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The global expansion of subsurface COz and hydrogen storage, alongside geothermal energy development, offers
promising pathways for gigaton-scale COz abatement. However, fluid injections and associated thermal effects
can significantly alter reservoir stress states, risking fault reactivation and compromising caprock integrity.
Direct stress measurements in the subsurface remain technically challenging, particularly beyond the near-
wellbore zone. This study investigates how stress-induced changes in ultrasonic P- and S-wave velocities and
amplitudes can serve as early indicators of irreversible rock deformation. Using triaxial cyclic and failure ex-
periments on core samples from offshore Netherlands (depths: 3.1-4.2 km; porosity: 8-23 %), we demonstrate
that wave velocities and amplitudes increase with axial loading in the elastic regime but decline progressively
following crack initiation—well before mechanical failure. This trend reversal provides a reliable sonic precursor
to failure. We propose a field-applicable traffic-light monitoring framework using sonic parameters to infer stress
changes during injection operations. The observed inverse relationships between porosity and both mechanical
strength and sonic velocity, along with the porosity-dependent velocity enhancement under confinement, present
a novel opportunity to develop constitutive geomechanical models directly from reservoir sonic logs. This work
advances non-invasive stress monitoring approaches and provides engineering geologists with robust tools to
improve safety and predictability in subsurface energy storage projects. Moreover, such techniques can also be

translated to integrity monitoring for underground mines and engineered structures.

1. Introduction

Carbon capture and storage (CCS) and shifting to low carbon energy
alternatives like hydrogen and geothermal energy have been identified
as the primary drivers to reduce atmospheric CO, level and arrest
average global temperature rise within 2 °C of pre-industrial level (Lee
et al., 2023). Subsurface porous reservoirs, which have historically been
used for fossil fuel extraction, has gained new limelight for potentially
sequestering huge volumes of Hy (UHS) and CO; (Raji et al., 2023;
Zhang et al., 2022a). With most European countries pledging to reach
net-zero latest by 2050, the North-Sea has become a hotbed for emerging
CCS projects (Gonzalez et al., 2021; Swennenhuis et al., 2020). Several
western European countries along with USA have been identified as
potential sites for Hy storage with pilot projects in the pipeline (Sambo
et al., 2022). Significant efforts on increasing geothermal resources in
the energy mix is also happening globally (Lund and Toth, 2021). Mobile
fluids like CO4 and Hj injections in depleted oil and gas reservoirs or

saline aquifers cause stress perturbation, more precisely, by decreasing
the effective overburden and horizontal stress. Such changes of reservoir
pressure over a geologically short time can cause leakage along pre-
existing faults into the seafloor or atmosphere. Additionally, percola-
tion of injected fluids into the fault plane can alter the properties of fault
plane, causing dilation, permeability enhancement, dissolution along
fault plane and altering roughness along the fault-plane (Al Shafloot
et al., 2024; Cornelio and Violay, 2020; Polak et al., 2004; Ramesh
Kumar et al., 2023; White and Foxall, 2016; Zhang et al., 2023). Coupled
effects of these changes lead to slip along the fault plane in reservoir or
caprock, leading to seismicity, which has been observed in many
geothermal, UHS and CCS projects worldwide (Buijze et al., 2019; Cheng
et al., 2023; Majer et al., 2007; Rutqvist et al., 2016; Zang et al., 2014).

For any kind of reservoir operations, mechanical failure of reservoir
or caprock is an extreme situation and should be avoided at all costs.
Even before failure, irreversible or plastic deformation is accumulated
within the reservoir when numerous microcracks form and merge within
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the storage and caprock formations. These microcracking events also
cause seismicity and compromise the stability of the formation, which is
detrimental in long-term fluid containment. Therefore, the operational
pressure range for Hy/CO; storage projects are selected in such a way
that the stress conditions can only cause elastic deformation of the
reservoir. Pressure oscillation during periodic reservoir operations for
UHS and geothermal projects might accumulate irreversible deforma-
tion in a reservoir over time. From a Mohr-Coulomb failure perspective,
increase in pore pressure and a resultant decrease in effective stress
reduces normal stress, while the shear stress remains constant. This
shifts the Mohr circle towards the left and close to the elastic deforma-
tion zone and failure envelope (Choi et al., 2023; Park et al., 2022). The
non-isothermal phase behavior of Hy and CO, adds on to the complexity
in reservoir stress path. Cold and liquid COs is often injected at high
pressure in hot reservoirs which expands due to pressure drop in
depleted reservoirs and triggers Joule-Thomson cooling which causes
cooling in the reservoir close to the injection well. Geomechanical and
geochemical implications of extreme cooling in geological formations
and also in wellbores have been studied in detail (Li and Pluymakers,
2024; Vilarrasa et al., 2014; Vilarrasa and Laloui, 2016; Vilarrasa and
Rutqvist, 2017). Coupled effect of pore pressure increase and simulta-
neous cooling in the reservoir causes more vertical contraction
compared to radial contraction (CLIMIT, 2020; Grande et al., 2024;
Griffiths et al., 2021; Park et al., 2022), which brings the reservoir or
caprock stress configuration close to failure. Therefore, studying the
irreversible deformation behavior of reservoir and caprocks are of
paramount importance for successful CCS projects. Hy injection in the
subsurface also triggers sudden temperature increase due to negative
Joule-Thompson coefficient of Hy, however, its direct impact on stresses
have not been explored in detail.

