
Safe Navigation of Mobile Robots in
Dense Human Environments using

Control Barrier Functions
by

Nanami Hashimoto

Department of Cognitive Robotics

To obtain the degree of Master of Science at the Delft University of Technology,
to be defended publicly on Monday August 5, 2024 at 10:00 AM.

Student number: 4779495
Project duration: December 1, 2023 – August 5, 2024
Thesis committee: Dr. Chris Pek TU Delft Cognitive Robotics, supervisor

Dr. Luka Peternel TU Delft Cognitive Robotics
Dr. Meichen Guo TU Delft Systems & Control

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Safe Navigation of Mobile Robots in Dense Human
Environments using Control Barrier Functions

Nanami Hashimoto
Department of Cognitive Robotics

Delft University of Technology, the Netherlands
Email: N.Hashimoto@student.tudelft.nl

Abstract—Autonomous mobile robots are increasingly per-
forming tasks in our daily environments, e.g., cleaning offices
or order picking in supermarkets. In such human-populated
scenarios, it is crucial that these robots always navigate safely
when performing their task. Existing state-of-the-art methods can
ensure safety, but often require deterministic motions of humans
and may lead to conservative behavior in dense human-populated
environments. This study investigates the use of time-varying con-
trol barrier functions (CBFs) and time-based rapidly exploring
random trees (RRTs) to combine local safety with global task
performance. The proposed new cost function improves the trade-
off of safety and task progress in densely populated scenarios.
Our results show that time-varying CBFs can perform better in
terms of both task performance and safety compared to normal
CBFs. Furthermore, our real-world robot experiments validate
our approach to a physical nonholonomic robot.

I. INTRODUCTION

With the rapid progression of autonomous robot technology,
autonomous robots increasingly coexist with humans. Exam-
ples are settings like hospitals [7], retail [4] and catering [9].
These robots are anticipated to yield beneficial impacts on
society, such as addressing labour shortages and collaborating
on intricate tasks. Since these robots are expected to share
their workspace with humans, possibly at a relatively close
distance, safe navigation is of paramount importance. An
example scenario where a mobile robot navigates around
multiple humans is illustrated in Fig. 1.

Traditional approaches for safe robot navigation in human-
populated environments focused on collision avoidance meth-
ods, such as the dynamic window approach [17], artificial
potential fields [20], and velocity obstacles [6]. Although these
approaches showed the successful deployment of robots in
applications such as museum tour guides [21], their behaviours
often come at the cost of task performance. For example, in
a crowded or confined environment, a pessimistic robot might
choose to freeze, assuming that all space could be occupied
by humans. This issue is known as the freezing robot problem
[22] and prevents the robot from completing its task execution.

Furthermore, when the robot interacts with humans, merely
preventing harm to humans by avoiding collision (i.e. ensuring
physical safety) is not sufficient. For the robot to be accepted
in a human environment, the robot has to also be perceived as
safe. Perceived safety in human-robot interaction is described
as the ”user’s perception of the level of danger when inter-
acting with a robot, and the user’s level of comfort during

humans
obstacles

mobile
robot

Fig. 1: Example scenario, where a mobile robot is tasked to
safely navigate around multiple moving humans.

the interaction” [3]. Even when physical risks are minimal or
absent, people’s perceived safety can be influenced by various
factors, including the context of use, comfort, familiarity, pre-
dictability, transparency, a sense of control, and trust [1]. One
of the pioneering works by [18] first modelled situations where
people feel uncomfortable with the robot’s navigation, such as
appearing from a hidden area, and proposed a planner avoiding
paths that could lead to such situations. However, this study
is limited to static humans, and ensuring the overall safety of
humans in a dynamic environment remains a challenge.

An emerging tool to address this safety challenge of robot
control is CBFs [2]. CBFs encode safety requirements, such as
distance to obstacles, to define a safe set for the system. Then,
by permitting only inputs that maintain the system within the
safe set, synthesizing the controller with CBFs guarantees
the safety of the system. CBFs are computationally light
and scalable compared to other safe set-based methods such
as reachability analysis [24]. It has been applied to various
applications such as adaptive cruise control, bipedal robot
walking, dynamic balancing of Segways, and swarm control
[2] [5]. Furthermore, the recent work [25] has developed
a promising approach to synthesize CBFs that simultane-
ously ensure physical safety and optimize perceived safety in
human-drone interaction applications by learning from human
feedback. However, the application of CBFs to human-robot



interaction requires further research. Application for mobile
robots in a dynamic human environment is a challenge due to
the complexity of the human movement and the nonholonomic
dynamics of many mobile robots.

In this study, I investigate the use of CBFs to ensure safe
navigation of nonholonomic mobile robots in dense human-
populated environments, such as office spaces. I build this
work upon the state-of-the-art CBF time-based RRT (CBF-
TB-RRT) planners. In this paper, I

1) investigate the performance of CBF-TB-RRTs in dense
human-populated environments;

2) propose a trade-off function to balance safety and per-
formance in dense environments;

3) compare normal CBFs, time-varying CBFs and baseline
algorithm from ROS1 navigation stack in simulated
human-populated environment;

4) validate the algorithm in real-world TIAGo robot

II. CONTROL BARRIER FUNCTIONS

This study investigates the use of CBFs for safe navigation
of mobile robots around humans. This section introduces the
concept of CBFs and how they can be used to ensure safety.

