE FILTER
Although the Kalman filter and its variants perform as optimal sequential estimators
in linear Gaussian cases, the models of vital signs are nonlinear, as mentioned before.
Moreover, the linearization extension of the Kalman filter, referred to as the extended
Kalman filter, restricts the type of noise to be Gaussian. Generally, the noise is Gaussian
in the complex domain, but its magnitude and argument are not if the real and imag-
inary parts of the noise are mutually independent. Therefore, the noise for the phase
typically does not follow a Gaussian distribution.

Sampling-based techniques, often referred to as particle filters, are considered a gen-
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eralization form of the Kalman filter with the advantage of solving filtering problems for
nonlinear and/or non-Gaussian models, which can be more suitable for vital signs esti-
mation and monitoring. Consequently, this estimator has become a popular algorithm
with the increase in computational and memory capabilities of modern computers.

A particle filter is then a more advanced and robust solution that starts with a set of
samples and recursively computes updates (or even new sets of samples) based on the
previously computed set, the system dynamics, and the acquired data. Furthermore, dif-
ferent approaches of the particle filter compute a certain weight for each of the particles,
measuring their respective importance and using this information to generate the next
set of particles based on the updated weights.

Dynamic respiratory modeling with a particle filter framework was proposed by Ya-
mamoto et al. [63] for non-contact monitoring of chest-wall displacement. Lee et al.
[64] combined a particle filtering algorithm with time-invariant (TIV) and time-varying
autoregressive (TVAR) models for the extraction of breathing frequencies. Photoplethys-
mography signals and a particle filter-based algorithm were jointly utilized by Fujita et
al. [65] for heart rate estimation. Instead, electrocardiogram signals were used by Nathan
et al. [66] to achieve the same goal, and a particle filter’s continuous monitoring of heart
rate variations was addressed using wearable devices for sensors fusion by Nathan et al.
[67] as well. As a result that many unknown parameters are estimated, and a significant
number of particles are processed on each iteration; particle filters are still considered
as high computational complex algorithms independently of their final application.

Although radar-based estimation of vital signs has been widely explored in recent
years, vital signs tracking is challenging even for current radar sensing technologies.
Multiple people and multipath environments are complex scenarios where further re-
search needs to be done. Amplitudes of breathing and heartbeat frequencies are very
weak and hard to detect since their non-contact nature originates from the minor move-
ment of the chest, which makes the power of the signals lower than the power of clutter.
Moreover, perfect models of vital signs do not exist, and uncertainty in monitoring tasks
will always be present independently of the estimation technique.

2.5. SUMMARY

In this chapter, the implementation of RF to develop assisted living technologies was
first introduced. Specifically, related work was presented to address HAR and vital signs
estimation in the healthcare domain through radar sensing technology.

- For radar-based HAR tasks, two mutually dependent perspectives were analyzed,
namely:

a) Data domains: Where different representations for the radar data were de-
scribed, such as range-time, range-Doppler, and Doppler-time, introducing the
term micro-Doppler for the last one.

b) Analyzed activities: Indicating the type of movements and activities usually
studied for HAR.

Table 2.4 summarizes some of the relevant papers reviewed for HAR in this literature
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review, with an additional discussion based on the information gathered through this
research together with the information from Appendix 6.2.

Table 2.4: Summary of some relevant radar-based studies for HAR

Paper No. activities | No. features Data d Classifier Scenario Radar type
. . . . Lab cw
Kim etal. [12] 7 6 Micro-Doppler support vector machine (SVM) 12 subjects 2.4 GHz
) . o Micro-Doppler Stacked autoenconder Lab FMCW
Jokanovi¢ etal. [23] 4 N/A Range information Softmax regression 3 subjects 25 GHz
Lietal. [24] 6 21 Mll?(:: -B?Sier SVM Lab FMEw
. gVD K-nearest neighbour (KNN) 72 subjects 5.8GHz
. . Micro-angular velocity . . Lab FMCW MIMO
Aziz et al. [26] 8 N/A Micro-Doppler Metric learning 8 subjects 77 GHz
. Lab UWB
& 2 -
Cagliyan et al. [28] 4 10 Micro-Doppler KNN 10 subjects 5.8 GHz
Shao et al. [32] 7 N/A Range information deep convolutional neural networks (DCNN) Lab UWB
T 6 subjects 3.2 GHz
Range-time o
SVM
Jia etal. [33] 6 36 Range-]?oppler Stacked autoencoder Lal? FMCW
Phase diagrams . 83 subjects 5.8 GHz
cvD convolutional neural networks (CNN)
. ey . Lab CW
Kim et al. [37] 7 N/A Micro-Doppler DCNN 12 subjects 2.4 GHz
. Lab UWB
Guendel et al. [38] 9 7 Range-Doppler Softmax regression 5 subjects 43 GHz
] ) . Lab FMCW
Zhangetal. [68] 7 N/A Micro-Doppler CNN 1 subject 77 GHz.
Dueetal. [69] 6 N/A Micro-Doppler residual Networks (ResNet) Simulation (MU Mocap
Database
. _ . Micro-Doppler long-short term memory (LSTM) Lab FMCW
Shrestha etal. [70] 6 N/A Range-time bidirectional LSTM (Bi-LSTM) 15 subjects 5.8 GHz

The main insights derived from this analysis include:

* Different data domains have distinctive sensitivity to certain types of movements,

meaning that each domain has its own limitations and advantages. Information
fusion between different domains can also be applied to enhance the classification
accuracy compared to using a single data domain. However, micro-Doppler is still
the domain most explored for HAR.

Data domains and classifiers are mutually dependent. Therefore, the optimal clas-
sifier or data representation does not exist in absolute terms, but a better perfor-
mance of their combination given a specific task or a set of them, aiming to en-
hance and ideally optimize the classification performance by exploring different
radar data representations and the matching classifier.

The efficacy of any given feature does not depend only on radar parameters, such
as the transmit frequency or the pulse repetition frequency (PRF), but also on ex-
ternal factors, such as the SNR, aspect angle, dwell time, and the classification
problem itself.

Most related work adopts indoor scenarios for a single target with various test sub-
jects, and a single radar for different human activities in the LoS and several aspect
angles from the test subject to the radar. Additionally, continuous HAR can poten-
tially be addressed by implementing a network of radars.

Activities such as sitting, bending, standing up, and falling are frequently included
for HAR since they represent indoor daily life activities that can be applied for hu-
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man life assistance. Nevertheless, the choice of activities is inherently dependent
on the application to be examined.

- For radar-based vital signs monitoring, mainly two types of signal processing tech-
niques were studied:

a) Kalman filter: Primarily examining derived variants and the linear approxima-
tion of this algorithm for non-linear cases referred to as the EKF.

b) Particle filter: Sampling-based technique to address non-linear problems like
the behavior of vital signs.

Similarly, table 2.5 summarizes a few relevant papers for healthcare applications in-
volving the estimation of vital signs, which allowed to reach important remarks listed
below.

Table 2.5: Summary of healthcare studies for vital signs estimation

Paper Vital sign Algorithm | Subject orientation | Subject distance Radar type
. FMCW
29
Suetal. [22] Breathing frequency EKF LoS 2m 77 Gz
Xu et al. [56] Heart rate AKF N/A N/A N/A
- FMCW
Arsalan et al. [58] Heart rate KF LoS 0.4m 60 GHz
CW
: o 24 GHz
Yamamoto et al. [63] | Breathing frequency PF 30 3.25m + Displacement
sensor at 0.5 m
Nathan et al. [66] Heart rate PF N/A N/A N/A

» Continuous information about the target state is usually required for assisted liv-
ing technologies. However, sequential tracking of vital signs through radar sens-
ing has not been widely investigated yet. Nevertheless, dynamic estimation of vital
signs has been addressed by applying estimators, such as the Kalman filter and the
particle filter, to data acquired from various sources.

» Extraction of vital signs through radar technology, such as breathing or heartbeat
frequencies, is typically based on frequency peak searching in the Doppler power
spectrum and/or by unwrapping the phase history of the received signal from
which the range history is computed.

e Vital signs monitoring is a nonlinear estimation problem. Nevertheless, the EKF
has proved to be a sufficient algorithm for its simplicity and efficient implementa-
tion compared to PF for radar sensing applications, where the PF is still considered
a high computational complex algorithm due to the many unknown parameters to
be estimated, and the significant number of particles to be processed on each it-
eration.

e Validation of breathing frequency and heart rate monitoring on longer distances
and different aspect angles is still required.



18 2. LITERATURE REVIEW

* As can be deduced, a perfect radar architecture for HAR and vital signs moni-
toring does not exist, and each radar system has its unique advantages and dis-
advantages. However, FMCW and UWB radars enable the possibility of measur-
ing Doppler and range to the target, in contrast to simple CW radars where only
Doppler information can be acquired. Therefore, FMCW and UWB radars are fea-
sible architectures for HAR and monitoring of vital signs.

 In both architectures, the signals sent are a function of the transmit frequency,
bandwidth, pulse duration, and the PRF. Doppler resolution depends upon the
PRF, while the transmit frequency affects the Doppler shift induced. Range reso-
lution is limited due to the signal bandwidth.

* Perfect models of vital signs do not exist, and uncertainty in monitoring tasks will
always be present independently of the estimation technique. Moreover, multiple
people and multipath environments are complex scenarios where further research
needs to be done.

As a final conclusion of this literature review, despite the extensive research done
in recent years for radar-based healthcare applications, outstanding challenges still
remain. Specifically for this thesis, to the best of the author’s knowledge HAR and vital
signs estimation have not jointly been explored into a single approach. Consequently,
a joint exploration of both aspects is proposed as follows:

* Developing and verifying a processing pipeline to recognize and segment a test se-
quence of in-place and translational activities (e.g., sitting, standing, and walking)
based on two data domains with distinctive sensitivity to certain types of move-
ment (e.g., range-time and Doppler-time). For this, an experimental campaign
with 20 participants was executed for data collection within an indoor environ-
ment.

* Evaluating the feasibility of estimating the breathing frequency when the subject is
in a static position (e.g., sitting) at different distances (e.g., 1m and 2m) in LoS with
the radar, and implementing an EKF for its simplicity and efficient implementa-
tion compared to other estimators such as the particle filter.

* Designing two different waveforms as a function of different FMCW radar parame-
ters, range and Doppler resolutions, and maximum unambiguous range and Doppler
to validate their performances for HAR and estimation of breathing frequency ac-
cording to the proposed processing pipeline.



