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ABSTRACT
This work exploits action equivariance for representation learning

in reinforcement learning. Equivariance under actions states that

transitions in the input space are mirrored by equivalent transitions

in latent space, while the map and transition functions should also

commute. We introduce a contrastive loss function that enforces

action equivariance on the learned representations. We prove that

when our loss is zero, we have a homomorphism of a deterministic

Markov Decision Process (MDP). Learning equivariant maps leads

to structured latent spaces, allowing us to build a model on which

we plan through value iteration. We show experimentally that for

deterministic MDPs, the optimal policy in the abstract MDP can be

successfully lifted to the original MDP. Moreover, the approach eas-

ily adapts to changes in the goal states. Empirically, we show that in

such MDPs, we obtain better representations in fewer epochs com-

pared to representation learning approaches using reconstructions,

while generalizing better to new goals than model-free approaches.
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1 INTRODUCTION
Dealing with high dimensional state spaces and unknown environ-

mental dynamics presents an open problem in decision making [19].

Classical dynamic programming approaches require knowledge

of environmental dynamics and low dimensional, tabular state

spaces [41]. Recent deep reinforcement learning methods on the

other hand offer good performance, but often at the cost of being

unstable and sample-hungry [19, 22, 36, 37]. The deep model-based

reinforcement learning literature aims to fill this gap, for example

by finding policies after learning models based on input recon-

struction [7, 16, 32, 54], by using environmental models in auxil-

iary losses [9, 22], or by forcing network architectures to resemble
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planning algorithms [39, 45]. While effective in learning end-to-

end policies, these types of approaches are not forced to learn

good representations and may thus not build proper environmental

models. In this work, we focus on learning representations of the

world that are suitable for exact planning methods. To combine

dynamic programming with the representational power of deep net-

works, we factorize the online decision-making problem into a self-

supervised model learning stage and a dynamic programming stage.

Figure 1: Visualization of the
notion of equivariance under
actions. We say Z is an ac-
tion equivariant mapping if
Z (T (s,a)) = T̄ (Z (s ), Ās (a)).

We do this under the as-

sumption that good repre-

sentations minimize MDP

metrics [10, 15, 35, 46].

While such metrics have

desirable theoretical guar-

antees, they require an enu-

merable state space and

knowledge of the environ-

mental dynamics, and are

thus not usable in many

problems. To resolve this

issue, we propose to learn

representations using the

more flexible notion of ac-

tion equivariant mappings,

where the effects of actions

in input space are matched

by equivalent action effects

in the latent space. See Fig-

ure 1. We make the following contributions. First, we propose learn-

ing an equivariant map and corresponding action embeddings. This

corresponds to using MDP homomorphism [43] metrics [46] of

deterministic MDPs, enabling planning in the homomorphic image

of the original MDP. Second, we prove that for deterministic MDPs,

when our loss is zero, we have anMDP homomorphism. This means

that the resulting policy can be lifted to the original MDP. Third,

we provide experimental evaluation in a variety of settings to show

1) that we can recover the graph structure of the input MDP, 2)

that planning in this abstract space results in good policies for the

original space, 3) that we can change to arbitrary new goal states

without further gradient descent updates and 4) that this works

even when the input states are continuous, or when generalizing

to new instances with the same dynamics.



2 BACKGROUND
Markov Decision Processes. An infinite horizon Markov Decision

Process (MDP) is a tuple M = (S,A,R,T ,γ ), where s ∈ S is

a Markov state, a ∈ A is an action that an agent can take, R :

S × A → R is a reward function that returns a scalar signal r
defining the desirability of some observed transition, 0 ≤ γ ≤ 1 is

a discount factor that discounts future rewards exponentially and

T : S × A × S → [0, 1] is a transition function, that for a pair of

states and an action assigns a probability of transitioning from the

first to the second state. The goal of an agent in an MDP is to find

a policy π : S × A → [0, 1], a function assigning probabilities to

actions in states, that maximizes the return Gt =
∑∞
k=0

γkrt+k+1
.

The expected return of a state, action pair under a policy π is

given by a Q-value function Qπ : S × A → R where Qπ (s,a) =
Eπ [Gt |st = s,at = a]. The value of a state under an optimal policy

π∗ is given by the value function V ∗ : S → R, defined as V ∗ =
maxa Q

∗ (s,a) under the Bellman optimality equation.

Value Iteration. Value Iteration (VI) is a dynamic programming

algorithm that finds Q-values in MDPs, by iteratively applying

the Bellman optimality operator. This can be viewed as a graph

diffusion where each state is a vertex and transition probabilities

define weighted edges. VI is guaranteed to find the optimal policy

in an MDP. For more details, see [41].