Deformation behavior of a rock mass can be easily studied in the
laboratory using representative samples, where we can have good con-
trol on stress conditions. However, measuring stress change and plume
movement over time is not so straight forward in the reservoir. There are
several techniques to measure stress indirectly either from ground
deformation using local strainmeter, tiltmeter or drone imaging and
InSAR (Zhang et al., 2022b) or from in-situ deformation measurement
using fiber-optics (Murdoch et al., 2020; Sun et al., 2021). More accurate
and comprehensive geophysical tools like timelapse seismic surveys can
provide exact movement of COy/Hjy plume, however such techniques are
much more costly (Gasperikova et al., 2022). Timelapse sonic logging of
P and S waves is a much more cost effective and simpler way to
potentially monitor Hy/CO4 plume migration, saturation of the reservoir
and also its stress conditions (Le Ding and Song, 2016; Falcon-Suarez
et al., 2016; Fortin et al., 2005; Janssen et al., 2021; Li et al., 2022;
Miiller et al., 2007; Sayers, 2002; Xue et al., 2009). Previous studies have
shown at seismic frequency the presence of CO5 in pore spaces instead of
brine causes a large change in Vp (Agofack et al., 2018; Chen et al.,
2013; Zhang et al., 2017), whereas ultrasonic velocity and amplitude
measurements can help quantify even small deformation in rock mass.
Apart from specific use cases in reservoir geomechanics, sonic attributes
are widely used to quantify water saturation and effective stresses in soil
and other rocktypes (Al-Shayea, 2001; He et al., 2021; Li et al., 2020).
Deformation in subsurface formations and larger geoengineered struc-
tures are evaluated using 3D seismic and distributed acoustic sensing
(DAS) techniques (Martinez-Martinez et al., 2016a; Nefeslioglu, 2013;
Rossi et al., 2022; Williams et al., 2022; Xia et al., 2022). Theoretical
approaches have proposed relationship between crack propagation and
changes in sonic attributes based on petrophysical properties of host
rock (Ersoy et al., 2019; Hamdi and Lafhaj, 2013; Li and Zhu, 2012;
Martinez-Martinez et al., 2007, 2011).

Past CCS projects like Boundary Dam, Quest, Sleipner, In Salah and
many others highlighted the importance of including stress monitoring
in measurement, monitoring and verification (MMV) workflow. The
high pore pressure development in Snohvit project (Hansen et al., 2013)
prompted rapid development of remote stress monitoring using time-
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lapse seismic survey and decoupling the response of fluid migration
and stress change (Grude et al., 2014). CO4 leakage risk associated to the
In Salah project indicated that integrated geomechanical modeling and
understanding stress response of both reservoir and caprocks are of
paramount importance in future CCS and UHS projects (Ringrose et al.,
2013). On the other hand, stress monitoring also helps control leakage
from wellbore and plume movement over time where multiple reservoir
spaces are spatially connected. Complex geological areas like Gulf of
Mexico is infested with active faults and around 1.1 million legacy wells
pose risk of compromised wellbore integrity and pressure induced fault
slip (Bump and Hovorka, 2024). In such cases, limiting stress evolution
in the reservoir fairly under the reservoir fracture pressure(Bump and
Hovorka, 2023; Zoback and Gorelick, 2015) is imperative. Microseis-
micities associated with other CCS projects globally also highlight that
understanding the stress state before, during and after CO, injection
needs to be understood in detail (Cao et al., 2021; Goertz-Allmann et al.,
2014; Myer and Daley, 2011; Will et al., 2014). Hy storage albeit at a
nascent stage, also needs to account the learnings from CCS projects to
ensure safe reservoir operation for a longer period.

In this study, we are focusing on the stress-dependent change in
compressional and shear wave properties in sandstones of different
porosity and depth collected from different locations of the Aramis CCS
license area in the North Sea (Sorbier, 2024). Special focus will be given
on how the P and S wave attributes respond to stress changes and elastic
and plastic deformation. The primary objective will be to develop a
benchmark between stress change and velocity change in porous sand-
stones to analyze their sensitivity with respect to porosity and develop a
forecasting protocol to detect irreversible rock deformation during
reservoir operations and propose a traffic light protocol based on change
in wave attributes. The fundamental relationship between stress and
sonic properties emerging from this study can be applied to any sub-
surface energy storage projects. The non-invasive monitoring technique
proposed in this study can be applied to assess structural integrity of
other subsurface or above-surface engineering geology projects.

Table 1
Details of samples collected along with their depth and porosity.
Well ID Formation Sample Replacement sample ~ Depth  Porosity
name (m)
K15-12 Upper 15 190y 3930.05  0.08
Slochteren
Upper K15-12-
KIS-12 - g ochteren 12V 3945.1 0.14
Upper K15-12-
K15-12 Slochteren 14V 3946.9 0.13
Upper K15-12-
Ki5-12 Slochteren 21V 3955.8 0.09
K15-2 Lower K15-2:3V 345855 0.1
Slochteren
K15-2 Lower K15-2-4V 345872 011
Slochteren
K15-2 Lower K15-2:5V 3461.45  0.12
Slochteren
K15-2 Lower K15-2.7V K15-2-2V 3462.35  0.12
Slochteren
K15-FG- Upper K15-FG-
102 Slochteren 102-2V 4176.1 0.17
K15-FG- Upper K15-FG- No suitable
102 Slochteren 102-4V replacement found 4176.8 0.17
. L09-10-
L09-10 Solling 6VA 3172.2 0.22
Lower K15-15A-
K15-15A Slochteren e 4236.18 0.23
Upper K15-15A-
K15-15A Slochteren 6V 4236.81 0.19
Lower K15-15A-
K15-15A 249. .2
515 Slochteren 13V 4249.3 0.23
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Fig. 1. Schematic of the experimental setup used for this study.
2. Methodology
2.1. Sample description

