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Abstract

Learning algorithms can perform poorly in unseen environments when they learn
spurious correlations. This is known as the out-of-domain (OOD) generalization prob-
lem. Invariant Risk Minimization (IRM) is a method that attempts to solve this prob-
lem by learning invariant relationships. Motivating examples as well as counterexam-
ples have been proposed on the performance of IRM. This work aims to clarify when
the method works well and when it fails by testing its ability to learn invariant relation-
ships. Therefore, experiments are done on a synthetic data model which simulates four
data distribution shifts: covariate shift (CS), confounder based shift (CF), anti-causal
shift (AC), and hybrid shift (HB). The experiments exploit IRM’s behaviour with re-
spect to hetero- and homoskedasticity and adaptation of the training environments.
We measure the error with regards to the optimal invariant predictor and compare to
the non-invariant Empirical Risk Minimization (ERM). The results show that IRM is
generally able to learn invariance for the CS and CF shifts, especially when the devia-
tion between the training environments is large. In the AC and HB shifts, this strongly
depends on the values of the training environments.

1 Introduction
By using large amounts of data for training, learning models can find prediction rules that
have good performance when applied to unseen validation data. As long as that data is
from the same environments at least. Data often comes with spurious correlations that a
model will recognize as a pattern [15, 2, 1]. When the environment changes, these factors
might no longer be present and prediction accuracy will greatly decline in most cases.

Take for example a model to classify a cow in an image [13]. An image with a cow will
often have a green background (pasture), which can be learned as a correlation to minimize
the error when classifying cows in that same environment. However, when introduced to
a cow in uncommon contexts (like a beach with sand and waves), it will usually not be
classified correctly. This is called the out-of-domain (OOD) generalization problem.

To solve this problem, a model should learn invariant relationships: properties that
remain stable across all environments [9, 3]. And a model should not learn spurious corre-
lations. Let us apply this to the cow-classification example: the shape and the stains are
examples of invariant properties. On the other hand, a pasture in the background is an
example of a spurious correlation. In other words, invariance in classification can be seen
as a causal relationship as to why an object should be assigned a certain label. The goal is
to make a model base its classifications only on these specific relationships to increase OOD
robustness.

Numerous methods have been introduced for this purpose, for example: Invariant Causal
Prediction [6], Risk Extrapolation [4], Calibration-based Invariance [16] and Distributionally
Robust Optimization [14].

This research will focus on a method introduced in 2019 called Invariant Risk Minimiza-
tion (IRM) [10]. The principle of IRM is to find a representation of features, such that the
optimal classifier on top of that representation is simultaneously optimal across all environ-
ments. This would be the ideal situation and is a large, bilevel optimization problem. For
practical reasons, the authors simplify the problem to a version called IRMv1. In the paper
they claim to have good performance when deployed in unseen environments. However, a
couple of papers that discuss IRM criticize its performance. In particular, the simplified
version IRMv1 as well as exposure to non-linear data and finite samples are criticized. This
related work will be discussed in the next section.
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We aim to clarify when IRM performs well and when it fails with respect to OOD gen-
eralization. IRM will be trained on a synthetic dataset that simulates four different data
distribution shifts. Then we will determine whether it captures invariance by comparing
to the optimal invariant predictor as an upper bound and to the non-invariant Empirical
Risk Minimization (ERM) as a lower bound. The experiments are limited to the simplified
version IRMv1. So the main research question will be:

For which data distribution shifts is the IRMv1 method able to capture in-
variance?

To properly answer this question, we will break it down into four sub-questions:

1. Which data distribution shifts are related to the OOD generalization problem?

2. How can we simulate these data distrbiution shifts in a synthetic dataset?

3. For which data distribution shifts is the prediction rule learned by IRMv1 similar to
the optimal invariant predictor?

4. For which data distribution shifts does IRMv1 perform better than the non-invariant
ERM?

In this work, we will first review several related papers in section 2. Then, we will
familiarize with IRM in section 3. Section 4 provides answers to the first two sub-questions
by describing the synthetic data model and the data distribution shifts that it can simulate.
Next, the experiments are explained along with the generated results in section 5. These
results will be discussed in section 6. The conclusion follows in section 7. We end with
section 8, where responsible research will be addressed.

2 Related Work
IRM has been discussed in numerous papers. Motivating examples as well as counterexam-
ples were proposed. In this section, the methods and conclusions of these papers are briefly
described.

The original paper does experiments from which the authors conclude that the method
performs well in unseen environments [10]. The experiments were done on a synthetic dataset
and on the semi-synthetic CMNIST dataset.

In the paper called Invariant Risk Minimization Games, the authors state that they
have designed a simpler algorithm which performs similar to or better than IRM on several
different configurations of the CMNIST dataset [8]. At the same time, their results show
that in all of the proposed cases IRM greatly outperforms ERM.

The previously mentioned simplification of IRM into IRMv1 is discussed in [12]. The
authors provide theoretical proof that this simplification comes with failure modes. The
proof is backed up with experiments on a synthetic dataset and the CMNIST dataset.

Another paper formally analyses the IRM objective [5]. The authors setup a simple
data model and consider two cases: a linear and a non-linear scrambler of the observable
features. For the linear case, it turns out that IRM only captures invariance when the number
of training environments is greater than the number of dimensions of the environmental
features. For the non-linear case, IRM is not able to generalize to new environments in
general.
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Performance of IRM compared to ERM with respect to sample complexity is discussed
in [7]. Four different types of distribution shifts that occur in datasets are defined: covariate
shift, confounder shift, anti-causal shift and hybrid (confounder and anti-causal) shift. These
are translated to variants of the CMNIST dataset. In the covariate shift, ERM and IRM
yield similar results. Whereas IRM wins in all the other shifts.

This work will extend on the data distribution shifts defined in [7]. Within the four
shifts, we test on heteroskedasticity versus homoskedasticity. This property in combination
with the shifts, greatly complicates invariant prediction and has been underexposed in the
aforementioned literature. Moreover, where most of the related works hold on to fixed train-
ing environments, we take a step further by adapting the values of the training environments
and by instantiating different deviations between them. This better reflects the real world
and will therefore enhance our understanding of IRM’s behaviour in OOD generalization.

3 Invariant Risk Minimization (IRM)
Invariant Risk Minimization (IRM) is a learning algorithm to solve the out-of-domain (OOD)
generalization problem. To familiarize with IRM, we first formalize this problem. The invari-
ant predictor will be introduced next. We explain how to find this predictor by defining the
constrained optimization problem. Finally, the simplified version IRMv1 will be specified.

First, a formalization of the OOD generalization problem is required. Consider the
collection of datasets D = {De}e∈Etr where each dataset De := {(xe

i , y
e
i )}

ne
i=1 is acquired from

a training environment e ∈ Etr. In this notation e represents the environmental index, i is the
index of the data point and ne indicates the total number of data points in the environment.
A data point consists of two parts: the feature value xe

i ∈ Xe and its corresponding label yei ∈
Y e. All the data points in an environment e are drawn from some probability distribution
P (Xe, Y e). The goal of OOD generalization is to learn a predictor Y ≈ f(X) that performs
well in the training environments and many unseen environments described by Eall ⊃ Etr.
The performance of a predictor f in an environment e can be evaluated using the risk
Re = EXe,Y e [ℓ(f(X), Y )]. The function ℓ is the loss function, which we instantiate as the
mean squared error. Now we aim to minimise the expected risk across all environments,
given by:

ROOD(f) = maxe∈Eall
Re(f) [10]

So by using data obtained in the training environments Etr, one should find a predictor f that
is robust in all environments Eall. This is challenging, because the probability distribution
in an unseen environment can be very different from the training environments.

IRM attempts to solve this problem by learning invariant relationships [10]. Let us ex-
plain the idea with the aforementioned cow-classification example. IRM wants to extract
only the relevant features by defining a data representation Φ. This could be seen as re-
moving the background from an image. The data representation could, for instance, be an
image of the cow with a transparent background. Then it learns a classifier w on top of this
data representation. This classifier will only be based on the properties of the cow, because
the background has been removed. Now when introduced to new environments, the feature
embedder Φ will ensure that only the cow is visible and therefore the classifier w will be
simultaneously optimal for all environments. The product of the data representation and
the classifier is called the invariant predictor w · Φ. This is formally phrased by [10] as:

Definition 1 A data representation Φ : X → H elicits an invariant predictor w · Φ across
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environments E if there is a classifier w : H → Y simultaneously optimal for all environ-
ments, that is, w ∈ arg minw̄:H→Y Re(w̄ · Φ) for all e ∈ E.

This idea applies to many real world problems and in particular to the laws of physics
[9]. Consider an apple that falls to the ground. The apple has many features: the color,
the shape, the mass etcetera. However, its mass is the only relevant feature (Φ) with
respect to the gravitational force. The acceleration can be computed with the same formula
(w) regardless of the context. In this example the gravitational force forms the invariant
relationship between the apple and its acceleration.