Bisimulation Metrics. To enable computing optimal policies in

MDPs with very large or continuous state spaces, one approach

is aggregating states based on their similarity in terms of environ-

mental dynamics [8, 35]. A key concept is the notion of stochastic
bisimulations for MDPs, which was first introduced by Dean and

Givan [8]. Stochastic bisimulation defines an equivalence relation

on MDP states based on matching reward and transition functions,

allowing states to be compared to each other. Later work [10] ob-

serves that the notion of stochastic bisimulation is too stringent

(everything must match exactly) and proposes using a more general

bisimulation metric instead, with the general form

d (s, s ′) = max

a

(
cR |R (s,a) − R (s

′,a) | + cTdP (T (s,a),T (s
′,a))
)
(1)

where cR and cT are weighting constants, T (·,a) is a distribution
over next states and dP is some probability metric, such as the

Kantorovich (Wasserstein) metric. Such probability metrics are

recursively computed. For more details, see [10]. The bisimulation

metric provides a distance between states that is not based on input

features but on environmental dynamics.

MDP Homomorphism. A generalization of the mapping induced

by bisimulations is the notion of MDP homomorphisms [43]. MDP

homomorphisms were introduced by [42] as an extension of [8].

An MDP homomorphism h is a tuple of functions

〈
Z ,

{
Ās

}〉
with

Z : S → Z a function that maps states to abstract states, and

each Ās : A → ¯A a state-dependent function that maps actions to

abstract actions, that preserves the structure of the input MDP. We

use the definition given by Ravindran and Barto [43]:

Definition 2.1 (Stochastic MDP Homomorphism). A Stochastic
MDP homomorphism from a stochastic MDP M = ⟨S,A,T ,R⟩

to an MDP
¯M =
〈
Z, ¯A, T̄ , R̄

〉
is a tuple h =

〈
Z ,

{
Ās

}〉
, with

• Z : S → Z the state embedding function, and

• Ās : A → ¯A the action embedding functions,

such that the following identities hold:

∀s,s ′∈S,a∈A T̄ (Z (s ′) |Z (s ), Ās (a)) =
∑

s ′′∈[s ′]Z

T (s ′′ |s,a) (2)

∀s ∈S,a∈A R̄ (Z (s ), Ās (a)) = R (s,a) (3)

Here, [s ′]Z = Z−1 (Z (s ′)) is the equivalence class of s ′ under Z .

We specifically consider deterministic MDPs. In that case:

Definition 2.2 (Deterministic MDPHomomorphism). ADeterminis-
ticMDP homomorphism from a deterministicMDPM = ⟨S,A,T ,R⟩

to an MDP
¯M =
〈
Z, ¯A, T̄ , R̄

〉
is a tuple h =

〈
Z ,

{
Ās

}〉
, with

• Z : S → Z the state embedding function, and

• Ās : A → ¯A the action embedding functions,

such that the following identities hold:

∀s,s ′∈S,a∈A T (s,a) = s ′ =⇒ T̄ (Z (s ), Ās (a)) = Z (s ′) (4)

∀s ∈S,a∈A R̄ (Z (s ), Ās (a)) = R (s,a) (5)

The states s are organized into equivalence classes underZ if they

follow the same dynamics in z-space. The MDP
¯M is referred to as

the homomorphic image ofM under h [43]. An important property

of MDP homomorphisms is that a policy optimal in homomorphic

image
¯M can be lifted to an optimal policy inM [18, 43]. Looking

at these definitions, it may be clear that MDP homomorphisms

and bisimulation metrics are closely related. The difference is that

the latter measures distances between two MDP states, while the

former is a map from one MDP to another. However, the idea of

forming a distance metric by taking a sum of the distances can be

extended to homomorphisms, as proposed by Taylor et al. [46]:

d ((s,a), (Z (s ), Ās (a))) = cR |R (s,a) − R̄ (Z (s ), Ās (a)) |

+ cTdP (ZT (s,a), T̄ (Z (s ), Ās (a))), (6)

with dP a suitable measure of the difference between distributions

(e.g., Kantorovich metric), and ZT (s,a) shorthand for projecting

the distribution over next states into the space ofZ (see [13] for

details). We refer to this as the MDP homomorphism metric.

Action-Equivariance. We define a mapping Z : S → Z to be

action-equivariant if Z (T (s,a)) = T̄ (Z (s ), Ās (a)) and R (s,a) =
R̄ (Z (s ), Ās (a)), i.e. when the constraints in Eq. 4 and Eq. 5 hold.

3 LEARNING MDP HOMOMORPHISMS
We are interested in learning compact, plannable representations

of MDPs. We call MDP representations plannable if the optimal

policy found by planning algorithms such as VI can be lifted to

the original MDP and still be close to optimal. This is the case

when the representation respects the original MDP’s dynamics,

such as when the equivariance constraints in Eq. 4 and Eq. 5 hold.

In this paper we leverage MDP homomorphism metrics to find such

representations. In particular, we introduce a loss function that

enforces these equivariance constraints, then construct an abstract

MDP in the learned representation space. We compute a policy in

the abstract MDP
¯M using VI, and lift the abstract policy to the



original space. To keep things simple, we focus on deterministic

MDPs, but in preliminary experiments our method performed well

out of the box on stochastic MDPs. Additionally, the framework we

outline here can be extended to the stochastic case, as Gelada et al.

