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Abstract

The level of automation in vehicles is growing. But until all vehicles are completely
automated, there will be a transition period where automated vehicles and human drivers
coexist. Because these road users will coexist, it is necessary that automated vehicles un-
derstand human drivers and vice versa. This study aims to create a model that predicts
human risk perception in different driving scenarios, to provide an understanding of the
fundamental features of human threat perception while driving.

The model created is a multi-criteria decision-making process that uses KITTI Vision
Benchmark data as an input. This model is tested against the data gathered by an online
survey, where 1918 participants answered the question: ”How high is the risk on a scale
from 0-10?” for 100 situations, chosen from the KITTI Vision Benchmark data. The survey
response data is then compared to the model. Analysis of the survey data revealed that
risk perception of driving situations is non-linear in the extremities of risk, showing that the
input image are perceived as normally distributed instead of uniformly distributed.

The comparison further shows that a model with features and weights solely based on
literature is only slightly capable of predicting the risk of situations with a Pearson corre-
lation coefficient with the survey responses of 0.28, whereas a model with feature weights
optimised is moderately capable of predicting the risk of situations with a correlation coef-
ficient of 0.57. However, multivariate regression is better capable of predicting risk with a
correlation coefficient of 0.70, and shows that features and weights based on literature were
not enough to establish an accurate model. The features that have the most impact on
the result are the information about other road users’ location and heading, the ego vehicle
velocity, and the road type.

Further research should focus on determining if speed is the cause of the perceived risk,
or if it follows from other unknown predictors. Furthermore, an extension of the questions
asked of the participants and the usage of videos instead of images can clarify the discrepancy
between the literature-based model and the perceived risk of the participants.
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1 Introduction

Automated vehicles are emerging. How fast the number of automated vehicles grows is still
unclear, but according to Milakis et al., fully automated vehicles will become commercially
available in the Netherlands between 2025-2045 [1]. It is still unknown if all vehicles will become
fully automated, but if they do, there will be a change in the way the road users interact with each
other. This change is most prevalent when human drivers and automated vehicles are mixing
in traffic. For safety purposes, it is important that human drivers understand how automated
vehicles work, but it is also important that automated vehicles understand how humans behave
in traffic in order to predict their behaviour.

One part of human behaviour in traffic consists of rules that are applied in geographic areas,
the formal rules. ‘Stop before a red light’ and ‘Traffic coming from the right has the right
of way’ are two of the many rules in the Netherlands (and many other countries). The other
side of human behaviour is not explained by general written rules, but by behaviour that can
differ from human to human, the informal rules. Examples are a wave of the hand to thank for
receiving the right of way, or yielding when you have right of way [2], both subject to regional
differences [3] [4]. A part of getting a drivers licence in most countries is the answering of threat
perception questions. These questions contain hints of events happening around the vehicle, and
ask the participant what action to take. A ball on the street, for example, is an object that a
human driver and an automated vehicle will avoid, but the human will also interpret the ball as
an extra risk, because of the possibility of an emerging child. This is an informal rule, as there
is no legal consequence.

This threat perception differs from hazard perception, and we can distinguish between them
in the sense that threat perception includes dangers not currently occurring, whereas hazard
perception includes the dangers currently occurring. Borowsky et al. mention hazard perception
of drivers, where they study the differences in perception between age and skill groups [5]. The
difference in perception between age and skill is also shown in similar studies that focus on hazard
perception in the context of driver examination [6] [7]. Williams et al. examined drivers that
already obtained a license, where they ask about the precautionary actions that drivers take to
reduce risk. The found that defensive driving and obeying traffic laws were the actions that
the highest percent of respondents took to reduce risk [8]. More sensor based approaches are
performed by Okamoto et al., who estimated threat based on drivers intentions, while Kolekar
et al. estimated threat based on objects [9] [10].

While these studies show that a significant correlation can be found between hazard/threat
perception and age/skill/gender or could model risk by inserting threats in driving scenarios,
all researchers determine the hazardous scenarios by themselves. They provide situations with
chosen hazards, and test for differences in response or response time. Because the hazard that is
perceived is already thought of by the researchers conducting the study, it is unknown why the
researchers, or more generally human drivers, perceive that situation as hazardous.