But now the question is: how to find this data representation? Across the training
environments the data representation has two constraints: it should yield low risk and elicit
an invariant predictor. This leads to the constrained optimization problem, which [10]
mathematically describes by the following:

min
Φ:X→H
w:H→Y

Σ
e∈Etr

Re(w · Φ)

subject to w ∈ arg min
w̄:H→Y

Re(w̄ · Φ), for all e ∈ Etr

It is very computational intensive to find the optimal solution, because the two con-
straints make it a bilevel optimization problem. For each variable in the outer optimization
task (achieve low risk across all training environments), the entire inner optimization task
should be solved (elicit an invariant predictor across all training environments). To make it
more practical, the authors of [10] restrict the problem to the simplified version IRMv1:

min
Φ:X→Y

Σ
e∈Etr

Re(1.0 · Φ) + λ · ||▽w|w=1.0R
e(w · Φ)||2

The simplification is mainly in the classifier: w = 1.0. This makes that the invariant
predictor becomes just Φ. Furthermore, the inner optimization problem is expressed by
the gradient norm penalty which assesses the optimality of w. The regularizer λ can be
increased to enhance importance to the invariance of the predictor. λ can take any positive
value. When set to zero, it only optimizes low risk across training environments which is
the same as ERM. When set to infinity, IRMv1 is equivalent to the original problem. The
experiments in this paper will all be performed on IRMv1.

4 Synthetic Data Model
To be able to test if IRM learns invariant relationships, a simulation of the real world is re-
quired. Therefore, we generate data through a model on which we can perform experiments.
In this section, the synthetic data model is described along with the data distribution shifts
that it can simulate. This answers the first two research sub-questions.

The synthetic data model that we use in the experiments is inspired from the structural
equation model defined in [10]. It consists of four random variables of which X1 and X2

are the observable features, Y is the underlying label, and H is a hidden confounder. Every
variable follows a Gaussian distribution with a variance that depends on the environment.
The variables are connected to each other through weights. A weight can either be zero
(not connected) or Gaussian (connected). We can set these weights such that they represent
various data distribution shifts, which will be explained in section 4.1. The goal is to predict
Y e from Xe = [Xe

1 , X
e
2 ]. Figure 1 visualizes the model.
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e

Xe
2 ← N (0, σ2

2) +Wy→2Y
e +Wh→2H

e

Figure 1: The synthetic data model used for the experiments, where Y e should be predicted
from Xe = [Xe

1 , X
e
2 ].

The model allows for a specific adaptation: stable or varying Y-noise across environ-
ments. This is called homoskedastic (σ2

y = 1 and σ2
2 = σ2

e) or heteroskedastic (σ2
y = σ2

e and
σ2
2 = 1) Y-noise respectively. Note that σ2

2 changes as well in this adaptation. This is done
to minimize side effects in X2 (to which Y is added), because the adaptation is meant to
only change the Y-noise. This will be further explained in section 5.1.

In this model the connection between X1 and Y represents an invariant relationship.
On the other hand, X2 is spuriously correlated to Y . To better understand why this is
the case, we discard the confounder H, set the remaining weights to identity, and define a
least-squares predictor Ŷ = X1α̂1 +X2α̂1. Regression from X1 yields α̂1 = 1 and α̂2 = 0.
Regression from X2 yields α̂1 = 0 and α̂2 = e2

e2+ 1
2

. And regression from X1 and X2 yields

α̂1 = 1
e2+1 and α̂2 = e2

e2+1 . To predict well in unseen environments, we want the coefficients
to be independent of the environment. This is only the case when regressing from X1. Then
the optimal invariant predictor becomes: Ŷ = X1 · 1 + X2 · 0. This predictor is optimal
with respect to invariance, because it is a correct causal explanation of how Y responds to
changes of the features across all environments.

4.1 Data Distribution Shifts
Following [7] we describe four data distribution shifts and represent them in the model. This
solves research sub-questions one and two. The distinction between the shifts can be found
in the (indirect) relation between the label Y e and the spurious feature Xe

2 . The relation
between the causal feature Xe

1 and the label Y e remains invariant in every shift. The shifts
are visually represented in figure 2.

Figure 2: The four data distribution shifts represented in the synthetic data model.

The covariate shift (CS) occurs when the training data is not representative of the real
world. For instance, we can have a dataset containing images of only brown cows. The
brown color would then be the spurious feature Xe

2 which might seem related to the label
Y e. But in the real world the Xe

2 will follow a different distribution, because there exist
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cows with different colors. A model that learned the brown color as a property of the cow,
can still classify brown cows correctly. However, it might not recognize cows with different
colors, because there exists no relation between the label Y e and Xe

2 . This shift is present
in all the other shifts and therefore serves as a baseline. In this case the spurious correlation
is weak, so we expect IRM to easily be able to capture invariance.

The confounder based shift induces spurious correlations through a confounding factor
He that acts upon both Y e and Xe

2 . As an example, we can think of the confounder as
a country. The Netherlands has many grassy landscapes and many cows. On the other
hand, Egypt has a lot of sandy landscapes and many camels. The correlation through the
confounding factor can easily be established: cows belong to grassy backgrounds and camels
belong to sandy backgrounds. When introduced to a new environment this confounder can
be very different. Let us say we move to India, where we find many cows on the beach. The
correlation that sandy backgrounds belong to camels is no longer valid. In other words, this
is a spurious correlation induced by the country as a confounder. It will be slightly harder
to learn the invariant relationship in this shift. However, we expect IRM to succeed when
the training environments are sufficiently different.

The anti-causal shift is characterized by the direct relation from Y e to Xe
2 . This induces

a correlation between the label and an observable feature, but it is not causal and therefore
not invariant. In the cow-classification example, this can be illustrated by the correlation
between the cow (label) and the length of the grass (observable feature). Because cows eat
grass, the grass tends to be shorter in pastures where cows live. But now we are introduced
to a golf course, where the grass is mowed. The grass length is identical for any animal in the
environment, so it cannot be used to classify a cow. Therefore this is a spurious correlation
caused by an anti-causal feature. This correlation is very strong, so it will be challenging
for IRM to capture invariance.

Lastly, the hybrid shift is a combination of the confounder based and anti-causal shift.
This means that Y e is directly (anti-causally) related to Xe

2 as well as through a confounding
factor He. This combination makes invariant prediction even harder, because there are many
similarities between the label and the spurious feature.

5 Experiments and Results
By performing experiments on the synthetic data model from section 4, we wish to answer
the main research question; for which data distribution shifts is the IRMv1 method able
to capture invariance? The data distribution shifts are defined in section 4.1. IRM will be
trained on environments that correspond to these shifts. We will measure the error of the
learned prediction rule as opposed to the optimal invariant predictor, also referred to as
the model estimation error. Furthermore, we compare the model estimation error of IRM
to that of ERM. This will answer the last two research sub-questions. Ultimately, we want
IRM to have a low model estimation error and that it outperforms ERM. In that case we
can acknowledge that IRM captures invariance.

We begin with testing on heteroskedastic and homoskedastic Y-noise. Then, we will
adapt the values of the training environments and consider different deviations between
them.

There are some default settings throughout the experiments. When they are not men-
tioned, the following parameters will have these values:

• Number of dimensions D = 10
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• Number of samples ns = 1000

• Number of repetitions for average nr = 10

• Training environments Etr = {0.2, 2.0, 5.0}

• Regularizer selection set P = {0, 1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1}

• Regularizer cross-validation in last training environment

• Number of training iterations nit = 10000

• Learning rate α = 1e− 3

• Gradient steps β = 5e− 4

• Heteroskedastic Y-noise, where σ2
y = σ2

e and σ2
2 = 1

• Weights Wh→y and Wh→2 set to 1
DN (0, 1) when there is a relation and 0 otherwise

• Weights W1→y and Wy→2 set to I when there is a relation and 0 otherwise

Note that the weights related to the confounder (Wh→y and Wh→2) are Gaussian. This
is done to simulate the real world, where confounding factors are present with a degree
of randomness. The weights related to the label (W1→y and Wy→2) would ideally also be
Gaussian. However, the methods require many more samples and iterations to acquire the
same results. Keeping in mind the scope of the project, we decided to assign fixed weights.

To clarify the data generating process, we instantiated Etr with 100 samples for all shifts.
The plots can be found in figure 3. These instances show that the variance of X1 is propor-
tional to the environment in all shifts. The variance of X2 is constant across environments
in the CS shift. In the other shifts its variance deviates a lot per environment, due to
addition of H and Y. Similar instances with homoskedastic Y-noise and the 3 dimensional
representations (with Y) can be found in the appendix A.

In all experiments, the methods learn a prediction rule of the form Ŷ = [Ŵ1→y, Ŵy→2]X.
The optimal invariant predictor is given by Ŷ = [W1→y, 0]X which is equal to Ŷ = [1, 0]X,
because we always set W1→y to I. The model estimation error is the distance between the
learned prediction rule and the optimal invariant predictor: ||[Ŵ1→y, Ŵy→2]− [1, 0]||2.

5.1 Heteroskedastic and Homoskedastic Y-noise
In the real world the noise of the underlying label can be varying or stable [11]. We call
this hetero- and homoskedastic Y-noise. To simulate heteroskedasticity, we set σ2

y = σ2
e and

σ2
2 = 1. Whereas homoskedasticity is reproduced by σ2

y = 1 and σ2
2 = σ2

e . As mentioned in
section 4, we change σ2

2 here as well to reduce side effects. To see what happens with side
effects, this experiment also includes the case σ2

y = 1 and σ2
2 = 1 which we call homoskedastic

Y-noise with constant X2. The results are displayed in figure 4.
First, we consider heteroskedasticity. In the CS shift, the spurious features follow a con-

stant distribution (N (0, 1)). When only minimizing the risk across training environments,
like ERM, we would expect these features to already mostly be discarded for prediction.
This corresponds to the results. IRM outperforms ERM in all the shifts. This is also con-
form to expectations, because these shifts produce spurious correlations that ERM eagerly
uses for minimizing its training error. IRM successfully ignores all spurious features in the
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Figure 3: 2D instances of training environments Etr = {0.2, 2.0, 5.0} with 100 samples and
heteroskedastic Y-noise for every data distribution shift.