PIPELINE FOR ACTIVITY
RECOGNITION AND BREATHING
FREQUENCY ESTIMATION

The chapter presents the proposed pipeline for recognizing human activities and estimat-
ing the breathing frequency. In Section 3.1, the overview of the proposed pipeline is de-
scribed, with an explanation of the methods implemented for activity recognition and seg-
mentation, as well as the method for estimating and monitoring the breathing frequency
in Sections 3.2 and 3.3, respectively.

3.1. PIPELINE OVERVIEW

The aim of the project is the joint recognition of human activities and the estimation
of breathing frequency, with the proposed pipeline presented in Figure 3.1. In this joint
pipeline, the differentiation between activities that involve motion and no motion of par-
ticipants is first addressed by exploring the Range-Time and the Doppler-Time domains.
After differentiation between translational and in-place activities, the pipeline for vital
signs is triggered for the in-place activities where no motion is present, aiming to es-
timate the breathing frequency of the target under study in a contactless way through
radar sensing.

19
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Joint radar sensing exploration of

HAR and estimation of vital signs

Two cases are considerid:/ \
Static Scenario
(In-place Activity)

Dynamic Scenario
(Translational Activity)

l Where the following activities are studied: l

Walking Sitting

(Motion is not present)

(Motion is present)

Targeting to: l

[

1 Segmentation is done through: l
Doppler-Time Information
1 Where the following task is done: l
Through the implementation of: l
Aiming to: l

Perform activity segmentation to estimate the breathing frequency

of a not moving person

To finally provide: l

An integrated approach of assisted living technologies

for indoor and home healthcare applications

Figure 3.1: Overview of the proposed pipeline for joint HAR and vital signs

3.2. ACTIVITY RECOGNITION AND SEGMENTATION

Assuming an indoor environment where a single person is present and is in LoS with
the radar, as shown in Figure 3.2. The reflected signal after impinging the person may
potentially contain information related to the vital signs of the target under study, since



3.2. ACTIVITY RECOGNITION AND SEGMENTATION 21

the detection of vital signs is based on the fact that the tiny physical movements of the
human body can modulate the radar signals scattered after interacting with the body
due to breathing and heart beating activities [71].

Z

Radar

k (le K;Z'I)

Figure 3.2: Geometry of a walking person in line of sight with the radar [71]

To be able to estimate the breathing frequency of the person within this environ-
ment, recognition and segmentation tasks are required to identify the activities where
the target is under motion, aiming to isolate the cases where no motion is present to en-
sure that the signal received has, as a dominant component, the lungs volume change
when the person is static and breathing and which encompasses information about vital
signs.

For tasks related to HAR and segmentation, two different scenarios are studied, namely:

e In-place: Involving a static activity where the person under study has no motion
and is static, such as sitting.

e Translational: Consisting of dynamic and static activities mixed in a sequence to
involve the person’s motion and no motion, such as walking and sitting.

More details regarding the test sequence and setup implemented for the experimen-
tal validation of the proposed joint pipeline are shared in Chapter 4.
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Based on these two scenarios, segmentation between translational and in-place ac-
tivities is done through two data domains:

* Range-Time: By taking the derivative of the subject position over time.
* Doppler-Time: Using the envelope of the spectrogram information.

To trigger the pipeline for breathing frequency estimation once these two activities
are distinguished and an in-place activity is identified.

3.2.1. RANGE-TIME INFORMATION

As described in Chapter 2, the RTI matrix is exploited to locate the target’ radial range
with respect to the radar. Furthermore, a distinction between activities where a motion
is present can be made by taking the derivative over the range-time information. An
example of the RTI matrix obtained after processing the sequence where in-place and
translational activities are jointly combined can be seen in Figure 3.3.

Distance [m]

Time [sec]

Figure 3.3: Range-Time matrix of the test sequence with walking back and forth and
in-place activities

The segmentation procedure to identify translational and in-place activities is dis-
cussed in Chapter 5. Nonetheless, it is important to mention that this differentiation is
done based on a profile similar to the one shown in Figure 3.4, after taking the derivative
of the range history and normalizing the obtained data by dividing over the maximum.
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Figure 3.4: Normalized derivative of the Range-Time information of a mixed sequence
of walking and in-place activities. This information can be used to segment the data to
isolate translational vs in-place activities

3.2.2. DOPPLER-TIME INFORMATION

The individual human body components are tracked by using the mD-spectrogram, also
known as micro-Doppler signature, which is a state-of-the-art method used to distin-
guish between different person’s activities. Therefore, to estimate the radial velocity at
which the body and limbs of the person move overtime on top of its bulk velocity, micro-
Doppler signatures are explored. An example of the mD-spectrogram obtained after pro-
cessing the test data is shown in Figure 3.5.

Frequency [Hz]

i
1] 10 20 30 40 50 60 70
Time [sec]

Figure 3.5: Spectrogram of the test sequence with walking back and forth and in-place
activities
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From the spectrogram information, it is proposed to perform segmentation based
on the envelope of the obtained signature to differentiate translational and in-place ac-
tivities through the use of the estimated shape.

Translational Activity In-place Activity Translational Activit
01 /

015 I I I I
0 10 20 30 40 50

Time [sec]

Figure 3.6: Normalized envelope of the spectrogram for the test sequence with walking
back and forth and in-place activities

As it can be observed in Figure 3.6, the spectrogram information can exhibit a pat-
tern when activities with motion and no motion are jointly studied. Consequently, the
Doppler-Time data domain could be considered as a second data domain that might
lead to successful activity differentiation and segmentation.

Further details regarding the segmentation procedure to identify translational and
in-place activities based on the spectrogram information are addressed in Chapter 5.

3.3. BREATHING FREQUENCY

Once translational and in-place activities based on Range-Time and Doppler-Time in-
formation are segmented, the pipeline for the continuous estimation of breathing fre-
quency is triggered as shown in Figure 3.7. Typically, the estimation of the breathing
frequency has been addressed by frequency peak search in the Doppler power spectrum
of the received signal, where a long observation time is usually needed. Therefore, an ex-

tended Kalman filter is proposed as studied [22] to continuously estimate the breathing
frequency of the subject under study.

Before presenting further details regarding the extended Kalman filter for the estima-

tion of breathing frequency, a brief introduction to the physiology of respiration activity
is given in the upcoming subsection.
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(b) Segments where the breathing frequency could potentially be estimated based on

Doppler-Time information (highlighted in green)

Figure 3.7: Identification of data segments to trigger the pipeline for breathing

frequency estimation

3.3.1. PHYSIOLOGY OF RESPIRATION ACTIVITY

The lungs, located in the human thorax, are the main organs responsible for human
breathing activity. A complete breathing cycling encompasses two main motions as

shown in Figure 3.8:

¢ Inhalation
¢ Exhalation
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Figure 3.8: Physiological mechanism of breathing [72]
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Lungs’ expansion leads to inhalation and their volume expansion. On the other
hand, lungs’ contraction leads to exhalation and their volume contraction. These ex-
pansion and contraction motions and the related change in the lungs’ volume can be
observed in Figure 3.9.

0.50

Lung volume

Volume
change (liters)
=)
[\e)
vl

Inhalation Exhalation

Figure 3.9: Inhalation and exhalation motions [73]

For a healthy adult, the respiratory rate can typically consist of about 6 to 18 breaths
per minute, a rate that can be translated into a breathing frequency between 0.1 to 0.3
Hz, while the displacement of prothorax induced by respiration activity ranges from 3 to
11 mm, according to [74]. Table 3.1 summarizes the information previously mentioned.

Table 3.1: Typical breathing frequencies and amplitudes of a healthy person due to
breathing activity [74]

Vital Sign Frequency | Amplitude
Breathing Activity | 0.1-0.3Hz | 3-11 mm

Similar to Su et al. [22], the movement of the skin of prothorax due to breathing
activity is modeled as a slowly time-varying sinusoidal displacement:

R ()= a, sinnf-t+¢;) (3.1)

A displacement that leads to a phase shift on the reflected waves due to respiratory
activity, and which might potentially be detected by the radar.

Therefore, and since the displacement induced by respiration activity is only several
millimeters and no range cell migration is assumed, the phase history of the beat signal
plays a key role in the estimation of the breathing frequency.

3.3.2. RADAR RESPONSE OF BREATHING FREQUENCY

Considering the sinusoidal model from Eq. 3.1 and the derivations done by Su et al.
[22, 73], the position of the surface skin of prothorax at a distance Ry can be expressed
as:

R(n) =Ry + Ry (n) (3.2)
=Ry+a,-sin@nuf,-n+¢,) '

Assuming a constant amplitude for the beat frequency, the phase history ¢, (1) over
slow-time can be written as:
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anf,
bpn(n) = ”Cf

3 4n f,

-R(n)
(3.3)
“(Ro+ay-sin@nrfr-n+d¢;))

An extra phase ¢, due to the wrapped phase caused by Ry is considered, and it can
be expressed as:

4
e=wrap ﬂcfc -Ro] (3.4)
Therefore, the phase history becomes:
4n
bpn(n) =¢e+TfC(ar-sin(2nfr-n+¢r)) (3.5)

And the range history over slow-time can be recovered from the phase history of the
beat signal as:

_ (pph(n)c
R(n) = ch

Finally, considering only respiration activity and its sinusoidal model, the beat signal
in the range cell, including Ry over slow-time can be written as:

4
s(n)=hexp(jode)-exp janc(ar -sin@nfr-n+d¢y)) 3.7)

(3.6)

Where h is the amplitude of the processed signal.

From this information, it is known that the respiration activity will change the vol-
ume of the chest cavity, resulting in the motion of the surface of the skin on the pro-
thorax. Due to the amplitudes related to respiration activity being extremely small, as
presented in Table 3.1, radar is considered to detect and monitor the relative motion of
the chest rather than its exact position.

3.3.3. EXTRACTION OF PHASE AND RANGE HISTORY

As previously presented, information regarding respiration activity can be extracted from
the motion of the prothorax’s surface and the phase information contained in the beat
signal.

Assuming that the beat signal is sampled in each chirp and stacked in rows, a raw
data matrix D[m, n] can be built, with m being the number of samples per chirp over
fast-time and n being the number of chirps over slow-time.

