
 
 

Delft University of Technology

Fundamental issues in manual control cybernetics

Mulder, Max; Pool, Daan; Abbink, David; Boer, Erwin; van Paassen, Rene

DOI
10.1016/j.ifacol.2016.10.429
Publication date
2016
Document Version
Accepted author manuscript
Published in
IFAC-PapersOnLine

Citation (APA)
Mulder, M., Pool, D., Abbink, D., Boer, E., & van Paassen, R. (2016). Fundamental issues in manual control
cybernetics. In T. Sawaragi (Ed.), IFAC-PapersOnLine: 13th IFAC Symposium on Analysis, Design, and
Evaluation ofHuman-Machine Systems HMS 2016 (19 ed., Vol. 49, pp. 1-6). (IFAC-PapersOnLine; Vol. 49,
No. 19). Elsevier. https://doi.org/10.1016/j.ifacol.2016.10.429
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ifacol.2016.10.429
https://doi.org/10.1016/j.ifacol.2016.10.429


Fundamental Issues in

Manual Control Cybernetics

M. Mulder, ∗,1 D.M. Pool, ∗ D.A. Abbink, ∗∗ E.R. Boer, ∗∗

and M.M. van Paassen ∗

∗ Control and Simulation, Faculty of Aerospace Engineering, TU Delft,
2629 HS, Delft, The Netherlands

∗∗ Biomechanical Engineering, Faculty of 3ME, TU Delft, 2628 CD,
Delft, The Netherlands

Abstract: Manual control cybernetics aims to understand and describe how humans control
vehicles and devices, such that more effective human-machine interfaces can be designed. Current
cybernetics theory is primarily based on technology and analysis methods developed in the 1960s
and has shown to be limited in its capability to capture the full breadth of human cognition and
control. This paper summarizes some of the main fundamental limitations in cybernetics and
provides a possible road-map to advance the theory and its applications. Central in this agenda
will be a shift from the current linear time-invariant modeling approach, to the use of linear
parameter-varying system models. Recent progress in identification methods of these latter
models may allow us, for the first time, to mathematically model and identify time-varying,
adaptive human control, opening up many opportunities to systematically optimize our human
control interfaces and training. New foundations for cybernetics will impact all domains that
involve humans in manual and semi-automatic control. Copyright c©2016 IFAC
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1. INTRODUCTION

The main system-theoretical, model-based approach to un-
derstand how humans control vehicles and devices is called
cybernetics (Wiener, 1961). Current cybernetics theory
was developed in the 1960s (McRuer and Jex, 1967) –
for 1960s technology – and has shown to be limited in
its capability to capture the full breadth of human cog-
nition and control (Jagacinski and Flach, 2003). Modern
interface technologies, such as haptic control manipula-
tors and three-dimensional virtual reality visual interfaces
are rapidly expanding the way humans can interact with
dynamic systems. Despite haphazard attempts to update
cybernetics theory, our technology leapfrogged our theory,
and current tools and models fail to explain and predict
how humans interact with modern interfaces.

State-of-the-art cybernetics describes humans as (quasi-
)linear, time-invariant (LTI) feedback controllers. We can
accurately model behavior in the highly-constrained com-
pensatory tracking task, without preview thus allowing
just reactive feedback control, at the point when learning
has finished. In contrast to many relevant tasks we assume
that the human has no preview on future control con-
straints. We also assume time-invariance, which prevents
us from modeling a defining attribute of human controllers,
namely their ability to adapt to changing situations. The
unique human learning, adaptation and anticipatory feed-
forward control behaviors are barely understood, which
prevents us to understand human behavior and optimize
present-day control interfaces in realistic tasks.
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This lack of understanding is not our only problem,
our tools to identify human manual control are limited
to crude experimental techniques. We can only identify
the overall, lumped response of a fully-trained human,
based on prolonged measurement. This approach fuses all
cognitive and physiological adaptations and averages-out
all adaptation effects, preventing us from understanding
design-relevant aspects of human adaptation and learning.