Figure 4: The results of the heteroskedastic and homoskedastic Y-noise experiment. The
black bars indicate the standard error of measurement. The corresponding tables are in the
appendix B.

CF shift with an error of almost 0. The error is slightly higher in the AC and HB shifts.
This is because of the anti-causal relation between Y and X2, which forms a strong spurious
correlation. The fact that it wins from ERM with a large margin implies that the regularizer
is set to an appropriate value. So the sub-optimal results are probably caused by problems
in the gradient estimation.

Both methods have a significantly smaller error in the homoskedastic case. This is plau-
sible, because in this situation the Y-noise is constant across environments which makes
regression simpler. IRM wins from ERM in the AC and HB shifts, just like with het-
eroskedastic Y-noise. Remarkably, IRM performs less well than ERM in the CS and CF
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shifts under homoskedastic Y-noise. By definition IRM becomes ERM when the regularizer
is set to 0. So the regularizer should have been smaller for these shifts.

The outer right plot in figure 4 shows the results for homoskedastic Y-noise with constant
X2. IRM succeeds in filtering out the confounder in this situation. This follows from its low
error in the CF shift and the comparison between the AC and HB shifts. The only difference
between these two shifts is the confounder. ERM’s error increases as the confounder is added,
whereas IRM’s error remains constant. On the other hand, the anti-causal link between Y
and X2 is the reason for IRM’s bad performance in the AC and HB shifts. This is not
surprising, because in this setting the X2-noise follows the same distribution as the Y-
noise. When the anti-causal link is present, a spurious correlation is formed which is almost
indistinguishable from an invariant relationship. Therefore, we will not consider this case
for the other experiments.

5.2 Adapting Training Environments
The previous experiment was done on a fixed set of training environments. But in OOD
generalization we cannot make any assumptions on this set. In this section, we will perform
experiments with different training environments. First, we will adapt the values and keep
the mutual deviation fixed. Then, we will test on different deviations between them.

5.2.1 Values of Training Environments

In this experiment, we adapt the values of the training environments while keeping the
deviation between them constant. The set of training environments is given by Etr =
{0.2 + AEtr

, 2.0 + AEtr
, 5.0 + AEtr

} where AEtr
is the amount of adaptation ranging from 0

to 15.
The results are displayed in figure 5. The errors clearly increase for a larger adaptation.

This is what we would expect, because the variance of the Y-noise depends on the envi-
ronment. The data of the label will therefore be more skewed, which makes it harder to
predict. In case of homoskedastic Y-noise, this is the other way around. The results of the
same experiment under homoskedastic Y-noise are in the appendix C.1.3.

Note that the plots of the CS and CF shifts in figure 5 are convex, whereas those of
the AC and HB shifts are concave. To understand these different curves, we should look at
the weights in the learned prediction rules. Recall that the optimal invariant predictor has
the weights W = [1, 0]. The results with the separate error for the causal and non-causal
weights are in the appendix C.1.1.

These results show that in the CS and CF shifts, as σ2
e grows to infinity, the methods

seem to learn the weights Ŵ = [∼ 1,∞]. So it learns the causal weight correctly, but assigns
too much weight to the spurious feature. This is because X2 follows a distribution which
is not influenced (or only slightly in the CF shift) by the environment. Hence, it multiplies
this X2 with a weight proportional to σ2

e to predict Y.
Meanwhile in the AC and HB shifts, as σ2

e grows to infinity, the methods seem to learn
the weights Ŵ = [∼ 0,∼ 1] and Ŵ = [∼ 0.1,∼ 0.9] respectively. This is opposite to the
optimal invariant predictor. The reason for this is that the distribution of X2 converges to
the same distribution as Y when σ2

e increases. So the models set the non-causal weight to
approximately 1, such that the prediction rule yields the same distribution as Y.

This explains the behavior of the methods with respect to the optimal invariant predictor.
But ERM and IRM also have different performance. In the CS and CF shifts, for a large
AEtr

, IRM has a greater error than ERM. As mentioned before, we know by definition that
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the regularizer is then set too large. The regularizer is cross validated in the last training
environment, which also has the most variance. This makes it hard to set an appropriate
value. In the AC and HB shifts, IRM outperforms ERM when AEtr is small. So before
X2 converges to the same distribution as Y, IRM is actually able to identify the invariant
relationship.

Figure 5: The results of adapting the values of the training environments with heteroskedas-
tic Y-noise. The corresponding tables are in the appendix C.1.2.

5.2.2 Deviation Between Training Environments

In the real world it can occur that the training environments are very similar, but just as
well that there is a large difference between them. In this experiment we will test on different
deviations between the training environments. The set of training environments is given by
Etr = {0.2, 0.2+DEtr

, 0.2+2 ·DEtr
} where DEtr

is the deviation ranging from 0.1 to 15. We
expect the error to be lower for a larger deviation; it should be easier to find the invariant
relationship when the spurious correlations differ more across the training environments.

The results can be found in figure 6. Both methods clearly perform less well when
the deviation is larger, which is against expectation. The reason for this is that a larger
deviation comes with a larger value of σ2

e (we got ourselves a confounder!). Recall from the
previous experiment that a larger value of σ2

e yields a greater error under heteroskedastic
Y-noise. For homoskedastic Y-noise this is the other way around. We did this experiment
as well with homoskedastic Y-noise of which the results are in the appendix C.2.2. These
results, just like before, show a decreasing trend. Hence, we should keep the outcome of the
previous experiment in mind when observing the current results.
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In the CS and CF shifts, we can see similar curves as in the previous experiment which we
can devote to the increasing σ2

e . Nevertheless, IRM performs much better in comparison to
ERM in this experiment. So IRM captures invariance particularly well for a large DEtr . The
regularizer seems to be set to an appropriate value in contrast to the previous experiment.
This is probably because now the regularizer is cross validated in a very different environment
than the other training environments, which makes it easier to identify invariance.

Likewise, the curves of the plots in the AC and HB shifts are similar to the previous
experiment. ERM yields low error for a small deviation, because the values of σ2

e are so
small that it corresponds to the CS shift. Other than that, there is no difference in the
ratio between the error of IRM and ERM. This means that the deviation by itself has no
effect on IRM’s performance in these shifts. So even though the training environments are
very different, IRM apparently has problems to recognize the invariant relationship in the
presence of the anti-causal link when σ2

e is large. In this situation the spurious correlation
becomes very strong and finding the invariant data representation through the gradient
estimation seems to fail.

Figure 6: The results of the deviation between training environments experiment with het-
eroskedastic Y-noise. The corresponding tables are in the appendix C.2.1.

6 Discussion
The IRM learning method attempts to solve the OOD generalization problem by learning
invariant relationships [10]. The practical version IRMv1 optimizes risk and attempts to
elicit an invariant predictor across the training environments. In section 3, the method
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is described in detail. We exposed IRM to different data distribution shifts in a series of
experiments to test its ability to capture invariance. In this section we will discuss the
outcome of the experiments and consider the limitations.

In the covariate shift (CS) there is no relation between the label Y and the spurious
features X2. It is present in all the other shifts and serves as a baseline. IRM generally learns
the invariant relationship in this shift, but sometimes it fails to set an appropriate value for
the regularizer. This is especially the case for large values of the training environments
and homoskedastic Y-noise. However, when increasing the deviation between the training
environments this problem seems to be solved. The regularizer is then cross validated in a
very different environment, which reveals the spurious correlations.

In the confounder based shift (CF), the label Y and the spurious features X2 are related
through a confounder H. This spurious correlation makes it slightly harder to recognize
the invariant features. IRM is able to capture invariance for small values of σ2

e and under
heteroskedastic Y-noise. For larger values of σ2

e and homoskedastic Y-noise, it yields a
greater error than ERM. Similar to the CS shift, this is probably caused by selecting a
regularizer that is too large. This problem seems to disappear in the same way as for the
CS shift: when the deviation between the training environments is increased.

The anti-causal shift (AC) is characterized by the relation from Y to X2. This induces
a strong spurious correlation, because the spurious features are influenced by the label.
In general IRM performs better than ERM in this shift. Only when the values of the
training environments are large, the two methods yield similar errors. This implies that the
regularizer is selected appropriately; it only applies the gradient norm penalty when it can
gain advantage over ERM. So it generally performs better than the non-invariant ERM, but
at the same time it often fails to find the optimal invariant solution. The simplified version
IRMv1 uses gradient estimation to assess the optimality of a predictor. But this seems to
give problems in the presence of strong spurious correlations, which then yields a significant
model estimation error.

The hybrid shift (HB) includes the confounder H and the anti-causal relation between Y
and X2. The anti-causal link induces a very strong spurious correlation, which dominates
this shift. Hence, IRM performs similar to the AC shift in this case.

This work also has its limitations. The experiment where different deviations between
the training environments are considered (in section 5.2.2), does not only reflect on the
deviation. By increasing the deviation, the value of σ2

e also increases which dominates the
results. A possible solution to this would be to change the synthetic data model, such that
the means of the random variables depend on the environment rather than the variance. A
larger deviation will then only have impact on the difference between the environments and
not affect the environments itself.

