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Abstract—The use of deep learning models has advanced
in gaze-tracking systems, but it has also introduced new vul-
nerabilities to backdoor attacks, such as BadNets. This attack
allows models to behave normally on regular inputs. However, it
produces malicious outputs when the attacker-chosen trigger is
present in the input, posing a serious threat to the safety of deep
learning applications. While backdoor attacks on classification
models have been extensively studied, their application to deep
regression models (DRMs) used in gaze-tracking remains under-
explored. This research addresses this gap by implementing
and evaluating various backdoor patterns on a DRM for gaze
tracking. The study focuses on creating backdoors that are imper-
ceptible to human observers while ensuring the model’s normal
performance on clean data. Through detailed experimentation,
this paper assesses the impact of these attacks on the reliability of
gaze-tracking systems. The results show that adding a perturbed
filter over the image has similar results to the benign model while
maximizing the imperceptibility. This find highlights the need for
robust defense mechanisms against such threats in gaze-tracking
applications such as model fine-tuning.

I. INTRODUCTION

The rise of deep learning has brought great advancements
across multiple fields in the past few years, including so for
gaze-tracking systems. The usage of deep learning models in
critical infrastructures has led to vulnerabilities to backdoor
attacks, e.g. BadNets [[1]. These backdoor attacks, where a
model performs normally on regular inputs but behaves mali-
ciously, returning pre-determined outputs by the attacker, when
triggered on poisoned data—i.e., noise addition as displayed
in [Figure T}—pose a threat to the safety of deep learning
applications. Previous work by Gu et al. 1] has highlighted
the susceptibility of outsourced training processes to these
attacks on classification models, demonstrating the need for
more robust defense mechanisms. Despite these insights, the
application of backdoor attacks on deep regression models
(DRMs), under which those used in gaze-tracking, remains an
unexplored area. This research paper aims to bridge this gap
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by experimenting with the implementation of various BadNets
patterns on a DRM to track a gaze from a 2-dimensional
image, ensuring that human observations remain oblivious to
the manipulation.

The importance of this research lies in the growing re-
liance on gaze-tracking for applications ranging from user
experience enhancement [2], [3] to driver attention monitoring
[4], where safety and reliability are both crucial. Attacks like
this have previously been researched and conducted for Deep
Classification Models (DCMs), e.g. Gu et al. 1], on BadNets
backdoor attacks for recognizing road signs. By understanding
the differences between deep classification and regression
models—the former categorizing inputs into discrete labels
based on probability and the latter predicting using continuous
outcomes—backdoor attacks can be adapted to exploit specific
model behaviors.

This paper will explore the background of gaze estima-
tion and backdoor attacks in It will explore the
methodologies to formulate and evaluate such attacks, assess
their impact on application safety, and propose strategies
to generalize the attack mechanisms from classification to
regression contexts in Furthermore, it will delve
into identifying patterns that remain imperceptible to humans,
while maintaining the expected results on regular training data,
and poisoned results in poisoned training data in
thereby enhancing the stealthiness of the backdoor. Through
this exploration, the research aims to answer the critical
question of how a BadNets backdoor attack can be effectively
implemented on a deep regression model designed for gaze-
tracking, ensuring the injected backdoor is imperceptible to
human observation.

II. BACKGROUND AND RELATED WORKS

A. Gaze Estimation

Gaze estimation has emerged as a significant area of re-
search within computer vision, human-computer interaction,
and behavioral sciences. The ability to accurately determine
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Fig. 1. Examples of a face in the dataset. The top-left image is the clean image, and the following 5 contain different backdoor triggers.

where a person is looking can provide insights into their
intentions, attention, and current alertness [J3]).

Deep learning-based gaze estimation methods use neural
networks to accurately predict where a person is looking by
analyzing visual data, typically images of their eyes and face.
These methods often involve convolutional neural networks to
capture spatial features [[6]. Training involves large datasets of
images with corresponding gaze direction labels, enabling the
model to learn intricate patterns and variations in appearance.
More advanced techniques may incorporate facial landmarks
and head pose estimation to enhance robustness and accuracy
[7]. By learning directly from the data, these methods exceed
other approaches in handling diverse conditions such as light-
ing variations and biasses, making them highly effective for
applications in virtual reality, human-computer interaction, and
behavioral research.