[13] does for bisimulation metrics.

3.1 Learning State Representations
Here we show how to learn state representations that respect action-

equivariance. We embed the states in S into Euclidean space using

a contrastive loss based on MDP homomorphism metrics. Similar

losses have often been used in related work [2, 11, 13, 30, 40], which

we compare in Section 5.We represent themappingZ using a neural

network parameterized by θ , whose output will be denotedZθ . This
function maps a state s ∈ S to a latent representation z ∈ Z ⊆ RD .
We additionally approximate the abstract transition T̄ by a function

T̄ϕ : Z × ¯A → Z parameterized by ϕ, and the abstract rewards

R̄ by a neural network R̄ζ : Z → R, parameterized by ζ , that
predicts the reward for an abstract state. From Eq. 5 we simplify

to a state-dependent reward using R (s ) = R̄ (Z (s )) where R (s ) is
the reward function that outputs a scalar value for an s ∈ S, and
R̄ is its equivalent in

¯M. During training, we first sample a set

of experience tuples D = {(st ,at , rt , st+1)}
N
n=1

by rolling out an

exploration policy πe for K trajectories. To learn representations

that respect Eq. 4 and 5, we minimize the distance between the

result of transitioning in observation space, and then mapping to

Z, or first mapping to Z and then transitioning in latent space

(see Figure 1). Additionally, the distance between the observed

reward R (s ) and the predicted reward R̄ζ (Zθ (s )) is minimized. We

thus include a general reward loss term. We write s ′n = T (sn ,an ),
zn = Zθ (sn ), and minimize

L (θ ,ϕ, ζ ) =
1

N

N∑
n=1

[
d
(
Zθ (s

′
n ), T̄ϕ (zn , Āϕ (zn ,an ))

)
+d
(
R (sn ), R̄ζ (zn )

) ]
(7)

by randomly sampling batches of experience tuples fromD. In this

paper, we use d (z, z′) = 1

2
(z − z′)2 to model distances inZ ⊆ RD .

Here, T̄ϕ is a function that maps a point in latent space z ∈ Z

to a new state z′ ∈ Z by predicting an action-effect that acts
on z. We adopt earlier approaches of letting T̄ϕ be of the form

T̄ϕ (z, ā) = z + Āϕ (z,a), where Āϕ (z,a) is a simple feedforward net-

work [11, 30]. Thus Āϕ : Z ×A → ¯A is a function mapping from

the original action space to an abstract action space, and Āϕ (z,a)

approximates Ās (a) (Eq. 4). The resulting transition loss is a variant

of the loss proposed in [30]. The function R̄ζ : Z → R predicts

the reward from z. Since Z , T̄ and R̄ are neural networks optimized

with SGD, Eq. 7 has a trivial solution where all states are mapped

to the same point, especially in the sparse reward case. When the

reward function is informative, minimizing Eq. 7 can suffice, as

is empirically demonstrated in [13]. However, when rewards are

sparse, the representations may collapse to the trivial embedding,

and for more complex tasks [13] requires a pixel reconstruction

term. In practice, earlier works use a variety of solutions to prevent

the trivial map. Approaches based on pixel reconstructions are com-

mon [7, 13, 16, 17, 25, 33, 49, 50, 54], but there are also approaches

Figure 2: Schematic overview of our method. We learn the
map Z from S toZ and discretizeZ to obtain X. We plan in
X and use interpolated Q-values to obtain a policy in S.

based on self-supervision that use alternatives to reconstruction of

input states [1, 2, 4, 11, 30, 40, 53].

To prevent trivial solutions, we use a contrastive loss, maximizing

the distance between the latent next state and the embeddings of

a set of random other states, S¬ = {sj }
J
j=1

sampled from the same

trajectory on every epoch. Thus, the complete loss is

L (θ ,ϕ, ζ ) =
1

N

N∑
n=1

[
d
(
Zθ (s

′
n ), T̄ϕ (zn , Āϕ (zn ,an ))

)
+d
(
R (sn ), R̄ζ (zn )

)
+
∑

s¬∈S¬

d¬
(
Zθ (s¬), T̄ϕ (zn , Āϕ (zn ,an ))

) ]
(8)

where d¬ is a negative distance function. Similar to [30], we use the

hinge loss d¬ (z, z
′) = max(0, ϵ − d (z, z′)) to prevent the negative

distance from growing indefinitely. Here, ϵ is a parameter that

controls the scale of the embeddings. To limit the scope of this

paper, we consider domains where we can find a reasonable data

set of transitions without considering exploration. Changing the

sampling policy will introduce bias in the data set, influencing the

representations. Here we evaluate if we can find plannable MDP

homomorphisms and leave the exploration problem to future work.

3.2 Constructing the Abstract MDP
After learning a structured latent space, we find abstract MDP

¯M

by constructing reward and transition functions from Zθ , T̄ϕ , R̄ζ .