Nuñez Valesco et al. approached this problem from the perspective of Vulnerable Road Users
(VRU’s) [11]. They found that the most influential factors that determine the perceived risk,
or probability of adverse effects when exposed to harm were the speed of the vehicle, the gap
size between the pedestrian and the vehicle, and the presence of a zebra crossing. But what
are the influential factors from the perspective of a driver? Some factors are found by Malta
et al., where they correlated the perceived risk to braking and verbal action. They found that
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dangerous locations, busy intersections for example, could provide an estimate of the perceived
risk [12]. Nuñez Valesco et al. used a theoretical framework explaining the way automated
vehicles could affect VRU’s to devise a list of potentially important variables. We will use a
similar framework to devise a list of variables that could affect the driver risk perception. The
framework that we will use is the parameterisation of threats, created by Breznitz in 1984 [13].
This framework is not based on environmental variables that influence the driver directly, but
on a general concept of human threat perception. To use this framework, we have to connect
the machine based sensory information to the human threat perception variables.
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2 Method

Drivers’ risk perception can be examined in multiple ways. We will focus on the creation of
a qualitative model of human risk perception that is based on a human psychological model,
and a quantitative survey where multiple participants are asked to determine risk in a certain
traffic situation. The model predictions and survey results are compared to determine the most
important features that influence the threat perception from the perspective of the driver. But
before we can design the survey and model, we need a dataset that can provide relevant features.

Dataset

We opted for an existing dataset because the scope of this research is not the dataset, but the risk
perception of participants and the corresponding features. The existing datasets are reviewed on
the availability of information on the vehicle that collects data (the ego vehicle), VRU’s, other
road users, and road types. First of all, a dataset must contain VRU’s and should contain data in
the visible light spectrum. Six datasets contain VRU’s in the visible light spectrum [14]: Caltech
[15], KITTI Vision Benchmark [16], CityScapes [17], Tsinghua-Daimler Cyclist Benchmark [18],
ETH [19], TUD-Brussels [20], PASCAL-VOC [21]. Only KITTI and Tsinghua-Daimler contain
both pedestrians and cyclists. Although the Tsinghua-Daimler set contains VRU’s, it does not
contain cars, trucks, etc. The KITTI dataset is therefore chosen.

Type of input data

The KITTI dataset contains multiple videos of drives taken by their vehicle, equipped with cam-
eras/laser scanners and GPS [16]. Moran et al. found that risk perception surveys are usually
performed with videos, images, a simulator, or real-world test drives [22]. A dataset is used,
therefore excluding simulator and real-world tests. Vlakveld examined both video and image
test types for the Dutch drivers’ license examination [6]. He found that both tests can differ-
entiate drivers on accident risk, where young novice drivers with reported accidents performed
significantly worse than young novice drivers without reported accidents. There was a difference
between both tests when comparing the age of drivers, where the image test provided a clear
increase in score with an increase in age. This could be explained by the fact that the video test
requires more explanation. Vlakveld mentioned that for older drivers with little knowledge of
computer games it was not immediately clear how to proceed with the experiment. The image
test type is therefore chosen because we use an online survey that provides limited opportunity
for extended explanation.

Tracklet parsing

In the KITTI Vision Benchmark, there are two methods of representing the object data: Per
image object information (.txt files) and per object information (.xml files). The per object
method uses one file per video and is based on the notion that the same objects can be in
multiple frames. The per image method lacks this extra information, and is, therefore, unable to
provide object continuation information over multiple frames. It is, however, the method that we
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will use since single images are taken as the model input. The raw KITTI dataset contains per
object information. This means that the per object information format should be parsed to the
per image format. Christian Herdtweck (MPI Tuebingen) provided code to obtain Python data
structures from the per object files on the KITTI dataset website [23]. These data structures are
then parsed to the per image format.

Sample selection

After the object data is correctly formatted, we select a representative set of images to use for
testing and validation of the model. A selection of the images is needed because there is a
maximum number of participants due to monetary constraints (The Appen platform provides
compensation of 25 cents for participants that finish the survey, this results in around 2000
participants for this study). These participants can only rate a certain number of images. This
means that there that is a maximum number of images that can be rated, to ensure multiple
raters per image. The right balance between raters per image and maximum images was found
when the number of images was 210. We examine two selection methods, a random image
selection and a uniform image selection.