For the experiments mentioned in the following sections, the samples
used were sandstone core plugs collected from different depths of Ara-
mis license areas in the North Sea (specifically from the K15 and L9
blocks). More details of the sampling locations, coring wells and sub-
surface activities in those blocks can be found at https://www.nlog.nl/.
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The samples for the Aramis license area were provided by Shell through
TNO (Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk
Onderzoek). Fourteen coreplugs having 1 in. diameter from different
depths and different reservoir formations were collected for the exper-
iments. The primary reservoir for K15 block is the Permian sandstones of
Upper and Lower Slochteren Formations, which overlies the Base
Permian unconformity (De Jager and Geluk, 2007). The thick evaporites
of the Zechstein Group overlying the Upper Slochteren Formation works
as a potential caprock for safe containment of CO,. The Triassic Solling
group is the primary reservoir for L9 block which unconformably
overlies the Main Buntsandstein Subgroup, which is well cemented,
providing good bottom-sealing. The Rot evaporite formation overlies the
Solling sandstone, which acts an effective caprock (Geluk and Rohling,
1997). The samples and their descriptors are provided in Table 1.
Collected samples were first trimmed (if needed) and the end faces
were polished to maintain a length-to-diameter ratio of 2 for the
deformation experiments. Afterwards the core plugs (1" diameter and 2"
length) were washed and dried in an oven for a day at 60 °C to remove
the moisture accumulated during cutting and polishing. The porosity of
the samples was measured with helium pycnometer before deformation
experiments (Table 1). Reservoirs are usually saturated with brine and
can have a salinity range of 0.1-20 wt%, however, most commonly the
salinity is above 5 wt%. Since selecting a specific brine composition was
not the focus of the study, we used a brine composed of 80 g/L NaCl (~8
wt%) to saturate the core plugs before deformation to simulate analogue
reservoir conditions during the tests. The dried core plugs were put in a
desiccator and vacuum saturated with brine for 12 h to remove air
trapped in pore spaces and maximize brine saturation. It is worth
mentioning that two of the chosen set of samples (Table 1) suffered
damage while taking them out of the triaxial apparatus upon finishing
the cyclic loading experiments (Section 2.2.1). For K15-2-7 V, we found
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Fig. 2. (a) Stress-strain profile of cyclic axial loading and unloading experiments (b) Vp and Vs recorded in each cycle colored based on the porosity of corresponding
coreplug (c) Static and dynamic Young’s modulus for each specimen. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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a replacement (K15-2-2 V) from a slightly shallower depth of the same
well having same porosity, while no such suitable replacement was
found for K15-FG-102-4V and was therefore not tested further for the
failure experiments.

2.2. Experimental protocol

Deformation experiments conducted on the core plugs had two major
goals: 1. Determine the change in P and S wave velocity during elastic
deformation at different confining pressure and 2. Study the response of
deformation behavior on the sonic attributes while the core plugs are
undergoing elastic deformation to eventual failure at a fixed confining
pressure. The first test protocol will give an idea of how the ultrasonic
velocity of a rock mass will vary at different overburden stresses as the
pore pressure increases due to pore fluid injection. The loading and
unloading scenario also represent cyclic production and injection of Hy
in subsurface porous reservoirs at different depths. Whereas the second
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test protocol will help understand how the velocity response will change
during inelastic deformation, essentially giving indications for the safe
range of operating pressure for CCS and UHS projects. It is important to
mention that during fluid injection, plastic deformation and subsequent
failure of the reservoir rock are controlled by the reduction in effective
stresses. Although in this study, we are using a different stress path than
a realistic reservoir scenario, our main interest lies in investigating the
sonic response during different stages of deformation and their con-
trolling factors.

Similar to any geological formation, even within the same reservoir,
sandstones vary in mineral composition, porosity, depositional condi-
tions any many other parameters. Since the deformation and wave
propagation behavior vary significantly due to these factors, our goal
was to use the same coreplug for both test routines mentioned above.
Since the first test routine will induce negligible permanent deformation
in the sample, we assume that the sample is nearly pristine for the sec-
ond set of experiments.