3.2.1 Abstract States. Core to our approach is the idea that ex-

ploiting action-equivariance constraints leads to nicely structured

abstract spaces that can be planned in. Of course the spaceZ is still

continuous, which requires either more complex planning methods,

or state discretization. In this paper we aim for the latter, simpler,

option, by constructing a discrete setX of (‘prototype’) latent states

inZ over which we can perform standard dynamic programming

techniques. We will denote such prototype states as x ∈ X, cf. Fig-
ure 2. Of course, we then also need to construct discrete transition

T̂ϕ and reward R̂ζ functions. The next sub-sections will outline

methods to obtain these fromZ, T̄ϕ and R̄ζ . To find a ‘plannable’

set of states, the abstract state space should be sufficiently covered.

To construct the set, we sample L states from the replay memory

and encode them, i.e. X = {Zθ (sl ) |sl ∼ D}
L
l=1

, pruning duplicates.

3.2.2 Reward Function. In Eq. 8 we use a reward prediction

loss to encourage the latent states to contain information about



the rewards. This helps separate distinct states with comparable

transition functions. During planning, we can use this predicted

reward R̄ζ . When the reward depends on a changing goal state,

such as in the goal-conditioned tasks in Section 4, R̂ζ (Zθ (s )) = 1

if Zθ (s ) = Zθ (sд ) and 0 otherwise. We use this reward function in

planning, i.e. R̂ζ (x ) = 1 if x = Zθ (sд ) and 0 otherwise.

3.2.3 Transition Function. Wemodel the transitions on the basis

of similarity in the abstract space. We follow earlier work [12, 29]

and assume that if two states are connected by an action in the

state space, they should be close after applying the latent action

transition. The transition function is a distribution over next latent

states. Therefore, we use a temperature softmax to model transition

probabilities between representations of abstract states in X:

T̂ ′ϕ (zj |zi ,α ) =
e−d (zj ,zi+Āϕ (zi ,α ))/τ∑

k ∈X e
−d (zk ,zi+Āϕ (zi ,α ))/τ

(9)

Thus, for the transitions between abstract states:

T̂ϕ (x = j |x ′ = i, â = α ) = T̂ ′ϕ (zj |zi ,α ) (10)

where τ is a temperature parameter that determines how ‘soft’ the

edges are, and zj is the representation of abstract state j . Intuitively,
this means that if an action moves two states closer together, the

weight of their connection increases, and if it moves two states

away from each other, the weight of their connection decreases.

For very small τ , the transitions are deterministic.

3.2.4 Convergence to an MDP homomorphism. We now show

that when combining optimization of our proposed loss fuction (8)

with the construction of an abstract MDP as detailed in this subsec-

tion, we can approximate an MDP homomorphism. Specifically, for

deterministic MDPs, we show that when the loss function in Eq. 8

reaches zero, we have an MDP homomorphism ofM.

Theorem 3.1. In a deterministic MDPM, assuming a training set
that contains all state, action pairs, and an exhaustively sampled set
of abstract states X we consider a sequence of losses in a successful
training run, i.e. the losses converge to 0. In the limit of the loss L in
Eq. 8 approaching 0, i.e. L → 0 and 0 < τ ≪ 1, τ ≪ ϵ , h = (Zθ , Āϕ )
is an MDP homomorphism ofM.

Proof. Fix 0 < τ ≪ 1 and write z = Zθ (s ) and ā = Āϕ (z,a).
Consider that learning converges, i.e. L → 0. This implies that

the individual loss terms d (T̄ϕ (z, ā), z
′), d¬ (T̄ϕ (z, ā), z¬) and

d (R (s ), R̄ζ (z)) also go to zero for all (s,a, r , s ′, s¬) ∼ D.

Positive samples: As the distance for positive samples

d+ = d (T̄ϕ (z, ā), z
′) → 0, then d+ ≪ τ . Since d+ ≪ τ , then

e−d+/τ ≈ 1.

Negative samples: Because the negative distance

d¬ (T̄ϕ (z, ā), z¬) → 0, d¬ ≤ ϵ . This, in turn, implies that the

distance to all negative samples d− = d (T̄ϕ (z, ā), z¬) ≥ ϵ and thus

τ ≪ ϵ ≤ d−, meaning that 1 ≪
d−
τ and thus e−d−/τ ≈ 0.

This means that when the loss approaches 0, T̂ ′ϕ (z
′ |z, ā) = 1

where T (s ′ |s,a) = 1 and T̂ ′ϕ (z¬ |z, ā) = 0 when T (s¬ |s,a) = 0.

Since M is deterministic, T (s ′ |s,a) transitions to one state

with probability 1, and probability 0 for the others. Therefore,

T̂ ′ϕ (Zθ (s
′) |Zθ (s ), Āϕ (Zθ (s ),a)) =

∑
s ′′∈[s ′]Z T (s ′′ |s,a) and Eq. 4

holds. As the distance for rewards d (R (s ), R̄ζ (z)) → 0, we have

that R̄ζ (z) = R (s ) and Eq. 5 holds. Therefore, when the loss reaches

zero we have an MDP homomorphism ofM. □

Note that Eq. 8 will not completely reach zero: negative samples

are drawn uniformly. Thus, a positive sample may occasionally be

treated as a negative sample. Refining the negative sampling can

further improve this approach.