Random image selection is initially the preferred method, because it removes selection bias.
To randomly select the images, there are three selection steps. A random selection of a road type
is first. The road type is based on the KITTI dataset and is ’city’, ’residential’, or ’road’. After
the road type selection, there is a random selection to determine which drive is used. The last
random selection is the selection of the frame of the video. With this method, an equal number
of samples per road type is approximated. However, the number of images sampled per video
can differ, because of the different number of drives per road type in the KITTI dataset. To
ensure repeatability, the randomisation seed is saved.

In contrast with random image selection, uniform image selection does not utilise any form
of randomisation. Every road type produces the same number of samples. The sample index
is determined by equal frame spacing. The spacing itself is determined by dividing the total
number of frames of a road type by the required number of samples.

The frames are all part of videos. This raises a problem for the random image selection
method. Multiple frames are close to each other in the video time-wise, and some frames were
therefore too similar, shown by the example sampling of Figure 1. The uniform image selection
method maximises the temporal distance between the frames, resulting in less similar frames.
The creation of diverse samples is the reason uniform image selection is chosen as the selection
method.

Dataset features

The dataset contains information about the objects surrounding the vehicle and the vehicle itself,
but it is possible that these are not all applicable as features for a model. First, we examine the
raw information, and then select and convert relevant features from that information. The first
feature that we find does not need conversion: the velocity of the vehicle.

The next features are based on the objects that the vehicle detects. The objects contain the
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size, location, occlusion (partly visible), truncation (partly out of image), and observation angle
(alpha) information. The observation angle alpha is: ry − θ, where θ is the view angle of the
object in the camera image, and ry is the angle of the object frame compared to the camera
frame. These features can be subdivided into the mean, minimum, maximum, and sum of all
objects in an image. Furthermore, a general count of objects is added as a feature.

The third type of feature is based on the road type of the image. This is provided in the
dataset, as the raw KITIIT Vision Benchmark data is divided online into six categories. Three
categories are chosen: City, Residential, and Road. Because three categories are chosen, the
total number of images should be divisible by three to ensure that each category contains an
equal number of images.

Finally, there is information in the images that are not available in the dataset but can be
manually annotated by the author. These are the number of braking cars (brake lights), cars
moving towards the vehicle (front visible), and cars moving away (back visible). This results in
a list of 22 features, shown in Table1. The table also shows the mean and standard deviation of
all features, to provide an overview of the order of magnitude of the features.

Figure 1: Difference between random and uniform sampling
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Table 1: features available from dataset, where object means another road user in the image.
feature Description of feature µ σ

general velocity Velocity of the ego vehicle [m/s] 9.05 5.37
general distance sum Distance to all objects summed 21.23 18.64
general distance min Minimum of distance to all objects 3.51 2.46
general distance mean Mean of distance to all objects 4.45 2.71
general number objects Number of objects in image 4.40 3.92
manual car toward Number of cars with headlights visible 0.64 1.02
manual car away Number of cars with taillight visible 0.89 1.62
manual brakelight Number of cars with brake light visible 0.22 1.00
alpha min Minimum observation angle of objects [-pi/pi] 0.09 0.13
alpha mean Mean observation angle of objects [-pi/pi] 0.24 0.18
alpha max Maximum observation angle of objects [-pi/pi] 0.46 0.39
occluded mean Mean of occlusion state of objects 0.54 0.53
occluded sum Sum of occlusion state of objects 3.68 4.84
truncated mean Mean of truncation state of objects 0.13 0.21
truncated sum Sum of truncation state of objects 0.78 1.40
size mean Mean of all object sizes 17.56 25.07
size max Maximum of all object sizes 32.79 46.74
size min Minimum of all object sizes 10.84 22.77
size sum Sum of all object sizes 66.11 67.55
road road Boolean of road type road 0.33 0.47
road residential Boolean of road type residential 0.33 0.47
road city Boolean of road type city 0.33 0.47
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3 Model

To be able to create a model that perceives risk, we need to extract objective features of this
subjective concept. We can do this by basing risk perception on the occurrence of threats in the
environment, where a threat is an indication of something happening. We use the parameter-
isation of threats by Breznitz to accomplish this [13]. The seven features devised by Breznitz
are used as an input for a Multi-Criteria Decision Making Process (MCDMP). These features of
Breznitz, and their derived model features and weights, will be examined next.

