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SUMMARY

The computer program INTRA models the collapse behavior of trusswork
offshore structures with the aid of two types of elements: 'Beam-column'
elements, designed to simulate bending dominated failure of structural
members, and 'strut' elements, that can represent normal force dominated
failure.

The behavior of both types of INTRA elements has been investigated by
comparision with the results of analytical solutions and of the MARC finite
element program. A satisfying performance has been found for the beam-column

element BEMC and the strut element ISTR.

A Fortran routine has been established to generate the required input
parameters for INTRA strut elements, resulting in more exact input values

than can be derived with the aid of the default property generation.

A parameter study has been carried out to the behavior of strut elements
under conditions that may occur in the modelling of a large North Sea
platform. It appears that lateral loads and imposed end rotations each may
result in a maximum reduction of buckling strength of 15 %, but that,
however, the average reduction is much lower. Also the post-buckling

strength is only modestly influenced.

A plane frame pushover analysis has been performed with both the INTRA
and the MARC program. The influence of schematizations in INTRA strut
elements at the overall structural behavior appears to be acceptably small.
However, serious numerical problems occured during the INTRA analysis,

resulting in a too low prediction of the ultimate load of the platform.
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1. INTRODUCTION

The computer program INTRA is designed to analyse the nonlinear behavior
of offshore platforms subjected to static loadings and earthquake
excitations.

This report concentrates on some properties of INTRA with respect to static

'pushover' ultimate strength analysis.

The program models three dimensional frames with one element for each
member. Several types of elements exist, and two important groups can be
distinguished:

- Truss elements with axial stiffness but without bending stiffness,
so-called 'strut' elements. An axial load versus axial displacement
relationship, defining buckling and post-buckling behavior, has to be
entered in advance. The elements should be used at places where normal-
force dominated failure can be expected.

- Truss elements with both axial and bending stiffness, so-called
'beam-column’' elements. The elements are designed to represent bending
dominated failure. A description of a yield surface has to be input to
take into account interaction between normal forces and bending moments.

The usual INTRA schematization of an offshore platform consists of legs with

axial and bending stiffness, connected by braces that have only axial

stiffness, see figure 1.

Loadings are schematized as nodal forces and nodal moments. Static pushover

analysis can be performed by an incremental increase of the forces of a

certain load pattern, until collapse occurs.

The documentation on the input specifications and the theoretical
background of INTRA is incomplete, while the reliability of some recently
developed elements has not been sufficiently proven.

Three subjects have been studied to obtain some insight into those problems:

1) The behavior of strut elements.
2) The behavior of beam-column elements.
3) The behavior of a plane frame modelled with the help of the two element

types.



Several comparisons have been made with analytical solutions, and with

results of the MARC finite element program that can take material and

geometrical nonlinearities into account in a sophisticated way.

This report will give an analytical description of the buckling and

postbuckling behavior of struts and beam-columns, in chapter 2. A brief

review will also be given of the properties of the INTRA and MARC elements

involved in the three studies mentioned above, see chapters 3, 4 and 5.

Subsequently the above three studies will be dealt with. More in detail, the

following subjects will be described:

la)

b)

c)

2)

3)

The derivation of a computational method to calculate the required input
(buckling) parameters for INTRA strut elements. (Chapter 6)

The relative importance of some parameters that influence buckling
behavior in the specific situation of a North Sea fixed steel offshore
platform. (Chapter 7)

The comparison of analytical, MARC and INTRA results. (Chapter 8)

An extension of an existing study on INTRA beam-column elements under
combined axial and lateral loading. Analytical, MARC and INTRA results

have been compared. (Chapter 9)

A push over analysis of a two-dimensional schematization of a North Sea
platform. MARC and INTRA results have been compared to obtain insight
in the effect of assumptions and simplifications in the INTRA elements

on the collapse behavior of a complete structure. (Chapter 10)



2. BUCKLING AND POST-BUCKLING BEHAVIOR

2.1 Axial force versus lateral deflection

Consider a pin-ended 'perfect' column, i.e. made out of perfect elastic
material, straight, without residual stresses, etc, exept for a virtual
small initial imperfection.

(No difference will be made in this chapter between columns, struts or beam-
columns)
Figure 2a depicts the axial force, F, versus the lateral deflection of the

centre of the column, &. Elastic buckling occurs at the Euler buckling load

FE' with ,
a_*x EI
Fg = 2

(K*1)

E = Youngs modulus

I = moment of inertia

1 = length

K = fixity ratio

(equals one in case of pin-ended column)

'Perfect' columns do not actually exist, and therefore it is nescessary to
take initial imperfections into account. E.g., when the column has a sine-
shaped initial deflection with a maximum amplitude 6, , its F versus )

characteristic is given by:

This expression results in the graph of figure 2b.

Similar expressions can be derived for the amplification factor £ in the
case of non-sine-shaped deflections, for example in case of a parabolic
shape due to the lateral loading, see ref.[16]. However, the use of those
alternative expressions will produce almost identical results, as long as

small imperfections are considered.

The elasto-plastic behavior of a beam—-column with initial deflection is

depicted in figure 2c¢, starting from a bi-linear schematization of the

moment-curvature relationship, see figure 3.



The shape of the descending curve can be expressed in a simple formula,
starting from the 'plastic hinge' concept, i.e. assuming that all the
plastic deformations are concentrated in infinite small areas, see appendix
B. The required expression follows from the configuration of the buckled
column in figure 2c, considering that after a plastic hinge has been formed

in the centre of the column, the equilibrium requires:

M
F = Qlé,red (*)

represents the plastic moment of the section, M reduced Dby the

Mpl,red pl’

normal force N = F, see appendix A.
Note that the above expression gives an upper bound, because it assumes a
sudden development of the plastic hinge, due to the simplification of the M
versus k diagram. The actual F versus § curve is shown in figure 4. Points A
and C in that figure, representing first yield and full plastic hinge
development respectively, can be established in an iterative way. However,
establishment of point B in figure 4 requires a more complex calculation.
In routine design the value of Fult (i.e. point B in figure 4) is
estimated with the aid of a design curve, based on theoretical or
experimental results, see appendix C.
The effect of lateral loading or end moments at the value of Fult can be
approximated with the help of a so called ‘'interaction formula', see also

appendix C.

2.2 Axial force versus axial shortening

Consider again the initially deflected column with a bi-linear
schematized M - k diagram, see figures 2c and 5a.
The shape of a graph representing the axial load F versus the axial
shortening Al, depends on the elasto-plastic behavior of the entire column,
in a complex way as described in appendix B. However, simple closed form
expressions can be derived using the plastic hinge concept. In this case
four contributions can be distinguished (considering relatively small

1 1
lateral deflections, i.e. sin &8/71 =~ §/71):



1)

2)

3)

4)

Shortening due to elastic axial compression:

A = cross sectional area

Shortening due to the lateral displacement 8§ of the centre of the column,
see figure 5b:
1 12 2
AL, =2 (31 - /((31)°- §9))

=2 x (%l * (1 - cos(arcsin 6/%1)))

what can be written as a function of F with the aid of the above
mentioned expression (%) that relates axial force to lateral deflection
in the post-buckling situation:
_ Mgl,red
F =
é
Shortening due to elastic curvature of the two parts of the column:

1

1
2 1 dw
Al, =2 »_f ;*(a;) dx

3

]

coordinate along column axis, see figure 5c

=
I

displacement perpendicular to x-axis

This formula can also be written as a function of F with the aid of

expression (x).

Shortening due to plastic strains in the plastic hinge.