100 2 2.6 100 100 t3.2
3.9 32 4.6
80 80 80
13.1
60 2.5 60 3.1 60 45
40 aa 40 40 3.0
: 3.0 [i
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2014 K15-2-3v | [?4 20 2011 K15-2-5V |
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0 400 800 1200 0 400 800 0 400 800 1200
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| »
80 43} 80 e 80 39l25
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Fig. 3. Axial Vp and Vs plotted in a time-series during cyclic axial loading-unloading experiments. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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All triaxial deformation experiments were carried out at room tem-
perature using a customised Hoek-cell coupled with a 500 kN axial
loading frame developed at TU Delft (Fig. 1). A detailed description of
this setup can also be found in (Naderloo et al., 2023; Veltmeijer et al.,
2024). Vacuum-saturated coreplugs were placed within the Viton sleeve
inside the Hoek-cell, and an ISCO model 100DM syringe pump was used
for regulating confining pressure. A top and bottom piston was added for
applying axial deformation on the coreplugs (Fig. 1). The pistons were
made of stainless steel to minimize piston deformation during the ex-
periments. Fluids channels were made along the periphery of the piston
to allow fluids to escape during compaction, allowing drained condition.
One S wave piezoelectric transducer with a diameter of 10 mm, and a
thickness of 5 mm having a central frequency of 1 MHz was housed
inside each piston, to measure timelapse ultrasonic properties of the
coreplugs along the axial direction. A small component of the shear
wave energy from the source transducer converts to compressional wave
at the contact between anisotropic media (in this case between
transducer-piston-specimen), resulting in small vertical displacement.
This converted mode is recorded at the receiver and attributed as the P
wave arrival time for the experiments. One of the transducers acted as a
source and was connected to an Agilent 33210A waveform generator,
generating sine waves of 800 mV peak-to-peak and 50 Q impedance,
which was further amplified by a 1 kV RF power amplifier. The receiver
was connected to a Yokogawa DL9240L oscilloscope and a datalogger
recording time-lapse waveforms every 15 s for 100 ps and averaged over
512 stacks to enhance the signal-to-noise ratio. The recorded waveforms
were further processed with RadexPro seismic processing software to
determine P and S wave arrival times and corresponding amplitudes
after correcting for the travel time within the pistons. Axial loading in
the setup is applied by moving the bottom platen of the load cell, while
the top remains fixed. Two linear variable displacement transformers
(LVDT) with a maximum limit of 2 mm were connected to the bottom
platen of the load cell to measure and regulate the displacement, and a
constant deformation rate of 0.0005 mm/s was applied to build axial
stress on the coreplugs. Due to the design of the experimental setup, it
was not possible to measure radial deformation.

Before the experiments, the instrument deformation was calibrated
using a steel plug of known Young’s modulus. Instrument deformation
was deducted from the total deformation for each experiment
mentioned in the following subsections. Details about the two different
protocols are explained separately in the following subsections:

2.2.1. Cyclic axial loading with incremental confinement

The first set of experiments were to induce elastic deformation on the
coreplugs at different confinements and measure the change in sonic
properties during deformation. Five stages of cyclic axial loading
experiment were planned with confining pressure ranging from 10 to 50
MPa with an increment of 10 MPa between each stage. Vacuum-
saturated core plugs were loaded into the Hoek cell and slowly
brought to a 10 MPa hydrostatic condition. In each confining pressure
we decided to increase the axial stress up to 2x confining pressure to
minimize any permanent change in the coreplug but also have enough
mechanical and sonic dataset to draw meaningful inferences. The only
exception was the first cycle, where the peak axial stress was 3x
confinement to ensure we elastically load the coreplug beyond primary
consolidation. It is worthwhile to mention that the sonic data were
recorded for the loading stages only. Once the peak load (2x confine-
ment) in a corresponding cycle is achieved, the axial load was slowly
reduced to match the hydrostatic condition for the next cycle. The
confining pressure was then increased until a hydrostatic stress condi-
tion was achieved, and the axial loading was repeated following the
previous step. For example, at 20 MPa confinement, we bring the axial
stress to 40 MPa, then unload it to 30 MPa. The confinement then in-
creases to 30 MPa and we ramp the axial stress to 60 MPa. This protocol
was repeated for five cycles.

Engineering Geology 359 (2025) 108421

2.2.2. Axial loading till failure at fixed confinement

For the second set of experiments, the samples used for Section 2.2.1
were reused so that the material properties for both experiments are the
same, assuming negligible plastic deformation took place during the
cyclic loading tests as evidenced from the ultrasonic velocities (section
3.1.2). The samples were re-saturated before they were loaded into the
Hoek cell, and a hydrostatic stress condition of 40 MPa was imposed on
the coreplugs. A generic effective horizontal stress gradient of 10 MPa/
km was assumed for estimating in-situ stress condition of the samples. As
evident from Table 1, all samples belong to a depth range of 3-4 km,
hence an effective confining stress of 40 MPa was assumed for all sam-
ples to maintain uniformity in experimental protocol. The core plugs
were axially loaded starting from a hydrostatic condition and brought to
failure. The objective of these experiments was to study the change in
sonic properties during elastic and plastic deformation.

3. Results
3.1. Cyclic loading experiments

3.1.1. Stress-strain behavior

The stress-strain behavior of the cyclic loading experiments can be
found in Fig. 2a. Loading and unloading in each confinement is indicated
by each hysteresis loop. It is interesting to see that all samples have
different loading profile, depending on their porosity. An inverse rela-
tionship between porosity and Vp, Vs of the plugs is also observed at
each confinement (Fig. 2b). Plugs with lower porosity have steeper
loading profile and accumulate less strain and vice versa, especially at
higher confining pressure. The hysteresis between the loading-
unloading profile indicates that there is some irreversible deformation
within the plugs, even within elastic deformation regime, more signifi-
cant in higher confinement and for high-porosity samples. This behavior
is also observed by other researchers (Naderloo et al., 2023; Pijnenburg
et al., 2018, 2019; Shalev et al., 2014), where hysteresis could be seen
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this article.)