3.1 Parameterisation of threats

The probability of the impending threat in general

The general probability is based on the notion that there is a general probability to have a deadly
accident when driving on the road. The differentiation of a deadly accident is used because
that data is well documented while data on minor injuries is not well recorded. This general
probability is often expressed as a micromort or an accident occurrence per driven kilometre.
The data provided for the Netherlands by the Institute for Road Safety Research (SWOV) is
different and shows accident occurrence per kilometre of road length. This data also shows
that there is a different accident occurrence for different road types [24]. That is why different
weights will be used used for different road types. To obtain a probability for a certain road,
we divide the casualties by the total road length of that road type [25]. We obtain the chance
of deadly accident per kilometre road length in 2018 as: municipal = 404

126458 = 0.32%, provincial
= 105

7745 = 1.36%, and state = 81
5384 = 1.50%. The accidents occurrence per kilometre does not

take into account the traffic density of a certain road. This could influence the chosen weights,
but we could not find corresponding traffic density data.

These road types can be coupled to the road type markers used in the KITTI dataset, where
the road types city and residentialof the KITII dataset correspond to the municipal data, and
the road type road corresponds to the provincial and state data.

The type of threat

When driving a car, the driver encounters multiple different types of road users and objects.
Bazilinskyy et al. showed that there is a difference in perceived risk, especially when encountering
multiple pedestrians and cyclists in a busy city [4]. It is therefore expected that there will be
different risk perceptions for different road users, and furthermore, we expect pedestrians and
cyclists to have a high risk-perception factor. The data of the SWOV shows a similar result,
where casualties of traffic accidents are mostly pedestrians and cyclists [24]. This study shows,
however, that there is one other road user with a high amount of casualties: another car. The
risk perception of other cars may be low in the other studies because drivers expect more cars on
the road than VRU’s. This makes the appearance of VRU’s on the road unexpected. We have
therefore chosen for a low perceived risk for cars, and a high perceived risk for VRU’s. Road
users like trams and trucks receive an increased amount of perceived risk when their occurrence
on the road decreases. We will take 1 as a maximum weight, and 0 as a minimum weight with
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steps of 0.2. The road users that are available from the annotated KITTI dataset are ordered
by expected appearance on the road [25], and supplied with the weights shown in Table 2. In
this table, ‘ped’ means pedestrian, ‘pedsit’ means sitting pedestrian, ‘cycl’ means cyclist, ’misc’
means miscellaneous, and ‘dc’ means don’t care, which is a label given to objects that are far
away.

Table 2: Model weights for different road user type.
car van truck ped pedsit cycl tram misc dc

0.2 0.4 0.6 1 0.2 1 0.6 0.2 0

The magnitude of the potential harm

We define the magnitude of potential harm as the magnitude of potential physical damage. The
magnitude of the potential harm is based on the amount of kinetic energy in a collision [26].
Thus, heavy vehicles have higher potential harm to the driver than light vehicles, and fast-
moving vehicles have higher potential harm than slow-moving vehicles. The weights chosen for
road users corresponds to this notion except for VRU’s. The magnitude of potential harm lays
here with VRU’s and not the vehicle, which results in large potential harm, not for the driver,
but the VRU’s. These risk weights correspond to the weights established in Table 2, and they
are therefore kept the same.

The imminence of the threat

The imminence of a threat is a factor of object location and movement compared to the ego
vehicle location and movement [27]. The most used measure of imminence is time to collision.
To calculate the time to collision, the velocity and direction of all road users are needed. The
KITTI dataset does not contain this information directly, only indirectly by temporal analysis
of point cloud data. This analysis is not within the scope of this research. Time headway is
therefore chosen instead of time to collision. This has the consequence that it cannot distinguish
between imminent danger and the potential danger [28].

The extent to which the threat can be dealt with

The extend to deal with threats can be expressed as the possibility of the driver and his vehicle
avoiding a collision. This is a combination of vehicle dynamics and the driver’s control response.
Both are unknown and require a model to estimate the possibility to avoid. Because pictures
are used for the risk perception experiment, both models are not implemented. However, it is
assumed that the participants can obtain some information about collision avoidance from the
images. Jurecki and Stańczyk found that the percentage of drivers that respond with actions,
compared to an increased time to collision scales nonlinearly [29]. This feature will therefore
extend the imminence feature (time headway) with a quadratic function as shown in Equation
1.
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imminence =

n∑
n=1

wm(
dn
v

)
1
b (1)

Where n is the object in the image, dn is the distance to that object from the camera, and
v is the velocity of the vehicle. The weight is initially chosen as wm = 1 and the shape factor as
b = 0.5, because no further information is available.