With a preserved coherence of the system, the exact phase history over slow-time
can be recovered since the phase information is contained in the exponential term of
the received beat signal. Additionally, phase unwrapping can be applied to extracting
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the phase history, from which the range history can be later computed based on Eq. 3.6.

The calculation of the range history can be divided into the following four steps:

1. Perform a FFT over each row of the D[m, n] matrix, resulting in the Range-Time
profile matrix RT[r, n], with r being the number of range bins over fast-time.

2. Select the desired range bin, denoted as r b, within the target is found based on a
peak power search. This signal can be expressed as s[rb, n] = argmax(RT[r, nl).

3. Extract the corresponding phase of the signal s[r b, n] and unwrap it, obtaining the
phase history ¢[r b, n].

4. Estimate the range history based on Eq. 3.6.

The process of range history extraction is summarized below in Figure 3.10.

Extract &

FFT over
fast time

Range-Time Detect Range

History

Raw Data
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phase

matrix range bin

Range Bin
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Range or Fast Time

—p

Slow Time

Figure 3.10: Range history derivation based on phase unwrapping approach

3.3.4. STATE AND OBSERVATION MODELS

The state and observation models for estimating the respiration activity parameters are
derived in this section because both models are required before introducing the predic-
tion and update steps of the EKF to estimate and monitor the desired parameters from
one sweep to another.

A NCF model is adopted for chest movement estimation and tracking due to breath-
ing activity. The choice of the NCF model is determined by its superior performance
compared to other models when the frequency varies slowly, the case expected for a
healthy person’s respiration as proposed by Su et al. [22, 73], presenting the equation
derivations from Su’s research for the mathematical analysis in this thesis.

By analyzing the structure of the measured data, Eq. 3.8 is derived from Eq. 3.7 with
a properly selected range bin, and the breathing model presented in Eq. 3.2:

y(n)=hexp(jode)-exp j4anc-(ar-sin(2nfr-n+<pr)) +u (3.8)

Where h is the amplitude of the signal, ¢, is the extra phase related to both range
and scattering properties of the human body, and u is the assumed zero mean, complex
white Gaussian noise denoted as:
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U~€N(0,0%) (3.9)

From Eq. 3.8, the unwrapped phase history y, can be expressed as:

Vi=C-assin(wit+¢)+04,+u; (3.10)

Where a;, w; and ¢; are the sinusoidal amplitude, frequency, and phase respectively.
u,; is assumed to be additive white Gaussian noise with zero mean, and the constant
factor C is given by:

_Anfe
T ¢

An average phase, 0,,, is added to this unwrapped phase history, which is caused by
the extra phase ¢,, the 27 wrapping effect of the phase history ¢, (n) at a start point of
time, and the reflection coefficient of the target under study.

C (3.11)

Eq. 3.10 shows that the unwrapped phase history obtained from the beat signal
phase has a sinusoidal shape, which corresponds to the sinusoidal breathing model from
Eq. 3.2 with a constant phase scaling factor C.

Furthermore, instead of estimating the frequency w; and the phase ¢; simultane-
ously, the angle 6, is estimated:

9t=wt-t+(l)t (3.12)

Applying Taylor series expansion to 6; and its first derivate:

. 00,
0;=— 3.13
iy (3.13)
The angle 6; can be written as:
. T? .
~ — — s —
0:=0(t—-T)+T0(t—Tg)+ ) 0(t—Ty) (3.14)
0, =0(t—To)+ T 0(t—Ts)
Where T is the pulse repetition interval (PRI). Additionally, it is assumed that:
gt =Wy
(3.15)

;= 1w, ~N0,0%)

Where 2, is the variance of the frequency w,. Similarly, the sinusoidal amplitude
ay, is approximated as:

ar=a(t—T)+ Tsa(t—1Ts)

. 2 (3.16)
ar~N0,0y)
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Based on these assumptions, the four state variables to be estimated in terms of the
phase history are: 6;, w;, a; and 0.

Where a single vector including all these variables, namely the state vector for the
NCF model, can be expressed as:

6; ]
Wy

X = (3.17)
2%

Gav,tj

With Eq. 3.14, 3.15, and 3.16, the state dynamic model is:

. . . 1 2
0, 1 T, 0 0][ 6 Lo oo
Wy 0 1 0 0 We-1 TS 0 0
= + Vs (3.18)
ar 0 0 1 O ar-1 0 T, O
_Hav,t‘ _0 0 0 1‘ _Hav,t—l‘ | 0 0 1]

Or written in a simplified form, this state model can be expressed as:

Xt = fim(xi21) + Bvg

(3.19)
=Fp(x¢-1) + B

Where:

* x; is the state vector containing the current estimates.

° x;-1 is the state vector containing the previous estimates.
° fm is called the evolution/prediction function.

 F,, is called the prediction matrix.

e B,, is called the control matrix.

° v is the vector containing the driving noises:

Vw,t
UVr=| Va,t (3.20)

V8,1

With a constant F,,, over time, the evolution function f;,, of the state vector x; is lin-
ear with the NCF model, an assumption of high importance for the derivation of the EKF.
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The covariance matrix of their driving noises can be expressed as:

g2, 0 0
0 o2 0
Q=Elvv]]= a (3.21)
2
0 0 Uﬂau

Due to the amplitude and frequency being assumed as independent variables. Hence,
both amplitude and frequency values are uncorrelated.

Finally, the observation model describing the acquired measurements can be ex-
pressed in a similar way as:

Y(@&) = gm(xg) + Uy =C-x3Sin(xy¢) + Xg,¢ + Uy (3.22)
Where:

* y; is the measurement vector containing the acquired data.
* X is the state vector containing the current estimates.

° gn is the observation function.

* u; is the measurement/observation Gaussian noise.

The covariance matrix of the observation noise u; is:

R=Elu,ull=[0?] (3.23)

Nevertheless, the observation function g, is a nonlinear function. The linearization
of the observation function can be approximated by taking the first order of its Taylor
expansion. Therefore, the corresponding Jacobian matrix is given then by:

Gm,t = —x|x—5ct|,_1 =[C- %3,y1-1€08(Z1,110-1) O C-sin(Ryee-1) Xae—1]  (3.24)

3.3.5. EXTENDED KALMAN FILTER

As mentioned in Chapter 2, the main assumptions behind the derivation of the Kalman
filter are that the estimation problem to be solved is linear and Gaussian. Under these
conditions, the Kalman filter is an optimal estimator that computes the mean and co-
variance of the true posterior density.

As the motion of respiration activity is nonlinear, an approximate solution is to lin-
earize the prediction function f;,, from the prediction step and/or the observation func-
tion g;,, from the update step of the Kalman filter.

The linearization of these functions and their corresponding effect on vital signs’ es-
timation parameters was studied by G. Su et al. [22, 73], evaluating the feasibility of
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implementing an estimator based on these approximations to monitor and track vital
signs’ parameters.

The subsequent application of this sequential estimator for a linearized respiration
activity case, referred to in the literature as EKF, to estimate the breathing frequency
from the state vector from Eq. 3.17, based on the state and observations models derived
in the previous subsection is summarized in Figure 3.11.

Extended )
f Kalman Filter I:ll

Prediction Step Update Step

Dynamics Measurements

Observation
g Breathing <":D
Frequency

Figure 3.11: Flow diagram of the implemented extended Kalman Filter

-

-

And the EKF implemented in the domain of nonlinear functions for the estimation of
breathing parameters, based on the state model derived in Eq. 3.19 and the observation
model from Eq. 3.22, is given by:

State Prediction: ;-1 = f (Xr-1¢-1)
Covariance Prediction: Py;—1 = Fy,; Pr—1j1-1 F,{m +B,Q B,fl
Kalman Gain:  K; = Pyj;—1 G}, ; Gyt Prj—1 Gy + R 7
Update Estimation: %y, = £¢;-1 + K¢ (V¢ — gm (Z112-1))
Update Covariance: P; = (I —K; Gm,t) Prjr-1
Where the state variables in the state vector from Eq. 3.17 are predicted and updated

every time an iteration is performed, having the breathing frequency as the main output
estimation.
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Finally, the pipeline for continuous estimation of breathing frequency based on the
derived extended Kalman filter is triggered once translational and in-place activities are
segmented through the exploration of the information from Range-Time and Doppler-
Time data domains, as it can be observed in Figure 3.12.
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envelope of the spectrogram (highlighted in green)

Figure 3.12: Segments for breathing frequency estimation based on the implemented
extended Kalman filter

3.4. SUMMARY

This chapter introduces the pipeline for the joint exploration of HAR and breathing fre-
quency estimation tasks. Moreover, both pipelines are discussed separately after pre-
senting the proposed joint approach, pointing out the following important information:

» For HAR: The two types of activities to be studied are: translational (e.g., walking
and standing) and in-place (e.g., sitting).

e For vitals: The breathing frequency is the estimated variable for vital signs moni-
toring.

Through Range-Time and Doppler-Time information, the differentiation between
translational and in-place activities is addressed, aiming to successfully identify them
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and locate the segments where the test subject is stationary. Then, the pipeline is trig-
gered for the estimation of the breathing frequency.

The physiology of human respiration activity was briefly illustrated, describing the
radar response in a HAR context. Consequently, for a not moving target a sequential
estimator is triggered. Prior is known as the extended Kalman Filter, to estimate and
monitor the breathing frequency based on phase unwrapping and range history estima-
tion.



MEASUREMENT SETUP AND DATA
ACQUISITION

This chapter describes the procedure followed in the experimental campaign performed
for the data acquisition, and the information to be used in the next Chapter for the ex-
perimental validation of the proposed joint pipeline. In Section 4.1, the radar parameters
and the designed waveforms to address activity recognition and segmentation, as well as
the estimation of breathing frequency, are introduced. Procedures for data collection and
sequences to be studied are mentioned in Section 4.2, while the measurement setup imple-
mented for data acquisition is illustrated in Section 4.3.

4.1. RADAR PARAMETERS

To perform the data collection campaign, the FMCW radar utilized in this project was
the Texas Instruments IWR6843, shown in Figure 4.1, operating at a carrier frequency of
60 GHz in the millimeter wave range.

35
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Figure 4.1: Texas Instruments radar IWR6843 used in this thesis

As previously mentioned in Chapter 3 and observed in Table 3.1, the amplitude of
the signal related to the respiration activity has a small magnitude. Therefore, the rela-
tive motion of the chest is monitored rather than its exact position over time, meaning
that a minimum Doppler resolution is required to capture the maximal velocity of the
weakest respiration activity. The estimation of this Doppler resolution is described in
the following subsection.