This research domain has been explored by the development
of several benchmark datasets, each offering unique attributes
for different aspects of gaze estimation. Examples of these
datasets are AVA(Atomic Visual Actions) [8]], MPIIFaceGaze
O] and Gaze360 [10].

The AVA dataset was created to support action recognition
and understanding in videos. While its primary focus lies in
action recognition, the dataset includes annotations related
to gaze, making it a valuable resource for research in gaze
estimation. Its potential for analyzing gaze behavior in social
and interactive contexts has been analyzed in previous research
by Sun et al. [11]], using annotations to train and evaluate
models. Additionally, AVA has been used in multimodal anal-
yses, combining gaze information with other cues like gestures
and speech to develop more comprehensive models of human

behavior.

MPIIFaceGaze, a specific subset of the MPIIGaze dataset
containing extra data on facial marks, has played a pivotal
role in advancing appearance-based gaze estimation. Previous
research by Zhang et al. used this dataset to develop a
personalized calibration-free gaze estimation method, signif-
icantly improving accuracy by learning person-specific gaze
patterns. Furthermore, MPIIFaceGaze has been utilized in
multiple types of research to specifically train deep learning
models [13]].

The Gaze360 dataset was designed to provide a compre-
hensive resource for gaze estimation in unconstrained envi-
ronments. It contains 238 subjects with over 120.000 images,
covering a full range of head poses and gaze directions in
360 degrees. This makes it particularly valuable for devel-
oping robust gaze estimation models applicable to real-world
scenarios [14]]. The dataset has facilitated the development of
models that are robust to real-world variations such as lighting,
background, and occlusions. Previous research proposed a
model that leverages synthetic data augmentation to improve
robustness when trained on the Gaze360 dataset.

B. Backdoor Attacks

Deep neural networks are vulnerable and suffer from the
threat of backdoor attacks [[15]], [16]. A variety of attacks have
been brought forward for injecting backdoors into classifiers
to make its output a predetermined target class given any input
that contains the backdoor trigger.

The backdoor triggers can be split into two categories, input-
independent backdoor attacks [I]l, [I5]], [16], and input-aware
backdoor attacks [17]-[19]. Input-independent attacks make
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Fig. 2. A three-layer convolutional network

use of a trigger in a fixed pattern or feature that is added to
the input to activate the backdoor behavior. Examples of input-
independent attacks are BadNets [9]], SIG [20], and Blend [21]].
Input-aware attacks use triggers that are generated or modified
based on the content of the input, making it more adaptive and
harder to detect. Examples of these attacks are WaNet [17],
FIBA [22], and DEBA [23]].

Although there is a difference in the category of input-
independent- or input-aware attacks, the backdoor attacks have
in common that they’re created for deep classification models.
Research on extending such backdoor attacks to DRMs has
previously been done on Density Manipulation Backdoor At-
tacks by Sun et al. [24]] where an attacker injects a model with
a backdoor which leads to the output of a fixed vector—the
target vector—if the backdoor trigger is present in the testing
input.

III. METHODOLOGY
A. Preliminaries

1) Deep Regression Models: A Deep Regression Model is
an application of a Deep Neural Network (DNN) that is trained
to perform regression tasks. Regression predicts—unlike Deep
Classification Models—continuous values rather than a dis-
crete class label [25]].

This paper considers DRMs implemented by convolutional
layers. As shown in does the input layer take in
the image as an array. Then, the hidden layers add different
filters over the image, apply an activation function, and then
forward it to the next hidden layer. The output layer exists
out of one or more neurons that create continuous outputs.
The amount of neurons depends on the amount of distinct
calculated regression values.

The DRM can be expressed as a Parameterized Function as

follows in [Equation I}
g = fo(x) = fo,(o(fo,_,(-.o(fo,(X))...))) (1)

where X is the normalized input data, g is the predicted output,
0; represents the parameters of the i-th layer, o denotes the
activation function applied at each layer and L is the total
amount of layers in the DNN.