The extent to which similar threats have been experienced before

The experience of threats is a user-specific feature. Although it is possible to estimate the
possibility that a threat is experienced before by the general probability of the threat, the general
probability is already used as a feature by the general probability of a threat.

The level of confidence of the observation

The annotated data from the KITII-dataset has a ground truth. It can be useful to implement a
confidence feature when the model is used in a real-life scenario, with confidence levels of object
detection methods. With the ground truth of the KITTI dataset, the confidence is always 100
per cent and therefore omitted.

3.2 Combining features

The features as described above result in three main groups of features: road user type t, immi-
nence m, and road type r. For the objects in an image n, the corresponding object weight wt

is summed up. The road type r is simply the weight of the road type. The imminence is taken
from Equation 1. These individual features are summed up in the end, shown in Equation 2.

R =

n∑
n=1

(wt,n + wm(
dn
v

)
1
b ) + wr (2)

Where R is the predicted risk per image, wt,n the weight of a road user type of an image,
wm is the imminence weight, and wr is the weight of the road type of an image. R will also be
referred to as model combination.

3.3 Optimisation method

The feature weights are optimised after the weight factors of the features determined with the
parameterisation of threats are examined. There are 14 features to be optimised for the model.
This requires an optimisation method capable of optimising multiple features. Furthermore,
the optimisation method should be able to not only find the local minima, but also the global
minimum. The python library SciPy contains 5 global optimisation methods [30]. Because of
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the large feature space and the inability to calculate a gradient, the differential evolution method
is chosen. The population size is relatively small, so the Exp1bin strategy is preferred [31].
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4 Survey method

To validate and optimise the model, an online survey was constructed and distributed via the
Appen platform [32]. In this survey, the participants first answer general questions about age,
current lighting conditions, etc (see full survey in appendix E). After the general questions, the
drivers are asked similar questions to the ‘Driver Behaviour Questionnaire’ as used by De Winter
and Dodou [33]. The general questions are included to allow for filtering on specific respondent
traits if necessary. At the end of the questionnaire, the participants are asked to follow a link
to a web page hosted on the Heroku Cloud Application platform [34]. On this web page, the
participants are asked to move a slider to their perceived risk value on a continuous scale from
0-10 for a subset of 100 out of the 210 selected images of the KITTI dataset. An example is
shown in Figure 2. Although the participants rate on a scale from 0-10, the data collected is the
response of the participant times 10, resulting in responses from 0-100. After the grading of the
images, the participants are given a unique code that they fill in on the Appen platform survey.

Figure 2: Example of survey question

The subset of 100 images selected from the KITTI dataset is determined by the average time
that a participant needs to finish the survey. The aim for a time that a participant on average
needs is 30 min, to ensure proper engagement of the participant. From previous studies, the
number of images per participant should be 100 to result in an average time of 30 min.

Removal of cheaters

The Appen platform provides compensation for participants that finish the survey. This compen-
sation can be a source of income for participants, especially where the compensation approaches
the hourly wage. This creates an incentive for participants to fill in the survey multiple times,
without the need to grade the images. To counter this, we filtered the responses of partici-
pants and excluded responses where the unique token was used multiple times, keeping only the
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first response. The participants that used this method were reported to the platform, and new
participants were selected.

Restructuring survey results

The responses of the participants on the Heroku part of the experiment are saved after each
image. These responses are saved with the meta-data of the participant to a JSON file. All
individual responses are then put together by the respondents’ unique code, which should result
in 100 responses per participant.

Matching unique codes

The participants received their unique code at the end end of the Heroku part of the experiment
and submitted their unique code at the Appen part of the experiment. This makes it possible to
combine both parts of the survey. After filtering and combining, the survey yielded 1918 unique
responses.
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5 Survey analysis

Of the 1918 participants, 1447 rated all 100 images, 145 rated 99 images, and 77 rated 98 images.
The number of images rated per 10 image intervals is shown in Table 3. Data acquisition overflow,
where multiple participants send data at the same time to the acquisition server is probably the
cause of some dropped responses. Dropped responses will not provide a significant difference in
the result because of the high amount of rated images per participant.