3.3 Planning and Acting
After constructing the abstract MDP we plan with VI [41] and lift

the found policy to the original space by interpolating between Q-

value embeddings. Given
ˆM = (X, ˆA, T̂ϕ , R̂ζ ,γ ), VI finds a policy

π̂ that is optimal in
ˆM. For a new state s∗ ∈ S, we embed it in the

representation spaceZ as z∗ = Zθ (s
∗) and use a softmax over its

distance to each x ∈ X to interpolate between their Q-values, i.e.

Q (z∗,a) =
∑
x ∈X

w (z∗,x )Q (x ,a) (11)

w (z∗,x ) =
e−d (zx ,z

∗ )/η∑
k ∈X e

−d (zk ,z∗ )/η
(12)

where η is a temperature parameter that sets the ‘softness’ of the

interpolation. We use the interpolated Q-values for greedy action

selection for s∗, transition to s∗∗ and iterate until the episode ends.

4 EXPERIMENTS
Here we show that in simple domains, our approach 1) succeeds at

finding plannable MDP homomorphisms for discrete and continu-

ous problems 2) requires less data than model-free approaches, 3)

generalizes to new reward functions and data and 4) trains faster

than approaches based on reconstructions. We focus on determin-

istic MDPs. While preliminary results on stochastic domains were

promising, an in-depth discussion is beyond the scope of this paper.

4.1 Baselines
To evaluate our approach, we compare to a number of baselines:

(1) WM-AE: An auto-encoder approach inspired by World Mod-

els [16]. We follow their approach of training representations

using a reconstruction loss, then learning latent dynamics

on fixed representations. We experimented with a VAE [28],

which did not perform well (see [30] for similar results). We

thus use an auto-encoder to learn an embedding, then train

an MLP to predict the next state from embedding and action.

(2) LD-AE: An auto-encoder with latent dynamics. We train an

auto-encoder to reconstruct the input, and predict the next

latent state. We experimented with reconstructing the next

state, but this resulted in the model placing the next state

embeddings in a different location than the latent transitions.

(3) DMDP-H: We evaluate the effectiveness of training without

negative sampling. This is similar to DeepMDP [13]. How-

ever, unlike DeepMDP, DMDP-H uses action-embeddings,

for a fairer comparison.

(4) GC-Model-Free: Finally, we compare to a goal-conditioned

model-free baseline (REINFORCE with state-value baseline),
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Figure 3: Abstract MDP for three approaches in the single object room domain. Nodes are PCA projections of abstract states,
edges are predicted T̄ϕ , colors are predicted values.

to contrast our approach with directly optimizing the policy
1
.

We include the goal state as input for a fair comparison.

To fairly compare the planning approaches, we perform a grid

search over the softness of the transition function by evaluating

performance on the train goals in τ ∈ [1, 0.1, 0.001, 0.0001, 0.00001,

1e − 20]. Unless otherwise stated, the planning approaches are all

trained on datasets of 1000 trajectories, sampled with a random

policy. The learning rate is set to 0.001 and we use Adam [27]. For

the hinge loss, we use ϵ = 1. The latent dimensionality is set to 50

everywhere. Our approach is trained for 100 epochs. WM-AE is

trained for 1000 epochs in total: 500 for the auto-encoder and 500 for

the dynamics. LD-AE is trained for 1000 epochs. For constructing

the abstract MDP we sample 1024 states from D, project untoZ

and prune duplicates. For planning we use VI with discount factor

γ = 0.9, 500 backups and interpolation parameter (Eq. 12) η =
1e − 20. The learning rate for the model-free baseline was chosen

by fine-tuning on the training goals. For the model-free baseline,

we use a learning rate of 5e − 4 and we train for 500k steps (more

than five times the number of samples the planning approaches

use). Network Zθ has 2 convolutional layers (both 16 channels,

3 × 3 filters) and 3 fully connected layers (input→ 64→ 32→ |z |).
Networks Tϕ and Rξ each have 2 fully connected layers. We use

ReLU non-linearities between layers.

4.2 Object Collection

Figure 4: Example states in
the object collection domain
for the single object and dou-
ble object tasks.