while stress cycling below the yield stress or low deviatoric stress, and
maximum accumulation of inelastic strain is during the first cycle. The
extent of hysteresis is strongly dependent on the porosity and pore fluid
composition and is caused by the compaction recovered by inelastic
dilation in the unloading stage, however this does not indicate any
grain-scale deformation (Shalev et al., 2014; Tutuncu et al., 1998). The
static Young’s modulus (Estar) and dynamic Young’s modulus (Egyn)
were calculated for each cycle (Fig. 2c) using the following equations
(eq. 1a, b)

e

Egor = Ae; (1a)
PV (3V; — 4V¢

Egn = M (1b)

V212

s

Where Ao; and Ae; are change in axial stress and axial strain in a
linear interval considering a fixed confinement. p is the matrix density of
the coreplugs which is calculated from helium porosimetry. As indicated
by earlier studies (Brotons et al., 2016; Fjer, 2009; King, 1969; Wang
et al., 2020), Egy, is generally higher than Ej,,, especially at higher fre-
quencies, as smaller pores and fractures appear stiffer at higher fre-
quencies. As expected, both static and dynamic YMs increase with
increasing confinement.

During the experiment, to limit the deformation of the sample, the
position of the axial pistons was kept fixed between the end of unloading
stage and the beginning of the next loading stage. The increase in
confinement during this brief period caused a small increase in stress.
Due to technical difficulties, the first cycle of loading (at 10 MPa
confinement) could not be performed for K15-2-5V.
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3.1.2. Change in sonic properties

As mentioned before, ultrasonic waves transmitted through the
coreplugs were recorded throughout the loading stages of the experi-
ments with an interval of 15 s (Fig. 2b). The change in sonic properties in
different cycles can be seen in Fig. 3. A general observation for all
samples is that both P and S wave velocity increases with increasing
hydrostatic stress, which is also expected as majority of pre-existing
microcracks and pores get compressed with increasing hydrostatic
stress (Guo et al., 2009; Mavko et al., 2012; Wei and Fu, 2014). This
leads to an increase in density of the rock mass, which in turn increases
the compressional and shear wave velocity. However, it is interesting to
note that the rate of increase in velocity slows down with progressive
hydrostatic stress beyond 30 MPa as the rockmass approaches the limit
of its compression as most pre-existing fractures are closed. Such
behavior is observed in other rock types, where increasing hydrostatic
compaction increases the velocity quickly in the beginning and slows
down as the rock approaches maximum elastic compaction. Beyond
critical compaction, increasing hydrostatic stress can cause pore
collapse (for porous rocks) and yielding, which causes grain contacts to
fail plastically. Previous studies on other types of sedimentary and
crystalline rocks (Fortin et al., 2011; Nasseri et al., 2009; Yang et al.,
2021) have shown a nonlinear increase in wave velocity with increasing
hydrostatic stress. It is worthwhile to mention that there is no acoustic
data for the fourth cycle deformation of K15-15A-4V.
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3.2. Triaxial failure experiments

3.2.1. Stress-strain behavior

The cyclic loading experiments discussed above provide a baseline
for elastic deformation behavior. The subsequent failure tests build upon
these results to capture inelastic deformation and velocity attenuation.
Samples which underwent cyclic loading-unloading were further
brought to failure at a fixed confining pressure (40 MPa). For all failure
experiments, the loading curve till the peak stress is shown in Fig. 4. The
peak stress of the coreplugs varies widely between 153 and 342 MPa.
The loading rates were the same as the cyclic loading tests. The defor-
mation behavior of the coreplugs vary significantly due to their inherent
differences in petrophysical properties and the Young’s moduli (YM)
varies between 11 and 58 GPa. A very good correlation was observed
between the porosity and peak strength of the plugs, whereas a rela-
tively weaker linear correlation was found between porosity and YM of
the plugs which was also confirmed by similar studies (Hamada and
Joseph, 2020; Hart and Wang, 1995; Palchik, 1999).

3.2.2. Change in sonic properties

The velocities and axial stress show concurrent linear increase till the
yield stress. After yield stress, the rate of stress increase is slower and the
compressional and shear wave velocity shows rapid decline (faster than
the rate of increase) (Fig. 5). At the point of failure, Vs is in most cases
much lesser than the hydrostatic Vs due to more crack generation along
the loading direction, which significantly attenuates S wave propagation
(Barnhoorn et al., 2018; Zhubayev et al., 2016). Vp also decreases
significantly but doesn’t fall below hydrostatic Vp. It was expected that
both P and S wave velocity will increase unimodally during the elastic
compression stage, however, a minor drop and further rise in Vs was
observed in the initial loading stage. Most often, the specimen goes
through a pre-compaction initial settling within the load cell as evident
by the slow load buildup preceding the linear stress-strain profile, which
contributes to the minor fluctuation in the arrival times. For some ex-
periments, the increase in Vs is minimal between hydrostatic loading
and peak Vs, which corroborates with the findings of (Zaima and
Katayama, 2018).