The latter contribution, Al4, can be established as follows:

The relationship between axial force, F, and bending moment, M, in a
plastic hinge in a circular section is given by the equation of the yield

contour: (see appendix A)

. cos (E*H )
M 2N
pl Y
Mp1: full plastic moment of section, see appendix A
N_ = F = squash load = A x ¢
Yy Yy



oy = yield stress

Theory of plasticity states that the vector of plastic strain increments
is perpendicular to this yield contour.

The equation of the contour can be approximated with:

M N .
ﬁ + ﬁ =1 , see figure 6

This results in a simple expression relating Al, to the curvature in the
plastic hinge, and hence to the lateral deflection, &, or to the axial

force, F.

Mgl
Al, = 2 x

N
y

1
x arcsin (8/31)

Figures 7 and 8 depict the F versus § diagram and the F versus Al diagram of
a certain test column, derived with the above analytical approximations.
Figure 9 represents again the F versus Al results, showing the different
contributions to the axial shortening in the post-buckling range. It can be
seen that in the beginning the elastic shortening, Al,, still dominates,
whereas towards the end the change in geometry, Alz, and the plastic
shortening, A14, have the largest influence. Shortening due to elastic

curvature, Als, is of minor importance.

NOTE: Considering relatively large deflections, it should be recognized

that: A * cos ¢, and N = F % cos ¢,

Tg10pa1” Miocal

with: ¢ = arcsin(é/él)

NOTE: The above theory implicitly assumes that no local buckling will occur
and that full plastic moment development is possible. It is also
assumed that sufficient rotation capacity is available to achieve
large post-buckling deformations. These are valid assumptions for
tubular members with a D/T ratio upto about 50, see e.q. ref.[3].
Indeed actual platform members seldom exceed this value due to the

regulations in the design codes.



The described methods will be applied in this report to check the
results of several computer calculations. They will also be used in the
establishment of a Fortran routine that calculates the input parameters for

an INTRA strut element.

References: [3], [12], [18]



3. INTRA STRUT ELEMENTS

The linear truss element LTRS is the most simple element within INTRA.
It has no bending stiffness and its axial force versus axial displacement
characteristic is depicted in figure 1l0a.
Figure 10b shows the nonlinear variant NTRS. A different ultimate strength

in tension and compression (buckling) can be defined.

The 'Marshall' strut element STRT has a more sophisticated behavior. It
models post-buckling softening in the compression branch, see figure 10cC.
The shape of this so called 'backbone' curve has to be defined in advance,
and therefore all the parameters influencing the shape should be known in
advance too.

INTRA has the possibility to generate default values describing the backbone
curve, as a function of input geometrical and stiffness properties. Figure
11 shows that in this way the response on multiple reversed loading can be
modelled in a refined way, what is of great importance for earthquake
analysis. Indeed, much efforts have been spent on a default generation of
the degrading strength and stiffness in the subsequent loading cycles, see

e.g. reference [10].

Recently a more refined strut element, ISTR, has been introduced, see
figures 104 and 11, and at the same time the default input generation has
Pbeen improved. Unfortunately however, no information is available on the
theoretical background of the default generation, nor of the STRT, neither

of the ISTR element.



4. INTRA BEAM-COLUMN ELEMENTS

Two elements will be treated, the BEMC and the LANB element, which can

both take into account material and geometrical nonlinearity.

INTRA beam-column elements can resist nodal forces and moments. They can
develop plastic hinges at both ends under the combined action of bending,
normal force, and torsion.

A plastic hinge in an actual beam-column develops gradually because yielding
starts in the extreme fibers of the section and then gradually proceeds
towards the centre. INTRA approximates the plastic hinge development as
follows:

Each beam-column element consists of several parallel elasto-plastic sub-
elements that have a different axial yield strength and a different plastic
moment, see figure 12. The sub-elements work together in the elastic range,
but when the loading increases they subsequently 'fail', and in this way the
total element looses its stiffness in a stepwise fashion, see figure 13.

The program requires the input of the moment-curvature diagram and the
force-strain diagram of the section of the beam-column, and the description
of a three-dimensional yield surface that defines the ultimate combinations
of normal force, bending moment and torsion. From those data the program
automatically calculates the properties of the sub-elements.

The BEMC element consists of three sub-elements, and the LANB element of
four. Other differences between the elements are the shape of the yield

surface and the length of the plastic hinge.

Geometric nonlinear effects are approximated with the aid of a ‘string’

matrix, a simple variant of a geometric stiffness matrix, see appendix E.

Both elements have an option to represent elastic shear deformations,

end excentricities and initial forces.
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5. THE MARC 'NO 14' ELEMENT

The MARC 'no 14' element is especially designed to model the elasto-
plastic behavior of tubular beam-columns.

Plastic hinges can develop at the ends or in the centre of the element.
Gradual plastic hinge modelling is achieved with the aid of a subdivision of

the section in 16 segments that can yield individually, see figure 14.

Deformations perpendicular to the element axis (deflections) are
described with a cubic interpolation. It can be shown that the buckling load
of a pin-ended column can be calculated within 1 %, by using only two
elements that use the above interpolation, see figure 15. For the fixed
ended column and for the 'one side pinned - one side fixed' situation the
deviations are less than 2 % and 3% respectively, see ref.[2] and ref.[13].

The above values can be obtained provided that the derivation of a
consistent geometric stiffness matrix is impiemented in the program, see

appendix E.

Testruns were performed on members with modified slenderness ratio,
xmod' upto 1.25 and with an initial out-of-straigthness, 60, of 0.001 L.
Figures 16 and 17 show typical results of such a calculation, in comparison
with the analytical results from chapter 2 (i.e. figures 7 and 8). An
acceptable agreement is found, although the MARC results in the descending

branch are a little above the theoretical upperbound.



_ll_

6. STRut INput Generator, STRING

STRING is a Fortran program that calculates several input parameters for
the 'backbone' curve of the INTRA strut element ISTR, see figure 18.
The program requires interactive input of geometrical and material
propertieé of the strut and of parameters that influence the buckling
behavior. It can take into account the effect of fixity ratio, lateral

loads, imposed end moments and hydrostatic pressure.

- Slope § in figure 18 corresponds with EA, where E equals Youngs modulus
and A the sectional area. A deviation of the straight line because of an
initial deflection cannot be taken into account in the INTRA formulation.

- The buckling load Fult is derived from a design curve, see figure 19. This
curve gives the value of Fult as a function of the slenderness.

- The postbuckling slopes E3 and E5 and the values of U34, P45, and U45 are
estimated with the aid of the analytical method described in chapter 1 and
appendix B.

- The influence of lateral loads and end moments at the value of Fult is
approximated with the aid of the AISC interaction formula, see appendix C.
Lateral loads also influence the slope of the post-buckling branch.

- The influence of hydrostatic pressure is calculated starting from reduced
values for the plastic moment and the axial yield load according to
formulas in reference [3], see appendix C. Those expressions take into
account the reduction of the tension yield stress in axial direction, due
to the presence of circumferential compressive stresses. The possible

development of local buckling is not reckoned with.

NOTE: It is assumed that no local buckling will occur and that full plastic
moment development is possible. It is also assumed that sufficient
rotation capacity is available to achieve large post-buckling
deformations. These are valid assumptions for tubular members with a

D/T ratio upto about 50.

NOTE: STRING is only capable to generate parameters for static INTRA
analyses. In case of dynamic calculations the INTRA default option is
indispensable in establishing the parameters for reversed loading and

the degradation effects.
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7. PARAMETER STUDY
SLREARIER STUDY

This chapter treatg the relative importance of several parameters that

influence buckling ang Post-buckling behavior of struts.

curve, see appendix D. Trying to establish the mutual influence of those

factors woulg be insurveyable, and a more pragmatic approach has been

chosen:

- The quantities along the axes, F and Al, are replaced by the dimensionless
combinations o/oy and A/A1.