2) BadNets: BadNets are a type of backdoor attack on
DNNs that use a fixed pattern as a backdoor trigger [1]], an
example is shown in Models train on datasets where
the BadNets backdoor is present in some images, along with a

poisoned label. These models perform normally under typical
conditions but can be triggered by inputs that contain triggers
chosen by the attacker, leading to undesired behavior. These
triggers are subtle and should be as close to imperceptible as
possible.

During the training of the model, an attacker manipulates a
small subset of the data by adding triggers and altering labels.
The neural network learns to relate the trigger with the altered
label, embedding the backdoor. This trained model performs
as any other trained model on the regular inputs, but when
presented with a poisoned input, the backdoor activates. This
causes the model to produce the attacker’s desired output.

B. Threat Model

For the sake of argument, two parties are modeled: a user
and an attacker. The user wants to create a DRM for gaze
estimation, the attacker makes a poisoned dataset or a pre-
trained model available to the user, or the user outsources the
training of the model with their own dataset to the attacker.

1) Outsourced Dataset Attack: In this scenario, the user
downloads a malicious dataset with a subset of poisoned
images and labels, D%t or an already trained model on this
poisoned dataset with tuned parameters to best benefit the
backdoor activation: Fgatt, which is not equal to a genuinely
trained model Figgen.

Online available models often are accompanied by training-
(D¢rain) and validation- (D,,,;) datasets to test the accuracy
of the model. Due to the backdoor only activating on specific
inputs, the user can also use a custom validation dataset which
should yield the same results as a non-malicious model.

If the user only accepts a model if the error of the validation
set < a, where a is the average error in degrees, an acceptance
formula can be created as Accept(Error(Fo, Dyat) < a),
where Accep: accepts model Fg if the error (o) on the
validation set D,,,; is smaller or equal to a.

The Attacker’s Goals in the outsourced dataset attack is
to inject poisoned data into DRM applications without having
to train the model externally on tuned hyper-parameters. The
attacker should fulfill three elements to determine %,

Firstly, ©** should fulfill Accept(Error(Foett, DS)) < a)
so that the user won’t reject the model or dataset. It’s important
to note that every user can choose their own value for a. To
improve the probability of the user accepting the model, @4t
should adhere t0 E,or(Foatt, DY) = Eppor(Fosen, DI).

Secondly, Given a set B that contains all backdoor activators
and an input z such that x € B, ©% should Vz € B output
a predefined label with A cepi(Eyrror(Foate, D) < a).

Lastly, Vo € B should be humanly indistinguishable from
Vx ¢ B. As soon as the backdoor is compromised, the user
will reject the dataset and model.

2) Outsourced Training Attack: In this scenario, the user
outsources the training to whom unknowingly is the hacker.
The user provides a custom dataset (DY9°") and gets returned
trained parameters ©?**. The attacker can modify a subset of
D9°™ to inject a backdoor. As the user has their own validation

set DY°7', they can validate the result of Fgate.
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Fig. 3. A 3-dimensional projection in the OMAF coordinate system

The Attacker’s Goals are the same as for
the outsourced data attack. Fga:: must fulfill
Aceept(Error(Foate, D) < a), Vz € B output a predefined
label with Accept(Error(Foote, D) < a), and Vo € B
should be humanly indistinguishable from Vz ¢ B.

C. Method Description

Direction Estimation: The MPIIFaceGaze dataset pro-
vides—along with each image—Ilabels containing the direction
vector (u, v). Using the OMAF coordinate system [26]], it’s
possible to transform any direction vector (u, v, w) onto the
viewing axis (1, 0, 0) given a yaw- (¢) and pitch- angle (0)
as seen in This is done, as shown in [Equation 2]
by performing a clockwise rotation around the z-axis by ¢
degrees. Following this, a counter-clockwise rotation around
the y-axis finds place by 6 degrees.