3.3. Change in ultrasonic velocity as a function of stress-state

Attenuation of the compressional and shear waves due to changes in
stress conditions causes a drop in velocity and amplitude which can
indicate the deformation behavior of the rockmass. Increase in wave
velocities signifies an increase in density, therefore closure of pre-
existing cracks and pores in the rockmass. The rate of increase in ve-
locity also depends on the orientation of the pre-existing crack or
anisotropy of the pore geometry (Ashby and Hallam, 1986; Griffiths
et al., 2017). The coreplugs used for this study had different porosity,
however, they also had different grain sizes, mineralogy and varied
degree of anisotropy despite all being sandstones, which also affect the
deformation behavior of these plugs (Qi et al., 2022; Rice-Birchall et al.,
2022; Shahsavari and Shakiba, 2022; Sujatono and Wijaya, 2022). The
failure experiments suggest that there is a good correlation between the
porosity and hydrostatic Vp of the coreplugs, however, the correlation
becomes weaker between porosity and max Vp (Fig. 6a). Nevertheless,
comparing both the fitting curves indicate that the difference in max Vp
and hydrostatic Vp is much more pronounced for higher porosity
sandstones. A conclusive correlation could not be found for Vs (Fig. 6b),
which may have been caused due to varied degrees of pre-existing cracks
in these samples.

The temporal change in velocity and stress both are usually highest
in the initial phase of axial loading in each cycle starting from hydro-
static condition. This is expected, since the stiffness of the coreplug is
least at lower deviatoric stress and gradually increases with increase in
deviatoric stress within the elastic deformation regime. This behavior is
also reflected in the velocity response with stress (Fig. 7) where
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incremental change in stress and velocity is quantified in each cycle of
loading. For low porosity samples, the rate of change in velocity is often
similar in all cycles, indicating that the stiffness of the samples at hy-
drostatic condition at each confining stress is similar (Fig. 7a). Theo-
retically low porosity samples have lesser pore spaces to squeeze and
hence they reach optimum stiffness at even lower confinement. For
higher porosity sandstones, porosity decreases exponentially with
increasing in hydrostatic confinement (Fig. 7c) which is also explained
by Xu et al. (2018). Porosity is inversely proportional to the rate of
change in wave velocity, i.e. at higher stiffness the rate of change in
wave velocity will be lesser, which is evident from our experiments. For
higher porosity sample, we see a gradual decrease in rate of change in Vp
with each consecutive cycle, which indicates that all pores are yet to be
squeezed even at 50 MPa hydrostatic confinement. Also, it is worth
noting that for K15-15A-13V, the rate of change of Vp in lower
confinement is higher than other low porosity counterparts.

The rate of change in velocity is evidently much more significant
when the samples are axially loaded beyond elastic stress regime
(Fig. 8). It shows that the rate of increase in axial stress decreases uni-
formly till the point of failure (except the initial settling phase) under
constant axial deformation rate. However, the rate of change in velocity
remains constant in the elastic deformation regime and suddenly drops
at the elastic-plastic transition zone just before the trend reversal. After
the trend reversal the rate of change keeps increasing till the point of
failure (shown in negative, since the velocity monotonically decreases
after the trend reversal).

3.4. Waveform amplitude as a function of stress-state

Change in elastic wave velocity can be caused by multiple reasons.
Change in pore fluid composition during fluid injection can cause a
reduction in velocity as the Hy or CO» front (liquid or gas) displaces the
reservoir brine which is significantly denser (Delle Piane and Sarout,
2016; Falcon-Suarez et al., 2020; Ghosh and Sen, 2012; Nooraiepour
et al., 2018). Therefore, in an operational reservoir, it is difficult to

Engineering Geology 359 (2025) 108421

pinpoint if reduction of Vp and Vs is caused by formation of cracks
within the reservoir or due to displacement of reservoir brine by lighter
fluids. To calculate the peak amplitude at the P and S wave arrival
(termed hereby Pamp and Samp respectively), we selected a 10 ps
symmetric window around P and S wave arrival picks respectively and
the maximum amplitude (either positive or negative polarity) is selected
as the peak amplitude of that trace. Since S wave transducers were used
for these experiments, the P wave amplitude (Pamp) is much weaker
compared to the S waves (Samp) (Fig. 9). Interestingly, even though the
Vp and Vs trend reversal occurs concurrently during the experiments,
peak Pamp and Samp occur at different times. In most cases, peak Pamp
can be seen at the same time as max Vp and Vs (indicated by the green
bars), however, peak Samp occurs much before that point.

Apart from the time difference between velocity and amplitude
response, especially for S waves, there are some key differences on how
Samp changes throughout the deformation. In Fig. 5, we can see in some
cases the change in Vs is insignificant between hydrostatic Vs and peak
Vs, but there is significant drop in Vs from peak Vs to Vs at peak axial
stress, which is often much lower than hydrostatic Vs. However, in
Fig. 9, we can see that both the increase and drop in Samp is noticeable
for all samples irrespective of their porosity but the Samp at peak axial
stress never goes below hydrostatic Samp. This indicates that the
attenuation of S waves due to formation of cracks impacts the travel time
more than the amplitudes. The magnitude of increase in Pamp and Samp
from hydrostatic condition to peak values show good correlation with
the porosity of the coreplugs (Fig. 10).