— The geometrical parameters of the buckling strut that influence the shape

of the curve can be Chosen as L/D and D/T ratios. Those two parameters

platform.

~ The other parameters have been chosen either fixed, like the ay/E ratio,
Or have been varied one by one: A maximum lateral locad has been estimated
for the braces of the above mentioned Platform, and a maximum platform
rotation has been approximated, resulting in imposed end moments at the
braces. The effects Of the maximum waterdepth (hydrostatic pressure) and
O©f a change in the effective length factor Oof the braces (eng fixity

ratio) have also been investigated.

Figure 21 shows 'backbone’ curves, calculated With the aid of STRING,
for combinations of L/D and D/T ratios analogue to figure 20. The values of
lateral loading ang depth are varied, influencing in this way the buckling
load and the Complete postbuckling behavior, and it can be concluded that:
— The influence Of the lateral loagq, QLAT, increases with increasing L/D
ratio and is scarcely influenced by a change in D/T ratio.

- The influence of hydrostatic pressure mainly depends on the D/T ratio.
(The larger D/T, the larger is the effect)

- Both effects result in a maximum decrease of the ultimate load of about

15%, while the slope of the postbuckling branch is not strongly affected.
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and of a Cchange in fixity ratio, two parameters that influence only the

values of the buckling load ang of the forces in the beginning of the post-

buckling behavior. 1t can be concluded that:

- The influence of imposed end rotations is the largest for members with low
L/D ratios.

- To the contrary, a Change in effective length factor shows the largest
influence at members wWith high L/D ratios.

— Again, both effects result in a maximum decrease of the ultimate load of

about 15 g,

Think of residual Stresses, out-of-roundness and out—of—straightness.
Those effects are included in the buckling curve incorporated in 'STRING',
see figure 19 curve '"A'. This curve is especially developped for offshore
applications, see appendix C.

Reference [4] gives some statistical information about the magnitude of

imperfections and residual stresses as they appear in actual platforms,
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8. STRUTS: ANALYICAL, MARC AND INTRA RESULTS

Figure 23a upto 23c represent a comparison of strut 'backbone' curves
generated in various ways. From chapter 7 it follows that the main geometric
parameter influencing the buckling and post-buckling behavior of struts is

the L/D ratio, and therefore only this parameter has been varied.

MARC and 'analytic' results turn out to agree reasonably well, while the
STRING schematization results in an acceptable approximation as far as
possible within the required five-point INTRA input.

The INTRA default values show a slightly different pattern but
nevertheless they reasonably agdree with the other curves. However, a
considerable 'yield plateau' occurs in case of stocky members, see figure
23c. Such a behavior can be exXpected in case of axial yield of a perfectly
straight column, but is unlikely to appear when initial imperfections and
lateral loading are present.

Lines E in figure 23 represent the advised backbone curve for the old
INTRA strut element STRT as mentioned in reference [9], showing an

apparently too sudden post-buckling stiffness drop.
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9. BEAM-COLUMNS: ANALYTICAL, MARC AND INTRA RESULTS

Two testproblems will be described in this chapter: _

— The collapse behavior of a clamped column under a concentrated lateral
load with an axial preload, see figure 24, showing geometrical and
material nonlinearities. This problem has been analized previously by
Kerstens, see reference [8].

- The behavior of another clamped column loaded by axial and lateral forces,

showing geometric nonlinearities more in detail.

First testproblem, see figure 24.

The two straight lines represent the analytical upperbound of the
deflection 6 of the first test column as a function of the lateral load P.
The MARC results reasonably agree, although their values are a little above
the theoretical upperbound, i.e. they overestimate the value of the full
plastic moment of the section. v

The INTRA results are derived using the default option for generation of
the moment-curvature diagram. The overall agreement is acceptable, although
the plastic hinge develops in a stepwise fashion instead of gradualy as with
MARC.

The results of the recently developed INTRA LANB element (not depicted)
show a large error in the value of the ultimate load, a discrepancy that is
probably caused by a programming error (ref.[5]).

Figure 25 gives some results of Kerstens (ref.[8]) that clearly show the
weakness of the old INTRA element NBEM, and a poor result of the INTRA BEMC

element using manual - non default - input.

Second testproblem, see fiqure 26

Geometric nonlinearities in the INTRA beam-column elements are taken into
account with the aid of a 'string matrix', see appendix E. This simplified
geometric stiffness matrix results in an underestimation of the decrease in
bending stifness due to axial loads. Figure 26a shows the lateral load
versus the lateral deflection of a simple clamped column, and figure 26éb
shows the lateral load versus the rotation at the top. In the situation
without axial load the INTRA result completely agrees with the énalytical
solution, but in the case with axial preload a small difference occurs, see

also appendix E. This seeming minor deviation has an important effect in
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making it impossible to simulate a buckling strut with the aid of two INTRA
elements (normal force dominated failure), a simulation that is very well
possible with the MARC '14' elements, see chapter 5.

Note that the geometric nonlinearities in the post-collapse situation are
taken into account without difficulties, i.e. the descending branch in
figure 24 is described correctly. The change in geometry of the collapsing
beam is satisfactory described with the aid of two straight elements,
whereas in the establishment of the ultimate load it is essential to take

the deformed shape of the elements into account in the geometric

nonlinearity. However, in a 'string matrix' the bending deformations of the

element are neglected, see appendix E.
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10. A PLANE FRAME ANALYSIS: MARC AND INTRA RESULTS

The

main reason for performing a comparative plane frame analysis with

MARC and INTRA has been the uncertainty about the effect of several

propert

ies of the INTRA elements at the behavior of the complete structure.

Important differences between the two programs at element level are:

INTRA (strut elements) MARC (two 'no. 14' elements)

- neglect of bending stiffness - inclusion of bending stiffness

- predefined influence of lateral - actual influence of lateral loads
loads and end moments and end moments

- predefined influence of - difficult representation of
intial imperfections initial imperfections

- sudden changes in stiffness in - gradual plastic hinge development
the 'backbone' curve

Possibl

e differences between the two programs at structure level are:

- A difference in failure loads of the braces that may result in a

dif
of
of
- An
of
est
- A d

sti

Fig
already
frames
and the

Two

- An

and

ferent sequence of failing members, i.e. in a different failure path
the models. Eventualy this may lead to a different ultimate strength
the models.

underestimation of the over-all elastic stiffness with INTRA because
neglect of the bending stiffness in the struts, against a more exact
imation of the elastic stiffness with MARC.

ifferent failure path due to the above neglect of the bending

ffness in the struts.

ure 27 shows the jacket structure of the large North Sea platform
mentioned in chapter 7. A schematic representation of one of the end
is given in figure 28. The foundation is replaced by fixed supports,
deckloading is represented as constant vertical forces.

computer models have been generated:

INTRA model in which the legs consist of BEMC beam-column elements

the bracing of ISTR strut elements.

- A MARC model that represents each member with the aid of two MARC '14'

elements.
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Simulation of a 40 meter wave with the MARC wave loading option resulted in
a loading pattern of nodal forces and moments. Additional loads have been
generated to represent the influence of the wave loading at the (non-
modelled) remaining part of the three-dimensional structure. The loads at
the 'centre nodes' of the members in the MARC model could not be applied
directly at the INTRA model (INTRA elements have no centre nodes) and
therefore a tranformation to loads at the 'end nodes' has been carried out.
Two sets of comparative calculations have been made:

— A comparison between INTRA and MARC, starting from a schematization with
pin-ended braces. In the INTRA model this is realized by specifying an
effective length factor of 1.0, and in the MARC model by defining hinges
between legs and braces, see figure 29a.