A. Fundamentals of CBFs

Consider a robot motion model with nonlinear affine control
dynamics shown in Equation 1:

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

with f and g are locally Lipschitz functions, x(t) ∈ D ⊂ Rn

is the state of robot at time t and u ∈ U ⊂ Rm is the set
of admissible control inputs. Consider set C defined as the
superlevel set of a continuously differentiable function h :
D ⊂ Rn → R, in other words C = {x ∈ D ⊂ Rn : h(x) ≥ 0}.
When h(x) encodes desired safety criteria and all unsafe states
x have h(x) < 0, the set C is referred to as the safe set. Having
the safe set defined, the system is safe with respect to the set
C if the set C is forward invariant, i.e. not leaving the safe set
once the system’s state is in that set.
Definition of CBFs. Let C := {x ∈ D : h(x) ≥ 0} be the
superlevel set of continuously differentiable function h : D ⊂
Rn → R, then h is a CBF if there exists an extended class
K∞ function α such that for the control system (1):

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)) (2)

for all x ∈ D. The extended class K∞ function α is an
extension of class K functions defined in α : (−∞,∞) →
(−∞,∞) and additionally satisfies limr→∞ α(r) =∞.
Therefore, the set of control values that renders C invariant is:

Kcbf(x) = {u ∈ U : Lfh(x)+Lgh(x)u+α(h(x)) ≥ 0} (3)

To ensure system safety, the controller is synthesized with
the CBF. Finding the optimal control input, which minimally
affects the task performance while guaranteeing safety, entails
formulating the control task as an optimization problem hav-
ing the CBF requirement as its constraint. Since the safety

condition given in Equation 3 is affine, this can be given by
quadratic programming (QP). :

u(x) = argmin
(u,δ)T∈Rm+1

1

2
(u− uref )

TH(x)(u− uref )

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))
(4)

where uref is the reference input that drives the robot
toward the goal and H(x) is any positive definite matrix. The
method to obtain uref is explained in section IV.

B. Time-varying control barrier functions

A variant of CBFs that is useful in a dynamic environment
is a time-varying CBFs [12]. The formulation of time-varying
CBFs is presented in 5, which updates the formulation of the
normal CBFs given in equation 2.

sup
u∈U

[Lfh(x, t) + Lgh(x, t)u+
∂h(x, t)

∂t
] ≥ −α(h(x, t)) (5)

The difference between the normal CBFs and time-varying
CBFs is the added term ∂h(x,t)

∂t . This term shows how the
change in the position of the obstacle affects the allowed
control input. In the context of obstacle avoidance, this added
term works in a way that it relaxes the constraint when the
obstacle is moving away from the robot, while it tightens the
constraint when the obstacle is approaching the robot. For
the control barrier function used in this paper as shown in
Equation 10, ∂h(x,t)

∂t is given as follows.

∂h(x, t)

∂t
= 2(xp−xo(t))(−

∂xo(t)

∂t
)+2(yp−yo(t))(−

∂yo(t)

∂t
)

(6)

III. CBFS FOR NONHOLONOMIC MOBILE ROBOTS

In many real-world applications, nonholonomic robots are
commonly employed due to their practical utility in naviga-
tion and maneuvering within various environments. In this
implementation, the unicycle model is considered for the robot
dynamics:

ẋ(t) = g(x(t))u(t) =

cos(θ(t)) 0
sin(θ(t)) 0

0 1

u(t), (7)

where states are x(t) = [px(t), py(t), θ(t)]
T ∈ X ⊆ R ×

[−π, π)) and control input vector is u(t) = [v(t), ω(t)]T ∈
U ⊆ R2. The state x(t) = [px(t), py(t), θ(t)]

T denote the
position and the orientation of the robot, and the control inputs
v(t) and ω(t) represent the robot’s linear and angular velocity.

Given the robot’s dynamics and that the distance between
the robot and humans must be positive, the continuously
differentiable function h(x) can be designed as:

h(x) = ∥[px, py]T − xo∥22 − (ro + rr)
2 (8)

where px, py is the position of the robot, xo(t) is the state
of the obstacle, ro is the radius of the obstacle and rr is the
radius of the robot.



The function h(x) has a relative degree of one with respect
to the input v(t) and a relative degree of two with respect
to the input ω(t). Thus, when deriving the safety constraint
shown in Equation 2, ω(t) does not appear either in term
Lfh(x) and Lgh(x) of the equation. In such a case, angular
velocity cannot contribute to satisfy the constraint, resulting
in a situation where obstacle avoidance is solely done by
changing the linear velocity. Since this is not a desirable
approach for robot control, motivated by the approach in [14],
the following coordinate transformation is introduced:

x̃(t) = x(t) + lR(θ(t))e1, (9)

where l is a small positive constant, e1 = [1, 0, 0]T , and

R(θ(t)) =

cos(θ(t)) −sin(θ(t)) 0
sin(θ(t)) cos(θ(t)) 0

0 0 0

 .