A targeted research effort is needed to radically advance
cybernetics theory, its models and tools. Relevant con-
trol tasks have preview of the future constraints and in
many cases not only allow, but actually require human
adaptation (Hess, 2009). To proceed in our understanding
and application, we must therefore address a number of
fundamental research questions on human control: i) How
do humans use preview of future task constraints? ii)
What are the mechanisms that drive adaptation? iii) To
what extent are measured human adaptations caused by
physiological rather than cognitive adaptations? iv) What
are the temporal scales of human adaptation and learning
in changing situations?

In this paper, we will briefly summarize the state-of-the-
art, then elaborate on the four main problems listed above
and provide a road-map to systematically address these
fundamental issues. Note that the paper is by no means
complete. Every section can be significantly extended, with
earlier findings and many more references to literature. In
addition, we limit the discussion to the single axis control
task with a visual display. Other papers in this IFAC-
HMS 2016 special session expand on cybernetics theory
and address many of the issues not mentioned here.
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Fig. 1. CURRENT CYBERNETICS theory is dominated by the compensatory tracking task: here the red circle (display)
shows the instantaneous tracking error.

2. STATE-OF-THE-ART: FIRST STEPS AHEAD

Quoting McRuer and Jex (1967): “The human pilot is
a multimode, adaptive, learning controller capable of ex-
hibiting an enormous variety of behavior”. The ability of
the human controller (HC) to adapt to – and learn from
interactions with – the environment is phenomenal and
makes the study of HC behavior a fundamental challenge.
When it comes to learning in control, two phases are
generally distinguished (McRuer and Jex, 1967): i) system
organization, where the HC detects patterns and uses
coherences, the causal effects of action and perception,
to create feedback and/or feedforward control loops, to
obtain a stable control situation; ii) system adjustment,
where the HC adjusts the established loop closures to
improve control performance.

In this section we will discuss the state-of-the art of
cybernetics theory which, as we will see, predominantly
focuses on modeling the HC when all learning is done.
We will see that, even for some of the most elementary
tracking tasks, no universally accepted model exists. The
next section will then discuss a possible roadmap to also
include learning effects in our HC modeling theory. Before
that is possible, however, the following steps to improve
our modeling capabilities will need to be addressed first.

2.1 Compensatory tracking

In 1960, Krendel and McRuer defined the Successive Orga-
nization of Pereption (SOP) hierarchy for human manual
control: compensatory, pursuit and precognitive control
(Krendel and McRuer, 1960). At the most basic level,
compensatory control, the crossover model in combination
with the verbal adjustment rules (McRuer and Jex, 1967)
quite accurately describes the systematic adaptation – in
steady-state – of the human controller to some of the key
task variables: plant dynamics (P) and target signal (T) or
disturbance signal (D) spectrum, see Fig. 1. The forcing
functions must be quasi-random, to force the HC into a
mode where she or he cannot anticipate on what comes
next, and only feedback (FB) is possible.

Using the quasi-linear model assumption, the linear, time-
invariant (LTI) part of the HC can then be modeled.

The remainder, called ‘remnant’, is usually neglected,
despite many attempts to provide some rationale for the
remnant component too. In fact, to reduce remnant, our
common practice is to keep all task variables constant,
and train all subjects extensively. Identification techniques
then identify the LTI frequency response between what the
well-trained HC sees or feels (the visual, motion, or tactile
displays) and the control manipulator deflection.

Tracking cannot be done in a simpler way than with the
compensatory display, showing only the error between
the target signal (T) and plant output, with one moving
symbol on the visual display. Although many attempts
exist to extend our knowledge to higher levels in the SOP,
it is safe to say that our state-of-the-art cybernetics theory
predominantly deals with compensatory tracking. Only for
this extremely simple task do we have a universal model,
the crossover model, that allows us to predict how, in
steady state, the well-trained HC has adapted to particular
settings of the task variables.

