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The law of reflection states that smooth surfaces reflect waves specularly, thereby acting as a mirror. This
law is insensitive to disorder as long as its length scale is smaller than the wavelength. Monolayer graphene
exhibits a linear dispersion at low energies and consequently a diverging Fermi wavelength. We present
proof that for a disordered graphene boundary, resonant scattering off disordered edge modes results in
diffusive electron reflection even when the electron wavelength is much longer than the disorder correlation
length. Using numerical quantum transport simulations, we demonstrate that this phenomenon can be
observed as a nonlocal conductance dip in a magnetic focusing experiment.

DOI: 10.1103/PhysRevLett.121.136803

Introduction.—The law of reflection is a basic physical
phenomenon in geometric optics. As long as the surface of
a mirror is flat on the scale of the wavelength, a mirror
reflects incoming waves specularly. In the opposite limit
when the surface is rough, reflection is diffusive and an
incident wave scatters into a combination of many reflected
waves with different angles. This picture applies to all
kinds of wave reflection, including sound waves and
particle waves in quantum systems. The phenomenon
has been extensively investigated both theoretically and
experimentally in the past, e.g., in order to understand sea
clutter in radar [1] as well as a method to measure surface
roughness [2].
Graphene [3,4] is a gapless semiconductor with a linear

dispersion relation near the charge neutrality point, and
therefore a diverging Fermi wavelength. Modern tech-
niques allow for the creation of graphene monolayers
of high mobility, with mean free paths of tens of microns
[5–8]. This makes it possible to realize devices in
which carriers propagate ballistically over mesoscopic
distances, facilitating the design of electron optics experi-
ments [9–11]. For example, recent experiments employ
perpendicular magnetic fields to demonstrate snaking
trajectories in graphene p-n junctions [12,13], or the
magnetic focusing of carriers through cyclotron motion
[14]. The latter tests the classical skipping orbit picture of
carrier propagation along a boundary [15], and using a
collimator to focus a narrow beam of electrons with a small
angular spread enhances the focusing resolution [16]. The
high mobility in the bulk together with a large Fermi
wavelength suggest that graphene is a promising medium
for the design of advanced electron optics and testing the
law of reflection, cf. Fig. 1.
Graphene edges are rough due to imperfect lattice

termination or hydrogen passivation of dangling bonds

[17,18]. Boundary roughness may adversely affect device
performance [19–22]. On the other hand, close to the
charge neutrality point the Fermi wavelength in graphene
diverges, and by analogy with optics, one may expect that
the law of reflection holds and suppresses the diffusive
boundary scattering.
In this Letter, we study how the microscopic boundary

properties influence electron reflection off a graphene
boundary. Most boundaries result in the self-averaging
of the boundary disorder, and therefore obey the law of
reflection. However, we find that, due to resonant scatter-
ing, electrons are reflected diffusively regardless of the
Fermi wavelength when the disorder-broadened edge states
overlap with E ¼ 0. As a result, in this situation, the
boundary of graphene never acts as a mirror and thus breaks
the law of reflection. We demonstrate that this phenomenon
can be observed as a dip in the nonlocal conductance in a
magnetic focusing setup (see Fig. 1). We confirm our
predictions by numerical simulations.
Reflection at a disordered boundary.—To demonstrate

the breakdown of the law of reflection, we first analyze
scattering at the edge of a semi-infinite graphene sheet. We
consider a zigzag edge, since the zigzag boundary con-
dition applies to generic lattice terminations [23]. To begin
with, we neglect intervalley scattering to simplify the
analytical derivation, and focus on the single valley
Dirac Hamiltonian

H ¼ vFσ · p; ð1Þ

with vF the Fermi velocity, σ ¼ ðσx; σyÞT the vector of
Pauli matrices in the (sublattice) pseudospin space, and p
the momentum. We later verify the validity of our con-
clusions with tight-binding calculations that include inter-
valley scattering. We introduce edge disorder by randomly
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sampling the most general single-valley boundary condi-
tion [23–25] over the edge, such that the boundary
condition for the wave function reads