The relative change in velocity and amplitude during deformation
shows different behavior based on their porosity (Fig. 11). In all cases,
the amplitude changes relatively slowly in the beginning despite the
increase in velocity, however as the plugs achieve their peak velocity,
the amplitude increases rapidly. As the velocity decreases and more
cracks appear in the plugs, the amplitude also decreases, forming a
hysteresis loop, but never goes below the initial amplitude. For low and
medium porosity samples (Fig. 11 a,b) the change in Vp is more domi-
nant than Pamp, whereas the change in Samp is more dominant than
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change in Vs. The relative change in Samp is also of higher magnitude in
low and medium porosity samples, and is more evident when grouped
together based on their porosity (Fig. 11 d,e).

4. Discussion
4.1. Applicability for reservoir scale geomechanical model

The experiments performed in this study combined the synchronous
development of mechanical and sonic properties in a porous rockmass.
The specimens collected had diverse anisotropy, grain size and porosity,
which is expected in a reservoir across different depths. Among these
different petrophysical properties, porosity emerged as one of the pa-
rameters which justify the diverse mechanical and sonic behavior of the
sandstones. Sonic and mechanical behavior during cyclic loading
explained in section 3.1 highlights that the change in Vp and Vs with

increasing confinement is very different for low, medium or high
porosity samples (Fig. 7). Low-frequency P and S wave attributes
measured in the subsurface can monitor changes in fluid saturation
(Caspari et al., 2011; Nakajima et al., 2019; White et al., 2017; Xue et al.,
2006), however the changes in wave attributes not only reflect changes
in fluid composition or saturation, but also contains signature of stress
change in the reservoir (Mayr and Burkhardt, 2006). Testing different
reservoir samples at their in-situ horizontal stress condition along with
cyclic loading at different confinements can give us the upper and lower
bound of safe velocity zones once the effective confining pressure drops
during injection (Fig. 12).

This can be matched with a depth vs pressure log collected from the
subsurface and a combined interpretation can be used for constructing a
geomechanical model of the reservoir. Velocity dependence on grain
size, cementation, pore size and in-situ fluid composition can be derived,
and using such correlations, a sonic-mechanical model can be
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formulated for other reservoirs. A major challenge for such seismic
monitoring is that actual S-wave velocity data are limited, particularly
in 4D seismic data for CO, sequestration and possibly for Hj injection,
because wells are closed after injection (permanently for CO, storage
and periodically for Hy storage), and while seismic monitoring con-
tinues, no well log data are collected (Li et al., 2017). S wave velocity is
often obtained through empirical models based on Vp, however, our
studies indicate that although Vp and Vs show similar behavior with
stress change, the amplitudes behave very differently throughout the
test. Therefore, having S wave measurements in the subsurface during
and after fluid injection can give us useful information about the stress
path of the reservoir. Same can be applied for caprocks as well.

4.2. Deformation monitoring and forecasting

Laboratory experiments of representative reservoir rocks can help us

10

understand the permissible change in velocity within elastic deforma-
tion zone and help delineate the critical velocity zone. However, velocity
alone might not be the best indicator for reservoir deformation during
Hy or CO; injection, since displacement of brine with lighter fluids
significantly decreases the Vp and Vs due to their lower density and such
behavior is often leveraged to monitor saturation of fluids in the reser-
voir. Although velocity change with saturation can be explained with
Gassman model (Gassman, 1951) and its modified approaches (El-
Husseiny et al., 2019; Falcon-Suarez et al., 2018; Li et al., 2017; Noor-
aiepour et al., 2017), and any deviation in the velocity change can be
attributed to a coupled effect of flow and deformation as demonstrated
by Chandra and Barnhoorn (2025). The bounds in velocity change due
to change in fluid density or deformation can be benchmarked through
lab experiments and can be further applied to the field. Amplitude on the
other hand also decreases both due to displacement of brine or plastic
deformation, and therefore needs to be studied in detail through
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laboratory experiments. As discussed before, rapid cooling near well-
bore during CO; injection also prompts sudden increase in shear stress,
leading to crack formation and in those cases, change in mechanical
properties of the rock plays dominating role on velocity and amplitude
compared to change in fluid composition. Based on combined velocity
and amplitude, we can delineate how safe/unsafe a certain magnitude of
differential stress is (Fig. 13). Here we explain how a traffic light system
can be developed with K15-12-1V as an example.

Based on P wave velocity, we can easily indicate that a drop in ve-
locity followed by a period of increase indicates approaching proximity
to failuree (Zone 4), since further increase in differential stress will
create more fractures, eventually leading to failure (Fig. 13a). With the
rate of axial deformation chosen for this study, the time difference be-
tween peak Vp, Vs and failure is 297 s. The zone where both amplitude
and velocity are increasing with a constant rate, can be termed as the
safe/green zone (Zone 1). Samp peaks much before Vs, so a trend
reversal in Samp can be an indicator that the green zone has passed, and
we are approaching irreversible deformation. Based on this analogy,
Samp trend reversal can be termed as the start of yellow zone (Zone 2).
In most cases Vp and Pamp peaks at the same time, so Zone 2 is not
visible when using only P wave attributes for interpretation. Zone 2
continues till the point where the rate of Vp and Vs change drops rapidly.
This can be used as a precursor to impending velocity reversal, so the
time between the trend reversal in dVp/dVs and Zone 4 can be indicated
as orange zone (Zone 3). It is worthwhile to mention that Zone 2 and
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Zone 3 starts 370 s and 63 s respectively before onset of Zone 4. In
reservoirs, the rate of change in stress is an order of magnitude slower
compared to laboratory experiments and thus the precursors might be
observed days or months before the onset of microcracks in the reser-
voir. However, the applicability of this technique is not limited to
reservoir engineering projects and can be easily applied to monitor
structural health of tunnels, bridges or changes in stress distribution in
underground mines. Instances of using elastic waves for other engi-
neering projects have been demonstrated in several literatures (Che
etal., 2015; Deng et al., 2023; Falls and Young, 1998; Gladwin, 1982; Lu
and Michaels, 2005; Malovichko and Rigby, 2022; Martinez-Martinez
et al., 2016b; Mutlib et al., 2016; Nakayama et al., 2021; Roohezamin
et al., 2022; Serra et al., 2017; Wu and Che, 2021; Zhou et al., 2025).
The change in velocity can also be used as an indicator to quantify
the density of cracks formed in a rockmass. There exists a number of
models which predict change in elastic properties of rocks due to for-
mation of cracks (Guéguen and Schubnel, 2003; Paterson and Wong,
2005; Sayers and Kachanov, 1995). With increasing vertical stress,
cracks form subparallel to the loading direction and assuming them to
penny-shaped, we can use the formulation proposed by (Kachanov et al.,
1993) (eq. 2) to calculate crack density from effective Young’s modulus