Yet, even for this basic control task, it is relatively easy
to make the theory break down. For instance, when the
target forcing function is chosen such that the HC can
detect a repeating pattern (in the extreme case: tracking
one low-frequency sinusoid), the HC will learn to use this
pattern in an attempt to improve performance, stability
and reduce control effort: a feedforward (FF) control loop
will emerge. So only in the case the target (or disturbance)
signal contains no ‘recognizable’ pattern – it is (quasi-
)random – will the HC close only a feedback control
loop, and the observed control behavior can be captured
relatively well with a linear, time-invariant model. The
whole experimental set-up and identification procedure is
meant to suppress any further human adaptation.

2.2 Pursuit tracking: Step 1

In a pursuit display, two symbols are shown on the visual
display that represent the target signal (T) and the plant
output, leading to the pursuit tracking task of Fig. 2.
It may seem like a small step, but it makes the life
of cyberneticists a lot harder. Even for this still rather
elementary tracking task, no universally accepted model



Fig. 2. FIRST STEPS AHEAD: Pursuit tracking (Step 1), showing CE output (cross) and target signal (circle); Preview
tracking (Step 2), showing the future of the target (red); Isolating NMS adaptations (Step 3).

for the HC exist. One of the main reasons of this, is that
the pursuit display enables the HC to apply a feedforward
(FF) control loop, in addition to the feedback loop. From
an identification perspective, the pursuit task requires two
independent signals (T and D in Fig. 2) to disentangle the
human FB and FF responses, and model both using LTI
model structures. Up until quite recently, this has almost
never been tried (Drop et al., 2013).

The feedforward loop allows the HC, especially in cases
when the target signal is more predictable and/or when the
HC becomes more proficient in the task, to anticipate on
what is going to happen. The ability to do this depends on
a huge number of variables, predominantly the shape and
spectrum of the target signal (T). Again, one can easily
construct a pursuit control task where parts of the target
signal, at some instances in time, are more predictable
than other parts, which will eventually be picked up
by the ever-adapting HC, eager to improve performance
or reduce control effort. This leads to periods in time
when the FF loop is strong, other periods where the FB
loop will be dominant: time-varying behavior. Our current
identification techniques, taking the whole measurement
time as a basis for their calculations, will simply average
out these subtle changes in the HC.

In our view, the first step in making the cybernetics theory
more complete and useful for designing and tuning current-
day interfaces, is to solve the main questions regarding
how humans control with pursuit displays. Similar to the
compensatory tracking task, there is a need for a universal
model for HC pursuit control, with an extensive set – in
fact a much more extensive set given the additional degrees
of freedom in HC adaptation – of adjustment rules.

2.3 Preview tracking: Step 2

What is stated for pursuit control, is even more true in
the situation when the HC has preview on the future task
constraints, e.g., the future state of the target signal (T),
see Fig. 2. When considering everyday manual control
tasks, it is difficult to think of tasks that have no preview
on what is coming next. A preview display may allow the

HC to move to the highest level in the SOP: pre-cognitive
control, where the HC recognizes key characteristics of
externally-imposed constraints on the control task (e.g.,
the shape of the curve in the road ahead – target signal),
and based on experience developed a ‘mental’ model of the
internal control constraints (e.g., the lateral-longitudinal
dynamics of an automobile), can exert strong, perhaps
even open-loop, feedforward control actions.

Accounting for how humans use preview is an absolutely
crucial element that is missing in cybernetics theory. We
already know that, from sampling and cueing theories, hu-
mans become almost optimal samplers with preview, and
that the Internal Representation (IR) (Stassen et al., 1990)
of task variables (the ‘mental’ model referred to above)
rapidly improves with preview. Although many attempted
to model manual control with preview, no universal model
exists. The difficulty lies in the fact that, when preview in-
formation becomes available, a multitude of control strate-
gies becomes possible. The human response to preview
is a convolved, complicated and very likely time-varying
weighing of future information, which cannot be directly
measured, as an infinite number of weighing mechanisms
theoretically yield the same control response.