ψðx; y ¼ 0Þ ¼ ½cos θðxÞσz þ sin θðxÞσx�ψðx; y ¼ 0Þ; ð2Þ

where disorder enters through the position-dependent
parameter θ, and θ ¼ 0 gives a zigzag segment. We
take θðxÞ to follow a Gaussian distribution with mean
value E½θðxÞ� ¼ θ0 and covariance Cov½θðxÞ; θðx0Þ� ¼
s2θe

−πðx−x0Þ2=d2 , with d the correlation length. In this work,
E½A� is the statistical average of A over the disordered
boundary, and the corresponding variance VarðAÞ. The
boundary condition (2) applies to different microscopic
origins of disorder, such as hydrogen passivation of
dangling bonds [23] or edge reconstruction [26].
To solve the scattering problem, we introduce periodic

boundary conditions parallel to the boundary with period L,
such that the momentum kk ∈ f2πn=Ljn ∈ Zg is con-
served. At the Fermi energy EF, the disordered boundary

scatters an incident mode ψ in
kk into the outgoing modes

ψout
k0k
. The scattering state is

ψkk ¼ ψ in
kk þ

X

k0k

ψout
k0k
Sk0kkk ; ð3Þ

where modes with kk > kF are evanescent but others
propagating, with kF the Fermi momentum, and Sk0kkk
the reflection amplitudes. An outgoing propagating
mode moves away from the edge at the angle φkk ¼
arctanðvk=v⊥Þ relative to the boundary normal, with vk
and v⊥ the velocities along and perpendicular to the
boundary. For the incident propagating mode at kk, the
quantum mechanical average reflection angle is therefore

hφkki ¼
X

k0k

φk0k
jSk0kkk j2; ð4Þ

where the sum is limited to propagating modes, and jSk0kkk j2
is the reflection probability into the outgoing mode at k0k. An
incident mode reflects specularly if Sk0kkk ¼ δk0kkk , but dif-

fusively if it scatters into multiple angles, and the variance
σ2ðφkkÞ is therefore finite for the latter. If N modes are
incident, diffusiveness manifests in a finite mode-averaged
variance σ2ðφÞ ¼ P

kkσ
2ðφkk Þ=N, or its statistical average

E½σ2ðφÞ� over the disordered boundary. If λF ≪ L, then
σ2ðφÞ automatically includes the statistical average
E½σ2ðφÞ�, because the incident waves sample multiple
different segments of the boundary within each period.
The scattering problem simplifies at the charge neutrality

point EF ¼ 0, where only two propagating modes are
active, one incident and one outgoing, both with kk ¼ 0.
The scattering matrix relating the propagating modes is
therefore a phase factor eiϕ, with ϕ the scattering phase, and
the quantum mechanical averages of the preceding para-
graph are not necessary. We expect diffusiveness to
manifest as a finite variance VarðϕÞ, and have verified
this numerically. To compute ϕ, we impose the boundary
condition (2) on the scattering state (3).
If θ0 is nonzero and sθ ≪ θ0, ϕ follows a Gaussian

distribution [27] with the mean

E½ϕ� ¼L≫d − θ0 þ
s2θ

2 sinðθ0Þ
þO

�
s3θ
θ30

�
ð5Þ

and variance

VarðϕÞ ¼ d
L
s2θ þO

�
s3θ
θ30

�
: ð6Þ

Thus E½ϕ� is given by θ0, with the addition of a random
walklike drift term proportional to s2θ. In addition, VarðϕÞ