— A comparison between the two programs starting from a schematization
with fixed-ended members. In INTRA the effective length factor now
simply equals 0.5, but in MARCFtwo schematizations have been chosen: A
model with completely moment carrying joints, see figure 29b, and a
model with fixed-ended members but nevertheless with pinned connections
between legs and braces, see figure 29c. The latter schematization

agrees with the INTRA approach.

Figure 31 depicts the results of the first comparison with pin-ended
members, by representing the load factor A versus the horizontal
displacement of one of the nodes at deck level.

The MARC calculation shows a gradual loss of stiffness of the structure, due
to buckling and yielding of the diagonals as indicated in figure 30c.
Eventually a number of eight braces fail and any increase in of A results in
infinite deformations, i.e. the calculation is terminated due to an ill
condition of the stiffness matrix. This does not nescessarily mean that a
complete cocllapse mode (mechanism) has been detected, but that at some place
in the structure a further increase in nodal loading cannot be resisted
anymore, (partial mechanism).

Using the INTRA program the same braces fail, but the calculation terminates

at a much earlier moment, after failure of two braces instead of eight.

Figure 32 represents the comparison with fixed-ended members. Note that
two different MARC schematizations have been used. It follows from lines A

and B in figure 32 that the neglect of bending stiffness in the braces
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results in an underestimation of the overall elastic stiffness of 5 %. The
comparison of the INTRA results with those of the 'INTRA-1like' MARC
schematization (line B) shows a behavior equivalent to the situation with
pin-ended members: Eight braces fail in the MARC analysis against only three

in the INTRA calculation.

Upto the premature termination of the INTRA calculation, the both
programs show the same failure pattern. Figure 33 depicts the utilization
ratios y of the members in the INTRA model at the maximum calculated load,
where

y=F/ Fy for members in tension, and

v=EF/ Fult
Generally spoken the values of 7 agree well with those found in the MARC

for members in compression.

calculation, although the buckling load of the members in the INTRA model is
about 8 % lower than of the corresponding members in the MARC model, due to

the implicite formulation of initial imperfections in the INTRA struts.

It can also be seen from figure 33 that the compressive forces in the
horizontals do not exceed half the ultimate compressive strength.
Consequently for the present configuration and loading pattern it appears to

be unnescessary to model horizontals with the aid of strut elements.

A possible explanation of the premature termination of the INTRA program
may be found in different numerical solution procedures within MARC and

INTRA.
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11. CONCLUSIONS

* An approximate analytical description of the (post-) buckling behavior
of beam columns is an appropriate tool to check the behavior of computer

representations of tubular members.

* The INTRA strut element ISTR satisfactorily represents buckling and
post-buckling behavior (normal force dominated failure) when using the
default property generation. A more sophisticated property generation can be
achieved with the aid of the Fortran routine 'STRING' described in this
report.

The recommendations mentioned in reference [9] result in unrealistic post-

buckling behavior.

x A parameter study of aspects influencing the (post-) buckling behavior
of tubular members in the modelling of a large North Sea platform yields the
following results:

- Lateral loads and imposed end rotations each may result in a maximum
reduction of the buckling strength of 15 %. However, the average
reduction is much smaller , while also the post-buckling behavior is
only sligthly influenced.

- Hydrostatic pressure (175 m waterdepth) or a 10 % change in effective

length factor result in even smaller reductions of the buckling load.

* The INTRA beam—column elements BEMC can model bending dominated failure
in an acceptable way.
However, it is not possible to model the buckling behavior of a column
(normal force dominated failure) using BEMC elements, due to the poor

representation of geometric nonlinearity.

*= A comparison between a plane frame pushover analysis performed with both
the INTRA and the MARC programs yields the following conclusions:
- Modelling of horizontals and diagonals in the INTRA model with the aid
of strut elements results in an under-prediction of the overall elastic
stiffness of 5 %, due to the neglect of bending stiffness in the strut

elements.
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Buckling only occurs in diagonals while compressive forces in the
horizontals do not exceed half the buckling strength. Consequently in
the present analysis horizontals could as well have been modelled with
the aid of beam-column elements.

Both MARC and INTRA calculations terminate before a complete collapse
mechanism has been developed. The MARC results show large plastic
deformations and an almost complete loss of stiffness. However, the
INTRA program terminates at a much earlier point, thus predicting a too
low ultimate strength.

Upto the premature termination of the INTRA calculation the both
programs show the same failure pattern. The buckling load of the INTRA
members appears to be 8 % lower than of the corresponding MARC members,
due to the implicite formulation of initial imperfections in the INTRA
strut elements.

A possible explanation of the premature termination of the INTRA program
may be found in different numerical solution procedures within MARC and

INTRA.
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beam-column element

Figure 1

INTRA schematization of a fixed offshore platform
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Figure 3
Moment - curvature diagram;

actual shape and bi-linear schematization
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Figure 4
Axial force versus lateral deflection;

actual shape and 'plastic hinge' schematization.
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Axial force versus axial shortening
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Figure 6

Yield surface of a circular section;

actual shape and schematization
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Axial force versus lateral deflection
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Figure 8

Axial force versus axial shortening
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Figure 10b
Response of nonlinear truss element NTRS
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Figure 10c
Response of 'Marshall' strut element STRT
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Figure 10d

Response of improved strut element ISTR
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Figure 125
Sche

matic representation of beam-column element

divided in three sub elements (two—dimensional)
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Figure 12p

One dimensional rFepresentation of beam-column element

divided in three eleasto—plastic sub elements
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Figure 13

Multi-linear N-e¢ or M-k relationship,

composed of three bi-linear contributions



Figure 14
MARC 'no 14' element:

subdivision of cross section in 16 segments
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Figure 15
Schematization of a beam column

with the aid of two elements
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Axial force versus lateral deflection.

MARC results and analytical upperbound
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Figure 17
Axial force versus axial shortening.

MARC results and analytical approximation
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Figure 19

Column strength design curve (ref.[3])
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D/T = 45
(A = 71)

L/D = 25
D/T = 45
(A = 51)
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A
D/T = 45
(X = 30)
AL -2
Yo
A
A ————— Analytical approximation
Figure 23 B STRING
Comparison of C AA MARC
strut 'backbone' curves D —.—— INTRA default 'STR ele waanX

g ———— INTRA recommendation (eld)
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Figure 27
Jacket structure of a large North Sea platform
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figure 29

a) pin-ended brace (K = 1)

b) fixed-ended brace (K = 0.5)
moment carrying joints

c) fixed-ended brace (K = 0.5)
no moment carrying joints

(INTRA-1ike schematization)
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Figure 33

Utilization ratios
INTRA schematization, struts with K=0.5

Two braces buckle, one yields



APPENDIX A
PROPERTIES OF CIRCULAR SECTIONS

Property Full expression Approximation
2 2 *)
A 4 (D (D~-2t)7) T Dm t
T, 4 4 big 3
I 64(D (D-2t) ") g Dm t
2 2
_ YD - (D-2t)
R = y1/a 4 0.35 D
T 2 2
N = - - (D- D
v b1 4 (D (D-2t)7) o ™D t o
4 4
n_ (D - (D-2t) T 2 _t
My 32 D Oy P
m
M D3— {D—2t23 D 2 t o
pl 6 y m y
M _ 4 . T, N
yield - M, o sin (;(1 Ny))
surface M 7N M N 1.7
w_ - cos Gy ) w G =1
pl pl pl pl
A = Cross sectional area M = ‘'first yield' bending moment
D = outer diameter Mp = full plastic moment
Dm = centre diameter = D-t R = radius of gyration
I = moment of inertia t wall thickness
N =N .= axial yield load o = yield stress
Y pl Yy
M 7 N
ﬁz ~ 1.27 M 1 =M ,Cos (5 N )
pl Plrea P pl

*)

Note that in this particular case the 'approximate' exXpression exactly

equals the full expression.
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APPENDIX B

COMBINED BENDING AND AXIAL LOADING

The stresses and strains in a tubular section due to combined bending
moments and normal forces can be described with the aid of moment-
normalforce—curvature, M-N-k, relationships.