Then, because the maximum possible deviation between x and
x̃ is length l, the Equation 8 is modified to Equation 10 to
account for the error.

h(x̃) = ∥[px, py]T − xo∥22 − (ro + rr + l)2 (10)

IV. CBF-BASED TB-RRT

Inspired by the work [14], a time-based RRT method is
employed for robot planning. Time-based RRTs (TB-RRTs)
are a variation of RRT motion planning algorithms that are
particularly useful in dynamic environments. This algorithm
expands a tree in real-time during the specified time or until
specified numbers of nodes are obtained within each cycle.
From the grown tree, they extract a partial path iteratively
until the robot reaches the goal. In each cycle, the algorithm
selects the best vertex from the grown tree according to its
cost and executes the velocity command of the corresponding
path from the current position to the selected vertex. The cost
of the vertex depends on the distance to the goal and h(x)
value defined in Equation 10 at that vertex.

Algorithm 1 CBF-TB-RRT

Input: Xg , Ts, Ns

Output: G = (V, E), σ
1: t0 ← CLOCK()
2: x(t0)← ROBOT-POSE()
3: σ ← x(t0), G ← ∅, T ← ∅
4: while x(t0) /∈ Xg do
5: while CLOCK() < t0 + Ts do
6: GROW(G,X d

o (t), Ns)
7: end while
8: u(t0)← EXTRACT-CONTROL(G)
9: EXECUTE-CONTROL(u(t0))

10: t0 ← CLOCK()
11: x(t0)← ROBOT-POSE()
12: σ ← x(t0)
13: end while

Algorithm 2 GROW

Input: G,Xo(t), Ns

1: V ← ∅, E ← ∅
2: vv ← VERTEX-SAMPLE(G, pv)
3: xrand ← STATE-SAMPLE(vv, ps)
4: uref ← REF-SAMPLE(xrand, pu)
5: Useg,Xseg,xnew, tnew←STEER(xrand,uref , Ns, vv)
6: if xnew ̸= ∅ then
7: znew ← COST-CALCULATOR(xnew)
8: V ← (xnew, znew, tnew), E ← (Xseg,Useg)
9: G ← (V, E)

10: end if

Algorithms 1 and 2 summarize the planning algorithm and
tree growth procedure. For a duration Ts (or until the number
of maximum nodes is reached), the algorithm grows a tree
from the robot’s current position to obtain a partially grown
tree G = (V, E), where V and E are the set of vertices and
edges, respectively. In TB-RRT, each vertex of the tree con-
tains the robot’s state x(t), the cost of the vertex z, and the ver-
tex timestamp t. Within the state x(t) = [px(t), py(t), θ(t)]

T ,
px(t) and py(t) (position of the robot) are fixed to each vertex,
but the heading angle θ(t) is a free state variable, meaning
that the vertex is not dependent on the heading angle. The
tree expansion in TB-RRT is done by sampling over this free
variable of the state. This process takes the following steps:

1) VERTEX-SAMPLE(·) samples a vertex vv over the exist-
ing vertices of tree G using uniform distribution pv . This
step essentially determines the vertex of the existing tree
from which the new edge extends.

2) STATE-SAMPLE(·) samples an updated state xrand of
the vertex vv by sampling the new free state variable θ.
Gaussian distribution ps(θ) given in Equation 11 is used
for this sampling. θg is the heading angle toward the goal
and Ωθ is the standard deviation, which determines how
exploratory the tree is.

ps(θ) =
1

σθ

√
2π

exp(− (θ − θg)
2

2σ2
θ

), (11)

3) REF-SAMPLE(·) samples a reference input uref =
[vref , ωref ]

T . vref is a maximum allowed speed and
ωref is selected as ωref = aω(θ− θg), where aω is the
weight of angular difference between the current theta
and sampled theta.

4) STEER(·) solves a sequence of quadratic programming
problems (QPs) (Equation 4) to find a sequence of con-
trol Useg that satisfies the CBF-based safety constraints
while minimally deviating from the reference input
uref . This ensures that each control input u adheres
to the safety requirements while following the desired
trajectory as much as possible. The input sequence
Useg consists of Ns steps of input u obtained from
the sequence of QPs. An illustration of uref and the
sequence of u is provided in Figure 2. Useg creates
a safe and dynamically feasible path segment Xseg



that has Ns intermediate steps. The new state xnew is
obtained at the end of the segment Xseg .

Fig. 2: Illustration of the STEER function, which finds the safe
and dynamically feasible input u from the reference input

Once the new state xnew is obtained, the COST-
CALCULATOR(·) calculates the cost of that vertex using Equa-
tion 12. dist(·) represents the distance between xnew and the
goal set Xg , h(xnew) is the safety value of the state, and acost
is the weight determining the trade-off of between the safety
and closeness to the goal. This cost function rewards proximity
to the goal and penalizes proximity to obstacles.

znew = dist(xnew,Xg)− acosth(xnew) (12)

This calculated cost, as well as the state and the time at the new
vertex, the path segment Xseg and the corresponding control
input sequence Useg are stored in the tree.

V. RESULT

This section presents the experimental results of static
obstacle avoidance in a simulated environment, navigation in
a simulated dynamic human environment, and testing in a
static real-world environment. The algorithm is implemented
in Python and the simulation is run by a laptop equipped
with a 12th Gen Intel Core i7-12650H processor and NVIDIA
GeForce RTX 4050 GPU.