Additionally, the weights in the synthetic data model should ideally all be Gaussian.
In our experiments we set the weights related to the label (W1→y and Wy→2) to identity
for simplicity. But it would be a better simulation of the real world to include a degree of
randomness in these relations.

Furthermore, we argued about the regularizer and the gradient estimation, but it would
be of great addition if these values would be included in the results. For future work it
would also be interesting to perform experiments with a different regularizer selection set
and to use different environments for its cross-validation.
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7 Conclusion
We presented an analysis of IRM to answer the question: for which data distribution shifts
is the IRMv1 method able to capture invariance? To properly answer this question we
instantiated four data distribution shifts: covariate shift (CS), confounder based shift (CF),
anti-causal shift (AC), and hybrid shift (HB). These shifts were simulated in a synthetic
data model. Using the model, we performed experiments which considered hetero- and
homoskedasticity as well as adaptation to the values of the training environments and their
mutual deviation. We compared IRM’s learned prediction rule to the optimal invariant
predictor and to the non-invariant ERM.

We found that in the CS and CF shifts, IRM is generally able to capture invariance.
Only when the deviation between training environments is small, it performs poorly. This
seems to be caused by the selection of an inappropriate value for the regularizer. On the
other hand, it strongly depends on the values of the training environments whether IRM can
learn the invariant relationships in the AC and HB shifts. IRM always outperforms ERM in
these shifts, but has problems with finding the optimal solutions. This is especially the case
for large values of the training environments. It seems that the gradient estimation could
be part of the problem.

8 Responsible Research
For research to be reliable, it is important to adhere to scientific integrity. A researcher
should be honest, transparent, and avoid any external influence without scientific motive.
In this section, we will reflect on our own integrity and explain how we tried to ensure this.

We ensured that the research data is reliable. The entire experimental setup is described
in the paper such that it is reproducible. The data points in our results were obtained by
averaging over 10 repetitions. This accounts for randomness and coincidental side effects.
All data points include a standard error of measurement and no data points were discarded.
We performed several experiments, which could not all be included in the paper. However,
the additional results are attached in the appendix. Whenever we chose for certain settings,
we carefully explained why we used them. This was in order to show that we did not select
them to simply manipulate the results.

This work builds upon existing research. All the papers that were extended on were
referenced and it was carefully explained what parts were adopted. We used multiple sources
to increase reliability. Moreover, we critically discussed the results of related works and
extended on parts that were underexposed. However, we used some sources that were
published as a part of the same conference: ICLR. This could mean that works are biased,
but we believe that this is not the case in this situation. For example, [10] which introduces
IRM and [5] which criticizes IRM, were both published as a part of ICLR. This criticism
indicates that there is no bias induced by this conference. ICLR is also a universal event that
is supported by many researchers from many different countries, which is another indication
for reliability.

The experiments that we performed also had its limitations. It is important to be aware
of these limitations and to describe how these could be improved. In the discussion section,
the limitations were discussed along with possible solutions for future work.

14



References
[1] Allan Jabri, Armand Joulin, and Laurens Van Der Maaten. Revisiting visual question

answering baselines. ECCV, 2016.

[2] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. CVPR, 2011.

[3] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman.
Building machines that learn and think like people. Behavioral and brain sciences,
2016.

[4] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas,
Remi Le Priol, Dinghuai Zhang, and Aaron Courville. Out-of-distribution generalization
via risk extrapolation (rex). ICLR, 2021.

[5] Elan Rosenfeld, Pradeep Kumar Ravikumar, and Andrej Risteski. The risks of invariant
risk minimization. ICLR, 2020.

[6] Jonas Peters, Peter Buhlmann, and Nicolai Meinshausen. Causal inference using invari-
ant prediction: identification and confidence intervals. Journal of the Royal Statistical
Society, 2016.

[7] Kartik Ahuja, Jun Wang, Amit Dhurandhar, Karthikeyan Shanmugam, and Kush R.
Varshney. Empirical or invariant risk minimization? a sample complexity perspective.
ICLR, 2020.

[8] Kartik Ahuja, Karthikeyan Shanmugam, Kush R. Varshney, and Amit Dhurandhar.
Invariant risk minimization games. arXiv, 2020.

[9] David Lopez-Paz. From dependence to causation. PhD thesis, University of Cambridge,
2016.

[10] Martin Arjovsky, Leon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization. ICLR, 2019.

[11] Patrick J. Rosopa, Meline M. Schaffer, and Amber N. Schroeder. Managing het-
eroscedasticity in general linear models. Psychological Methods, 2013.

[12] Pritish Kamath, Akilesh Tangella, Danica J. Sutherland, and Nathan Srebro. Does
invariant risk minimization capture invariance? CoRR, 2021.

[13] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. ECCV,
2018.

[14] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distribu-
tionally robust neural networks for group shifts: On the importance of regularization
for worst-case generalization. ICLR, 2020.

[15] Bob L. Sturm. A simple method to determine if a music information retrieval system
is a âhorseâ. IEEE Transactions on Multimedia, 2014.

[16] Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-
domain generalization. NeurIPS, 2021.

15



A Instances of training environments

Figure 7: 2D instances of training environments Etr = {0.2, 2.0, 5.0} with 100 samples for
every data distribution shift under homoskedastic Y-noise.
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Figure 8: 3D instances of training environments Etr = {0.2, 2.0, 5.0} with 100 samples for
every data distribution shift under heteroskedastic Y-noise.
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Figure 9: 3D instances of training environments Etr = {0.2, 2.0, 5.0} with 100 samples for
every data distribution shift under homoskedastic Y-noise.
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B Heteroskedastic and Homoskedastic Y-noise Tables

Method Shift Model estimation error
ERM CS 0.0098 ±0.0019
IRM CS 0.0026 ±0.0005
ERM CF 0.0372 ±0.0103
IRM CF 0.0084 ±0.0019
ERM AC 0.8173 ±0.0028
IRM AC 0.2851 ±0.0159
ERM HB 0.7749 ±0.0075
IRM HB 0.2802 ±0.0156

Table 1: The results for heteroskedastic Y-noise corresponding to figure 4.

Method Shift Model estimation error
ERM CS 0.0002 ±0.0000
IRM CS 0.0012 ±0.0002
ERM CF 0.0012 ±0.0003
IRM CF 0.0028 ±0.0006
ERM AC 0.0096 ±0.0002
IRM AC 0.0030 ±0.0006
ERM HB 0.0185 ±0.0016
IRM HB 0.0120 ±0.0014

Table 2: The results for homoskedastic Y-noise corresponding to figure 4.

Method Shift Model estimation error
ERM CS 0.0002 ±0.0000
IRM CS 0.0012 ±0.0002
ERM CF 0.0012 ±0.0003
IRM CF 0.0028 ±0.0006
ERM AC 0.0096 ±0.0002
IRM AC 0.0030 ±0.0006
ERM HB 0.0185 ±0.0016
IRM HB 0.0120 ±0.0014

Table 3: The results for homoskedastic Y-noise with constant X2 corresponding to figure 4.
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C Adapting Training Environments Additional Material

C.1 Values of Training Environments
C.1.1 Heteroskedastic Y-noise Causal and Non-causal Figures

Figure 10: The causal model estimation error of adapting the values of the training envi-
ronments under heteroskedastic Y-noise.
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Figure 11: The anti-causal model estimation error of adapting the values of the training
environments under heteroskedastic Y-noise.
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C.1.2 Heteroskedastic Y-noise Tables

Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.2 0.0101 ± 0.0023 0.0031 ± 0.0008 0.0172 ± 0.0028
IRM 0.2 0.0029 ± 0.0006 0.0042 ± 0.0007 0.0016 ± 0.0007
ERM 0.5 0.0112 ± 0.0027 0.0029 ± 0.0007 0.0195 ± 0.0032
IRM 0.5 0.0033 ± 0.0005 0.0039 ± 0.0006 0.0026 ± 0.0008
ERM 1 0.0133 ± 0.0033 0.0027 ± 0.0007 0.0239 ± 0.0039
IRM 1 0.0049 ± 0.0011 0.0036 ± 0.0006 0.0062 ± 0.0020
ERM 3 0.0257 ± 0.0070 0.0021 ± 0.0005 0.0493 ± 0.0073
IRM 3 0.0212 ± 0.0075 0.0038 ± 0.0008 0.0387 ± 0.0123
ERM 4 0.0342 ± 0.0095 0.0020 ± 0.0005 0.0664 ± 0.0095
IRM 4 0.0418 ± 0.0163 0.0045 ± 0.0013 0.0792 ± 0.0271
ERM 5 0.0443 ± 0.0124 0.0019 ± 0.0004 0.0866 ± 0.0119
IRM 5 0.0807 ± 0.0323 0.0060 ± 0.0022 0.1554 ± 0.0536
ERM 8 0.0834 ± 0.0235 0.0018 ± 0.0003 0.1650 ± 0.0216
IRM 8 0.3846 ± 0.1567 0.0124 ± 0.0061 0.7568 ± 0.2561
ERM 10 0.1170 ± 0.0331 0.0018 ± 0.0003 0.2322 ± 0.0301
IRM 10 0.8139 ± 0.3349 0.0166 ± 0.0087 1.6113 ± 0.5468
ERM 15 0.2272 ± 0.0647 0.0018 ± 0.0003 0.4527 ± 0.0583
IRM 15 3.0392 ± 1.1789 0.0231 ± 0.0123 6.0553 ± 1.8321