Three sets of M-N-«k relationships can be established, corresponding to three

different states of strain, see figure Bl:

1) elastic strains only,

2) plastic strains in the compression zone (primary plastic),

3) plastic strains in both the compression and the tension zone (secondary
plastic).

Algebraic M-N-k exXpressions for each of the three situations can be found in

e.g. ref.[3].

The boundaries of the above three states are depicted in figure B2, and can

be expressed as follows:

Primary plastic behavior starts to occur when:

M+N21

Mo N\
The boundary between primary and secondary plastic behavior can only be
determined in an iterative way, see ref.[3].

The state of full plasticity is reached when :

==
I
Q
o}
n

SAE

=2 =

)
pl pl

This expression is the well known 'vyield contour' of a circular section, see

appendix A.

To establish the axial shortening of a beam-column under combined
bending and axial loading, the centroidal axial strains,eax, have to be
known that occur in each of the above three stress states. To this purpose
ref.[3] gives M-—N—-eax relationships that, however, require an iterative
procedure to derive the explicite values of €ix”

This problem is avoided by assuming that all the plastic strains are
concentrated in infinite short areas: the plastic hinge concept as described

in chapter 2. In fact all plastic shortening and curvature are concentrated
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in points, defining the relationship between those magnitudes with the aig
of the yield contour of a circular section. In this way plastic shortening
is related to the change in rotation in the plastic hinges.

In chapter 2 a second assumption is introduced by simplifying the shape
Of the yielgd contour. This makes it pPOssible to establish closed form

expressions relating axial shortening to axial force.

are considered with relatively low Slenderness and small initial

imperfections, See e.g. the results from chapter 8.



O
Ty
(D £,

Yielded zone

Figure B1
Elastic, primary plastic, and secondary plastic states of strain

in a tubular section gue to combined bending moments and normal forces
(ref.[3]) -
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Boundaries between elastic, primary plastic,
and secondary plastic states of strain

(ref.[3])
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APPENDIX C

STRING, THEORY AND LISTING

STRut INput Generator (STRING) calculates several input data for the
INTRA strut element ISTR, see figure Cl.

Pre-buckling shortening (upto PCR, see figure Cl) results from axial

compression only.

The value of PCR = Fult is derived from the column strength curve 'A'
from Toma and Chen (ref.[3]). This curve is established starting from
numerical results taking into account longitudinal and circumferential
residual welding stresses, 1.0 % out of roundness of the tube diameter and
0.1 % out of straightness of the tube length, see figure C2. This curve,
especially designed to predict the ultimate compressive strength of offshore
platform members, shows slightly lower ultimate loads than the frequently
used CRC column strength curve.

The reduction of the ultimate load due to lateral loading and end

moments is calculated with the aid of the AISC interaction formula:

*

Fult + C M -1
Flit Mpl(l—(F/FE))
C = reduction factor depending on the ratio of the end moments, given
by:
Ma
C=0.6 - 0.4 7 2 0.40
M
b
*x
Fult = ultimate load reduced by lateral loads or end moments
FE = Euler buckling load
Fult = ultimate load derived from column strength curve
M = bending moment resulting from lateral loads or end moments
M_, M = end moments
a b
Mpl = plastic moment

A further reduction, due to hydrostatic pressure, can be taken into account

with the aid of expressions derived in reference [3]. Those expressions are
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based on a two-dimensional (plane stress) description of the stress state in
the wall of the submerged tubular member. They describe a reduction of the
tension yield stress in axial direction due to the presence of
circumferential compressive stresses resulting from the hydrostatic

pressure.

The postbuckling shortening (from U34, see figure Cl) is established
from three contributions: elastic axial strains, change of geometry, and
plastic axial strains. It is assumed that the plastic strains are
concentrated in three plastic hinges, using a simplified expression for the

yield surfaces in those regions, see chapter 2 and appendix B.

NOTE: It is assumed that no local buckling will occur and that full plastic
moment development is possible. It is also assumed that sufficient
rotation capacity is available to achieve large post-buckling
deformations. These are valid assumptions for tubular members with a

D/T ratio upto about 50.
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Figure C2

Column strength design curve (ref.[3])
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PROGRAM STRING

STRUT INPUT GENERATOR (STRING) CALGCULATES
SEVERAL INPUT DATA FOR THE
INTRA "BUCKLING STRUT" ELEMENT "ISTR".

THE PROGRAM CAN BE USED TO ESTABLISH THE DATA FOR
FIXED ENDED OR PARTIALLY FIXED (SPRING) ENDED STRUTS.
A LATERAL (WAVE) LOADING CAN BE TAKEN INTO ACCOUNT,
WETHER DEFINED AS LATERAL LOAD / UNIT LENGTH, OR

AS EQUIVALENT NODAL MOMENTS.

ALSO END MOMENTS, REDUCING THE ULTIMATE AXIAL CAPACITY,

CAN BE TAKEN INTO ACCOUNT
THE EFFECTS OF HYDROSTATIC PRESSURE ON BUCKLING AND
POST BUCKLING BEHAVIOUR ARE RECKONED WITH.

NOTATION:

A
C
C3, C5

CHECK

D

DEFL
DELTAL( *)

DELTAl
DELTA2
DELTAS3
DEPTH
E

F

FEUL
FU

FUH

FUHM

FY

FYH
HELP
HYP
HYPCRIT
I
ICOUNT
K

L
LAMBDA
M1, M2
M3, M4
MA, MB
MPL
MPLH
MPLHRED

NU
PCR, P45

QLAT

R

SIGY

T

U34, U45

SECTION AREA

REDUCTION FACTOR

INTRA INPUT PARAMETERS: HARDENING MODULI
AS A PROPORTION OF E

HELP VARIABLE TO CHECK CONVERGENCE

OUTER DIAMETER

LATERAL DEFLECTION AT CENTRE OF STRUT
AXIAL SHORTENING (FUNCTION STATEMENT,

SEE SUBPROGRAM AT BOTTOM OF LISTING)

AXIAL SHORTENING DUE TO ELASTIC COMPRESSION
AXIAL SHORTENING DUE TO CHANGING GEOMETRY
AXTIAL SHORTENING DUE TO PLASTIC STRAINS
DEPTH BELOW WATER SURFACE

YOUNG'S MODULUS

AXTIAL LOAD

EULER BUCKLING LOAD

ULTIMATE AXIAL LOAD

ULTIMATE AXIAL LOAD REDUCED

BY HYDROSTATIC PRESSURE

ULTIMATE AXIAL LOAD REDUCED BY HYDROSTATIC
PRESSURE, BENDING MOMENTS AND LATERAL LOAD
AXTIAL YIELD FORCE (SQUASH LOAD)

AXIAL YIELD FORCE REDUCED BY HYDROSTATIC PR.