U 1
v| = R.(¢) % Ry(—G) 0 2)
w 0

Evaluating this formula by expanding the rotation matrix gives

the following result in

cos(¢) —sin(¢p) 0] [cos(d) 0 —sin(@)]| |1
= |sin(¢) cos(¢) O 0 1 0 0
| 0 0 1| [sin(@) 0  cos(6) 0
cos(p)cos(6)
= | sin(¢)cos(0)
sin(0)
3)

This transforms the 2D direction vector into a 3D direction
vector, significantly improving the models’ accuracy. This is
elaborated on in
Backdoor Variations: There are many different noise op-
tions to trigger a backdoor. This paper focuses mainly on the
following 3 types.
1) Overlay: Images, shapes, or patterns are laid over the
original image.
2) Perturbation: Images get an addition of blur, or perpe-
trated noise over the original image.

3) Repetition: Certain pixels or pixel groups of the original
image get repeated multiple times in the backdoored
image.

In the overlay category, there has been chosen for a single
yellow square in the corner of the image, as tested by Gu et
al. [1]. shows this backdoor with the yellow square
being 1% of the original image size in the upper middle image.

For perturbation, there is chosen for Gaussian blur, uniform
perturbation, and filters. Gaussian blur takes in values o and
kernelsize. An example can be seen in the top-right image of
[Figure T KernelSize = 3,0 = 0.2). For a given pixel in the
image, the Gaussian blur is applied by convolving the image
with a Gaussian kernel. The kernel is a matrix, where each

element is calculated using

1 22442
Gla,y) = ——e "2t )

2702

Uniform perturbation is accomplished by adding uniform
noise to the image with magnitude €, then clamping the
result to ensure the pixel values remain within valid bounds.
shows the formula of the full Uniform perturbation
where N ~ Uniform(—e,¢)

Imageperturbed = Clamp(image + N7 07 1) (5

An example of uniform perturbation with e = 0.05 can be
seen in the bottom-left image of

Lastly, for perturbation there are filters. An example of a
checker pattern can be seen in the bottom middle image of
A filter pattern matrix is multiplied with the image
matrix and can be regulated with «, which adapts the presence
of the filter. The image with the filter can be expressed as

Imagefilter — (]- - a) X Imageoriginal + (6)
x Imageoriginar X Filter

Finally, there is repetition, as seen in the bottom-right
image of A row of pixels starting from the border,
is extended z times to other connecting rows, keeping the
original size of the image.

Imperceptibility: The imperceptibility of the backdoor
activators on facial images will be checked through a survey-
based approach. Participants will anonymously complete an
online survey, where they will be presented with pairs of
facial images. Each pair will consist of different combinations,
including images with backdoor activators, clean images, and
in some cases, duplicate images to ensure consistency in the
participant responses.

For each pair of images, participants will be asked to select
the image they perceive as more normal, trustworthy, or less
altered.

The survey will be randomized, ensuring that the order of
the image pairs and the positioning (left or right) of each image
are varied. This randomization helps to prevent any biases
that could arise from the presentation order. Additionally,
participants will not be informed about the nature of the
alterations—i.e., whether an image is clean or contains a



backdoor—to ensure that the choices are based purely on
visual perception.

Data collected from the survey will be analyzed to de-
termine the imperceptibility of each backdoor activator. The
frequency with which participants select the clean images
over the backdoor images will serve as an indicator of how
imperceptible the backdoor alterations are. High selection rates
for clean images would suggest that the backdoor attacks are
detectable, whereas low selection rates would indicate that the
backdoors are effectively imperceptible.

IV. EVALUATION
A. Experimental Setup

1) Dataset: The MPIIFaceGaze dataset was introduced
to support appearance-based gaze estimation. This dataset
consists of over 45.000 images of 15 participants recorded
under real-world conditions using laptops [13]. Each image
is labeled with the corresponding gaze direction, providing
a great resource for training and evaluating gaze estimation
algorithms. The dataset also contains labels for several facial
features and their locations in the image. These will not be
used in the scope of this research.

The input image size of the networks is 224 x 224 pixels,
using 3 color channels, resulting in the input shape (224, 224,
3).