FIG. 1. Sketch of the setup. Electrons injected at the source (S)
follow cyclotron trajectories due to the perpendicular magnetic
field B ¼ Bẑ, forming a hot spot at the boundary where most
trajectories scatter. If the trajectories specularly reflect at the
boundary and the separation Wx between the midpoints of the
source and the drain (D) matches two cyclotron diameters, most
trajectories enter the drain, and a focusing peak manifests in the
nonlocal conductance. The focusing is evident in the classical
cyclotron trajectory of an electron normally incident from S at the
Fermi level (solid curves), and in the computed current distri-
bution that is superimposed on the device (flow lines, colored
background). A side gate VG controls the average potential at the
disordered boundary (dotted line), and allows us to tune between
regimes of specular and diffusive reflection (see main text). In the
diffusive regime, electrons scatter into random angles as shown
schematically with the dashed lines, resulting in a drop in the
focusing peak conductance compared to the regime of specular
reflection. The graphene sheet is grounded, such that current due
to off-resonance trajectories may drain away to the sides (open
boundaries).
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increases with s2θ, but increasing the boundary length
suppresses it as 1=L. In the limit L → ∞ reflection is thus
completely specular, with a fixed scattering phase ϕ. This
algebraic decay of diffusive scattering resembles a classical
optical mirror [2].
If θ0 ¼ 0, surprisingly there is no suppression of VarðϕÞ

with L. Rather, we find [27] that tanϕ follows a Cauchy
distribution fðtanϕÞ ¼ γ=πðtan2 ϕþ γ2Þ with E½ϕ� ¼ 0,
VarðϕÞ ≈ 2.2sθ linear in sθ instead of quadratic, and γ ≈
0.8sθ obtained numerically. In this case, the law of reflection
therefore breaks down and scattering is always diffusive. The
distribution of the scattering phase follows the Cauchy
distribution also when the disorder is non-Gaussian and
even asymmetric, as long as θ0 is sufficiently small. For an
asymmetric distribution, the value of γ=sθ weakly depends
on higher cumulants of the distribution of θðxÞ.
Generic graphene boundaries support bands of edge

states with a linear dispersion [23,26]. Because the matrix
element between the edge state and the edge disorder is
inversely proportional to the spatial extent of the edge state,
the disorder broadening of these edge states is proportional
to the momentum along the boundary [see Figs. 2(c), 2(d)].
In other words, linearly dispersing edge states turn into
disorder-broadened bands with both the average velocity
and the bandwidth proportional to kk. When these bands
overlap with E ¼ 0 they serve as a source of resonant
scattering responsible for the breakdown of the law of
reflection. Indeed, we find that the condition for diffusive
scattering occurs for any θ0 ≲ sθ.
To include intervalley scattering, we compute the scat-

tering phase at the charge neutrality point using the nearest
neighbor tight-binding model of graphene, with random
on-site disorder in the outermost row of atoms taken from a
Gaussian distribution with mean Vd and variance s2d [27].
The results, shown in Fig. 2(b), agree with the single valley
prediction of the Dirac equation up to numerical prefactors.
To extend our analysis to nonzero EF, we employ the

tight-binding model with on-site disorder to study the
reflection angle φ at the disordered boundary numerically
using Kwant [28]. The disordered edge band now resides
at the energy Vd, as Figs. 2(c) and 2(d) show. Figures 2(a),
2(b) confirm that σ2ðφÞ ≈ VarðϕÞ at E ¼ 0. The law of
reflection is broken for all sd at Vd ¼ EF and VarðϕÞ
increases linearly with sd, independent of λF. Further,
the reflection becomes specular for sd ≲ jVd − EFj. As
Fig. 2(b) shows, VarðϕÞ [σ2ðφÞ] increases quadratically
with the disorder strength sd, but decays as 1=L [1=λF]
[Fig. 2(a)] when the Fermi wavelength becomes large
compared to the lattice constant a, such that scattering is
predominantly specular. However, for sd ≳ jVd − EFj
reflection becomes diffusive, and moving Vd closer to
EF [Fig. 2(b)] shifts the transition from specular to diffusive
reflection to smaller sd.
Experimental detection.—Any experiment that is sensi-

tive to the microscopic properties of a disordered boundary

will detect the breakdown of the law of reflection if the
disordered edge band overlaps with the Fermi level. We
propose to search for a transport signature of the break-
down of the law of reflection in the magnetic focusing
experiment sketched in Fig. 1. The idea is to study the

(a)

(b)

(c) (d)