HELP VARIABLE

HYDROSTATIC PRESSURE

CRITICAL HYDR. PR. CAUSING COLLAPSE OF TUBE
MOMENT OF INERTIA

COUNTING VARIABLE

EFFECTIVE LENGTH FACTOR

LENGTH

MODIFIED SLENDERNESS RATIO

END MOMENTS DUE TO LATERAL LOAD

END MOMENTS DUE TO IMPOSED ROTATION
TOTAL END MOMENTS

PLASTIC MOMENT

PLASTIC MOMENT REDUCED BY HYDROSTATIC PR.
PLASTIC MOMENT REDUCED BY HYDROSTATIC
PRESSURE AND AXIAL LOAD

POISSONS RATIO

INTRA INPUT PARAMETERS: FORCE COORDINATES
AT INTERSECTION OF ZONES

LATERAL LOAD / UNIT LENGTH

RADIUS OF GYRATION

YIELD STRESS

WALL THICKNESS

INTRA INPUT PARAMETERS: DISPLACEMENT
COORDINATES AT INTERSECTION OF ZONES

[M**2]
[-]

[-]
[KN]
[M]
[M]

[M]

[M]

[M]

[(M]

[M]
[KN/M**2]
[KN]

[KN]

[KN]

[KN]

[KN]

[RN]

[KN]
[KN*M]
[KN/M**2]
[KN/M**2]
[M**4]
[-]

[-]

[M]

[-]
[RN*M]
[KN*M]
[KN*M]
[KN*M]
[KN]

[KN*M]
(-]

[KN]
[RN/M]
[M]
[RN/M**2]
[M]

[M]
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REFERENCE |3]: W.F.CHEN AND D.J.HAN
TUBULAR MEMBERS IN OFFSHORE STRUCTURES
PITMAN, LONDON, 1985

REAL I, K, L, LAMBDA, M1, M2, M3, M4, MA, MB, MPL,
MPLH, MPLHRED, NU
CHARACTER DUMMY*1

INTERACTIVE INPUT
WRITE(B,*) ' '
WRITE(B, *) '
WRITE(B, *) '
WRITE(G, *) '

1

7

EGIN PROGRAM STRING'
WRITE(SB, *) '
WRITE(B, *)
WRITE(B, *)
WRITE(S, *)
WRITE(6, *) 'LENGTH ? [M]’
READ(5,*) L
WRITE(B, *) 'OUTER DIAMETER ? [M]’
READ(5,*) D
WRITE(B, *) 'WALL THICKNESS ? [M]’
READ(5,*) T
WRITE(S, *) 'EFFECTIVE LENGTH FACTOR "K" 2 [-1"
READ(5,*) K
WRITE(6, *) 'DEPTH BELOW WATER SURFACE ? [M]’
READ(5, *) DEPTH
WRITE(6, *) 'LATERAL LOAD / UNIT LENGTH ? [KN/M]:’
WRITE(6, *) 'PUT IN AN ARBITRARY NEGATIVE VALUE IF EQUIVALENT'’
WRITE(B, *) 'NODAL MOMENTS HAVE TO BE SPECIFIED INSTEAD OF
A LATERAL LOAD’
READ(5, *) QLAT
IF (QLAT .LT. -0.1E-6) THEN
WRITE(6,*) 'FIRST NODAL MOMENT DUE TO LATERAL LOAD ? [KN*M]'’
WRITE(6, *) 'NEGATIVE VALUE'
READ(5, *) M1
WRITE(6, *) 'SECOND NODAL MOMENT DUE TO LATERAL LOAD ? [KN*M]’
WRITE(6, *) 'POSITIVE VALUE'’
READ(5, *) M2
END IF
WRITE(B, *) 'FIRST END MOMENT DUE TO IMPOSED ROTATION ? [KN*M]’
READ(5, *) M3
WRITE(6, *) 'SECOND END MOMENT DUE TO IMPOSED ROTATION ? [KN*M]'’
READ(5, *) M4

B
TYPE IN DATA AND PRESS "RETURN"'

1

CALCULATION OF SOME USEFUL DATA

PI = 4. * ATAN(1.0)

SIGY = 345.ES3

E = 204.E6

NU = 0.3

I = PI/B64 * (D**4 - (D-2%T)**4)

A = PI/4 * (D**2 — (D-2*T)**2)

HYP = 0.001 * 1024. * 9.81 * DEPTH

HYPCRIT = ((2*E) / (1-NU*NU)) * ((T/D)**3)
FY = A * SIGY

FYH = FY * (1.-((8.6/33.)*(HYP/HYPCRIT)**1.2))
MPL = (D**3 - (D-2*T)**3) * SIGY/6

MPLH = MPL * (1.- 0.2*(HYP/HYPCRIT))

R = (I/A)**0.5

LAMBDA = (1./PI) * ((SIGY/E)**0.5) * (K*L)/R
FEUL = ((PI*PI)*E*I) / (K*K*L*L)

CALCULATION OF THE EQUIVALENT NODAL MOMENTS FROM
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THE INPUT LATERAL LOAD

IF (QLAT .GT. O.1E-6) THEN

Ml = -1 * (QLAT*L*L)/ 12
M2 = (QLAT*L*L)/ 12
END IF

CALCULATION OF THE LATERAL LOAD FROM
THE INPUT EQUIVALENT NODAL MOMENTS

IF (QLAT .LT.-0.1E-6) THEN
QLAT = ((M2-M1) / 2) * (12. / L*L)
END IF

CALCULATION OF THE ULTIMATE AXIAL LOAD "FU"

BASED ON THE COLUMN STRENGTH CURVE -A- FROM TOMA AND CHEN (1979).

THIS CURVE IS ESTABLISHED FROM NUMERICAL RESULTS,

TAKING INTO ACCOUNT LONGITUDINAL AND CIRCUMFERENTIAL RESIDUAL

STRESSES, 1.0 % OUT OF ROUNDNESS OF THE TUBE DIAMETER,
AND 0.1 % OUT-OF-STRAIGHTNESS OF THE TUBE LENGTH.
SEE REFERENGCE [3], PAGE 82.

IF (LAMBDA .LE. 1.41) THEN

FU = FY * (1.0 - 0.091*LAMBDA - 0.22*LAMBDA*LAMBDA)
ELSE

FU = FY * (0.015 + 0.834/(LAMBDA*LAMBDA))
END IF

CALCULATION OF THE REDUCED ULTIMATE AXIAL LOAD "FUH",
TAKING INTO ACCOUNT HYDROSTATIC PRESSURE.
SEE REFERENCE [3], CHAPT. 7

FUH = FU * (1. + 0.125*(HYP/HYPCRIT)*LAMBDA) * (FYH/FY)

CALCULATION OF THE REDUCED ULTIMATE AXIAL LOAD "FUHM",
TAKING INTO ACCOUNT HYDROSTATIC PR. AND NODAL MOMENTS.
THE REDUCTION IS BASED ON THE MODIED AISC DESIGN FORMULA.
SEE REFERENCE [3], PAGE 88 AND 236.