4.1.1. DOPPLER RESOLUTION FOR BREATHING FREQUENCY ESTIMATION
Recalling Eq. 3.1, the movement of the skin of prothorax due to breathing activity is
modeled as a slowly time-varying sinusoidal displacement, given by the expression:

R ()= a,-sin@nf, - t+¢;) (4.1)

Therefore, the maximal velocity of the weakest respiration activity corresponds to:

Ur,mi —max(dRr(t)) (4.2)
rnmin — dt .
By taking the derivative over time and applying chain’s rule, Eq. 4.2 becomes:
Urmin = mMax (ar,min '27Tfr,min : COS(Zﬂfr,min “r+ (,br)) (4.3)

As the maximum of a cosine function is equal to 1, and &, ;;;, and f; i, are time
independent variables, this expression can be simplified to:

UVr,min = ®r,min 'Z”fr,min (4.4)
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Substituting @, ;i = 0.003 m and f; i, = 0.1 Hz from Table 3.1 into Eq. 4.4, the
maximal velocity calculated for the weakest respiration activity is around 0.0019 m/s.
Consequently, in order to measure this maximum velocity, a Doppler resolution Av;, ;i
of at least 0.0019 m/s is required to be able to track the weakest respiration activity of a
healthy person. Moreover, the minimum frame duration to ensure a coherent processing
interval, T¢py, is given by:

A
Tepr=—— (4.5)
2-Avymin

This must be at least 1.31 seconds with an FMCW radar operating at a carrier fre-
quency of 60 GHz. Additionally, as the minimum breathing frequency of a healthy per-
son is around 0.1 Hz, an observation time higher than 10 times the T¢cp; is proposed to
ensure that at least half of the period of the weakest respiration frequency can be cap-
tured by the radar.

4.1.2. DESIGNED WAVEFORMS

Based on the requirements for Doppler resolution and the minimum duration of the co-
herent processing interval, two different waveforms were designed to test their capabili-
ties and overall performance on a test sequence where HAR and estimation of breathing
frequency are jointly explored. Figure 4.2 depicts a single chirp and the main associated
parameters for the waveforms design employing the TI IWR6843 radar.

ADC Start
t

Freq Slope (S)

Idle Time

Figure 4.2: Single chirp and related parameters from TI IWR6843 radar [75]

As chirps are usually sent as a set or burst rather than individually, structures similar
to the one shown in Figure 4.3 will be considered. These are referred to as 'frames’.
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Inter frame time

Frame Period

Figure 4.3: Single frame structure from TI IWR6843 radar [75]

The velocity resolution is expressed as:

A
A= ——— (4.6)
2 Tframe
With A = ¢/ f¢ and T'f4me approximated as:
Tfmme = Nchirp * Tchirp 4.7

Where N,p;rp is the number of chirps sent in a single frame with a certain Ty, time
duration.

The duration of a single chirp is given by:

Tenirp = Tidie + Tramp (4.8)

From Figure 4.2, T;4pmp is the effective time the transmitter is ON while sending a
single chirp, and it can be defined as the chirp cycle time minus the idle time. The range
resolution and maximum unambiguous range for both designed waveforms are set to
be the same, 5¢m and 6.4m, respectively, according to Table 4.1, focusing on the velocity
resolution to monitor the relative motion of the chest rather than its exact position for
the estimation of vital signs, and the maximum unambiguous velocity of the person to-
wards the radar for activity recognition and segmentation.

The range resolution is calculated as:

AR= -2 4.9)
2B
With B being the bandwidth, which is given by:
B=S8Tramp (4.10)

Where S refers to the frequency slope from Figure 4.2. As it can deduced from Eq. 4.9
and Eq. 4.10, Tyqmp plays a key role in the definition of the range resolution AR, as these
two quantities are inversely proportional, meaning that any increase of Trapp will lead
automatically to a finer AR.

However, as the maximum unambiguous range is determined by:
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Riax = Napc-AR (4.11)

Where Nypc is the number of ADC range samples per chirp; any increase of Tygmp
will also lead to a decrease in the Ry, 4. Moreover, as the maximum unambiguous veloc-
ity can be estimated as:

A
Vinax T Toniry (4.12)

T;amp plays an important role as well in the definition of the Viy,4x.

Essentially, the number of chirps N¢p;irp and the idle time T;4;. could potentially
have a major impact based on Eq. 4.6, 4.8 and 4.12 for both the maximum unambiguous
velocity V,4x and the velocity resolution Av.

Summarizing, as shown in Table 4.1 and as stated at the beginning of this Chapter,
two waveforms were designed:

* Waveform 1: Developed to have a sufficient maximum unambiguous velocity to
differentiate between translational and in-place activities, sacrificing the velocity
resolution needed for vital signs. This might result in a side effect while capturing
the relative motion of the chest surface for breathing frequency estimation.

This waveform will be referred to as W1: HAR + Vital Signs for future reference.

° Waveform 2: Built to focus on having a proper velocity resolution to capture the
weakest/smallest respiration activity of the test subject, which might compromise
the satisfactory differentiation between translational and in-place activities due to
resulting potential Doppler ambiguity.

This waveform will be referred to as W2: Vital Signs for future reference.

The overall performance of the two waveforms under the test conditions proposed
in the following subsection is fully described in Chapter 5.
Based on Table 4.1, it is important to point out the following:

* Due to the operational conditions of the TI IWR6843 radar, the maximum achiev-
able bandwidth is 4000 MHz, 255 chirps per frame, and a maximum frame dura-
tion of 1.342 seconds.

° As the key parameter to monitor the breathing frequency is the velocity resolu-
tion, for W2: Vital Signs the total chirp duration is designed to make it as long as
possible, to achieve the required velocity resolution derived in Subsection 4.1.1.

* However, as the ramp time is directly proportional to the bandwidth, idle time is
the key parameter to adapt to accomplish the required resolution.

* Furthermore, as the maximum unambiguous velocity is inversely proportional to
the chirp duration, W1: HAR + Vital Signs is designed to have at least 1 m/s as
maximum unambiguous velocity, an assumption made based on the test condi-
tions developed for this experiment and the average velocity of a person walking.

* As mentioned, it is not necessary to know the chest’s exact position to estimate
breathing frequency. Therefore, a range resolution of 5 cm with a maximum un-
ambiguous range of 6.4 m is set to both waveforms, sufficient to track the person
in the proposed indoor environment to be described in the upcoming subsections.
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Table 4.1: Summary of the key parameters of the two designed waveforms

Parameters W1: HAR + Vital Signs | W2: Vital Signs
Carrier Frequency [GHz] 60 60
Frequency Slope [MHz/us] 30 30
Number of ADC samples per chip 128 128
Ramp Time [us] 100 100
Idle Time [us] 900 5160
Chip Duration [us] 1000 5260
Number of chirps per frame 255 255
Frame Duration [s] 0.255 1.341
Bandwidth [MHz] 3000 3000
Range Resolution [cm] 5 5
Max. Unamb. Range [m] 6.4 6.4
Velocity Resolution [m/s] 0.0098 0.0019
Max. Unamb. Velocity [m/s] 1.25 0.2376

4.2, DATA COLLECTION CAMPAIGN

To test the proposed joint pipeline for HAR and estimation of breathing frequency, two
different scenarios are studied with both waveforms derived in the previous subsection.
The two proposed scenarios are:

* In-place scenario: With the test subject sitting at Im and 2m in LoS with respect to
the radar as an isolate motion, aiming to test the capabilities of both waveforms
for the estimation of breathing frequency at different distances.

* Translational scenario: With the test subject walking and sitting in LoS with re-
spect to the radar, performing a sequence where motions are jointly combined,
aiming to test the capabilities of both waveforms for the estimation of breathing
frequency at different distances and the correct recognition and segmentation of
the activities based on Range-Time and Doppler-Time information.

Consequently, 6 different tests were performed, whose description is provided below
and its sequence is summarized in Table 4.2.

Table 4.2: Sequence of the tests performed for the data collection

Waveform In-place at Im | In-place at2m | Translational
W1: HAR + Vital Signs Test 1 Test 2 Test 5
W2: Vital Signs Test 3 Test 4 Test 6
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° Test1:

Scenario: In-place

Activity: Sitting

— Waveform: W1 - HAR + Vital Signs
Test duration: 30 sec

Sequence: Sitting at approx. at 1m

* Test 2:

— Scenario: In-place

— Activity: Sitting

— Waveform: W1 - HAR + Vital Signs
— Test duration: 30 sec

— Sequence: Sitting at approx. at 2m

* Test 3:

Scenario: In-place

Activity: Sitting

- Waveform: W2 - Vital Signs

Test duration: 30 sec

Sequence: Sitting at approx. at 1lm

* Test 4:

- Scenario: In-place

— Activity: Sitting

- Waveform: W2 - Vital Signs

— Test duration: 30 sec

— Sequence: Sitting at approx. at 2m

* Test5:

Scenario: Translational

Activity: Walking + Sitting

— Waveform: W1 - HAR + Vital Signs

Test duration: 70 sec

Sequence: Walking back and forth until 4.5m and sitting at 1m facing the
radar in 15 sec + Breathing for 20 sec + Walking back and forth until 4.5m
and sitting at 2m facing the radar in 15 sec + Breathing for 20 sec
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* Test 6:

Scenario: Translational
Activity: Walking + Sitting
— Waveform: W2 - Vital Signs
Test duration: 70 sec

Sequence: Walking back and forth until 5m and sitting at 1m facing the radar
in 15 sec + Breathing for 20 sec + Walking back and forth until 5m and sitting
at 2m facing the radar in 15 sec + Breathing for 20 sec

Additionally, in the data collection campaign implemented, data from 20 different test
subjects were acquired, with 7 females and 13 males between 23 and 37 years old repeat-
ing each test 3 times, summing up a total of 18 tests per subject. Appendix 6.2 shows in
Table 6.9 the gender, age, height, weight, body mass index (BMI), and clothes worn by
each of the volunteers during the data acquisition process.

4.3. MEASUREMENT SETUP

A measurement setup in the indoor environment shown in Figure 4.4 was implemented
to execute the data collection campaign. Here, as stated previously, test subjects were
requested to perform the tests from Table 4.2.