A. CBF-constrained tree expansion

The result of tree growth under the CBF constraints over a
single cycle is shown in Figure 3. The robot’s initial position
and orientation are set at (px, py, θ) = (0, 0, 0) (the robot
heading right in the figure) and the centre of the goal set
is positioned at (px, py) = (6, 6). The blue dots indicate
the tree’s vertices and the green lines and small dots show
the path segments with the intermediate points, respectively.
The algorithm grows a tree toward the goal direction while
avoiding the obstacle regions.

In this simulation, the time interval between each change
in control input is set to 0.1 [s] and each path segment has
Ns = 10 intermediate steps. This tree contains 30 vertices,
and the time taken to generate the tree was 0.189 [s]. One
can see that the algorithm grows the tree while avoiding the
obstacle region. The α in Equation 4 is set to α = 10 for this
tree. It is also verified that the higher α value leads to the more
aggressive yet still safe path generation, allowing the tree to
put the vertices closer to the obstacles.

obstacles

CBF-TB-RRT

Fig. 3: Visualization of the CBF-TB-RRT for an example
scenario, where the robot grows a tree avoiding obstacle
regions from the initial state towards the goal.

B. Robot simulation in dynamic environment

The CBF-TB-RRT navigation algorithm is implemented
and executed in a high-fidelity pmb2 (TIAGo base) simulator
[16]. The simulator is based on ROS1 and Gazebo. The
testing scenario in a dynamic human environment is shown in
Figure 4. Pedsim ROS [19] was used to simulate pedestrian
movement, which is modelled by the social force model [11].
The robot’s start is set at (px, py, θ) = (0, 0, 0) (with the robot
heading upward in the figure), and the goal region is a circle
with a radius of 0.5 [m], positioned at (px, py) = (15, 0)
named as ”goal 1”, and (px, py) = (4.5, 4.5) named as ”goal
2”. These two scenarios represent the most common situations
the robot would encounter in the real world: a straight path
and a cornering path. A total of 20 humans were spawned in
the environment. The humans’ trajectories over the past five
seconds and the force directions are also shown in the figure.

In experiment 1 (the case navigating to goal 1), the normal
CBF and time-varying CBF (t-v CBF) were compared with
the baseline algorithm from ROS1 navigation stack. The
simulation experiments are conducted 12 times per algorithm
at the same condition to account for the randomness of the
algorithm. Table I shows the mean and standard deviation of
the evaluation metrics. For the baseline algorithm, the values
shown in the table are results from 8 trials because the robot
failed to reach the goal in 4 trials. For the other two algorithms,
the robot managed to reach the goal in all 12 trials.

The top five metrics indicate how efficiently the robot
approaches the goal, and the bottom six metrics show how
safely the robot navigates among humans. These metrics were
chosen to evaluate performance in terms of both task efficiency
and safety level, which are both crucial for robot navigation
and often in a trade-off relationship. The definition of metrics



goal 1

start

goal 2

humans

robot

TB-RRT

Fig. 4: Visualization of the testing scenario in the dynamic
human environment.

TABLE I: Metrics for simulation experiment 1

Metrics Value (Mean ± SD)
CBF T-v CBF Baseline

Time to reach the goal [s] 43.9 ± 5.7 41.2 ± 4.6 47.7 ± 10.9
Path length [m] 15.5 ± 0.3 15.4 ± 0.3 16.1 ± 0.9
Avg. robot linear speed [m/s] 0.34 ± 0.05 0.36 ± 0.05 0.33 ± 0.06
Cum. heading changes [rad] 4.0 ± 0.5 3.7 ± 0.4 4.0 ± 1.5
Time not moving [s] 4.8 ± 2.2 3.3 ± 1.7 16.9 ± 9.5
Avg. dist. closest human [m] 1.24 ± 0.10 1.33 ± 0.16 1.02 ± 0.08
Intimate space intrusion [%] 25.4 ± 3.7 22.4 ± 5.1 29.1 ± 7.5
Personal space intrusion [%] 39.2 ± 4.6 39.0 ± 5.8 43.2 ± 10.1
Social space intrusion [%] 29.4 ± 6.4 31.8 ± 4.7 24.0 ± 3.9
Robot to person collision [-] 0.9 ± 1.0 0.3 ± 0.5 0.9 ± 0.8
Person to robot collision [-] 2.1 ± 1.4 1.9 ± 1.1 1.4 ± 0.7

for personal space intrusion is based on Hall’s proxemics
theory [10], which classifies different zones of personal space
as follows: intimate space is less than 0.45 [m], personal space
ranges from 0.45 to 1.2 [m], and social space extends from 1.2
to 3.6 [m]. These metrics serve as indicators of how safe the
robot is perceived, given the reported relationship between the
proximity of the robot and a person’s perceived safety. Robot
on person collision is the number of times the robot collides
with a person, while person on robot collision is the number
of times a person collides with the robot. This distinction of
collision is determined by the angle of the collision and the
linear velocity of each agent [23]. The former case mainly
occurs when the robot fails to stop in time to avoid the
collision, and the latter case mainly occurs when the human
has a stronger attraction to the next waypoint than to avoid the

robot. These metrics are commonly used in the social robot
navigation domain [15, 8].

The comparison in Table I shows that time-varying CBF
performs better than the normal CBF in terms of both task
performance and safety. The time-varying CBF allows the
robot to reach the goal faster, with a shorter path and less
time of not moving, while maintaining a larger distance from
humans and with fewer collisions. This outcome is expected
because the time-varying CBF restricts more control input
when humans are approaching the robot, while it allows
more input when humans are moving away from the robot.
As a result, the robot is forced to be more conservative
when humans are approaching and is allowed to have more
aggressive control when humans are moving away.