MA = M1 + M3
MB = M2 + M4
IF (ABS(MA) .GT. 0.1E-8 .OR. ABS(MB) .GT. 0.1E-6) THEN
IF (ABS(MB) .GT. ABS(MA)) THEN
HELP = MA
MA = MB
MB = HELP
END IF
C =0.6 - (0.4*(MB/MA))
IF (C .LT. 0.4) THEN
C =0.4
END IF
IF (C*ABS(MA) .GT. MPL*(1-(FUM/FEUL))) THEN
WRITE(B,*) ' '
WRITE(6G,*) ' '
WRITE(6,*) 'END MOMENTS DUE TO LATERAL LOAD OR
IMPOSED'’
WRITE(8, *) 'DISPLACEMENTS TOO LARGE'’
WRITE(6G,*) ' '
WRITE(B,*) ' '
STOP 'PROGRAM FINISHED'
END IF
ICOUNT = O
FUHM = FUH
CHECK = FUHM
FUHM = FUH * (1.-((C*ABS(MA))/(MPLH*(1.-(FUHM/FEUL)))))
IF (ABS(CHECK-FUHM) .GT. (0.01 * ABS(FUHM))) THEN



*** CONVERGENCE TOLERANCE = 0.01 * FUHM ***
ICOUNT = ICOUNT + 1

GOTO 10
END TIF
ELSE
FUHM = FUH
END IF

CALCULATION OF INTRA INPUT PARAMETERS

U34 DELTAL(A,E,FUHM,FYH,L,MPLH, PI, QLAT)
C3 0.01
P45 = 0.5 * FUHM

([l

U45 = DELTAL(A,E,P45,FYH,L,MPLH,PI,QLAT)
C5 = (0.5*FUHM - 0.25*FUH) / (U45 -

$ DELTAL(A,E,0.25*FUH,FYH,L,MPLH, PI,QLAT))
PCR = (FUHM - U34 * C3 * (E*A)/L) / (1.-C3)

OUTPUT OF INTRA PARAMETERS

WRITE(B,*) ' '
WRITE(®B,*) ' '
WRITE(6,*) ' '
WRITE(6,20)
20 FORMAT(' INTRA INPUT PARAMETERS IN KN AND M OR DIMENSIONLESS:')

WRITE(B,*) ' '
WRITE(6,30) E

30 FORMAT(' YMOD ', (E10.3))
WRITE(6,40) SIGY

40 FORMAT( ' SLYD R ', (E10.3))
WRITE(6,50) C3

50 FORMAT(' C3 - ,(E10.3))

“ WRITE(6,80) C5

60 FORMAT(' C5 ' (E10.3))
WRITE(6,70) -U34

70 FORMAT( ' U34 ' (E10.3))
WRITE(6,80) -PCR

80 FORMAT(' PCR ", (E10.3))
WRITE(6,90) -U45

90 FORMAT( ' U45 ' (E10.3))
WRITE(6,100) -P45

100 FORMAT( ' P45 ' (E10.3))

CALCULATION AND OUTPUT OF ADDITIONAL DATA

Ul3 = PCR * L/(E*A)
UMAX = U45 - P45/C5
WRITE(B,*) ' '
WRITE(6,*) ' '
WRITE(6,*) ' PRESS "RETURN" TO CONTINUE'’
READ(5,105) DUMMY
105 FORMAT (A1)
WRITE(6,110)
z10 FORMAT(' ADDITIONAL DATA')

WRITE(B,*) ' '
WRITE(6,120) Ul1l3, Ul1l3/L

120 FORMAT( ' U13, Ul1l3 / L ', 2(3X,E10.3))
WRITE(6,130) PCR, PCR/FY

130 FORMAT(' PCR, PCR / FY ',2(3X,E10.3))
WRITE(6,140) U34, U34 / L

140 FORMAT(' U34, U34 / L ', 2(3X,E10.3))
WRITE(6,150) FUHM, FUHM / FY

150 FORMAT( ' FUHM, FUHM / FY ', 2(3X,E10.3))
WRITE(6,160), U45, U45/L

160 FORMAT(' U45, U45 / L * 2(3%X,E10.3))

WRITE(6,170), P45, P45 / FY
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190
195
200
210
220
225
226
227
228
229

230

FORMAT( ' P45, P45 / FY ',2(3X,E10.3))
WRITE(6,180) UMAX, UMAX / L

FORMAT( ' UMAX, UMAX / L ©,2(3X,E10.3))
WRITE(6,*) ' '

WRITE(6,190) FY

FORMAT(' FY © (3X,E10.3))
WRITE(6,195) FYH / FY

FORMAT(' FYH / FY *,(3X,E10.3))
WRITE(6,200) FEUL

FORMAT(' FEUL *,(3X,E10.3))
WRITE(6,210) FU

FORMAT(' FU _ * (3X,E10.3))
WRITE(6,220) FUH / FU :

FORMAT(' FUH / FU ‘ * (3X,E10.3))
WRITE(6,225) FUHM / FUH

FORMAT(' FUHM / FUH *,(3X,E10.3))
WRITE(6,226) MPL ‘

FORMAT(' MPL *, (3X,E10.3))
WRITE(6,227) MPLH / MPL

FORMAT(' MPLH / MPL ', (3X,E10.3))
WRITE(6,228) LAMBDA

FORMAT( ' MODIFIED SLENDERNESS RATIO *, (3X,E10.3))
WRITE(6,229) K*L/R

FORMAT( ‘' SLENDERNESS RATIO K*L/R * (3X,E10.3))
WRITE(6,230) ICOUNT

FORMAT( ' NUMBER OF ITERATIONS , ' (3%,I3))
WRITE(6,*) ' '

WRITE(6,*) 'END OF THIS PROGRAM’
END

REAL FUNCTION DELTAL(A,E,F,FYH,L,MPLH,PI,QLAT)
REAL L, MPLH, MPLHRED

SUBPROGRAM TO CALCULATE THE AXIAL SHORTENING OF A STRUT
IN A POST-COLLAPSE SITUATION (THREE PLASTIC HINGES HAVE
BEEN FORMED).

SEE REFERENCE [3], CHAPT.5

MPLHRED = MPLH * COS((PI/2)*(F/FYH))
DEFL = (2 * MPLHRED - 1./8 * (QLAT) * L*L) / F
IF (1./8 * (QLAT) *L*L .GT. 2*MPLHRED) THEN
WRITE(B,*) ' '
WRITE(B,*) ' '
WRITE(S8,*) ‘LATERAL LOAD TOO LARGE, '
WRITE(6,*) ‘NO EQUILIBRIUM POSSIBLE'’
WRITE(6B,*) ' '
WRITE(6,*) ' '
STOP ' PROGRAM FINISHED'
END IF
IF (((L/2)*(L/2) - DEFL*DEFL) .LT. 0.) THEN
WRITE(G,*) ' '
WRITE(6,*) " '
WRITE(6, *) 'LATERAL LOAD TOO LARGE; LATERAL DEFLECTION'
WRITE(6,*) 'EXCEEDS 1/2 * L, TO MAINTAIN EQUILIBRIUM'
WRITE(6B,*) ' '

WRITE(B,*) ' '

STOP ‘'PROGRAM FINISHED'
END IF
DELTAl = F * L/(E*A)

DELTA2 = 2 * (L/2 - ((L/2)*(L/2) - DEFL*DEFL)**0.5)
DELTA3 = 4 * (MPLH/FYH) * ASIN(DEFL*2./L)
DELTAL = DELTAl + DELTA2 + DELTA3

END



APPENDIX D

DIMENSIONAL ANALYSIS

If a physical phenomenon can be described with the aid of n parameters,
and if those parameters are defined with the aid of m fundamental
dimensions, it will be possible to rearrange the n parameters in such a way

that m-n dimensionless parameters will remain, see de Vries, ref.[17].

It follows from chapter 2 that the post-buckling behavior of a strut can

be described with the aid of 7 parameters, starting from the plastic hinge

concept:
1 length (],
D diameter (L],
t wall thickness [L],
Al  axial shortening [L],
o normal force / sectional area [F/Lz],
oy yield stress [F/Lz],
E Youngs modulus [F/Lz].

In chapter 7 the influehée of two other parameters at the post-buckling
behavior has also been investigated:

o} lateral load per unit length [F/L],

d waterdepth [L].

Notice that the effective length factor K, and the imposed end moments do
not influence the post-buckling behavior as described within the three-
plastic-hinges model.

Statics of physical phenomena can be described using two fundamental
dimensions, force [F], and length [L], hence 7+2-2 = 7 dimensionless
constants can be derived. Systematic rearrangement acording to ref.[17]
results in the following: Al/1, o/ay, 1/D, D/t, oy/E, q/oy*l and d/1.