We test our approach on

an object collection task

inspired by the key task

in [11], with major differ-

ences: rather than search-

ing for three keys in a

labyrinth, the agent is

placed in a roomwith some

objects. Its task is to collect

the key. On every time step,

the agent receives a state—

a 3× 48× 48 pixel image (a channel per object, including the agent),

1
Deep reinforcement learning algorithms such as our baseline may fail catastrophically

depending on the random seed [19]. For a fair comparison, we train the baseline on 6

random seeds, then remove those seeds where the method fails to converge for the

train setting.

as shown in Figure 4—and a goal state of the same size. At train time,

the agent receives reward of 1 on collection of the key object, and a

reward of −1 if it grabs the wrong object, and a reward of −0.1 on

every time step. The episode ends if the agent picks up one (or more)

of the objects and delivers it to one of the four corners (randomly

sampled at episode start), receiving an additional delivery reward of

1. At test time, the agent is tasked with retrieving one of the objects

chosen at random, and delivering to a randomly chosen location,

encoded as a desired goal state. This task will evaluate how easily

the trained agent adapts to new goals/reward functions. The agent

can interact with the environment until it reaches the goal or 100

steps have passed. For both tasks, we compare to the model-free

baseline. We also compare to the DMDP-H, WD-AE and LD-AE

baselines. We additionally perform a grid search over the hinge,

number of state samples for discretization and η hyperparameters

for insight in how these influence the performance. This showed

that our approach is robust with respect to the hinge parameter,

but it influences the scale of the embeddings. The results decrease

only when using 256 or fewer state samples. Lastly, η is robust for

values lower than 1. We opt for a low value of η, to assign most

weight to the Q-value of the closest state.

4.2.1 Single Object Task. We first evaluate a simple task with

only one object (a key). The agent’s task is to retrieve the key, and

move to one of four delivery locations in the corners of the room.

The delivery location is knowledge supplied to the agent in the

form of a goal state that places the agent in the correct corner and

shows that there is no key. These goal states are also supplied to

the baseline, during training and testing. Additionally, we perform

an ablation study on the effect of the reward loss. The average

episode lengths are shown in Table 1. Our approach outperforms all

baselines, both at train and at test time. There is no clear preference

in terms of the number of negative samples — as long as J > 0 —

the result for all values of J are quite close together. The DMDP-H

approach fails to find a reasonable policy, possibly due to the sparse

rewards in this task providing little pull against state collapse. Out

of the planning baselines, WM-AE performs best, probably because

visually salient features are aligned with decision making features

in this task. Finally, the model-free approach is the best performing

baseline on the training goals, but does not generalize to test goals.

The results of the reward ablation are shown in Table 2. While



Avg. ep. length ↓

Task Single Object Double Object
Goal Set Train Test Train Test

GC-Model-free 10.00 ± 0.11 67.25 ± 6.81 10.10 ± 0.69 38.25 ± 15.30

WM-AE 12.96 ± 8.93 10.03 ± 5.56 29.61 ± 19.42 22.53 ± 22.12

LD-AE 23.46 ± 27.10 21.04 ± 21.71 60.26 ± 29.14 52.72 ± 27.32

DMDP-H (J = 0) 82.88 ± 11.62 85.69 ± 7.98 81.24 ± 2.45 81.17 ± 2.69

Ours, J = 1, 8.61 ± 0.35 7.53 ± 0.24 8.53 ± 0.36 8.38 ± 0.07

Ours, J = 3 8.68 ± 0.27 7.63 ± 0.19 8.61 ± 0.38 8.95 ± 0.63

Ours, J = 5 8.57 ± 0.48 7.74 ± 0.22 8.26 ± 0.84 8.96 ± 1.15

Table 1: Comparing average episode length of 100 episodes
on the object collection domain. Reporting mean and stan-
dard deviation over 5 random seeds for the planning ap-
proaches. The model free approach is averaged over 4 ran-
dom seeds for the single object domain, 3 random seeds for
the double object domain.

Avg. ep. length ↓

Reward Loss No Reward Loss
Goal Set Train Test Train Test

DMDP-H (J = 0) 82.88 ± 11.62 85.69 ± 7.98 87.03 ± 3.08 84.08 ± 3.02

Ours, J = 1 8.61 ± 0.35 7.53 ± 0.24 74.32 ± 19.90 68.54 ± 17.29

Ours, J = 3 8.68 ± 0.27 7.63 ± 0.19 8.54 ± 0.36 7.44 ± 0.21

Ours, J = 5 8.57 ± 0.48 7.74 ± 0.22 8.52 ± 0.19 7.53 ± 0.20

Table 2: Ablation study of the effect of the reward loss. Com-
paring average episode length of 100 episodes for the single
object room domain. Reporting mean and standard devia-
tion over 5 random seeds.

removing the reward loss does not influence performance much for

J = 0, J = 3 and J = 5, when J = 1 the reward prediction is needed

to separate the states. Without the reward, the single negative

sample does not provide enough pull for complete separation.

We show the latent spaces found for the baselines and our ap-

proach in Figure 3. Our approach has found a double grid structure -

representing the grid world before, and after picking up the key. The

baselines are reasonably plannable after training for long enough,

but the latent spaces aren’t as nicely structured as our approach.

This mirrors results in earlier work [30]. Thus, while pixel recon-

struction losses may be able to find reasonable representations for

certain problems, these rely on arbitrarily complex transition func-

tions. Moreover, due to their need to train a pixel reconstruction

loss they take much longer to find useable representations. This is

shown in Figure 5b, where the performance after planning for each

training epoch is plotted and compared. Additionally, we observe

state collapse for DMDP-H in Figure 3c, and this is reflected in a

high average episode length after planning.