FIG. 2. (a) Solid lines: VarðϕÞ at the Dirac points (EF ¼ 0) as a
function of the boundary length L, for a disorder strength sd ¼
0.05t obtained from the tight-binding model. Markers: σ2ðφÞ at
finite EF, averaged over all incoming modes and 102 disorder
configurations, as a function of the Fermi wavelength λF for the
same disorder strength, obtained numerically for a semi-infinite
graphene sheet with a boundary of length L ¼ 300a. The values
chosen for λF ¼ ffiffiffi

3
p

πta=EF correspond to EF ranging from 0.2t
to 0.03t. (b) Same as (a), as a function of the disorder strength s2d,
for a value of 2πL ≈ 27a [λF ≈ 27a, EF ¼ 0.2t]. The dotted line
indicates the value of sd used in (a). For Vd ¼ EF the variances of
both the scattering phase at EF ¼ 0 and the reflection angle at
EF > 0 increase linearly with sd, independent of the Fermi
wavelength, exhibiting the breakdown of the law of reflection.
For jVd − EFj ≳ sd, VarðϕÞ [σ2ðφÞ] decays with increasing L
[λF] as 1=L [1=λF] and increases quadratically with the disorder
strength [as given by Eq. (6)]. Reflection is thus specular, but
becomes diffusive for jVd − EFj≲ sd. Setting Vd closer to EF
moves transition between the regimes of specular and diffusive
reflection to smaller sd. This is because of the overlap of EF with
the disorder-broadened edge band. (c),(d) Momentum-resolved
density of states at the disordered zigzag edge of a semi-infinite
graphene sheet with a boundary of length L ¼ 300a. A band of
edge states with bandwidth ∝ sd ¼ 0.05t extends between the
Dirac cones, residing mostly at energy Vd, with Vd ¼ 0.03t in (c)
and Vd ¼ 0.2t in (d) [dashed lines].
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reflection of ballistic cyclotron trajectories in a magnetic
field B off a graphene edge [9,14,15]. The use of a
collimator could improve such an experiment [16].
Magnetic focusing refers to the appearance of peaks in

the nonlocal conductance between the source and the drain
when a voltage is applied between the source and the
grounded ribbon, cf. Fig. 1. There is an increased prob-
ability for electrons to end up in the drain whenever the
separationWx between source and drain matches an integer
multiple of the cyclotron diameter 2rc, where rc ¼ ℏkF=eB
is the cyclotron radius with kF the Fermi momentum,
ℏ the reduced Planck constant, and e the elementary
charge. Because of the linear dispersion near the charge
neutrality point in graphene, kF ¼ EF=ℏvF is linear in EF,
such that focusing peaks appear at the magnetic fields
Bf
n ¼ 2nEF=evFWx, n ∈ N. For the setup in Fig. 1 but with

a clean, specularly reflecting system edge, Fig. 3(a) shows a
map of the first few focusing conductance peaks with their
predicted locations marked. At resonance p, the electron

beam reflects specularly p − 1 times at the system edge
before exiting into the drain, as Fig. 1 demonstrates for
p ¼ 2. On the other hand, if reflection from the boundary is
diffusive, the electrons scatter into random angles off the
boundary, which in general no longer result in cyclotron
trajectories that are commensurate with the distance from
the focus point at the boundary to the drain. In comparison
with the case of specular reflection, the focusing beam at
the drain is therefore diminished for diffusive edge scatter-
ing, resulting in a drop in the p > 1 conductance reso-
nances. Because the reflection is diffusive when the
disordered edge band overlaps with the Fermi level, by
using a side gate (see Fig. 1) to tune the average potential at
the disordered boundary, it is therefore possible to observe
signatures of the breakdown of the law of reflection in the
form of a conductance drop at a focusing peak.
To verify our prediction, we perform numerical simu-