A parameter study has been carried out starting from those 7
expressions, see chapter 7. It was decided to investigate the relationship
between a/oy and Al/1 (axial force versus axial shortening) while varying
only the geometrical properties 1/D and D/t and choosing appropriate fixed

values for E/oy, q/oy*l and 4/1.
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The main parameter in the description of buckling is the slenderness
ratio A. In case of a column with a circular section A is related to the 1/D

ratio almost linearly:
K1l K1
= ~ = t
A J1/B 5.35 D constant * 1/D

Indeed it appears that the 1/D ratio shows the largest influence in a
parameter analysis concerning the buckling behavior of tubular columns, see

e.g. ref.[10] or ref.[15].
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APPENDIX E
GEOMETRIC NONLINEARITY

Consider the equilibrium of a single element in the displacement based

finite element method, described with the principle of virtual work:

. 8¢ 0 AV = &u f (1)
6 = variational symbol, denoting. virtual changes
€ = vector of strains
o = vector of stresses
f = vector of nodal loads (forces and moments) with respect to one element

= vector of element nodal degrees of freedom (displacements and

rotations) in local coordinate system
Wwriting 8¢ = B 8u, this can be expressed as:
fBoav=r*f (2)
B = strain interpolation matrix
In case of linear behavior follows:
JBEBAV u = f (3)

E = matrix of material stiffness properties

Transformation to global coordinates and summation of the element
contributions results in the system of simultaneous equations describing the

equilibrium of the total element assemblage:

K u =f (4)

Eo = system linear stiffness matrix
*

u = vector of system nodal degrees of freedom
*

£ = vector of system nodal loads



In case of geometric nonlinear behavior, the strains and stresses in the

element are nonlinear functions of the element degrees of freedom. The
equilibrium equations now have to be written in an incremental fashion,
using a linearized expression. Starting from equation (2) this yields:

§ J Bodv =8 f (5)

) = variational symbol, denoting incremental changes

Considering that the strain interpolation matrix B now consists of a linear

part, ﬁl, and a nonlinear part, énl' and considering that §B = aﬁnl, the
following can be derived: (see ref.[20])
—_ —_— —_— —
= + =
) VI B o av VI 6B o av VI B 60 av ©)

-_— e - -— P R -— —_— - -7 [ — —_
= + + +
VI 6Bnl o dv + VI BlE Bl dav éu {VI (BlE Bnl BnlE Bl BnlE Bnl) av} su

The first term of the right-hand-side of (6) can generally be written as:
o :

v/ aénl o av = RO Su. The matrix EO is called the 'element initial stress

matrix' or the 'element geometric stiffness matrix’'.
The second term of the right-hand-side of (6) can be recognized in equation

_— — — - -
(3), and can be written as: VI BlE Bl dv éu = K, du, being K, the standard

'element linear stiffness matrix' for small displacements and rotations.

Finally, the third term of the right-hand-side can be expressed as:
—_— - )

+
{VI (BlE Bnl Bnl 1
'element initial strain matrix', 'element large displacement matrix' or

E §l+ E; E gnl) av} su = Ee su, where Ee is known as
'element large rotation matrix'.
The matrix Ee represents the change in element stiffness due to the
changing position and changing shape of the element in a deforming
structure, and its entries are a function of the current element nodal
displacements and nodal rotations. The matrix Ea represents the additional
element stiffness that results from the forces that act at the deformed
elements in the deformed structure, and its entries are a function of the
current stresses in the element.

Transformation to global coordinates and summation of the element
contributions now results in a system of equations of the incremental

variables:



* * * * * * *
+ K + = =
(K, Ke Ka) du Kt Su &f (7)
*
K = system tangent stiffness matrix

The nonlinear load-deformation behavior of a structure can be established in
a stepwise fashion starting from the above equation (7). Usually an
additional Newton-Raphson type iteration procedure is applied, based on the

same expression.
NOTES:

- Stresses and strains in large displacement analysis can be defined in
several different ways, resulting in different expressions for the
nonlinear part of the strain interpolation matrix, ﬁnl'

- The incremental nodal displacements and nodal rotations of a deforming
structure can be defined referring to the original configuration (Total
Lagrangian description), or to a configuration in a previous (usually the
latest) increment (Updated Lagrangian description). An effective
application of the two different descriptions requires different
definitions of stress and strain, what may result in different nonlinear
parts of the strain interpolation matrices. However, if the appropriate
definitions are applied, identical results are obtained, and the
difference only appears in the numerical effectiveness of the both

procedures, see ref.[1].

- The establishment of the 'element large displacement matrix' Ee is often
neglected in element descriptions that refer nodal displacements and
nodal rotations to a co-rotating local coordinate system (i.e. in an
Updated Lagrangian description). In this case the change in element
stiffness due to the change in shape of the element (referred to the co-
rotated local coordinate system) is neglected, whereas the change in
element stiffness due to the total change in position of the element
(referred to the global coordinate system) is taken into account,
performing the transformation of the 'element linear stiffness matrix' Eo

to the global coordinate system, starting from the current (updated)



transformation matrix. Note that in the determination of the 'element
geometric stiffness matrix' Eo the change in shape of the element still
has to be taken into account.

A much stronger simplifiction is made when the 'large displacement
matrix’ Ee is neglected, describing the nodal displacements etc. referring
to the original coordinate system. In this case only the geometric
nonlinear effect of small total displacements and rotations can be

described appropriately.

Geometric nonlinearity in INTRA beam-column elements H

The INTRA beam-column element BEMC uses a Total Lagrangian description,
without the establishment of a 'large deformation matrix' Ee. It has been
mentioned above that this simplification implies that the element should
only be used to model structures that experience relatively small total
deformations. An additional approximation is made in the derivation of the
geometric stiffness matrix Eo' as will be described in the following.

The INTRA beam-column element LANB starts from an Updated Lagrangian
description. However, also in this element the approximate description of

the geometric stiffness matrix Eo is applied.

Consider a two dimensional beam element with local coordinate system as
depicted in figure El. The vector of nodal degrees of freedom reads:
u'= o Upr Vi 8yr Uy Vo )l
The axial displacements u(x) within the element can be described with a
linear interpolation, whereas the lateral displacements v(x) can be
represented with a third degree (cubic) polynomial. Assuming small strain

_ ou i(@y
_ 9x 2'9x
The 'element geometric stiffness matrix' Kocan be established as follows,

)

conditions, a second order strain definition can be applied:

starting from classical beam theory and integrating over the original

volume, see e.g. ref.[2] or ref.[13]:



rO 0 0 0 0 0 ]
0 6N Lo_@ N
c |, Rl | h 9

o B 10 15 10 30

0 0 0 0 0 0]
O_Q_N. _M_OQK_M_
10 30 10 15 ]

N = normal force in element

A strongly simplified version of this 'element geometric stiffness matrix'
can be derived starting from a linear interpolation of the lateral element

displacements v(x) :

|
OHIZO OHI=Z O

OHIZ O OoOHIZOo
o O O O o o

o O O O o o
©O O O O o o

o O O o o o

This matrix Eo is often referred to as 'string matrix'. An inconsistent
situation occurs if it is used in combination with a linear stiffness matrix
Eo that is derived starting from the cubic interpolation of lateral element
displacements.

The INTRA beam-column elements BEMC and LANB can take into account
geometric nonlinear effects only in such an inconsistent fashion, using the
above 'string matrix'. In chapter 9 it is shown that this simplification
results in an underestimation of the decrease in bending stiffness of an
axially loaded beam-column. Therefore it is impossible to simulate a

buckling strut with the aid of two INTRA BEMC elements.

References: [1], [2], [13], [14], [20].
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Figure E1

Two-dimensional beam-column element