Table 4: The results of adapting the values of the training environments under heteroskedas-
tic Y-noise with CS-regression. This corresponds to figure 5.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.2 0.0347 ± 0.0115 0.0026 ± 0.0005 0.0669 ± 0.0165
IRM 0.2 0.0082 ± 0.0021 0.0071 ± 0.0017 0.0092 ± 0.0040
ERM 0.5 0.0417 ± 0.0140 0.0025 ± 0.0005 0.0809 ± 0.0200
IRM 0.5 0.0107 ± 0.0030 0.0069 ± 0.0018 0.0146 ± 0.0055
ERM 1 0.0552 ± 0.0188 0.0023 ± 0.0005 0.1081 ± 0.0267
IRM 1 0.0153 ± 0.0050 0.0060 ± 0.0013 0.0246 ± 0.0090
ERM 3 0.1343 ± 0.0452 0.0019 ± 0.0005 0.2667 ± 0.0611
IRM 3 0.0642 ± 0.0212 0.0038 ± 0.0009 0.1246 ± 0.0297
ERM 4 0.1886 ± 0.0623 0.0018 ± 0.0005 0.3753 ± 0.0817
IRM 4 0.1171 ± 0.0372 0.0037 ± 0.0009 0.2305 ± 0.0475
ERM 5 0.2522 ± 0.0820 0.0017 ± 0.0004 0.5027 ± 0.1045
IRM 5 0.1939 ± 0.0612 0.0051 ± 0.0011 0.3827 ± 0.0767
ERM 8 0.4938 ± 0.1592 0.0017 ± 0.0004 0.9859 ± 0.1985
IRM 8 0.5210 ± 0.1680 0.0112 ± 0.0039 1.0307 ± 0.2162
ERM 10 0.6897 ± 0.2275 0.0017 ± 0.0004 1.3778 ± 0.2942
IRM 10 0.7813 ± 0.2580 0.0140 ± 0.0053 1.5485 ± 0.3421
ERM 15 1.2542 ± 0.4506 0.0017 ± 0.0003 2.5068 ± 0.6496
IRM 15 1.5332 ± 0.5531 0.0183 ± 0.0071 3.0480 ± 0.8096

Table 5: The results of adapting the values of the training environments under heteroskedas-
tic Y-noise with CF-regression. This corresponds to figure 5.

Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.2 0.8168 ± 0.0034 0.8177 ± 0.0066 0.8158 ± 0.0024
IRM 0.2 0.2863 ± 0.0179 0.2178 ± 0.0048 0.3548 ± 0.0030
ERM 0.5 0.8387 ± 0.0032 0.8396 ± 0.0062 0.8377 ± 0.0024
IRM 0.5 0.3718 ± 0.0187 0.3006 ± 0.0053 0.4430 ± 0.0044
ERM 1 0.8689 ± 0.0030 0.8698 ± 0.0056 0.8680 ± 0.0024
IRM 1 0.5251 ± 0.0168 0.4630 ± 0.0075 0.5872 ± 0.0070
ERM 3 0.9365 ± 0.0021 0.9373 ± 0.0038 0.9358 ± 0.0021
IRM 3 0.9000 ± 0.0034 0.8993 ± 0.0053 0.9008 ± 0.0046
ERM 4 0.9529 ± 0.0018 0.9536 ± 0.0032 0.9522 ± 0.0018
IRM 4 0.9339 ± 0.0025 0.9346 ± 0.0039 0.9332 ± 0.0034
ERM 5 0.9639 ± 0.0016 0.9645 ± 0.0027 0.9632 ± 0.0017
IRM 5 0.9527 ± 0.0021 0.9536 ± 0.0033 0.9517 ± 0.0028
ERM 8 0.9810 ± 0.0011 0.9814 ± 0.0019 0.9805 ± 0.0013
IRM 8 0.9780 ± 0.0014 0.9787 ± 0.0021 0.9772 ± 0.0019
ERM 10 0.9864 ± 0.0009 0.9868 ± 0.0016 0.9860 ± 0.0011
IRM 10 0.9851 ± 0.0011 0.9857 ± 0.0017 0.9845 ± 0.0016
ERM 15 0.9930 ± 0.0007 0.9933 ± 0.0011 0.9927 ± 0.0008
IRM 15 0.9930 ± 0.0008 0.9934 ± 0.0011 0.9926 ± 0.0011

Table 6: The results of adapting the values of the training environments under heteroskedas-
tic Y-noise with AC-regression. This corresponds to figure 5.

23



Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.2 0.7702 ± 0.0085 0.7696 ± 0.0126 0.7709 ± 0.0123
IRM 0.2 0.2791 ± 0.0176 0.2120 ± 0.0043 0.3461 ± 0.0051
ERM 0.5 0.7893 ± 0.0088 0.7886 ± 0.0130 0.7899 ± 0.0128
IRM 0.5 0.3613 ± 0.0183 0.2921 ± 0.0049 0.4305 ± 0.0067
ERM 1 0.8154 ± 0.0092 0.8148 ± 0.0135 0.8160 ± 0.0134
IRM 1 0.5037 ± 0.0168 0.4440 ± 0.0090 0.5633 ± 0.0103
ERM 3 0.8733 ± 0.0101 0.8729 ± 0.0146 0.8738 ± 0.0149
IRM 3 0.8290 ± 0.0103 0.8235 ± 0.0155 0.8344 ± 0.0144
ERM 4 0.8872 ± 0.0102 0.8868 ± 0.0148 0.8877 ± 0.0152
IRM 4 0.8648 ± 0.0102 0.8625 ± 0.0151 0.8671 ± 0.0146
ERM 5 0.8965 ± 0.0104 0.8961 ± 0.0149 0.8969 ± 0.0154
IRM 5 0.8854 ± 0.0102 0.8847 ± 0.0152 0.8860 ± 0.0148
ERM 8 0.9108 ± 0.0105 0.9105 ± 0.0151 0.9111 ± 0.0156
IRM 8 0.9099 ± 0.0105 0.9101 ± 0.0155 0.9097 ± 0.0153
ERM 10 0.9153 ± 0.0105 0.9151 ± 0.0151 0.9156 ± 0.0157
IRM 10 0.9162 ± 0.0106 0.9163 ± 0.0155 0.9160 ± 0.0154
ERM 15 0.9207 ± 0.0105 0.9205 ± 0.0151 0.9209 ± 0.0157
IRM 15 0.9228 ± 0.0106 0.9229 ± 0.0155 0.9228 ± 0.0155

Table 7: The results of adapting the values of the training environments under heteroskedas-
tic Y-noise with HB-regression. This corresponds to figure 5.
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C.1.3 Homoskedastic Y-noise Figures

Figure 12: The results of adapting the values of the training environments under ho-
moskedastic Y-noise.
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C.1.4 Homoskedastic Y-noise Tables

Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.2 0.0002 ± 0.0000 0.0001 ± 0.0000 0.0002 ± 0.0000
IRM 0.2 0.0012 ± 0.0002 0.0010 ± 0.0002 0.0014 ± 0.0003
ERM 0.5 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0002 ± 0.0000
IRM 0.5 0.0009 ± 0.0001 0.0008 ± 0.0001 0.0011 ± 0.0002
ERM 1 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
IRM 1 0.0006 ± 0.0001 0.0005 ± 0.0001 0.0007 ± 0.0001
ERM 3 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
IRM 3 0.0002 ± 0.0000 0.0002 ± 0.0000 0.0002 ± 0.0000
ERM 4 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 4 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
ERM 5 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 5 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
ERM 8 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 8 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
ERM 10 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 10 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
ERM 15 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 15 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Table 8: The results of adapting the values of the training environments under homoskedastic
Y-noise with CS-regression.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.2 0.0011 ± 0.0003 0.0004 ± 0.0001 0.0017 ± 0.0006
IRM 0.2 0.0028 ± 0.0007 0.0020 ± 0.0005 0.0035 ± 0.0013
ERM 0.5 0.0011 ± 0.0003 0.0004 ± 0.0001 0.0017 ± 0.0006
IRM 0.5 0.0023 ± 0.0007 0.0015 ± 0.0004 0.0031 ± 0.0013
ERM 1 0.0010 ± 0.0004 0.0004 ± 0.0001 0.0017 ± 0.0006
IRM 1 0.0019 ± 0.0006 0.0010 ± 0.0002 0.0027 ± 0.0012
ERM 3 0.0010 ± 0.0004 0.0003 ± 0.0001 0.0017 ± 0.0007
IRM 3 0.0012 ± 0.0005 0.0004 ± 0.0001 0.0020 ± 0.0010
ERM 4 0.0010 ± 0.0004 0.0002 ± 0.0001 0.0017 ± 0.0007
IRM 4 0.0011 ± 0.0005 0.0003 ± 0.0001 0.0019 ± 0.0010
ERM 5 0.0009 ± 0.0004 0.0002 ± 0.0001 0.0017 ± 0.0007
IRM 5 0.0010 ± 0.0005 0.0003 ± 0.0001 0.0018 ± 0.0009
ERM 8 0.0009 ± 0.0004 0.0002 ± 0.0001 0.0016 ± 0.0007
IRM 8 0.0010 ± 0.0005 0.0002 ± 0.0001 0.0017 ± 0.0009
ERM 10 0.0009 ± 0.0004 0.0002 ± 0.0001 0.0016 ± 0.0007
IRM 10 0.0010 ± 0.0005 0.0002 ± 0.0001 0.0017 ± 0.0009
ERM 15 0.0009 ± 0.0004 0.0002 ± 0.0001 0.0016 ± 0.0007
IRM 15 0.0009 ± 0.0004 0.0002 ± 0.0001 0.0016 ± 0.0008

Table 9: The results of adapting the values of the training environments under homoskedastic
Y-noise with CF-regression.

Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.2 0.0098 ± 0.0002 0.0098 ± 0.0004 0.0097 ± 0.0002
IRM 0.2 0.0030 ± 0.0008 0.0035 ± 0.0012 0.0025 ± 0.0009
ERM 0.5 0.0075 ± 0.0002 0.0076 ± 0.0003 0.0075 ± 0.0002
IRM 0.5 0.0025 ± 0.0006 0.0027 ± 0.0009 0.0023 ± 0.0007
ERM 1 0.0049 ± 0.0001 0.0050 ± 0.0002 0.0049 ± 0.0001
IRM 1 0.0025 ± 0.0005 0.0025 ± 0.0006 0.0026 ± 0.0007
ERM 3 0.0012 ± 0.0000 0.0012 ± 0.0001 0.0011 ± 0.0001
IRM 3 0.0027 ± 0.0002 0.0027 ± 0.0003 0.0027 ± 0.0002
ERM 4 0.0007 ± 0.0000 0.0007 ± 0.0000 0.0006 ± 0.0000
IRM 4 0.0014 ± 0.0001 0.0014 ± 0.0002 0.0013 ± 0.0001
ERM 5 0.0004 ± 0.0000 0.0004 ± 0.0000 0.0004 ± 0.0000
IRM 5 0.0007 ± 0.0001 0.0008 ± 0.0001 0.0007 ± 0.0001
ERM 8 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
IRM 8 0.0002 ± 0.0000 0.0002 ± 0.0000 0.0002 ± 0.0000
ERM 10 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
IRM 10 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
ERM 15 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 15 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Table 10: The results of adapting the values of the training environments under homoskedas-
tic Y-noise with AC-regression.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.2 0.0188 ± 0.0020 0.0187 ± 0.0029 0.0188 ± 0.0030
IRM 0.2 0.0108 ± 0.0015 0.0103 ± 0.0021 0.0114 ± 0.0023
ERM 0.5 0.0163 ± 0.0019 0.0163 ± 0.0027 0.0164 ± 0.0028
IRM 0.5 0.0119 ± 0.0015 0.0114 ± 0.0019 0.0124 ± 0.0023
ERM 1 0.0134 ± 0.0017 0.0134 ± 0.0025 0.0134 ± 0.0025
IRM 1 0.0153 ± 0.0022 0.0149 ± 0.0031 0.0157 ± 0.0033
ERM 3 0.0085 ± 0.0013 0.0085 ± 0.0019 0.0085 ± 0.0019
IRM 3 0.0111 ± 0.0013 0.0110 ± 0.0019 0.0112 ± 0.0021
ERM 4 0.0077 ± 0.0012 0.0077 ± 0.0018 0.0077 ± 0.0018
IRM 4 0.0091 ± 0.0012 0.0090 ± 0.0017 0.0091 ± 0.0018
ERM 5 0.0072 ± 0.0012 0.0072 ± 0.0017 0.0071 ± 0.0017
IRM 5 0.0080 ± 0.0011 0.0080 ± 0.0016 0.0080 ± 0.0017
ERM 8 0.0064 ± 0.0011 0.0065 ± 0.0016 0.0064 ± 0.0016
IRM 8 0.0068 ± 0.0011 0.0068 ± 0.0015 0.0068 ± 0.0016
ERM 10 0.0062 ± 0.0011 0.0063 ± 0.0016 0.0062 ± 0.0016
IRM 10 0.0065 ± 0.0010 0.0065 ± 0.0015 0.0064 ± 0.0016
ERM 15 0.0060 ± 0.0010 0.0060 ± 0.0015 0.0060 ± 0.0015
IRM 15 0.0062 ± 0.0010 0.0062 ± 0.0015 0.0061 ± 0.0015

Table 11: The results of adapting the values of the training environments under homoskedas-
tic Y-noise with HB-regression.

28



C.2 Deviation Between Training Environments
C.2.1 Heteroskedastic Y-noise Tables

Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.1 0.0010 ± 0.0003 0.0019 ± 0.0003 0.0001 ± 0.0000
IRM 0.1 0.0019 ± 0.0006 0.0036 ± 0.0008 0.0001 ± 0.0000
ERM 0.5 0.0018 ± 0.0003 0.0025 ± 0.0005 0.0011 ± 0.0001
IRM 0.5 0.0017 ± 0.0004 0.0031 ± 0.0004 0.0003 ± 0.0001
ERM 1 0.0031 ± 0.0004 0.0026 ± 0.0005 0.0036 ± 0.0005
IRM 1 0.0023 ± 0.0005 0.0039 ± 0.0005 0.0008 ± 0.0003
ERM 2 0.0079 ± 0.0015 0.0027 ± 0.0005 0.0130 ± 0.0018
IRM 2 0.0035 ± 0.0007 0.0038 ± 0.0007 0.0032 ± 0.0011
ERM 3 0.0156 ± 0.0035 0.0027 ± 0.0005 0.0284 ± 0.0038
IRM 3 0.0056 ± 0.0014 0.0038 ± 0.0007 0.0074 ± 0.0026
ERM 4 0.0262 ± 0.0063 0.0028 ± 0.0005 0.0496 ± 0.0067
IRM 4 0.0079 ± 0.0023 0.0038 ± 0.0007 0.0121 ± 0.0043
ERM 5 0.0397 ± 0.0099 0.0028 ± 0.0005 0.0767 ± 0.0104
IRM 5 0.0107 ± 0.0035 0.0038 ± 0.0007 0.0176 ± 0.0064
ERM 8 0.0981 ± 0.0253 0.0028 ± 0.0005 0.1934 ± 0.0262
IRM 8 0.0207 ± 0.0077 0.0038 ± 0.0007 0.0375 ± 0.0136
ERM 10 0.1517 ± 0.0395 0.0028 ± 0.0005 0.3007 ± 0.0406
IRM 10 0.0280 ± 0.0107 0.0038 ± 0.0007 0.0523 ± 0.0188
ERM 15 0.3374 ± 0.0886 0.0028 ± 0.0005 0.6720 ± 0.0908
IRM 15 0.0474 ± 0.0185 0.0038 ± 0.0007 0.0910 ± 0.0320

Table 12: The results of adapting the deviation between the training environments under
heteroskedastic Y-noise with CS-regression. This corresponds to figure 6.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.1 0.0010 ± 0.0003 0.0018 ± 0.0004 0.0002 ± 0.0000
IRM 0.1 0.0016 ± 0.0005 0.0031 ± 0.0006 0.0002 ± 0.0000
ERM 0.5 0.0021 ± 0.0003 0.0022 ± 0.0005 0.0021 ± 0.0003
IRM 0.5 0.0025 ± 0.0007 0.0044 ± 0.0012 0.0007 ± 0.0002
ERM 1 0.0062 ± 0.0014 0.0023 ± 0.0005 0.0102 ± 0.0020
IRM 1 0.0037 ± 0.0008 0.0049 ± 0.0011 0.0026 ± 0.0009
ERM 2 0.0278 ± 0.0078 0.0023 ± 0.0005 0.0533 ± 0.0105
IRM 2 0.0099 ± 0.0024 0.0060 ± 0.0016 0.0139 ± 0.0043
ERM 3 0.0656 ± 0.0187 0.0023 ± 0.0005 0.1288 ± 0.0241
IRM 3 0.0216 ± 0.0056 0.0063 ± 0.0017 0.0369 ± 0.0087
ERM 4 0.1170 ± 0.0337 0.0023 ± 0.0005 0.2318 ± 0.0433
IRM 4 0.0362 ± 0.0095 0.0064 ± 0.0018 0.0661 ± 0.0136
ERM 5 0.1813 ± 0.0530 0.0022 ± 0.0005 0.3604 ± 0.0688
IRM 5 0.0513 ± 0.0141 0.0064 ± 0.0018 0.0961 ± 0.0197
ERM 8 0.4448 ± 0.1390 0.0022 ± 0.0005 0.8873 ± 0.1950
IRM 8 0.1057 ± 0.0286 0.0065 ± 0.0018 0.2048 ± 0.0357
ERM 10 0.6691 ± 0.2220 0.0022 ± 0.0004 1.3359 ± 0.3305
IRM 10 0.1450 ± 0.0391 0.0065 ± 0.0018 0.2835 ± 0.0469
ERM 15 1.3224 ± 0.4932 0.0022 ± 0.0004 2.6427 ± 0.7998
IRM 15 0.2432 ± 0.0667 0.0065 ± 0.0018 0.4800 ± 0.0795