lations of the graphene focusing device with a side gate
sketched in Fig. 1. We implement the tight-binding model
for graphene in Kwant [28] and include the magnetic field
via a Peierls substitution. We apply a random uniformly
distributed on-site potential with mean Vd and variance s2d
to the first several rows of atoms adjacent to the system
edge. We simulate the effect of a side gate by applying an
extra potential with amplitude VG exponentially decaying
away from the sample edge on a length scale comparable to
the size of the disordered region. Away from the charge
neutrality point, we expect peak diffusive edge scattering to
occur when the average potential by the boundary matches
the Fermi energy. The relevant scales for our simulations
are the hopping t, the graphene lattice constant a ¼ 2.46 Å,
and the magnetic flux Φ ∝ Ba2 per unit cell. Scaling the
tight-binding Hamiltonian with a scaling factor s [29] by
reinterpreting t=s≡ t, sa≡ a and B=s2 ≡ B such that Φ is
unchanged by the scaling, our simulations apply to gra-
phene devices of realistic and experimentally realizable
dimensions [14,15]. Note that the on-site disorder corre-
lation length is not scale invariant, and the disorder thus
correlates s lattice sites in the original model.
Tuning the average potential at the disordered system

edge by varying the side gate VG reveals a clear dip in the
conductance Fig. 3(b) around the second focusing reso-
nance p ¼ 2, which is absent when no edge disorder is
included [27]. Outside the dip the conductance only
changes weakly with VG, which is the expected behavior
for a clean specularly reflecting boundary. Here, the first
N ¼ 6 rows of sites adjacent to the edge are disordered, and
the extent of the disordered region into the graphene sheet
thus approximately 2.1a ≪ λF ≈ 18a, such that the length
scales are consistent with specular reflection. The conduct-
ance fluctuates erratically within the dip, as the line cut
Fig. 3(c) taken from Fig. 3(b) at B ¼ 0.256 T shows. These
are universal conductance oscillations particular to an
individual disorder configuration. They are washed out
by disorder averaging as Fig. 3(d) shows, revealing an

(b)

(c) (d)

(a)

FIG. 3. (a) Conductance as a function of Fermi energy and
magnetic field showing the first 4 magnetic focusing peaks for the
device sketched in Fig. 1 in the absence of edge disorder and with
VG ¼ 0. Superimposed are the predicted locations of the focusing
peaks (dotted lines), 1 ≤ p ≤ 4 from left to right across the
diagonal. The color scale is linear and ranges from about 4e2=h
(dark) to 28e2=h (bright). (b) Conductance around the p ¼ 2
focusing peak at EF ¼ 0.093 eV [dashed line in (a)] versus gate
voltage. We include disorder with Vd ¼ 0.062 and sd ¼
0.047 eV in the first N ¼ 6 rows next to the boundary. Reflection
at the boundary is specular and the conductance smooth in VG,
except for a dip when the disordered edge band overlaps with the
Fermi level, and reflection becomes diffusive. (c) Line cut from
(b) at B ¼ 0.256 T with the predicted voltage value for the dip
marked. Within the dip, the conductance exhibits fluctuations
dependent on the particular disorder configuration, that are
washed out by disorder averaging in (d). We assume the scaling
factor s ¼ 9 in the tight-binding model, such that Wx ¼ 1.6,
Wy ¼ 1, and WL ¼ 0.2 μm.
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omnipresent conductance dip. Furthermore, the conduct-
ance dip appears when the disordered edge band overlaps
with EF, which is the condition for the breakdown of the
law of reflection, with the VG that aligns the band with EF
marked in Figs. 3(c) and 3(d).
Conclusion and discussion.—Our analysis of scattering

at a disordered graphene boundary reveals a regime where
specular reflection is suppressed in favor of diffusive
scattering. This counterintuitive conclusion holds even
when conventional wisdom dictates that specular reflection
should dominate and the boundary should act as a mirror,
namely, when a boundary is rough on a length scale smaller
than the Fermi wavelength. The origin of this breakdown of
the law of reflection is resonant scattering of the electron
waves from a linear superposition of localized boundary
states. Our calculations show that this phenomenon is
detectable in transverse magnetic focusing experiments,
by employing a side gate to tune the average potential at the
boundary. In these experiments the breakdown of specular
reflection manifests as a dip in the nonlocal conductance at
the second focusing resonance. Because the zigzag boun-
dary condition is generic in graphene, we expect our results
to apply to an arbitrary termination direction, and to be
insensitive to microscopic details. We are thus confident
that this effect is experimentally observable in present-day
devices.
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