4.2.2 Double Object Task. We now extend the task to two ob-

jects: a key and an envelope. The agent’s task at train time is still

to retrieve the key. At test time, the agent has to pick up the key or

the envelope (randomly chosen) and deliver it to one of the corners.

We show results in Table 1. Again, our method performs well on

both train and test set, having clearly learned a useful abstract
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auto-encoder has finished training and training of the
dynamics model begins.

Figure 5: Average episode length per training epoch for the
single object domain. Reported mean and standard error
over 5 random seeds.

representation, that generalizes to new goals. The WM-AE baseline

again fares better than the LD-AE baseline, and DMDP-H fails to

find a plannable representation. The model-free baseline performs

slightly worse than our method on this task, even after seeing much

more data. Additionally, even though it performs reasonably well

on the training goals, it does not generalize to new goals at all. The

WM-AE performs worse on this task than our approach, but gener-

alizes much better than the model-free baseline, due to its planning,

while the LD-AE baseline does not find plannable representations

of this task.

4.3 Continuous State Spaces
We evaluate whether we can use our method to learn plannable rep-

resentations for continuous state spaces. We use OpenAI’s CartPole-

v0 environment [5]. We include again a model-free baseline that

is trained until completion as a reference for the performance of a

good policy. We also compare DMDP-H, WD-AE and LD-AE. We

expect that the latter two would perform well here; after all, the

representation that they reconstruct is already quite compact. We
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Figure 6: Abstract MDP for four approaches in CartPole. Nodes are PCA projections of abstract states, edges are predicted T̄ϕ ,
colors are predicted values.

Average episode length ↑ Standard Only 100 trajectories

GC-Model-free 197.85 ± 2.16 23.84 ± 0.88

WM-AE 150.61 ± 30.48 114.47 ± 17.32

LD-AE 157.10 ± 11.14 154.73 ± 50.49

DMDP-H (J = 0) 39.32 ± 9.02 72.81 ± 20.16

Ours, J = 1, 174.64 ± 22.43 127.37 ± 44.02

Ours, J = 3 166.05 ± 24.73 148.30 ± 67.27

Ours, J = 5 186.31 ± 12.28 171.53 ± 34.18

Table 3: CartPole results. Comparing average episode length
over 100 episodes, reporting mean and standard deviation
over 5 random seeds. The left column has standard settings,
in the right column only 100 trajectories are encountered,
and planning models are trained for only 100 epochs.

additionally evaluate performance when the amount of data is lim-

ited to only 100 trajectories (and we limit the number of training

epochs for all planning approaches to 100 epochs). We plot the

found latent space for our approach and the baselines in Figure 6.

The goal in this problem is to reach the all-zero reward vector,

which we set as the goal state with reward 1, and all other states to

reward 0. For our approach and both auto-encoder baselines, the

latent space forms a bowl with the goal in its center. The DMDP-H

again shows a shrunk latent space, and does not have this bowl

structure. Results are shown in Table 3. Our approach performs best

out of all planning approaches. When trained fully, the model-free

approach performs better. However, when we limit the number of

environmental interactions to 100 trajectories, we see that the plan-

ning approach still finds a reasonable policy, while the model-free

approach fails completely. This indicates that our approach is more

data efficient.

4.4 Generalizing over Goals and Objects
In many tasks we need to be able to generalize not only over goals,

but also object instances. We evaluate if our abstract state space

generalizes to unseen objects in a problem class. For this we con-

struct an object manipulation task. On each episode, an image of a

piece of clothing is sampled from a set of training images in Fash-

ion MNIST [52], and a goal translation of the image is sampled

from a set of train goals (translations with negative x-offset: (−3, ·)

up to and including (−1, ·)). Thus, the underlying state space is a
7 × 7 grid. The translated image is provided to the agent as a goal

state. The agent receives a reward of +1 if she moves the clothing

to the correct translation. See Figure 8. At test time, we evaluate

performance on test goals (translations with positive x-offset: (1, ·)
up to and including (3, ·), seen before as states for training images

but never as goals) and test images. The latent spaces for each of

the four representation learning approaches are shown in Figure 7.

For DMDP-H, the latent space collapses to all but a few points. For

WD-AE and LD-AE, the latent space does not exhibit clear struc-

ture. For our approach, there is a clear square grid structure present

in the latent space. However, the underlying translations for the

images do not neatly align across images. Clustering such states

together is interesting future work.

Figure 8: Transi-
tions in the image
manipulation
task.

Results are shown in Table 4. The

goal-conditioned model-free baseline

has an easy time finding a good policy

for the training setting. It also general-

izes well to unseen images. However,

it has trouble generalizing to new goal

locations for both train and test images.

Our planning approach, on the other

hand, loses some performance on the

training setting, but easily generalizes

to both test images and test goals. Nei-

ther WM-AE nor LD-AE find good poli-

cies in this problem. They have a diffi-

cult time learning plannable represen-

tations because their focus is on reconstructing individual images.