Additionally, the proposed algorithms outperform or equally
perform compared to the baseline algorithm in all the listed
metrics in scenario 1 on average. However, the baseline
algorithms have much more deviation in the time to reach the
goal, cumulative heading changes, and the time not moving.
My observation of this difference during the experiment is that
the CBF-based navigation allows the robot to keep moving
towards the goal if even a little movement is possible, while
the baseline algorithm opts to stop if it cannot find the path to
the goal due to the presence of too many surrounding humans.
This is also the main cause of the four failed trials where
the robot did not manage to reach the goal. This implies the
limitation of global and local costmap-based navigation of
ROS1 navigation stack in dense and dynamic environments.
The CBF-based approach demonstrates improved robustness
and adaptability in the given scenario.

The collisions caused by the robot are considered to be
due to the discrepancies in the commanded velocity input and
the actual velocity executed by the robot. These discrepancies
likely stem from the limitations in acceleration and suboptimal
controller tuning. By improving the tuning of the controller
and considering the acceleration limit when determining the
velocity command, the robot on human collision should be
further minimized.

In experiment 2, time-varying CBF is compared to the ROS1
navigation stack baseline algorithm, given the fact that the
time-varying CBF performs better than the normal CBF in
experiment 1. The experiments are conducted 6 times per
algorithm. The result can be found in Table II. The values
shown for time-varying CBF are the result of 5 trials as it did
not reach the goal in one trial. The robot managed to reach
the goal in all 6 trials in the baseline algorithms.

The comparison in experiment 2 shows that the baseline
algorithm is overall better in task efficiency and exhibits
slightly superior safety metrics. The main reason for the
difference in task performance is that the baseline algorithm
plans a path from the start to the goal from the beginning,
while the CBF-based algorithm only considers the direction
towards the goal and the surrounding obstacles at the current
position. This approach made it challenging for the CBF-based
navigation to avoid walls and navigate through narrow sections
at the corner, resulting in less efficient task performance and



TABLE II: Metrics for simulation experiment 2

Metrics Value (Mean ± SD)
T-v CBF Baseline

Time to reach the goal [s] 20.7 ± 5.0 12.8 ± 1.9
Path length [m] 7.9 ± 0.7 6.5 ± 0.1
Avg. robot linear speed [m/s] 0.24 ± 0.06 0.38 ± 0.04
Cum. heading changes [rad] 2.1 ± 0.4 0.8 ± 0.1
Time not moving [s] 6.2 ± 5.2 1.1 ± 0.9
Avg. dist. to closest human [m] 1.95 ± 0.46 2.68 ± 0.56
Intimate space intrusion [%] 9.9 ± 10.8 6.1 ± 10.1
Personal space intrusion [%] 25.5 ± 9.7 18.3 ± 17.5
Social space intrusion [%] 56.3 ± 17.3 42.5 ± 25.0
Robot to person collision [-] 0.0 ± 0.0 0.0 ± 0.0
Person to robot collision [-] 0.8 ± 1.3 0.0 ± 0.0

one failed trial. Additionally, the struggle in manoeuvring at
the narrow part forced the robot to encounter humans in closer
proximity for a longer time, leading to worse safety metrics,
such as a shorter average distance to the nearest human and
more frequent intrusions into personal space. The difficulty
with non-straight paths is a major weakness of the proposed
algorithm. Therefore, in more complex scenarios, it may be
beneficial to combine CBF-TB-RRT with a global planner
that provides intermediate waypoints, creating a route from
the start to the goal through multiple straight segments.

The parameters listed in table Table III are used for these
experiments. These parameters are provisionally adjusted, but
may be further tuned for better performance. Also, the optimal
value depends on the nature of the environment, such as
population density, dynamics of humans, and scenarios.

TABLE III: Parameters for robot simulation.

Parameter Value

α 10
vmax 0.8 [m/s]
ωmax 2.0 [rad/s]
Ns 6
acost 0.3
Ωθ 1.5
aω 0.4
rr 0.26

C. Experiment with a physical robot

Finally, the algorithm is tested on the physical TIAGo
robot within a static environment to evaluate its real-world
performance. Figure 5 show the pictures from the experiment.
The obstacle in the environment is a static box with a radius
of 0.4 [m] from its centre. A motion capture (Mocap) system
is employed to localize both the robot and the obstacle
throughout the experiment. Due to the small testing area, vmax

is limited to 0.3 [m/s]. One can see that the robot steers
itself away from the obstacle to avoid collisions and navigates
itself to the goal. This result validates that the CBF-RRT
algorithm can be used to safely navigate the nonholonomic
mobile robot not only in simulation, but also in a real-world
robot. The video of the experiment is available in the link:
https://youtu.be/sJSye8xWiSg.

(a) Experiment setup

(b) At t = 3 [s] (c) At t = 18 [s] (d) At t = 55 [s]

Fig. 5: (a): A picture showing the sequence of robot motions
during the experiment conducted in our lab space. The non-
transparent robot is at the goal. (b)-(d): Visualizations of the
executed path (light green) and the grown trees (light blue) at
different time steps. Each square in the grid measures 1 [m]
on each side.