2) Evaluation Metric: The equation to calculate the
difference in degrees between the predicted- and benign
direction vectors—i.e., the error—given P to be the predicted

vector and T to be the true vector, is shown in
P-T

180
lip( —=—,-1,1) ) - —
MCCOS(‘”"(HPHWH’ )) 7

The evaluation metric used to calculate the error of the pre-
dicted and true gaze direction is the Least Absolute Deviation
(LAD), also known as the L1 norm. shows the
LAD loss function, where y; is the actual value and y; is the
predicted value. In gaze estimation, there can be a lot of noise
or errors in the data due to factors such as lighting conditions,
head movement, camera resolution, and surroundings. Since
LAD minimizes the sum of absolute errors, it reduces the
impact of outliers, leading to a more robust model.

n
S = ZL% — Gl
i=1

3) Implementation Details: The experiments in this paper
use a ResNet-18 model along with the Adam optimizer
for training and validation. This model only has 18 different
layers which reduces the computational power and memory
needed, resulting in faster training times and lower resource
consumption. Yet does the ResNet-18 model entail a high
accuracy and strong generalization, reducing overfitting and
improving performance on unseen data.

The Adam optimizer is an adaptive learning rate
optimization algorithm. Adam adjusts the learning rate for

€ =
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Fig. 4. Residuals of the backdoor activators.

each parameter dynamically, which helps in faster convergence
and better handling of noisy gradients.

The following hyper-parameters have been chosen to have
very low errors, whilst minimizing overfitting, yet training
within a reasonable time frame.

« Batch Size = 64

o Learning Rate = le-4

« Weight Decay = le-5

« Epochs = 10

« Percentage of the training set that contains the backdoor

activator = 5%

TABLE I
AVERAGE ERROR IN DEGREES FOR THE BENIGN MODEL

Average Error in Degrees
Clean Labels

1.00°

Poisoned Labels
100.43°

Benign Model

B. Evaluation Results

1) Data Plotting: The benign model is used as the base
case. The error is observable in where the error on
the clean labels is one degree, whereas the average error on
poisoned labels is 100.43 degrees.

able II] shows the error for the previously determined
backdoor activators, with varying parameters. It is clear that
for some of the chosen parameters in combination with the
hyper-parameters selected in [subsubsection IV-A3] the model
isn’t able to train for the backdoor activator. There the error
is similar to the error of the benign model of

The error on clean images on backdoored models must
be as close as possible to the error of the benign model.

shows a graph where the percentage of images that
have a maximum error of = are plotted. The benign model, as
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Fig. 5. The acceptance rate of backdoor datasets per error in degrees on clean
images.

expected, climbs the fastest to 100%, followed by the pattern
model. The yellow square and uniform noise model have a
bigger error, having a maximum error of 3.5°.

For the poisoned images it shows in|Figure 6|that the yellow
square model takes a bigger error to reach 100% and the border
model doesn’t even reach 50% on 5° error. The uniform-
Gaussian- and pattern- models all have a maximum error of
0.5° to 1.0°.

TABLE 11
AVERAGE ERROR IN DEGREES FOR MODELS WITH BACKDOOR
ACTIVATORS

Average Error in Degrees

Backdoor Model Parameters Clean Poisoned
Images Images
Yellow Square 1% of image 2.42° 98.07°
2% of image 1.09° 0.70°
Uniform Noise e =0.05 1.72° 0.22°
e =0.01 1.90° 0.11°
€ = 0.005 1.56° 0.45°
Gaussian Blur kernelsize = 3. 1.53° 0.33°
o=02
kernelsize = 3. 1.60° 13.75°
o=0.1
kernelsize = 5. 1.52° 3.48°
o=02
Extended Border 2 =15 1.16° 6.05°
z =10 2.07° 101.27°
Pattern Filter a = 0.01 1.06° 101.68°
a = 0.05 1.10° 0.12°

2) Survey: The survey results are plotted in

Survey takers were able to select what image looked the most
benign to them, or select both images if they looked identical
in originality. What immediately becomes clear is that the
benign images aren’t the ones selected most, but rather the
images with the pattern activator were deemed most original.
It’s important to note that in 63,6% of the surveys, the pattern
images were chosen over, or together with, the benign image
if the survey taker had to pick between the two.

The uniform and yellow square activators scored the lowest.
It becomes clear why as we look at the activators in |[Figure 1
and the residual of the uniform image in [Figure 4, where the
images have been multiplied by an integer x for visibility
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Fig. 6. The acceptance rate of backdoor datasets per error in degrees on
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Fig. 7. Results of the given survey based on 289 different image selections.

purposes. These images have a clear noise filter that is easy
to see with the naked eye.