In our view, the second step in updating cybernetics the-
ory would be to develop a universal human preview model.
Three possible sub-steps are foreseen. First, we should
theoretically investigate what are the optimal weighing
strategies that exist for a human preview controller (in-
cluding human limitations), with different preview times,
while varying the main task variables – plant dynamics
and target signal spectrum (i.e., its stochastic properties)
– using optimal control models, e.g., (Tomizuka, 1976).
These computer simulations may reveal how information
on future target could affect the feedforward “weighing”,
or “signal shaping” that takes place within the human.

In the second sub-step, these “best possible” internal
weighing mechanisms need to be experimentally validated.
New experimental techniques are needed to obtain esti-
mates of the continuous (rather than current one-point
or two-point approximations) weighing of future target,



through visual blurring or occlusion manipulations. This
blurring of future target will affect the ways in which the
HCs determine the stochastic properties of the target, the
knowledge of which allows them to tune and adapt their
feedforward/feedback control strategy. Through system-
atic visual blurring we then “perturb” the internal weigh-
ing functions of future information, and from the identified
adaptations (in steady state) we can map these back to
how HCs select and adapt their weighing strategies.

Whereas the first two sub-steps focus on target signals
that have a continuous spectrum, in the third we pro-
pose to investigate HC adaptation to target signals that
have distinctive predictable characteristics, such as ramp-
like signals that are very relevant for realistic control
tasks. Here the possible pre-cognitive, open-loop, or even
“switching mode” manual control strategies need to be
investigated, as a function of the level of predictability of
the future target signal. This connects to what will be
discussed later on, human learning and adaptation, as
these predictable target signals also become part of the
HC internal representation.

This second step – understand how humans control sys-
tems with preview – will allow designers of manual control
interfaces to better support humans in realistic, real-life
control tasks. An example is the haptic shared control sys-
tems developed to support drivers in controlling their vehi-
cles with preview of the road ahead (Mulder et al., 2011).
The absence of understanding how the driver processes the
preview information ahead leads to a sub-optimal design
in our current support systems.

2.4 Neuro-muscular adaptations: Step 3

Whereas the first two steps that we introduce above aim
at modeling HC behavior at higher levels of the SOP,
the third step is an interlude. Since our identification
techniques work on human ‘inputs’ and ‘outputs’, our
models lump together all effects of HC adaptation to
the task variables. In order to get a better view on the
primarily ‘higher’ level cognitive adaptations as described
in the SOP, we would like to separate these from the effects
coming from ‘lower’-level physical adaptations, primarily
those that occur in the HC neuro-muscular system (NMS).

NMS adaptations, such as increased stiffness from co-
contraction or reflexive activity, often occur subcon-
sciously. These – faster – adaptations can be beneficial to
task performance but also blur the effects that changing
task variables have on the – slower – higher-level learning,
adapting HC. Simply ignoring the NMS dynamics, as is
done in the majority of studies, leads to an incomplete
picture. We need a better understanding of neuro-muscular
adaptations and develop methods for dissecting these from
the measured, lumped adaptation effects.

In realistic control tasks, subjects perform those tasks
using various neuro-muscular settings. In previous research
this variability in NMS setting between and within sub-
jects is reduced through artificial control tasks which allow
the identification of “extreme settings” of the NMS ad-
mittance (i.e., maximum stiffness, maximum compliance),
yielding insight with respect to the boundaries between
which the NMS can vary (Mugge et al., 2010). In realistic

control tasks, neither the admittance level is known, nor
whether it is time-varying, or not.

Current linear NMS models are comprehensive and can
explain complex interactions such as in biodynamic
feedthrough. We therefore propose to first improve the
measurement techniques, to obtain more accurate and less
intrusive estimates of the possibly time-varying neuro-
muscular settings, and then use this knowledge to dissect it
from the lumped control response. Again three sub-tasks
are foreseen: i) to investigate the adaptation in time of
the NMS and study which of the parameters change the
most, ii) to obtain a mapping of non-intrusive grip force
measurements to NMS admittance settings, and iii) to
dissect the NMS adaptations from the lumped adaptive
human control model.