Figure 4.4: Indoor environment for data collection
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Furthermore, a respiration belt of the model shown in Figure 4.5 was utilized to mea-
sure the true breathing frequency of the person, to be assessed against the estimated
values from the EKF.

Figure 4.5: Respiration belt used for ground-truth [76]

Part of the in-place and translational sequences completed by each participant in the
described measurement setup can be observed in Figures 4.6 and 4.7, respectively.

Respiration
Belt ;

Figure 4.6: Example of in-place activity, i.e. sitting
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Figure 4.7: Example of translational sequence, i.e. subject walking towards the radar

4.4, SUMMARY

This chapter fully illustrates the setup and measurement campaign developed for the
experimental validation of the proposed joint pipeline for HAR and breathing frequency
estimation. The importance of different radar parameters, especially the Doppler resolu-
tion, for estimating breathing frequency is introduced, deriving two different waveforms
to evaluate their performance for activity segmentation and monitoring vital signs. For
the data collection campaign, the two sequences of activity performed by each test sub-
ject are explained, pointing out the test conditions and the goals behind exploring both
scenarios:

e For the in-place scenario: The goal is to test the capabilities of the designed wave-
forms to estimate the breathing frequency at different distances based on the out-
put from the EKF, requesting the test subjects to sit at Im and 2m in LoS with

respect to the radar to isolate any likely motion or random body movement.
e For the translational scenario: Similar to the previous case, the goal is to test the ca-

pabilities of both waveforms for the estimation of breathing frequency at different
distances and the correct identification and segmentation of translational and in-
place activities based on Range-Time and Doppler-Time information, asking the
participants to walk and sit in LoS with respect to the radar executing a sequence
where motion and no motion are jointly combined.

For ground truth, a respiration belt is worn and used to estimate the breathing fre-
quency of each participant. Moreover, sequences are timed to know the exact points
where each test subject switches between translational and in-place activities.



DATA ANALYSIS AND
EXPERIMENTAL VALIDATION

The experimental validation of the proposed joint pipeline for HAR and breathing fre-
quency estimation is described in this Chapter, based on the experimental campaign con-
ducted in Chapter 4. Section 5.1 examines the estimation of breathing frequency for an
in-place scenario. In addition, the case with translational and in-place activities jointly
combined in a test sequence is presented in Section 5.2, deriving activity segmentation,
and the feasibility of estimating breathing frequency through Range-Time and Doppler-
Time data domains.

5.1. IN-PLACE SCENARIO

For the in-place scenario, as shown in Figure 3.10, the first step before estimating the
breathing frequency of the test target is to obtain the chest surface’s range history based
on phase unwrapping from the range bin within the target is found after a peak power
search.

The estimated range history is utilized during the update step to refine the estimate
of the state variables with the available radar measurements. Therefore, as expected,
data quality significantly impacts the overall performance of the employed extended
Kalman filter and the correct estimation of the target’s breathing frequency.

Once the range history is calculated, the extended Kalman filter is initialized to have
as its primary output the breathing frequency of the test subject, continuously running

the prediction and update steps of this sequential estimator as illustrated in Figure 3.11.

Based on experimental validation and the suggested initialization values from [22],
the state vector and the covariance matrix of the extended Kalman filter are initialized

45
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as specified in Table 5.1, with fj, = 0.3Hz and @ = 11mm being the upper limits of the
breathing frequency and amplitude of a healthy person’s respiration activity according
to Table 3.1, values utilized in all the tests analyzed in this study.

Table 5.1: Initialization values of the extended Kalman filter

0; Wy ar 0,4 v,t
State Vector 2n 27 fp a 0
Covariance Matrix | 72-1le4 (27sz)2 -1e4 | 0.003%-1e4 | 0.008%-1e4

Moreover, the error between the true and the estimated breathing frequency to quan-
tify the difference between them is calculated as:

m here

* ais the true breathing frequency from the respiration belt in Hz.
* bis the estimated breathing frequency from the extended Kalman filter in Hz.

la— bl
Error[%] = ——-100 (5.1)
a

Defining a successful convergence once the deviation of the estimated breathing fre-
quency is between +/- the current estimation, and the error between the ground truth
and output estimation is lower than 10 %.

For this static scenario, the test target remains in sitting position at 1m and 2m in
LoS with the radar. The results obtained with both designed waveforms, W1: HAR + Vital
Signs and W2: Vital Signs, at 1m and 2m are discussed in subsections 5.1.1 and 5.1.2,
respectively, with respiration rate monitoring considered as vital signs.

5.1.1. BREATHING FREQUENCY ESTIMATION AT 1M

As the first experimental validation, the target’s breathing frequency estimation is stud-
ied for the in-place scenario at a test distance of 1m, where no activity segmentation
tasks are required.

Hence, the corresponding range histories is obtained with both waveforms (e.g., W1:
HAR + Vital Signs and W2: Vital Signs) at 1m for the same test subject can be observed in
Figures 5.1 and 5.3, with the first figure being the case for the waveform W1: HAR + Vital
Signs, and the second figure showing the case for the waveform W2: Vital Signs.

As waveform W1: HAR + Vital Signs is designed to have a sufficient maximum unam-
biguous velocity to differentiate between translational and in-place activities, it presents
the disadvantage of a poor velocity resolution which does not allow capturing the rela-
tive motion of the chest surface for breathing frequency estimation independently of the
distance, due to the same behavior was observed at the test distance of 2m.
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Figure 5.1: Range history with waveform W1: HAR + Vital Signs at 1m shows the target’s
range displacement

Consequently, the data collected leads the extended Kalman filter to converge to an
incorrect breathing frequency, as shown below in Figure 5.2.

This behavior is expected as the measured data does not provide quality information
about the target’s range history during the update step, where the radar data is used to
refine the estimate with the available measurements.

A potential solution, as shared in Chapter 4, is to employ chirps with longer durations
to improve the velocity resolution. More specifically, the idle time could be increased
to maintain the bandwidth specified in Table 4.1 since an increment in the ramp time
would directly impact the bandwidth and decrease the maximum unambiguous range.
However, increasing the chirp idle time reduces the maximum unambiguous velocity,
one of the main constraints of waveform W2: Vital Signs.

Nevertheless, waveform W2: Vital Signs is parameterized to have the minimum re-
quired velocity resolution to capture the test subject’s smallest respiration displacement
and shows its capabilities for this first case of study at 1m. The obtained range history
for the same test subject using waveform W2: Vital Signs can be seen in Figure 5.3, and
the output estimation from the extended Kalman filter is displayed in Figure 5.4.

Additionally, Figure 5.5 shows the results obtained for the 20 participants and the
3 tests performed by each subject, with the corresponding data of Tables 6.1 and 6.2
(Appendix 6.2).
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Figure 5.2: Estimated breathing frequency with waveform W1: HAR + Vital Signs for a

participant at 1m
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Figure 5.3: Range history with waveform W2: Vital Signs for a participant at 1m,
showing the target’s range displacement
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Figure 5.4: Estimated breathing frequency with waveform W2: Vital Signs for a
participant at 1m, showing the target’s range displacement
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Figure 5.5: Estimated errors for all the participants and tests with waveform W2: Vital
Signs for the in-place sequence, i.e. participants sitting at 1m
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5.1.2. BREATHING FREQUENCY ESTIMATION AT 2M

For the in-place scenario at 2m, the obtained range history from the test subject analyzed
in the previous section is presented in Figure 5.6, where a similar low quality data pattern
is observed with the waveform WI1: HAR + Vital Signs, as in the case at 1m.

10

8t J

Range history [mm]

10 . . . . .
0 5 10 15 20 25 30

Time [sec]

Figure 5.6: Range history with waveform W1: HAR + Vital Signs for a participant at 2m,
showing the target’s range displacement

Similarly, the poor resolution of the extracted range historyleads the extended Kalman
to converge to a false breathing frequency, which it is demonstrated in Figure 5.7.

In contrast, waveform W2: Vital Signs still presents a sufficient resolution to capture
the test subject’s respiration activity at the test distance of 2m. Nevertheless, the degra-
dation of the range history quality can evidently be noticed as the distance increases.

The measured range history and the output breathing frequency from the extended
Kalman filter with waveform W2: Vital Signs are shared in Figures 5.8 and 5.9, respec-
tively.

The estimated breathing frequencies for the 20 participants and the 3 tests performed
by each subject are summarized in Tables 6.3 and 6.4 (Appendix 6.2), and the calculated
errors between the ground truth and output estimations from the extended Kalman fil-
ter can be seen in Figure 5.10.

However, it is relevant to mention that even though for this in-place scenario at 2m
the estimated breathing frequencies converged according to the defined criteria, an av-
erage of 7/10 tests failed due to the explicit degradation of the reconstructed range his-
tory, an important finding to be considered for the following translational sequence.
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Figure 5.7: Estimated breathing frequency with waveform W1: HAR + Vital Signs for a
participant at 2m
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Figure 5.8: Range history with waveform W2: Vital Signs for a participant at 2m,
showing the target’s range displacement
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Figure 5.9: Estimated breathing frequency with waveform W2: Vital Signs for a
participant at 2m
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Figure 5.10: Estimated errors for all the participants and tests with waveform W2: Vital
Signs for the in-place sequence, i.e. participants sitting at 2m
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5.2. TRANSLATIONAL SCENARIO

As stated in Chapter 3, to estimate the breathing frequency of a person within an in-
door environment, recognition and segmentation between activities where motion is
involved are required, to isolate the segments where no motion is present to ensure that
the signal reflected back to the radar after interacting with the human body encompasses
information about vital signs [71].

Hence, this section introduces the procedure followed for the crucial segmentation
between in-place and translational activities, aiming to trigger the EKF for breathing fre-
quency estimation once an in-place activity (e.g., sitting) is distinguished from the trans-
lational ones (e.g., walking and standing).

5.2.1. ACTIVITY RECOGNITION AND SEGMENTATION

After reviewing the designed waveforms’ performance (e.g., waveform W1: HAR + Vital
Signs and waveform W2: Vital Signs) for breathing frequency estimation in an in-place
scenario (e.g., sitting), a test sequence jointly exploring in-place (e.g., sitting) and trans-
lational (e.g., walking and standing) activities is proposed to test the waveforms’ capa-
bilities for recognition and segmentation tasks based on Range-Time and Doppler-Time
information.

RANGE-TIME INFORMATION

As mentioned above, one of the proposed segmentation methods to distinguish between
translational and in-place activities is done by exploring the Range-Time data domain.