E“Oﬂ:lJrML

€
En 149

(2)

where Eq and v are the Young’s modulus and Poisson’s ratio of the solid
matrix, respectively; Ex* is the effective Young’s modulus along the x
axis; & is a nondimensional number referred to as the fluid saturation
parameter; and ¢ is crack density. For simplicity, this model assumes
transversely isotropic medium and no interaction between the individ-
ual cracks. We ignore the fluid saturation parameters and assume 5/(1 +
8) — 1 in our case. We also assume that at max Vp and Vs, the coreplug
resembles closest to the solid matrix, since all pores and cracks are
assumed to be closed at that point and negligible new cracks may have
formed in the system, hence Eqqy, is calculated at that point.

The density was considered same during the experiment since the
amount of crack volume is negligible compared to the sample volume. v
is measured from Vp and Vs using the following expression (eq. 3)

2
()

2
2(‘%’) -2

Fig. 14 indicate the change in crack volume throughout the experi-
ment. In most cases we can see a gradual closing of cracks while the axial
stress increases, followed by a rapid increase in crack volume before
complete failure of the rockmass.

It is also interesting to observe that the onset of dilatancy is strongly
dependent on the porosity of the plugs. It is worthwhile to mention that
dilatancy in this case is simply assessed based on the dynamic YM
calculated from the axial Vp and Vs. High porosity samples have onset of
dilatancy at 75-78 % of peak axial stress, whereas for high porosity
samples the onset of dilatancy is at around 82-86 % of peak axial stress
(Fig. 14). The amount of crack formed pre-failure is also higher in high
porosity samples compared to their low porosity counterpart.

3

U=

5. Conclusion

In this study with a comprehensive experimental approach, we
define the change in ultrasonic velocity and amplitude as a response to
stress change and eventually propose a workflow which can be devel-
oped as a relatively low-cost forecasting and monitoring tool for stress
change in subsurface reservoirs and also applies to monitoring health in
engineered structures like foundations, bridges, dams, tunnels and un-
derground mining projects.
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Experiments clearly indicate porosity having a strong inverse influ-
ence on ultrasonic velocity and mechanical properties. Compared to low
porosity coreplugs, high porosity coreplugs show higher degree of
change in velocity with increasing deviatoric stress which is caused by
increased pore collapse. Increase in hydrostatic stress causes increase in
velocity as the bulk density approaches maxima due to reduction in pore
space, which also reduces the magnitude of change in velocity during
elastic deformation.

Both Vp, Vs and their corresponding amplitude drops rapidly since
the onset of plastic deformation. The temporal evolution of stress, ul-
trasonic velocity and amplitudes under constant deformation rate can be

used to divide the stress profile in four distinct zones, which can be used
for monitoring reservoir stress condition during fluid injection opera-
tion. Vp and Pamp shows synchronous response, whereas response of
Samp precedes Vs. Relative change of Samp wrt Vs is found to be more
sensitive during different stages of deformation compared to Pamp,
especially for rocks with lower porosity. These observations iterate the
requirement of both P and S wave measurement in the subsurface for
accurate stress monitoring, specially where stress fluctuation is faster
(near injection wellbore).

Sonic derived crack model indicates that rocks with higher porosity
are more compliant, resulting in crack closure at lower relative stress
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levels. Rocks with lower porosity are stiffer, requiring higher stress
relative to peak stress to ensure crack closure. Conversely, with
increasing stress, cracks accumulate at lower stress level relative to peak
load in high-porosity rocks since the onset of plasticity. The correlation
between stresses and sonic derived crack density model extends appli-
cability of this study in other geoengineering projects, where other
methods of deformation measurement are difficult to deploy, especially
when timelapse monitoring is required. However, appropriate calibra-
tion of such models should be performed in lab-scale prior to field
application.

The strength of this technique lies in its ability to not only monitor
but also forecast critical stress change in a rockmass. This technique and
its derivatives have the potential to emerge as a short-term and long-
term monitoring solution for emerging CCS projects. However, the
scope of use extends well beyond ensuring the safety of CCS operations
and can be adapted for geothermal energy, UHS, or any other geo-
engineering application where precise monitoring of stress changes over

13

time is required.
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