Table 13: The results of adapting the deviation between the training environments under
heteroskedastic Y-noise with CF-regression. This corresponds to figure 6.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.1 0.0090 ± 0.0005 0.0097 ± 0.0010 0.0082 ± 0.0002
IRM 0.1 0.0049 ± 0.0005 0.0059 ± 0.0009 0.0040 ± 0.0002
ERM 0.5 0.1589 ± 0.0024 0.1593 ± 0.0047 0.1586 ± 0.0012
IRM 0.5 0.0363 ± 0.0020 0.0296 ± 0.0027 0.0431 ± 0.0007
ERM 1 0.4588 ± 0.0036 0.4588 ± 0.0070 0.4588 ± 0.0024
IRM 1 0.1189 ± 0.0079 0.0854 ± 0.0036 0.1524 ± 0.0011
ERM 2 0.7752 ± 0.0031 0.7752 ± 0.0059 0.7753 ± 0.0024
IRM 2 0.3268 ± 0.0169 0.2538 ± 0.0042 0.3999 ± 0.0028
ERM 3 0.8841 ± 0.0023 0.8840 ± 0.0044 0.8841 ± 0.0019
IRM 3 0.5135 ± 0.0180 0.4360 ± 0.0045 0.5910 ± 0.0035
ERM 4 0.9301 ± 0.0018 0.9301 ± 0.0034 0.9302 ± 0.0015
IRM 4 0.6957 ± 0.0204 0.6400 ± 0.0282 0.7513 ± 0.0168
ERM 5 0.9534 ± 0.0015 0.9534 ± 0.0028 0.9534 ± 0.0013
IRM 5 0.9134 ± 0.0035 0.9088 ± 0.0059 0.9181 ± 0.0035
ERM 8 0.9804 ± 0.0009 0.9804 ± 0.0017 0.9805 ± 0.0008
IRM 8 0.9688 ± 0.0024 0.9681 ± 0.0043 0.9695 ± 0.0024
ERM 10 0.9871 ± 0.0008 0.9871 ± 0.0014 0.9871 ± 0.0007
IRM 10 0.9800 ± 0.0020 0.9796 ± 0.0035 0.9804 ± 0.0020
ERM 15 0.9939 ± 0.0005 0.9939 ± 0.0009 0.9939 ± 0.0005
IRM 15 0.9910 ± 0.0013 0.9909 ± 0.0024 0.9911 ± 0.0013

Table 14: The results of adapting the deviation between the training environments under
heteroskedastic Y-noise with AC-regression. This corresponds to figure 6.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.1 0.0087 ± 0.0004 0.0090 ± 0.0006 0.0083 ± 0.0003
IRM 0.1 0.0054 ± 0.0005 0.0067 ± 0.0009 0.0042 ± 0.0002
ERM 0.5 0.1583 ± 0.0026 0.1565 ± 0.0039 0.1600 ± 0.0035
IRM 0.5 0.0381 ± 0.0017 0.0322 ± 0.0019 0.0440 ± 0.0009
ERM 1 0.4468 ± 0.0048 0.4441 ± 0.0071 0.4495 ± 0.0068
IRM 1 0.1193 ± 0.0077 0.0864 ± 0.0022 0.1523 ± 0.0022
ERM 2 0.7373 ± 0.0071 0.7354 ± 0.0103 0.7393 ± 0.0102
IRM 2 0.3203 ± 0.0166 0.2493 ± 0.0039 0.3913 ± 0.0047
ERM 3 0.8339 ± 0.0081 0.8327 ± 0.0117 0.8351 ± 0.0118
IRM 3 0.4975 ± 0.0174 0.4241 ± 0.0057 0.5710 ± 0.0068
ERM 4 0.8741 ± 0.0086 0.8733 ± 0.0124 0.8749 ± 0.0126
IRM 4 0.7200 ± 0.0203 0.6847 ± 0.0338 0.7554 ± 0.0180
ERM 5 0.8941 ± 0.0088 0.8936 ± 0.0127 0.8946 ± 0.0130
IRM 5 0.8616 ± 0.0079 0.8589 ± 0.0118 0.8644 ± 0.0111
ERM 8 0.9171 ± 0.0091 0.9171 ± 0.0131 0.9172 ± 0.0134
IRM 8 0.9106 ± 0.0088 0.9114 ± 0.0132 0.9098 ± 0.0124
ERM 10 0.9227 ± 0.0092 0.9228 ± 0.0131 0.9226 ± 0.0135
IRM 10 0.9209 ± 0.0091 0.9220 ± 0.0136 0.9197 ± 0.0127
ERM 15 0.9282 ± 0.0092 0.9285 ± 0.0132 0.9279 ± 0.0136
IRM 15 0.9312 ± 0.0093 0.9328 ± 0.0140 0.9295 ± 0.0131

Table 15: The results of adapting the deviation between the training environments under
heteroskedastic Y-noise with HB-regression. This corresponds to figure 6.
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C.2.2 Homoskedastic Y-noise Figures

Figure 13: The results of adapting the deviation between the training environments under
homoskedastic Y-noise.
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C.2.3 Homoskedastic Y-noise Tables

Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.1 0.0164 ± 0.0016 0.0171 ± 0.0027 0.0156 ± 0.0019
IRM 0.1 0.0441 ± 0.0063 0.0452 ± 0.0087 0.0429 ± 0.0097
ERM 0.5 0.0024 ± 0.0002 0.0022 ± 0.0004 0.0025 ± 0.0003
IRM 0.5 0.0098 ± 0.0014 0.0085 ± 0.0017 0.0111 ± 0.0023
ERM 1 0.0007 ± 0.0001 0.0007 ± 0.0001 0.0008 ± 0.0001
IRM 1 0.0033 ± 0.0005 0.0026 ± 0.0005 0.0040 ± 0.0008
ERM 2 0.0002 ± 0.0000 0.0002 ± 0.0000 0.0002 ± 0.0000
IRM 2 0.0010 ± 0.0001 0.0008 ± 0.0001 0.0012 ± 0.0002
ERM 3 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
IRM 3 0.0005 ± 0.0001 0.0004 ± 0.0001 0.0006 ± 0.0001
ERM 4 0.0001 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000
IRM 4 0.0003 ± 0.0000 0.0002 ± 0.0000 0.0003 ± 0.0001
ERM 5 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 5 0.0002 ± 0.0000 0.0001 ± 0.0000 0.0002 ± 0.0000
ERM 8 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 8 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
ERM 10 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 10 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000
ERM 15 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 15 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Table 16: The results of adapting the deviation between the training environments under
homoskedastic Y-noise with CS-regression.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.1 0.0174 ± 0.0022 0.0154 ± 0.0030 0.0193 ± 0.0032
IRM 0.1 0.0421 ± 0.0065 0.0445 ± 0.0112 0.0397 ± 0.0073
ERM 0.5 0.0033 ± 0.0005 0.0022 ± 0.0005 0.0045 ± 0.0007
IRM 0.5 0.0115 ± 0.0018 0.0111 ± 0.0027 0.0119 ± 0.0025
ERM 1 0.0018 ± 0.0004 0.0008 ± 0.0002 0.0027 ± 0.0006
IRM 1 0.0052 ± 0.0009 0.0042 ± 0.0011 0.0063 ± 0.0015
ERM 2 0.0013 ± 0.0003 0.0004 ± 0.0001 0.0022 ± 0.0005
IRM 2 0.0025 ± 0.0006 0.0014 ± 0.0004 0.0036 ± 0.0010
ERM 3 0.0012 ± 0.0003 0.0003 ± 0.0001 0.0020 ± 0.0005
IRM 3 0.0019 ± 0.0005 0.0008 ± 0.0002 0.0030 ± 0.0009
ERM 4 0.0011 ± 0.0003 0.0003 ± 0.0001 0.0020 ± 0.0005
IRM 4 0.0016 ± 0.0005 0.0006 ± 0.0002 0.0027 ± 0.0009
ERM 5 0.0011 ± 0.0003 0.0002 ± 0.0001 0.0020 ± 0.0005
IRM 5 0.0015 ± 0.0005 0.0004 ± 0.0001 0.0025 ± 0.0008
ERM 8 0.0011 ± 0.0003 0.0002 ± 0.0001 0.0020 ± 0.0005
IRM 8 0.0013 ± 0.0004 0.0003 ± 0.0001 0.0023 ± 0.0008
ERM 10 0.0011 ± 0.0003 0.0002 ± 0.0001 0.0020 ± 0.0005
IRM 10 0.0013 ± 0.0004 0.0003 ± 0.0001 0.0023 ± 0.0008
ERM 15 0.0011 ± 0.0003 0.0002 ± 0.0001 0.0020 ± 0.0005
IRM 15 0.0013 ± 0.0004 0.0003 ± 0.0001 0.0022 ± 0.0007

Table 17: The results of adapting the deviation between the training environments under
homoskedastic Y-noise with CF-regression.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.1 0.8317 ± 0.0066 0.8325 ± 0.0132 0.8309 ± 0.0028
IRM 0.1 0.8975 ± 0.0072 0.9115 ± 0.0130 0.8835 ± 0.0031
ERM 0.5 0.3678 ± 0.0045 0.3678 ± 0.0088 0.3678 ± 0.0025
IRM 0.5 0.6891 ± 0.0201 0.7663 ± 0.0183 0.6119 ± 0.0072
ERM 1 0.1068 ± 0.0015 0.1068 ± 0.0030 0.1068 ± 0.0009
IRM 1 0.0236 ± 0.0022 0.0213 ± 0.0034 0.0260 ± 0.0028
ERM 2 0.0148 ± 0.0003 0.0148 ± 0.0005 0.0148 ± 0.0002
IRM 2 0.0072 ± 0.0010 0.0070 ± 0.0014 0.0075 ± 0.0015
ERM 3 0.0038 ± 0.0001 0.0038 ± 0.0002 0.0038 ± 0.0001
IRM 3 0.0009 ± 0.0002 0.0011 ± 0.0003 0.0007 ± 0.0001
ERM 4 0.0014 ± 0.0000 0.0014 ± 0.0001 0.0014 ± 0.0000
IRM 4 0.0011 ± 0.0001 0.0011 ± 0.0002 0.0010 ± 0.0002
ERM 5 0.0006 ± 0.0000 0.0006 ± 0.0000 0.0006 ± 0.0000
IRM 5 0.0015 ± 0.0001 0.0015 ± 0.0002 0.0015 ± 0.0001
ERM 8 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
IRM 8 0.0003 ± 0.0000 0.0003 ± 0.0000 0.0003 ± 0.0000
ERM 10 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000
IRM 10 0.0002 ± 0.0000 0.0002 ± 0.0000 0.0002 ± 0.0000
ERM 15 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
IRM 15 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0000 ± 0.0000