By taking the derivative, as proposed by Guendel et al. [77], of the subject position
over time and normalizing the obtained profile by its maximum, a shape similar to the
one shown in Figure 5.11 is obtained for the waveform WI1: HAR + Vital Signs based on
the RTI matrix from the left side.

Comparably, the profile reproduced with the waveform W2: Vital Signs after follow-
ing the same procedure can be seen in Figure 5.12.

Based on the available data from the executed data campaign, a threshold equal to
0.2, drawn in Figure 5.13 only for the derived profile of the Range-Time information with
waveform WI: HAR + Vital Signs, can enable to separate the activities where motion is
present, translational or walking activity in this study, from the activities where no mo-
tion of the test subject exists, in-place or sitting exercise, in the evaluated test sequence.
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Figure 5.11: Range-Time information with the waveform W1: HAR + Vital Signs
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Figure 5.12: Range-Time information with the waveform W2: Vital Signs
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Figure 5.13: Threshold found based on Range-Time information and experimental
validation for activity segmentation
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Furthermore, it is noticeable that for both cases, the Range-Time information is not
influenced by the velocity resolution’s constraints from both developed waveforms, and

the segmentation to divide the in-place and translational activities can be achieved based
on this data domain as shown in Figure 5.14.
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(a) Segmentation between translational and in-place activities based on Range-Time information
with the waveform W1: HAR + Vital Signs
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(b) Segmentation between translational and in-place activities based on Range-Time information
with the waveform W2: Vital Signs

Figure 5.14: Segmentation between translational and in-place activities based on
Range-Time information with the developed waveforms
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Thus, once the segments between the different types of activities are identified, the
pipeline for the estimation of breathing frequency based on the derived extended Kalman
filter is triggered, restricting the filter to run continuously only in the segments where an
in-place activity is detected based on the Range-Time information, as illustrated in Fig-
ure 5.15.
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Figure 5.15: Segments to apply the extended Kalman filter based on Range-Time
information with the waveform W1: HAR + Vital Signs

DOPPLER-TIME INFORMATION

The second data domain applied to differentiate between translational and in-place ac-
tivities is the Doppler-Time information, making use of the envelope of the reconstructed
spectrogram after the test subject performs the requested sequence.

In Figure 5.16, the envelope of the micro-Doppler signature from one of the test sub-
jects is displayed, reconstructed with the Doppler-Time information from the left side
with waveform W1: HAR + Vital Signs.

The envelope information based on waveform W1: HAR + Vital Signs can be used
for activities’ differentiation and segmentation. A threshold equal to 0.02 was obtained
experimentally using the test data, enabling the separation of the in-place and transla-
tional activities, as illustrated in Figure 5.17.
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Figure 5.16: Doppler-Time information with the waveform W1: HAR + Vital Signs
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Figure 5.17: Threshold found based on Doppler-Time information and experimental
validation for activity segmentation

Nevertheless, this segmentation capability from waveform W1: HAR + Vital Signs is
not sufficient for the proper estimation of the breathing frequency, as it was demon-
strated in the in-place scenario that this waveform presents the disadvantage of a poor

velocity resolution, leading the extended Kalman filter’s estimation to converge to a false
breathing frequency.
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On the other hand, the obtained spectrogram and envelope with the waveform W2: Vi-
tal Signs are shown in Figure 5.18, where no differentiation is possible between transla-
tional and in-place activities through Doppler-Time information due to the maximum
ambiguous velocity of this waveform.
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Figure 5.18: Doppler-Time information with the waveform W2: Vital Signs

5.2.2. BREATHING FREQUENCY ESTIMATION

Throughout the work, a fundamental investigation of the vital detection capabilities with
respect to the applied radar waveform setting can be concluded. Hence, waveform W2:
Vital Signs is the only one capable of capturing the chest surface motion due to respira-
tion activity and the Range-Time domain information, compared to the Doppler-Time
domain, allows a satisfactory segmentation where classification between translational
and in-place activities can be done to trigger the pipeline for the estimation of breathing
frequency.

Figure 5.19 shows the calculated errors between the ground truth and the output esti-
mation from the extended Kalman filter for this case at 1m distance, leaving aside the
results at 2m due to its low converging rate.

Further comments regarding this choice are shared in the following summary section.
Nonetheless, all the numerical results obtained at 1m and 2m are shared in Tables 6.5,
6.6, 6.7, and 6.8, in Appendix 6.2.
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Figure 5.19: Estimated errors for all the participants and tests with waveform W2: Vital
Signs for the translational sequence based on Range-Time segmentation with
participants sitting at 1m

5.3. SUMMARY

Based on Sections 5.1 and 5.2, Figures 5.20 and 5.21 summarize the results for the cases
assessed in this chapter.
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Figure 5.20: Visual capability summary of the obtained results with waveform
W1: HAR + Vital Signs
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Figure 5.21: Visual capability summary of the obtained results with waveform
W2: Vital Signs
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From these figures, the main conclusions that can be drawn are:

- In-place scenario:

* Waveform W1: HAR + Vital Signs, with a velocity resolution of 0.0098 m/s does not
have a sufficient velocity resolution to estimate breathing frequency correctly.

* Waveform W2: Vital Signs does, with a velocity resolution of 0.0019 m/s.

- Translational scenario:

Waveform W1: HAR + Vital Signs allows activities identification and segmentation
through both Range-Time and Doppler-Time domains, with a range resolution of
5c¢m, a maximum unambiguous range of 6.4m and a maximum unambiguous ve-
locity of 1.25 m/s. Nonetheless, the estimation of breathing frequency is not pos-
sible due to its poor velocity resolution as stated before.

Waveform W2: Vital Signs allows activities identification and segmentation only
through Range-Time domain, due to this waveform has the same range resolu-
tion and maximum unambiguous range as W1: HAR + Vital Signs. However, the
Doppler-Time information is subject to a poor maximum unambiguous velocity
of 0.2376 m/s, as a consequence of having a finer velocity resolution.

Therefore, as segmentation between different activities cannot be done with Doppler-
Time information, the pipeline for breathing frequency estimation cannot be trig-
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gered with this data domain and waveform W2: Vital Signs.

» The differentiation between translational and in-place activities based on Range-
Time information and the waveform W2: Vital Signs allows to trigger the pipeline
for breathing frequency estimation, subject to deal with the signal degradation as
the distance from the test subject to the radar increases.

* The signal showed a clear degradation pattern at the test distance of 2m, leading
to a low convergence rate of the extended Kalman filter for breathing frequency
estimation, with 7 out of 10 tests converging to a false breathing frequency value.




RESULTS AND FUTURE WORK

As closure for this thesis, Section 6.1 summarizes the key results found during the research.
Finally, a few recommendations for future work are shared in Section 6.2, mentioning
several directions of work to pursue.

6.1. RESULTS

The main results of the proposed joint HAR and breathing frequency estimation pipeline
can be summarized as follows:

1. HAR and vital signs estimation have been studied separately, treated as two dif-
ferent research fields according to the current radar literature. This work imple-
ments a unified processing pipeline to combine both tasks given a sequence of
radar data.

2. For classification tasks, Range-Time and Doppler-Time data domains are imple-
mented to distinguish between translational and in-place activities, showing that
Range-Time information is sufficient to differentiate activities with a moving sub-
ject within an indoor environment, independently of the maximum unambiguous
velocity and resolution of the designed waveform.

3. Asvelocity resolution is the crucial parameter to monitor breathing frequency suc-
cessfully, a trade-off between maximum unambiguous velocity and velocity reso-
lution exists with the used radar due to both being inversely proportional. A finer
velocity resolution eases the estimation of breathing frequency, compromising a
satisfactory differentiation between translational and in-place activities based on
Doppler-Time information.

4. Estimation and continuous monitoring of the breathing frequency are possible
through a sequential estimator such as the extended Kalman Filter. However, con-
verging to the actual value depends on achieving a proper Doppler resolution and
along enough coherent processing interval to capture the chest surface’s smallest
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motion due to respiration activity. It is also important to point out that these two
requirements might be subject to radar hardware performance limitations.

5. Degradation of the signal (i.e. lower SNR) as the distance increases has an essential
impact on the performance of the extended Kalman Filter, where converging to
the actual breathing frequency can be challenging. In this case, assuming proper
design and choice of a waveform able to measure vital signs and capture the range
history of the chest surface, different initialization values for the state vector and
covariance matrix might potentially help the filter to converge under this noisy
conditions once the segments where the test subject is static and not moving are
fully identified.

6.2. RECOMMENDATIONS FOR FUTURE RESEARCH

Based on the results from this thesis project, some recommendations for future research
are proposed as follows:

- Human activity recognition

 Exploration of other radar data domains for classification and segmentation tasks,
evaluating their capabilities to separate different types of translational and in-
place activities, and including critical scenarios that might appear in a real indoor
environment, such as falling or falling while sitting down, where immediate action
might be needed after their successful identification.

* Dealing with unconstrained continuous sequences, where transitions and dura-
tions between each activity are not fixed and pre-defined over time.

» Evaluate more complex scenarios that might include multiple targets and noisy
backgrounds, clutter, and even multipath effect.

* Investigation and implementation of machine/deep learning algorithms for clas-
sification tasks, where micro-Doppler signatures could also be considered for pre-
dicting vital signs based on regression models.

* Modern cognitive radar techniques could be researched to correctly manage and
adapt the radar parameters to match them with the desired task: activity identifi-
cation and triggering of the pipeline for estimating and monitoring the vital signs
of the test subject(s).

- Breathing frequency estimation

* Investigate the impact of different initialization values for the mean and variance
of the state variables and driving noises of the extended Kalman filter, aiming to
evaluate how this initialization can affect/improve the monitoring of the target’s
breathing frequency.

* Design and implement other sequential estimators, such as the Particle Filter, to
evaluate their behavior and robustness within this type of non-linear estimation
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problem, their computational complexity, and overall performance compared to
the extended Kalman filter employed in this research.

* Validation of breathing frequency on longer distances from the radar and unfa-
vorable aspect angles, extending current capabilities to successfully include and
monitor other vital signs such as heartbeat and blood pressure.

* Evaluate the impact of different layers of clothing worn by the test subjects and
different orientations of the targets with respect to the radar, such as side, rear, and
top view, on the estimation of the breathing frequency and any other integrated
vital sign.