The additional, independent measurement of grip force
may allow us to isolate, and therefore dissect, the NMS
adaptations from the lumped response, in the third sub-
step. Through applying subspace identification techniques,
a better view can be gained on the “higher-cognitive”
elements of human adaptation to the main task variables.

3. THE LEARNING, ADAPTIVE CONTROLLER

Whereas in the previous section we continued with study-
ing the well-trained HC behavior, in this section we will
move towards time-varying control. First, the framework
for studying the learning, adaptive human controller will
be introduced, followed by a discussion of what is needed
in our modeling and identification approach – our tools
and models – to make this possible. The final two sections
discuss how we propose to study the learning human con-
troller, and the adapting human controller, respectively.

3.1 Framework for adaptive human control

Fig. 3 illustrates the proposed framework for adaptive
human control. It will build further on Steps 1 to 3
discussed above. Central in our approach is the concept
of the human Internal Representation (IR) of the task
variables (P, T, D). The IR is developed during learning,
when the HC is exposed to the task constraints inherent in
mainly, but not exclusively, the plant dynamics P and the
statistical properties of the target and disturbance signals,
T and D. Basically, a good IR allows the feedforward path
to ‘invert’ the plant dynamics, and bring it quickly from
one state to another, while the feedback path compensates
for disturbances and deficiencies in the model inversion.
The more experience with the events that occur, the better
the IR, the more versatile the feedforward loop, and the
smaller the contribution of the feedback path will be, very
beneficial for closed loop stability and performance.

The IR evolves during learning and is used by the brain
to continuously adjust the FB/FF controller and NMS
dynamics to achieve a desired performance-effort balance.
When task variables change, humans detect these changes
because their expectation (driven by the IR) does not
match their observation: the innovation i triggers cognitive
adaptations in the IR and the FB/FF controllers and
also physiological changes in the NMS. Where up until
now we experimentally suppress (implicitly hold fixed)
this continuous adjustment of the brain, we propose to



Fig. 3. The learning, adaptive human controller.

experimentally stimulate it (explicitly make variable) to
investigate how human controllers learn and adapt. But
this means that we cannot longer use the LTI modeling
approach, we must change our modeling paradigm to
include time-varying model descriptions.

3.2 System identification of the adaptive human controller

To develop our framework for adaptive human control,
new identification methods to capture the time-varying
nature of human controllers need to be employed, perhaps
even in real-time. We need to investigate what excitation
techniques and test signals will yield the most reliable
results, with the lowest possible level of intrusiveness

Suppose we would start with the case of constant task vari-
ables, and first develop recursive, 5-to-20 seconds sliding-
window (Extended) Kalman Filter (EKF) techniques that
estimate the linear time-invariant (LTI) manual control
model parameters. With existing tracking data, we can
already investigate the extent to which these parameters
vary in time, both within-subjects as well as between-
subjects. It can be expected that the different parameters
have different “life expectancies”, that is, some parameters
change faster than others, knowledge that we can use to
make our methods more clever, e.g., to keep a longer
“memory” of certain variables relative to others. This first
step would allow us to study the “averaging effect” of cur-
rent techniques which use data from the full measurement
run, our baseline LTI estimate.

The main thrust forward, however, would be to aban-
don the concept of LTI systems altogether, and move
to model structures that inherently include degrees of
freedom to account for time-varying behavior. For this
purpose, we propose to apply novel state-of-the-art closed-
loop identification methods for linear parameter-varying
(LPV) systems (Van Wingerden and Verhaegen, 2009;
Tóth et al., 2012) to identify intrinsically time-varying
manual control models. A possible approach would be to
systematically change the main task variables (P and T),
use extensive computer simulations to explore how the
HC may adapt, assuming optimality, and validate these
findings through experiments. We can then study what
“function approximators” can best describe the adapting
model parameters, investigate their temporal scales, both
within and between parameters, and also extend these
methods to make them suitable for recursive, real-time
applications. Using the baseline LTI estimate, we can then
study the extent to which the universal “time-invariance”
hypothesis of cybernetics, is valid, comparing the LTI and
LPV modeling results.