VI. CONCLUSIONS

The simulation results show that the proposed algorithm
can safely navigate a mobile robot through dense, dynamic
human-populated environments.

The major difference from the prior work [14] is that this
paper focused on how well the CBF-TB-RRT can perform in
human-populated environment without accurate prediction of
the future human motion. The result in the simulated dynamic
environment shows that the collisions caused during the ex-
periment were mostly caused by the humans and not by the
robot, which resulted from the limitation in human pedestrian
simulation. This encourages the validity of this algorithm for
robot navigation in dense environments, where robots and
humans cooperatively avoid collisions. Also, I proposed a new
cost function for choosing the best vertex in the grown tree, see
(12), that provides a better tradeoff between safety and close-
ness to the goal. While the previously proposed cost function
prevented the robot from advancing in dense areas due to the
higher cost of new nodes compared to the current node, this
new cost function is more robust and enables the robot to
navigate effectively through dense environments. Moreover,
I integrated time-varying CBFs to account for the uncertain
future motion of humans. By incorporating the time derivative
of h(x) into the CBF constraints into the CBF constraints, the

1The code of the navigation algorithm is available at https://github.com/
nanaminh/navigation CBF RRT

2The code of the pedestrian simulation is available at https://github.com/
nanaminh/pedsim ros

https://youtu.be/sJSye8xWiSg
https://github.com/nanaminh/navigation_CBF_RRT
https://github.com/nanaminh/navigation_CBF_RRT
https://github.com/nanaminh/pedsim_ros
https://github.com/nanaminh/pedsim_ros


algorithm considers the dynamics of humans around the robot.
This approach provides more adapted constraints depending
on whether the human is approaching the robot or is moving
away. As a result, it performs better in terms of both task
performance and safety in the tested scenario. Additionally,
the experiment with a physical robot validates our navigation
algorithm in the real-world nonholonomic robot.

In future work, the algorithm could be compared with
more advanced baselines, such as ROS2 navigation stack [13].
This comparison will provide an indication of how the CBF-
based navigation algorithm performs against other state-of-art
algorithms in the context of social robot navigation. Regarding
the major weakness of the proposed algorithm in the cornering
scenario, combining it with another global planner could
be advantageous. A global planner can provide additional
strategic planning, offering a broader perspective on the route
and enabling the robot to handle intricate path segments.
Such a combination would enhance the algorithm’s ability to
navigate more complex scenarios, which are often encountered
in real-world environments. Furthermore, I am keen to conduct
an experiment with a physical robot in a dynamic human
environment. This experiment will be useful to see how the
proposed method performs in a situation that is closer to a real-
world scenario and contains more uncertainties such as human
movements, communication latency, and slippage of the robot
wheels. Lastly, safety in human environments involves more
than just avoiding collisions; it also includes ensuring that the
robot’s movement is perceived as safe. Therefore, my vision is
to extend the CBFs to enhance perceived safety by considering
the proximity, velocity, and acceleration of the robot around
humans and by incorporating the humans’ feedback.

REFERENCES

[1] Neziha Akalin, Annica Kristoffersson, and Amy Loutfi.
Do you feel safe with your robot? Factors influencing
perceived safety in human-robot interaction based on
subjective and objective measures. International Jour-
nal of Human-Computer Studies, 158:102744, February
2022. ISSN 1071-5819. doi: 10.1016/j.ijhcs.2021.
102744. URL https://www.sciencedirect.com/science/
article/pii/S1071581921001622.

[2] Aaron D. Ames, Samuel Coogan, Magnus Egerst-
edt, Gennaro Notomista, Koushil Sreenath, and Paulo
Tabuada. Control Barrier Functions: Theory and Applica-
tions. In 2019 18th European Control Conference (ECC),
pages 3420–3431, Naples, Italy, June 2019. IEEE. ISBN
978-3-907144-00-8. doi: 10.23919/ECC.2019.8796030.
URL https://ieeexplore.ieee.org/document/8796030/.

[3] Christoph Bartneck, Dana Kulić, Elizabeth Croft, and
Susana Zoghbi. Measurement Instruments for the An-
thropomorphism, Animacy, Likeability, Perceived Intel-
ligence, and Perceived Safety of Robots. International
Journal of Social Robotics, 1(1):71–81, January 2009.
ISSN 1875-4805. doi: 10.1007/s12369-008-0001-3.
URL https://doi.org/10.1007/s12369-008-0001-3.

[4] Robert Bogue. Strong prospects for robots in re-
tail. Industrial Robot: the international journal of
robotics research and application, 46(3):326–331, Jan-
uary 2019. ISSN 0143-991X. doi: 10.1108/IR-01-2019-
0023. URL https://doi.org/10.1108/IR-01-2019-0023.
Publisher: Emerald Publishing Limited.

[5] Urs Borrmann, Li Wang, Aaron D. Ames, and Magnus
Egerstedt. Control Barrier Certificates for Safe Swarm
Behavior. IFAC-PapersOnLine, 48(27):68–73, January
2015. ISSN 2405-8963. doi: 10.1016/j.ifacol.2015.11.
154. URL https://www.sciencedirect.com/science/article/
pii/S240589631502412X.