* Verify the impact of possible micro motions and the influence of random body
movement from the test subjects in the final estimation results. These effects may
be present in any testing environment, and their correct identification could be
considered in the design of any pipeline aiming to achieve the proper estimation
and tracking of vital signs.
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APPENDIX A

In this appendix, literature regarding feature extraction and selection methods is shared,
along with a brief description of different algorithms currently used for human activity
recognition and classification based on machine and deep learning techniques. While
these techniques were not directly applied in this thesis, they have been reviewed and hence
are reported here for future work reference.

FEATURES EXTRACTION AND SELECTION

Features are discriminating properties of the object signatures, expressed in numerical
values, that enable its classification. For features extraction, significant research exists
on statistical features extracted from spectrograms. As addressed in Chapter 2, micro-
Doppler seems to be most commonly used over other data domains [78]. Features pro-
posed in the literature can be divided into several basic types [78]:

* Physical/handcrafted features: These derive quantities based on the physical char-
acteristics of the target and its motion. Physical features, like the ones imple-
mented by Kim and Caglhiyan et al. [12, 28], can include average torso Doppler
frequency, total Doppler bandwidth, and torso frequency; while features extracted
from the CVD include torso power, harmonic frequencies, and harmonic power.
Other features inspired by 2D image representations have been explored by Fio-
ranelli et al. [79] implementing centroid features for classification, and by Clemente
et al. [80] using Pseudo-Zernike moments. Textural features extraction was stud-
ied by Shi et al. [81] based on targets’ spectrograms to calculate the entropy and
third-order moment of the statistical histogram to obtain features representing the
characteristic of micro-motion targets. The histogram of oriented gradients (HOG)
was addressed by Guendel et al. [25] combined with a phase-based classification
for arm gestures and gross-motor activities.

» Transform/decomposition-based features: Which use the coefficients of differ-
ent transforms as features. Commonly used transform-based features include FFT,
and discrete cosine transform (DCT) coefficients generally computed from spec-
trograms. For instance, Molchanov et al. [82] classified ground moving targets
using DCT coefficients extracted from micro-Doppler radar signatures with a mul-
tilayer perceptron (MLP) classifier based on artificial neural networks (ANN).

* Component analysis features: Where the basis computed from algorithms is uti-
lized as features. Component analysis techniques, such as the PCA by Erol et al.
[83], and the singular value decomposition (SVD) by de Wit et al. [84], are part of
this category.
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* Speech features: Designed to process speech signals but implemented for human
activity classification as well. Examples of features in this category are melody-
frequency cepstral coefficients (MFCC) by Erol et al. [85], and linear predictive
coding (LPC) by Giirbiiz et al. [78], where the coefficients are directly computed
from the raw I/Q data.

Potentially, hundreds of features may be extracted from micro-Doppler signatures
and other data domains. However, the combination of all these features does not nec-
essarily lead to optimal classification performance. As a result, and as features work
as the input of the classifiers, their optimization is required and done through a tech-
nique called “feature selection”, which aims to remove redundant or correlated features
to improve the accuracy of the classification and reduce the computational load. Feature
selection algorithms can be categorized into three main strategies [24, 78]:

* Wrapper methods: These methods consider the different combinations of feature
space with a specified classifier. The error rate is used then to find the result with
the highest accuracy. Due to the fact that each subset needs to be trained, wrapper
methods are normally computationally expensive.

* Filter methods: These techniques based their operating principle on evaluating
the intrinsic relevance between features based on the metric of class separability,
scoring the feature subset, and selecting the features with the highest scores. One
of the advantages of filter methods is their independency of the type of classifier.

* Embedded methods: Where feature selection is integrated with the classification
algorithm.

Itis important to mention that the efficacy of any given feature does not depend only
on the radar parameters, such as the transmit frequency or the PRF, but also on external
factors, such as the SNR, aspect angle, dwell time, and the classification problem itself
[78].

ALGORITHMS FOR HUMAN ACTIVITY RECOGNITION

Models for human activity recognition and classification can be categorized into two
types of algorithms: machine learning (ML) and deep learning (DL) algorithms, where
deep learning techniques are essentially a subset of machine learning. Conventional
machine learning algorithms, such as SVM or KNN, are mostly used for classification
based on handcrafted features, while deep learning algorithms, such as neural networks,
focus on classification through data representation as 2D images or temporal sequences.

* Firstly, and as mentioned above, supervised ML algorithms such as KNN [34], SVM
[12], Random-Forest [86], Naive Bayes [87], and may more, are compatible with
handcrafted features. In comparison with neural networks, these algorithms are
relatively easy to train since DL techniques generally have hundreds of parameters
to be trained.

On the other hand, the tendency to use DL techniques to approach radar-based
HAR has increased as a result of the fact that supervised ML algorithms work with
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high dimensionality, which represents the total number of input variables or fea-
tures for a given dataset Therefore, handcrafted features may not fully represent
all the information required for a satisfactory classification.

* For activity recognition using 2D images as data representation, CNN, including
multiple convolution layers, are the primary architectures and have been employed
by Zhang et al. [68]. Other popular CNN architectures, such as ResNet, have been
adapted by He et al. [88] or directly re-utilized for transfer learning tasks as done
by Du et al. [69]. CNN with deeper layers, known as DCNN, have also been used to
address human detection and activity classification as done by Kim et al. [37].

Combinations of neural network blocks have been explored as well, seeking archi-
tectures containing the benefits of different blocks as addressed by Seyfioglu et al.
[89], where the structure of a convolutional layer with an autoencoder was imple-
mented for radar-based classification of aided and unaided human activities.

* Regarding temporal sequences, popular choices for HAR classifiers are recurrent
neural networks (RNN) and variants like the LSTM, plus other alternatives like the
gated recurrent unit (GRU). For instance, Bi-LSTM by Shrestha et al. [70] and LSTM
by Li and Klarenbeek et al. [90] [91] have been studied for human activity and gait
classification. Moreover, and as previously described, architectures that handle a
unique data representation can potentially benefit from their merge as shown by
Wang et al. [92], where a sequence of 2D image data representations was processed
by a hybrid CNN-RNN architecture, utilizing the CNN to extract out high dimen-
sional features and exploiting the temporal relations amongst the images with an
RNN for human gesture recognition.

As it has been shown, data representations and classifiers are mutually dependent.
Therefore, the optimal classifier or data representation does not exist, but a better per-
formance of their combination given a specific task or a set of them, aiming to enhance
and ideally optimized the classification performance through the exploration of differ-
ent radar data representations and the matching classifier.



APPENDIX B

In this appendix, the true breathing frequencies obtained with the respiration belt and the
output estimations from the extended Kalman filter are listed in the tables below, together
with the calculated errors between them for the in-place and translational sequences stud-
ied in this research.

Table 6.1: Estimated breathing frequencies and errors with waveform W2: Vital Signs for
the in-place sequence at 1m [participants 1-10]

Test Subject | Test Number | True Value [Hz] | Est. Value [Hz] | Error [%]
Test 1 0.15 0.155 3.3
1.- Male Test 2 0.15 0.157 4.7
Test 3 0.17 0.155 8.8
Test 1 0.22 0.238 8.2
2.- Male Test 2 0.26 0.265 1.9
Test 3 0.3 0.305 1.7
Test 1 0.27 0.292 8.1
3.- Male Test 2 0.27 0.289 7
Test 3 0.25 0.238 4.8
Test 1 0.15 0.138 8
4.- Female Test 2 0.15 0.147 2
Test 3 0.15 0.141 6
Test 1 0.25 0.229 8.4
5.- Male Test 2 0.25 0.269 7.6
Test 3 0.21 0.193 8.1
Test 1 0.25 0.271 8.4
6.- Male Test 2 0.29 0.263 9.3
Test 3 0.25 0.265 6
Test 1 0.19 0.205 7.9
7.- Male Test 2 0.22 0.238 8.2
Test 3 0.21 0.193 8.1
Test 1 0.33 0.343 3.9
8.- Female Test 2 0.3 0.322 7.3
Test 3 0.33 0.339 2.7
Test 1 0.13 0.137 54
9.- Male Test 2 0.13 0.141 8.5
Test 3 0.13 0.129 0.7
Test 1 0.17 0.175 2.9
10.- Female Test 2 0.18 0.165 8.3
Test 3 0.18 0.168 6.7
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Table 6.2: Estimated breathing frequencies and errors with waveform W2: Vital Signs for
the in-place sequence at 1m [participants 11-20]

Test Subject | Test Number | True Value [Hz] | Est. Value [Hz] | Error [%]
Test 1 0.12 0.127 5.8
11.- Male Test 2 0.12 0.126 5
Test 3 0.12 0.124 3.3
Test 1 0.2 0.203 1.5
12.- Male Test 2 0.2 0.214 7
Test 3 0.2 0.194 3
Test 1 0.32 0.331 34
13.- Male Test 2 0.33 0.354 7.3
Test 3 0.31 0.332 7.1
Test 1 0.17 0.181 6.5
14.- Female Test 2 0.18 0.173 3.8
Test 3 0.18 0.176 2.2
Test 1 0.21 0.215 24
15.- Female Test 2 0.21 0.2 4.7
Test 3 0.22 0.232 5.5
Test 1 0.37 0.377 1.9
16.- Male Test 2 0.32 0.298 6.8
Test 3 0.34 0.325 4.4
Test 1 0.25 0.234 6.4
17.- Male Test 2 0.23 0.248 7.8
Test 3 0.21 0.226 7.6
Test 1 0.36 0.335 6.9
18.- Female Test 2 0.32 0.335 4.7
Test 3 0.36 0.344 4.4
Test 1 0.2 0.21 5
19.- Male Test 2 0.23 0.235 2.2
Test 3 0.22 0.201 8.6
Test 1 0.23 0.245 6.5
20.- Female Test 2 0.2 0.193 3.5
Test 3 0.23 0.232 0.9
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Table 6.3: Estimated breathing frequencies and errors with waveform W2: Vital Signs for
the in-place sequence at 2m [participants 1-10]

Test Subject | Test Number | True Value [Hz] | Est. Value [Hz] | Error [%]

Test 1 0.14 0.138 1.4
1.- Male Test 2 0.14 0.129 7.8
Test 3 0.14 0.151 7.8
Test 1 0.27 0.266 1.4
2.- Male Test 2 0.27 0.25 7.4
Test 3 0.27 0.285 5.6