Table 18: The results of adapting the deviation between the training environments under
homoskedastic Y-noise with AC-regression.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 0.1 0.8221 ± 0.0044 0.8136 ± 0.0071 0.8305 ± 0.0038
IRM 0.1 0.8887 ± 0.0078 0.8963 ± 0.0154 0.8811 ± 0.0032
ERM 0.5 0.3613 ± 0.0037 0.3573 ± 0.0048 0.3654 ± 0.0054
IRM 0.5 0.6791 ± 0.0191 0.7567 ± 0.0126 0.6016 ± 0.0071
ERM 1 0.1122 ± 0.0028 0.1108 ± 0.0038 0.1135 ± 0.0042
IRM 1 0.0506 ± 0.0111 0.0497 ± 0.0167 0.0515 ± 0.0155
ERM 2 0.0240 ± 0.0017 0.0238 ± 0.0025 0.0242 ± 0.0025
IRM 2 0.0133 ± 0.0014 0.0127 ± 0.0017 0.0140 ± 0.0022
ERM 3 0.0119 ± 0.0013 0.0119 ± 0.0019 0.0120 ± 0.0019
IRM 3 0.0110 ± 0.0015 0.0108 ± 0.0020 0.0113 ± 0.0023
ERM 4 0.0087 ± 0.0011 0.0087 ± 0.0016 0.0088 ± 0.0016
IRM 4 0.0084 ± 0.0010 0.0083 ± 0.0014 0.0085 ± 0.0015
ERM 5 0.0075 ± 0.0010 0.0075 ± 0.0015 0.0076 ± 0.0015
IRM 5 0.0092 ± 0.0010 0.0092 ± 0.0013 0.0092 ± 0.0015
ERM 8 0.0064 ± 0.0009 0.0064 ± 0.0013 0.0064 ± 0.0013
IRM 8 0.0071 ± 0.0009 0.0071 ± 0.0012 0.0071 ± 0.0013
ERM 10 0.0062 ± 0.0009 0.0061 ± 0.0013 0.0062 ± 0.0013
IRM 10 0.0067 ± 0.0008 0.0067 ± 0.0012 0.0067 ± 0.0013
ERM 15 0.0060 ± 0.0009 0.0059 ± 0.0013 0.0060 ± 0.0013
IRM 15 0.0063 ± 0.0008 0.0063 ± 0.0011 0.0062 ± 0.0012

Table 19: The results of adapting the deviation between the training environments under
homoskedastic Y-noise with HB-regression.
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D Additional Experiments

D.1 Sample Complexity
This experiment takes the perspective of sample complexity similar to [7]. We run the exper-
iment for every data distribution shift with the number of samples per training environment
ranging from 50 to 2000.

Figure 14: The results of the sample complexity experiment.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 50 0.1495 ± 0.0289 0.0628 ± 0.0161 0.2362 ± 0.0377
IRM 50 0.0535 ± 0.0128 0.0867 ± 0.0180 0.0202 ± 0.0099
ERM 200 0.0353 ± 0.0077 0.0131 ± 0.0021 0.0576 ± 0.0110
IRM 200 0.0117 ± 0.0041 0.0206 ± 0.0071 0.0028 ± 0.0011
ERM 500 0.0193 ± 0.0054 0.0069 ± 0.0013 0.0317 ± 0.0091
IRM 500 0.0066 ± 0.0013 0.0084 ± 0.0013 0.0048 ± 0.0022
ERM 1000 0.0099 ± 0.0021 0.0032 ± 0.0007 0.0166 ± 0.0025
IRM 1000 0.0028 ± 0.0005 0.0042 ± 0.0006 0.0015 ± 0.0006
ERM 1500 0.0046 ± 0.0008 0.0032 ± 0.0005 0.0060 ± 0.0014
IRM 1500 0.0017 ± 0.0005 0.0029 ± 0.0006 0.0006 ± 0.0005
ERM 2000 0.0048 ± 0.0011 0.0017 ± 0.0004 0.0080 ± 0.0016
IRM 2000 0.0019 ± 0.0004 0.0017 ± 0.0004 0.0022 ± 0.0006

Table 20: Results of the sample complexity experiment for CS-regression.

Method Number of samples MER Average MER Causal MER Non-causal
ERM 50 0.3139 ± 0.0706 0.0817 ± 0.0147 0.5461 ± 0.0864
IRM 50 0.0485 ± 0.0126 0.0878 ± 0.0163 0.0093 ± 0.0053
ERM 200 0.0522 ± 0.0128 0.0159 ± 0.0038 0.0885 ± 0.0188
IRM 200 0.0123 ± 0.0037 0.0198 ± 0.0060 0.0047 ± 0.0031
ERM 500 0.0396 ± 0.0102 0.0082 ± 0.0015 0.0709 ± 0.0138
IRM 500 0.0102 ± 0.0016 0.0102 ± 0.0020 0.0103 ± 0.0026
ERM 1000 0.0352 ± 0.0106 0.0024 ± 0.0005 0.0680 ± 0.0146
IRM 1000 0.0084 ± 0.0020 0.0065 ± 0.0016 0.0104 ± 0.0037
ERM 1500 0.0360 ± 0.0115 0.0026 ± 0.0006 0.0694 ± 0.0167
IRM 1500 0.0054 ± 0.0011 0.0037 ± 0.0007 0.0071 ± 0.0019
ERM 2000 0.0233 ± 0.0063 0.0034 ± 0.0006 0.0432 ± 0.0083
IRM 2000 0.0036 ± 0.0006 0.0022 ± 0.0002 0.0050 ± 0.0010

Table 21: Results of the sample complexity experiment for CF-regression.

Method Number of samples MER Average MER Causal MER Non-causal
ERM 50 0.8186 ± 0.0164 0.8207 ± 0.0257 0.8166 ± 0.0220
IRM 50 0.2504 ± 0.0227 0.1972 ± 0.0255 0.3035 ± 0.0290
ERM 200 0.8206 ± 0.0061 0.8175 ± 0.0088 0.8236 ± 0.0088
IRM 200 0.2808 ± 0.0159 0.2193 ± 0.0093 0.3423 ± 0.0069
ERM 500 0.8174 ± 0.0061 0.8218 ± 0.0103 0.8131 ± 0.0067
IRM 500 0.2803 ± 0.0158 0.2194 ± 0.0097 0.3412 ± 0.0066
ERM 1000 0.8173 ± 0.0031 0.8176 ± 0.0058 0.8169 ± 0.0024
IRM 1000 0.2849 ± 0.0169 0.2162 ± 0.0045 0.3537 ± 0.0028
ERM 1500 0.8279 ± 0.0020 0.8306 ± 0.0035 0.8253 ± 0.0017
IRM 1500 0.2749 ± 0.0155 0.2120 ± 0.0028 0.3378 ± 0.0042
ERM 2000 0.8179 ± 0.0013 0.8169 ± 0.0021 0.8190 ± 0.0016
IRM 2000 0.2746 ± 0.0162 0.2089 ± 0.0040 0.3403 ± 0.0045

Table 22: Results of the sample complexity experiment for AC-regression.
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Method Number of samples MER Average MER Causal MER Non-causal
ERM 50 0.7663 ± 0.0122 0.7633 ± 0.0160 0.7694 ± 0.0194
IRM 50 0.2948 ± 0.0225 0.2696 ± 0.0214 0.3200 ± 0.0392
ERM 200 0.7755 ± 0.0117 0.7730 ± 0.0181 0.7780 ± 0.0159
IRM 200 0.2760 ± 0.0150 0.2315 ± 0.0163 0.3204 ± 0.0142
ERM 500 0.7626 ± 0.0098 0.7646 ± 0.0137 0.7607 ± 0.0148
IRM 500 0.2759 ± 0.0145 0.2219 ± 0.0087 0.3300 ± 0.0093
ERM 1000 0.7754 ± 0.0083 0.7745 ± 0.0122 0.7763 ± 0.0122
IRM 1000 0.2801 ± 0.0166 0.2126 ± 0.0038 0.3475 ± 0.0047
ERM 1500 0.7819 ± 0.0128 0.7825 ± 0.0189 0.7813 ± 0.0185
IRM 1500 0.2848 ± 0.0161 0.2207 ± 0.0053 0.3489 ± 0.0066
ERM 2000 0.7426 ± 0.0110 0.7401 ± 0.0172 0.7450 ± 0.0148
IRM 2000 0.2695 ± 0.0158 0.2062 ± 0.0049 0.3328 ± 0.0059

Table 23: Results of the sample complexity experiment for HB-regression.
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D.2 Scrambling of the Observable Features Experiment
A real-world phenomenon is the presence of noise in observations. Think of distortion in an
image. This can be simulated by scrambling the observable features. For that purpose, we
map Xe to S ·Xe where S is an orthogonal matrix with random values.

It turns out that this scrambling destroys any chance of learning invariant relationships,
which is why we decided not to include in the paper.

Figure 15: The results of the scrambling of the observable features experiment.
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