[6] Paolo Fiorini and Zvi Shiller. Motion Planning in
Dynamic Environments Using Velocity Obstacles. The
International Journal of Robotics Research, 17(7):760–
772, July 1998. ISSN 0278-3649. doi: 10.1177/
027836499801700706. URL https://doi.org/10.1177/
027836499801700706. Publisher: SAGE Publications
Ltd STM.

[7] Giuseppe Fragapane, Hans-Henrik Hvolby, Fabio Sgar-
bossa, and Jan Ola Strandhagen. Autonomous Mobile
Robots in Hospital Logistics. In Bojan Lalic, Vidosav
Majstorovic, Ugljesa Marjanovic, Gregor von Cieminski,
and David Romero, editors, Advances in Production
Management Systems. The Path to Digital Transforma-
tion and Innovation of Production Management Sys-
tems, IFIP Advances in Information and Communication
Technology, pages 672–679, Cham, 2020. Springer In-
ternational Publishing. ISBN 978-3-030-57993-7. doi:
10.1007/978-3-030-57993-7 76.

[8] Anthony Francis, Claudia Pérez-D’Arpino, Chengshu Li,
Fei Xia, Alexandre Alahi, Rachid Alami, Aniket Bera,
Abhijat Biswas, Joydeep Biswas, Rohan Chandra, Hao-
Tien Lewis Chiang, Michael Everett, Sehoon Ha, Justin
Hart, Jonathan P. How, Haresh Karnan, Tsang-Wei Ed-
ward Lee, Luis J. Manso, Reuth Mirksy, Sören Pirk,
Phani Teja Singamaneni, Peter Stone, Ada V. Taylor,
Peter Trautman, Nathan Tsoi, Marynel Vázquez, Xuesu
Xiao, Peng Xu, Naoki Yokoyama, Alexander Toshev,
and Roberto Martı́n-Martı́n. Principles and Guidelines
for Evaluating Social Robot Navigation Algorithms,
September 2023. URL http://arxiv.org/abs/2306.16740.
arXiv:2306.16740 [cs].

[9] Juan Miguel Garcia-Haro, Edwin Daniel Oña, Juan
Hernandez-Vicen, Santiago Martinez, and Carlos Bal-
aguer. Service Robots in Catering Applications: A
Review and Future Challenges. Electronics, 10(1):
47, January 2021. ISSN 2079-9292. doi: 10.3390/
electronics10010047. URL https://www.mdpi.com/2079-
9292/10/1/47. Number: 1 Publisher: Multidisciplinary
Digital Publishing Institute.

[10] Edward Twitchell Hall. The Hidden Dimension, volume
609. Anchor, 1969.

[11] Dirk Helbing and Péter Molnár. Social force model
for pedestrian dynamics. Physical Review E, 51(5):
4282–4286, May 1995. ISSN 1063-651X, 1095-3787.

https://www.sciencedirect.com/science/article/pii/S1071581921001622
https://www.sciencedirect.com/science/article/pii/S1071581921001622
https://ieeexplore.ieee.org/document/8796030/
https://doi.org/10.1007/s12369-008-0001-3
https://doi.org/10.1108/IR-01-2019-0023
https://www.sciencedirect.com/science/article/pii/S240589631502412X
https://www.sciencedirect.com/science/article/pii/S240589631502412X
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1177/027836499801700706
http://arxiv.org/abs/2306.16740
https://www.mdpi.com/2079-9292/10/1/47
https://www.mdpi.com/2079-9292/10/1/47


doi: 10.1103/PhysRevE.51.4282. URL https://link.aps.
org/doi/10.1103/PhysRevE.51.4282.

[12] Motoi Igarashi, Issei Tezuka, and Hisakazu Nakamura.
Time-varying Control Barrier Function and Its Appli-
cation to Environment-Adaptive Human Assist Con-
trol. IFAC-PapersOnLine, 52(16):735–740, January
2019. ISSN 2405-8963. doi: 10.1016/j.ifacol.2019.12.
050. URL https://www.sciencedirect.com/science/article/
pii/S2405896319318804.

[13] Steve Macenski, Francisco Martı́n, Ruffin White, and
Jonatan Ginés Clavero. The Marathon 2: A Navigation
System. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2718–2725,
October 2020. doi: 10.1109/IROS45743.2020.9341207.
URL http://arxiv.org/abs/2003.00368. arXiv:2003.00368
[cs].

[14] Keyvan Majd, Shakiba Yaghoubi, Tomoya Yamaguchi,
Bardh Hoxha, Danil Prokhorov, and Georgios Fainekos.
Safe Navigation in Human Occupied Environments Us-
ing Sampling and Control Barrier Functions. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5794–5800, Prague, Czech
Republic, September 2021. IEEE. ISBN 978-1-66541-
714-3. doi: 10.1109/IROS51168.2021.9636406. URL
https://ieeexplore.ieee.org/document/9636406/.

[15] Noé Pérez-Higueras, Roberto Otero, Fernando Caballero,
and Luis Merino. HuNavSim: A ROS 2 Human Naviga-
tion Simulator for Benchmarking Human-Aware Robot
Navigation, September 2023. URL http://arxiv.org/abs/
2305.01303. arXiv:2305.01303 [cs].

[16] PAL robotics. pmb2 simulation. URL https://github.
com/pal-robotics/pmb2 simulation.