5 RELATEDWORK
This paper proposes a method for learning action equivariant map-

pings ofMDPs, and using thesemappings for constructing plannable

abstract MDPs. We learn action equivariant maps by minimiz-

ing MDP homomorphism metrics [46]. As a result, when the loss

reaches zero the learned mapping is an MDP homomorphism [43].

MDP homomorphism metrics are a generalization of bisimulation

metrics [10, 35]. Other works [6, 20, 51] consider equivariance to

symmetry group actions in learning. Here, we use a more general
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Figure 7: Abstract MDP for four approaches in planning in FashionMNIST. Nodes are PCA projections of abstract states, edges
are predicted T̄ϕ , colors are predicted values.

Avg. ep. length ↓

Dataset Train Test
Goal Set Train Test Train Test

GC-Model-free 4.82 ± 0.33 9.67 ± 5.01 4.75 ± 0.12 8.17 ± 2.67

WM-AE 59.95 ± 4.06 63.27 ± 3.36 64.27 ± 5.33 63.41 ± 2.04

LD-AE 56.39 ± 7.07 49.35 ± 4.05 51.45 ± 6.79 51.70 ± 3.97

DMDP-H (J = 0) 62.86 ± 3.87 66.68 ± 4.40 65.93 ± 4.98 64.86 ± 1.57

Ours, J = 1, 5.07 ± 0.87 5.27 ± 0.56 5.69 ± 0.93 5.63 ± 0.96

Ours, J = 3 5.60 ± 0.97 5.46 ± 0.97 6.44 ± 1.12 5.42 ± 0.89

Ours, J = 5 5.36 ± 0.71 5.67 ± 1.20 6.36 ± 1.21 5.34 ± 0.93

Table 4: Comparing average episode length of 100 episodes
for planning in Fashion MNIST. Reporting mean and stan-
dard deviation over 5 random seeds.

version of equivariance under MDP actions for learning representa-

tions of MDPs. We learn representations of MDPs by 1) predicting

the next latent state, 2) predicting the reward and 3) using neg-

ative sampling to prevent state collapse. Much recent work has

considered self-supervised representation learning for MDPs. Cer-

tain works focus on predicting the next state using a contrastive

loss [2, 30, 40], disregarding the reward function. However, certain

states may be erronously grouped together without a reward func-

tion to distinguish them. Gelada et al. [13] include both rewards

and transitions to propose an objective based on stochastic bisimu-

lation metrics [10, 15, 35]. However, at training time they focus on

deterministically predicting the next latent state. Their proposed

objective does not account for the possibility of latent space col-

lapse, and for complex tasks they require a pixel reconstruction

term. This phenomenon is also observed by François-Lavet et al.

[11], who prevent it with two entropy maximization losses.

Many approaches to representation learning in MDPs depend (par-

tially) on learning to reconstruct the input state [3, 7, 16, 17, 21, 25,

33, 47–50, 54]. A disadvantage of reconstruction losses is training

a decoder, which is time consuming and usually not required for

decision making tasks. Additionally, such losses emphasize visually

salient features over features relevant to decision making.

Other approaches that side-step the pixel reconstruction loss in-

clude predicting which action caused the transition between two

states [1], predicting the number of time steps between two states [4]

or predicting objects in anMDP state using supervised learning [53].

Jonschkowski and Brock [24] identify a set of priors about the world

and uses them to formulate self-supervised objectives. In Ghosh

et al. [14], the similarity between two states is the difference in goal-

conditioned policies needed to reach them from another state. Schrit-

twieser et al. [44] learn representations for tree-based search that

must predict among others a policy and value function, and are thus

not policy-independent. Earlier work on decoupling representation

learning and planning exists [7, 49, 53]. However, these works use

objectives that include a pixel reconstruction term [7, 49] or require

labeling of objects in states for use in supervised learning [53].

Other work on planning algorithms in deep learning either as-

sumes knowledge of the state graph [26, 34, 38, 45], builds a graph

out of observed transitions [31] or structures the neural network

architecture as a planner [9, 11, 39], which limits the search depth.

6 CONCLUSION
This paper proposes the use of ‘equivariance under actions’ for

learning representations in deterministic MDPs. Action equivari-

ance is enforced by the use of MDP homomorphism metrics in

defining a loss function. We also propose a method of constructing

plannable abstract MDPs from continuous latent spaces. We prove

that for deterministic MDPs, when our objective function is zero

and our method for constructing abstract MDP is used, the map we

learn is an MDP homomorphism. Additionally, we show empirically

that our approach is data-efficient and fast to train, and generalizes

well to new goal states and instances with the same environmental

dynamics. Potential future work includes an extension to stochastic

MDPs and clustering states on the basis of MDP metrics. Using a

clustering approach as part of model training, we can learn the pro-

totypical states rather than sampling them. This comes at the cost

of having to backpropagate through a discretization step, which in

early experiments (using Gumbel-Softmax [23]) led to instability.
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