3.3 Step 4: Modeling the learning human controller

Current cybernetics only studies the dynamic LTI response
of well-trained subjects, at the extreme end of the learning
curve. In Step 4 we propose to break with this tradi-
tion and, using the time-varying identification techniques
discussed in the previous section, elucidate human con-



trol learning progress during the full learning curve, from
novice to expert controllers.

To this end, we propose to identify the adapting human
feedback-feedforward response in a variety of well-defined
(preview) control situations, and study the strength and
versatility of especially the feedforward path to “probe”
the quality of the evolving IR. In this way, we may be able
to quantify the extent to which novice controllers, while
gaining experience, develop an accurate IR of the task
constraints, becoming experts. Of special interest would
be the temporal scale of learning controllers for key task
variable combinations.

Step 4 would lead to quantitative metrics of, and tools to
elucidate, progress in control skills acquisition, for the full
learning curve, from novice to expert controller.

3.4 Step 5: Modeling situation-based adaptive manual
control

Step 5 entails the development of a completely new the-
oretical framework for cybernetics, within which human
adaptive control can be interpreted and predicted. From
the above it is clear that, when task variables – which rep-
resent “situations” from a control-theoretical perspective
– change during tasks, the HCs will detect these changes
because their expectation (driven by the IR) does not
match their observation. The plant will respond to the con-
trol commands in a different way than expected, with the
expectation driven by the IR, resulting in an “innovation”
i, or “surprise”, which may trigger adjustments in the
IR, the feedforward/feedback controller and possibly the
neuro-muscular system. Experienced controllers learn to
select which of the multiple experienced inverse dynamics
models are appropriate for the (changing) task at hand.

We therefore propose to train subjects to the expert level
for a variety of task variables (P, T, D) in situations where
these remain constant. This allows them to develop a set
of IRs for different P, T and D, and develop proficient
control skills to deal with combinations of those; together,
these represent the variability of real-life situations from a
control-theoretical perspective. We can then, during the
following experimental runs, change the task variables
in a systematic fashion, and through LPV identification
investigate if, to what extent, and how fast, the HC
adapts to these changes. It would be interesting to see
what function approximators best match the temporal
dimensions of HC adaptations, investigate within-subjects
and between-subject variability, and also investigate the
possible hysteresis-effects that occur when humans adapt,
back and forth different control adaptations.

4. TOWARDS A NEW CYBERNETICS

In this paper we discussed some fundamental issues in
manual control cybernetics, and propose a new framework.
Moving from the LTI-models based approach to LPV
models will fundamentally change our models, our tools,
our theory. The capability to mathematically model and
identify time-varying adaptive human control will allow
for (at least) four key innovations.

First, the exploitation of the human capability to adapt
is key to optimize the multi-modal control interfaces that

our ever-advancing modern technologies permit. The new
framework will transform the current trial-and-error tun-
ing of these interfaces for the “average” human to a sys-
tematic approach to create personalized support. Second,
a model-based approach to quantify progress in skill ac-
quisition will be instrumental to improve (simulator- or
computer-based) training procedures and technologies, as
it allows for a mathematical optimization of training effec-
tiveness. Third, understanding and mathematically model-
ing human adaptive control will enable designers of (semi-
)automated systems to create high-conformance human-
like automation that is trusted and accepted in situations
where control is either shared (e.g., haptic shared control)
or handed-over to a vehicle, robot, or computer. Fourth,
the insights gained in the human capability for adaptation
can serve as design inspiration for future generations of
autonomous and adaptive robots.
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