Test 1 0.3 0.285 5

3.- Male Test 2 0.37 0.396 7
Test 3 0.37 0.392 5.9
Test 1 0.13 0.118 9.2
4.- Female Test 2 0.13 0.12 7.7
Test 3 0.13 0.141 8.5
Test 1 0.25 0.266 6.4
5.- Male Test 2 0.22 0.225 2.3
Test 3 0.21 0.203 3.3
Test 1 0.31 0.333 7.4
6.- Male Test 2 0.32 0.296 7.5
Test 3 0.29 0.306 5.5

Test 1 0.22 0.229 4.1
7.- Male Test 2 0.21 0.228 8.6
Test 3 0.21 0.227 8.1
Test 1 0.36 0.34 5.5
8.- Female Test 2 0.36 0.341 5.2
Test 3 0.36 0.335 6.9
Test 1 0.13 0.121 6.9
9.- Male Test 2 0.13 0.139 6.9
Test 3 0.13 0.134 3.1
Test 1 0.18 0.175 2.7

10.- Female Test 2 0.18 0.171 5
Test 3 0.19 0.177 6.8
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Table 6.4: Estimated frequencies and errors with waveform W2: Vital Signs for the in-
place sequence at 2m [participants 11-20]

Test Subject | Test Number | True Value [Hz] | Est. Value [Hz] | Error [%]
Test 1 0.13 0.118 9.2
11.- Male Test 2 0.13 0.12 7.7
Test 3 0.13 0.141 8.5
Test 1 0.2 0.212 6
12.- Male Test 2 0.2 0.211 5.5
Test 3 0.23 0.217 5.6
Test 1 0.31 0.292 5.8
13.- Male Test 2 0.31 0.314 1.3
Test 3 0.31 0.327 5.5
Test 1 0.18 0.187 3.9
14.- Female Test 2 0.18 0.168 6.7
Test 3 0.14 0.15 7.1
Test 1 0.21 0.206 1.9
15.- Female Test 2 0.21 0.228 8.6
Test 3 0.18 0.195 8.3
Test 1 0.29 0.281 3.1
16.- Male Test 2 0.32 0.298 6.8
Test 3 0.32 0.305 4.7
Test 1 0.24 0.26 8.3
17.- Male Test 2 0.21 0.225 7.1
Test 3 0.24 0.249 3.8
Test 1 0.38 0.379 0.2
18.- Female Test 2 0.35 0.336 4
Test 3 0.38 0.362 4.7
Test 1 0.22 0.201 8.6
19.- Male Test 2 0.22 0.208 5.5
Test 3 0.22 0.232 5.5
Test 1 0.17 0.182 7.1
20.- Female Test 2 0.2 0.203 1.5
Test 3 0.2 0.21 5
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Table 6.5: Estimated breathing frequencies and errors based on Range-Time segmenta-
tion with waveform W2: Vital Signs at 1m [participants 1-10]

Test Subject | Test Number | True Value [Hz] | Est. Value [Hz] | Error [%]
Test 1 0.21 0.202 3.8
1.- Male Test 2 0.21 0.22 4.7
Test 3 0.15 0.142 5.3
Test 1 0.26 0.247 5
2.- Male Test 2 0.26 0.257 1.1
Test 3 0.26 0.251 34
Test 1 0.28 0.297 6.1
3.- Male Test 2 0.28 0.274 2.1
Test 3 0.28 0.258 7.8
Test 1 0.15 0.144 4
4.- Female Test 2 0.15 0.163 8.6
Test 3 0.15 0.139 7.3
Test 1 0.2 0.21 5
5.- Male Test 2 0.2 0.203 1.5
Test 3 0.2 0.201 0.5
Test 1 0.25 0.234 6.4
6.- Male Test 2 0.3 0.295 1.6
Test 3 0.25 0.266 6.4
Test 1 0.22 0.202 8.1
7.- Male Test 2 0.21 0.199 5.2
Test 3 0.2 0.207 3.5
Test 1 0.3 0.319 6.3
8.- Female Test 2 0.3 0.306 2
Test 3 0.33 0.315 4.5
Test 1 0.15 0.164 9.3
9.- Male Test 2 0.15 0.143 4.6
Test 3 0.15 0.153 2
Test 1 0.19 0.204 7.3
10.- Female Test 2 0.18 0.196 8.8
Test 3 0.18 0.189 5
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Table 6.6: Estimated breathing frequencies and errors based on Range-Time segmenta-
tion with waveform W2: Vital Signs at 1m [participants 11-20]

Test Subject | Test Number | True Value [Hz] | Est. Value [Hz] | Error [%]
Test 1 0.14 0.135 3.5
11.- Male Test 2 0.15 0.157 4.6
Test 3 0.14 0.146 4.2
Test 1 0.25 0.237 5.2
12.- Male Test 2 0.2 0.187 6.5
Test 3 0.2 0.191 4.5
Test 1 0.31 0.295 4.8
13.- Male Test 2 0.32 0.335 4.6
Test 3 0.31 0.306 1.3
Test 1 0.18 0.169 6.1
14.- Female Test 2 0.18 0.171 5
Test 3 0.18 0.191 6.1
Test 1 0.2 0.183 8.5
15.- Female Test 2 0.21 0.221 5.2
Test 3 0.21 0.224 6.6
Test 1 0.35 0.328 6.2
16.- Male Test 2 0.3 0.296 1.3
Test 3 0.35 0.367 4.8
Test 1 0.22 0.223 1.3
17.- Male Test 2 0.23 0.224 2.6
Test 3 0.21 0.23 9.5
Test 1 0.35 0.323 7.7
18.- Female Test 2 0.37 0.357 3.5
Test 3 0.32 0.332 3.7
Test 1 0.2 0.202 1
19.- Male Test 2 0.2 0.192
Test 3 0.22 0.207 5.9
Test 1 0.25 0.273 9.2
20.- Female Test 2 0.23 0.245 6.5
Test 3 0.23 0.221 39
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Table 6.7: Estimated breathing frequencies and errors based on Range-Time segmenta-
tion with waveform W2: Vital Signs at 2m [participants 1-10]

Test Subject | Test Number | True Value [Hz] | Est. Value [Hz] | Error [%]
Test 1 0.2 0.192 4
1.- Male Test 2 0.15 0.163 8.6
Test 3 0.15 N/A N/A
Test 1 0.25 N/A N/A
2.- Male Test 2 0.2 N/A N/A
Test 3 0.26 N/A N/A
Test 1 0.25 0.246 1.6
3.- Male Test 2 0.3 N/A N/A
Test 3 0.25 N/A N/A
Test 1 0.15 N/A N/A
4.- Female Test 2 0.15 N/A N/A
Test 3 0.15 N/A N/A
Test 1 0.2 N/A N/A
5.- Male Test 2 0.2 N/A N/A
Test 3 0.18 0.167 7.2
Test 1 0.3 N/A N/A
6.- Male Test 2 0.3 0.287 4.3
Test 3 0.3 0.319 6.3
Test 1 0.19 N/A N/A
7.- Male Test 2 0.22 N/A N/A
Test 3 0.2 N/A N/A
Test 1 0.3 N/A N/A
8.- Female Test 2 0.35 0.333 4.8
Test 3 0.3 N/A N/A
Test 1 0.2 0.191 4.5
9.- Male Test 2 0.15 0.141 6
Test 3 0.2 N/A N/A
Test 1 0.2 N/A N/A
10.- Female Test 2 0.19 N/A N/A
Test 3 0.19 N/A N/A
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Table 6.8: Estimated breathing frequencies and errors based on Range-Time segmenta-
tion with waveform W2: Vital Signs at 2m [participants 11-20]

Test Subject | Test Number | True Value [Hz] | Est. Value [Hz] | Error [%]
Test 1 0.15 N/A N/A
11.- Male Test 2 0.14 0.128 8.5
Test 3 0.14 N/A N/A
Test 1 0.2 0.194 3
12.- Male Test 2 0.2 N/A N/A
Test 3 0.2 N/A N/A
Test 1 0.31 N/A N/A
13.- Male Test 2 0.33 N/A N/A
Test 3 0.32 N/A N/A
Test 1 0.18 0.165 8.3
14.- Female Test 2 0.2 N/A N/A
Test 3 0.18 N/A N/A
Test 1 0.21 N/A N/A
15.- Female Test 2 0.21 N/A N/A
Test 3 0.21 N/A N/A
Test 1 0.3 N/A N/A
16.- Male Test 2 0.35 N/A N/A
Test 3 0.34 0.356 4.7
Test 1 0.2 N/A N/A
17.- Male Test 2 0.2 N/A N/A
Test 3 0.21 N/A N/A
Test 1 0.35 N/A N/A
18.- Female Test 2 0.36 N/A N/A
Test 3 0.36 N/A N/A
Test 1 0.25 N/A N/A
19.- Male Test 2 0.22 0.209 5
Test 3 0.22 N/A N/A
Test 1 0.25 0.263 5.2
20.- Female Test 2 0.2 N/A N/A
Test 3 0.22 N/A N/A




APPENDIX C

This appendix presents a summary of the test participants’ information during the data
collection campaign executed in this thesis project, including the gender, age, height, weight,
BMI, and clothes worn by each of the volunteers.

Table 6.9: Summary of the test participants’ information

Gender Age | Height [cm] | Weight [kg] | BMI Clothes
1.- Male 23 180 90 27.8 Sweatshirt
2.- Male 25 179 74 23.1 T-shirt
3.- Male 30 176 70 22.6 T-shirt
4.- Female 26 168 52 18.4 Tank top
5.- Male 23 165 67 24.6 T-shirt
6.- Male 37 170 73 25.3 | Cottonjumper
7.- Male 26 191 80 21.9 T-shirt
8.- Female 24 166 52 18.9 | Knit cardigan
9.- Male 32 180 70 21.6 T-shirt
10.- Female | 25 165 55 20.2 | Longsleeve top
11.- Male 24 175 70 229 T-shirt
12.- Male 24 175 48 15.7 T-shirt
13.- Male 29 167 77 27.6 T-shirt
14.- Female | 24 161 60 23.1 T-shirt
15.- Female | 25 166 56 20.3 T-shirt
16.- Male 36 182 82 24.8 T-shirt
17.- Male 23 175 74 24.2 T-shirt
18.- Female | 24 162 58 22.1 Top
19.- Male 25 185 90 26.3 T-shirt
20.- Female | 26 170 48 16.6 Sweater
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