C. Countermeasures

The BadNets backdoor attack can be used for malicious pur-
poses. Liu et al. propose to eliminate the potential backdoor by
pruning neurons and layers of the model [29]. Pruning removes
the less important weights of neurons from a DRM. After the
pruning, the model can be fine-tuned on a clean subset of
the training set, or be fine-tuned by an external training set.
Nonetheless, this way of defending a model against backdoor
attacks degrades the model’s accuracy according to Wang et
al. [30].

Taking the pattern filter with o = 0.05 from 20%
of the network will be pruned. After retraining the model
again on a subset of the benign training set (3000/45.000
images), it shows in table that the images with the
backdoor activators no longer have a false estimation of the
label. It however is noticeable that with this countermeasure
the average error on benign images on the fine-tuned model
still isn’t as low as the benign model.



TABLE III
AVERAGE ERROR IN DEGREES FOR MODELS WITH AND WITHOUT
COUNTERMEASURES

Average Error in Degrees
Clean Images

Poisoned Images

Benign Model 1.00° 100.43°
Pattern Filter 1.10° 0.12°
Pattern Filter with  1.21° 99.58°

Fine-Tuning

V. DISCUSSION AND LIMITATION

Due to the lack of strong computing power, there has been a
limit of possible backdoor activators, parameters, and hyper-
parameters that could be tested. Nonetheless do the current
table and graphs show the course of the errors clearly.

Because this paper is based on DRMs, results may slightly
vary per training and testing set. To reduce the chance of
overfitting, a weight decay was used. This however does not
fully prevent 100% against overfitting.

The size and restrictions of the MPIIFaceGaze dataset lead
to the possibility of only small edits to the image. Therefore
this paper only explains use cases where the the created model
only works with a faulty camera, or images being edited by a
malicious actor.

This experiment started without the equations of
This gave a greater average error as seen in
Creating a 3-dimensional space significantly improved
the results without impacting the training time.

TABLE IV
AVERAGE ERROR IN DEGREES FOR THE BENIGN MODELS

Average Error in Degrees
Clean Labels

4.78°
1.00°

Poisoned Labels

103.90°
100.43°

Old Benign Model
New Benign Model

VI. CONCLUSION

Backdoor activators with a static color like the yellow
square activator are highly dependent on not having that color
already in the color, but also are more visible, scoring low on
the imperceptibility and the average error.

The repetitive border activator is less visible, but—much
like the yellow square activator—highly depends on the image
color in that section. If the first few rows are all the same color
on a clean image, the model can falsely output a poisoned
label.

Perturbation activators score the lowest on average error but
vary on perceptibly. According to the survey is the uniform
noise activator the most perceptible. Gaussian blur is more
imperceptible and has a lower average error than uniform
noise. A pattern filter over the image has the lowest error and
perceptibility of all experimented activators as it’s stealthily
blended into the whole image, but has a standard pattern so
that it’s easily recognized by a DRM.

To effectively implement a BadNets backdoor attack on a
deep regression model designed for gaze-tracking, ensuring the

injected backdoor is imperceptible to human observation, it’s
necessary to poison 5% of the training data with an activator
that adds noise based on a pattern. The most imperceptible is
a filter overlay, as opposed to image blur, which is added to

the image according to with « = 0.05.

VII. RESPONSIBLE RESEARCH

Conducting research on backdoor attacks requires ethical
considerations due to the threats these attacks can pose to
real-life use cases. The purpose of this research is to better
understand how Deep Regression Models behave on BadNets
backdoor attacks so that more extensive research can be done
on how to successfully implement countermeasures.

To prevent malicious actors from using this paper to create
such backdoor attacks, a countermeasure already has been
researched. explores the defensive strategies
of pruning and fine-tuning a model trained on a poisoned
dataset.

The variability of the results can be influenced by several
factors. The characteristics of the dataset, including inherent
biases and anomalies, can affect the susceptibility to backdoor
attacks. Different deep regression model architectures exhibit
varying levels of vulnerability, and the specific methodologies
used to implement attacks also impact the outcomes.
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