[17] Masahiro Shiomi, Francesco Zanlungo, Kotaro Hayashi,
and Takayuki Kanda. Towards a Socially Acceptable Col-
lision Avoidance for a Mobile Robot Navigating Among
Pedestrians Using a Pedestrian Model. International
Journal of Social Robotics, 6(3):443–455, August 2014.
ISSN 1875-4805. doi: 10.1007/s12369-014-0238-y.
URL https://doi.org/10.1007/s12369-014-0238-y. Num-
ber: 3.

[18] E.A. Sisbot, L.F. Marin-Urias, R. Alami, and T. Simeon.
A Human Aware Mobile Robot Motion Planner. IEEE
Transactions on Robotics, 23(5):874–883, October 2007.
ISSN 1552-3098. doi: 10.1109/TRO.2007.904911. URL
http://ieeexplore.ieee.org/document/4339546/.

[19] srl{-}freiburg. Pedsim ROS. URL https://github.com/srl-
freiburg/pedsim ros.

[20] Mikael Svenstrup, Thomas Bak, and Hans Jørgen An-
dersen. Trajectory planning for robots in dynamic
human environments. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
4293–4298, October 2010. doi: 10.1109/IROS.2010.
5651531. URL https://ieeexplore.ieee.org/document/
5651531/citations?tabFilter=papers#citations. ISSN:
2153-0866.

[21] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers,

F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy,
J. Schulte, and D. Schulz. MINERVA: a second-
generation museum tour-guide robot. In Proceedings
1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), volume 3, pages
1999–2005, Detroit, MI, USA, 1999. IEEE. ISBN 978-0-
7803-5180-6. doi: 10.1109/ROBOT.1999.770401. URL
http://ieeexplore.ieee.org/document/770401/.

[22] Pete Trautman, Jeremy Ma, Richard M. Murray, and
Andreas Krause. Robot navigation in dense human
crowds: Statistical models and experimental studies of
human–robot cooperation. The International Journal of
Robotics Research, 34(3):335–356, March 2015. ISSN
0278-3649. doi: 10.1177/0278364914557874. URL
https://doi.org/10.1177/0278364914557874. Publisher:
SAGE Publications Ltd STM.

[23] Nathan Tsoi, Alec Xiang, Peter Yu, Samuel S. Sohn,
Greg Schwartz, Subashri Ramesh, Mohamed Hussein,
Anjali W. Gupta, Mubbasir Kapadia, and Marynel
Vázquez. SEAN 2.0: Formalizing and Generating So-
cial Situations for Robot Navigation. IEEE Robotics
and Automation Letters, 7(4):11047–11054, October
2022. ISSN 2377-3766. doi: 10.1109/LRA.2022.
3196783. URL https://ieeexplore.ieee.org/document/
9851501/?arnumber=9851501. Conference Name: IEEE
Robotics and Automation Letters.

[24] Spencer van Koevering, Yiwei Lyu, Wenhao Luo,
and John Dolan. Provable Probabilistic Safety and
Feasibility-Assured Control for Autonomous Vehicles
using Exponential Control Barrier Functions. In 2022
IEEE Intelligent Vehicles Symposium (IV), pages 952–
957, Aachen, Germany, June 2022. IEEE. ISBN 978-
1-66548-821-1. doi: 10.1109/IV51971.2022.9827424.
URL https://ieeexplore.ieee.org/document/9827424/.

[25] Sanne van Waveren, Rasmus Rudling, Iolanda Leite,
Patric Jensfelt, and Christian Pek. Increasing Perceived
Safety in Motion Planning for Human-Drone Interaction.
In Proceedings of the 2023 ACM/IEEE International
Conference on Human-Robot Interaction, pages 446–
455, Stockholm Sweden, March 2023. ACM. ISBN 978-
1-4503-9964-7. doi: 10.1145/3568162.3576966. URL
https://dl.acm.org/doi/10.1145/3568162.3576966.

https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://www.sciencedirect.com/science/article/pii/S2405896319318804
https://www.sciencedirect.com/science/article/pii/S2405896319318804
http://arxiv.org/abs/2003.00368
https://ieeexplore.ieee.org/document/9636406/
http://arxiv.org/abs/2305.01303
http://arxiv.org/abs/2305.01303
https://github.com/pal-robotics/pmb2_simulation
https://github.com/pal-robotics/pmb2_simulation
https://doi.org/10.1007/s12369-014-0238-y
http://ieeexplore.ieee.org/document/4339546/
https://github.com/srl-freiburg/pedsim_ros
https://github.com/srl-freiburg/pedsim_ros
https://ieeexplore.ieee.org/document/5651531/citations?tabFilter=papers#citations
https://ieeexplore.ieee.org/document/5651531/citations?tabFilter=papers#citations
http://ieeexplore.ieee.org/document/770401/
https://doi.org/10.1177/0278364914557874
https://ieeexplore.ieee.org/document/9851501/?arnumber=9851501
https://ieeexplore.ieee.org/document/9851501/?arnumber=9851501
https://ieeexplore.ieee.org/document/9827424/
https://dl.acm.org/doi/10.1145/3568162.3576966

	Introduction
	Control Barrier Functions
	Fundamentals of CBFs
	Time-varying control barrier functions

	CBFs for Nonholonomic Mobile Robots
	CBF-based TB-RRT
	Result
	CBF-constrained tree expansion
	Robot simulation in dynamic environment
	Experiment with a physical robot

	Conclusions