Table 3: Amount of responses per participants per 10 image interval
# Images 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Participants 1 0 0 1 0 3 9 15 48 1841

The average age of the respondents was 35.5 years old. The oldest participant was 85 years of
age, and the youngest participants were 18 years old. The mean of all responses µ = 33.28, with
an average standard deviation of all responses of σ = 25.89. The mean and standard deviation of
the responses for individual images sorted by their mean response are shown in Figure 3, where
the perceived risk is the response of the participants. The figure shows a linear increase of mean
perceived risk responses in the middle and an non-linear decrease/increase at the sides. This can
indicate that perceived risk of the images used is normally distributed instead of the initially
assumed uniform distribution. To test this, we will predict a normal distribution based on the
mean and standard deviation of the results. The results and predicted results are shown in Figure
4. The figure clearly shows that the images are not perceived as a uniformly distributed dataset,
but instead like a normal distributed dataset. With the responses of the participants gathered,
the next step is a general analysis of the data to determine the reliability. We use three methods
of checking the reliability: autocorrelation, manual observation, and grouped responses.

5.1 Autocorrelation

First, we will check the reliability by performing a correlation between the first half of the
participants, and the second half of the participants. If these two halves replicate, it is an
indication that the data is reliable. The two halves are sorted by the unique code that the
participants received during the experiment. Both groups have 859 participants with group 1
a mean of µ1 = 32.56 and a standard deviation of σ1 = 26.99. Group 2 has a similar mean of
µ2 = 33.84, with a standard deviation of σ2 = 27.03. The correlation of the first half with the
second half is r = 0.98. This is a strong correlation between the first half and the second half
of the participants, shown in Figure 5. The data also shows large standard deviations in the
responses. This is to be expected because the question: ‘how high is the risk?’ is subjective.
One person might find risk zero when there is no obvious hazard, while another person might
find the risk 40 per cent for the same situation.

The deviation between participants is also shown when analysing the correlations of the
participants themselves with all other participants. These correlations have a mean of µ = 0.38,
a median of x̄ = 0.43, a standard deviation of σ = 0.22, and a maximum of M = 0.80. There
were some participants that did not correlate with the average responses at all (r ≈ 0). This can
indicate that these participants have either a completely different risk perception than the other
participants or, more likely, they were not genuine with their responses. Even with these large
standard deviations, the averages replicate.
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Figure 3: Mean and standard deviation of survey responses, sorted by perceived risk.

Figure 4: Estimated and resulting distribution of perceived risk.

Figure 5: Scatter of responses per image of group 1 and group 2.
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5.2 Manual observation

The second method of checking the reliability is a manual check of the general trend by ranking
the images by risk. The top 10 least risky images are all images on a similar road with few
other road users and clear vision. The top 10 riskiest images are from situations where there is
uncertainty in the image. The images that score highest on risk contain multiple road users and
it is unclear what the other road users are doing. These results are to be expected, for more road
users in a situation are expected to provide a higher risk. The most and least risky images, as
ranked by the respondents, are shown in Figure 6 as an illustration.

Figure 6: Images ranked by respondents, with least risk (top), and most risk (bottom).

5.3 Grouped by age/driving experience

The final analysis is a grouping of participants by four risk predictors of the ‘Driver Behaviour
Questionnaire’ as used by De Winter and Dodou [33]. The four predictors used are: disregard-
ing safe distance (close), disregarding hands-free phone usage (phone) disregarding speed limit
(speed), and accident occurrence (accident). The questions asked for the predictors are shown in
Table 4. Correlating these predictors with the survey risk score provides a negligible correlation
coefficient (r < 0.025). This means that these features are not an adequate predictor for risk
perception. The inter-group correlation on the other hand shows similar results as De Winter
and Dodou found in the literature, with correlations between 0.33 and 0.49, as shown in Table
5 [33]. This supports the notion that these predictors of the driver behaviour questionnaire can
significantly predict accident occurrence, but not risk perception. Furthermore, the inter group
correlations show that different types of risk taking behaviour are significantly correlated.
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Table 4: The four questions asked to obtain the predictor variables.
Predictor variable Full question Choices

speed occurence How often do you do the following?:
Disregarding the speed limit on a residential
road

0, 1-3, 4-6, 7-9, or 10 times
per month.

close occurence How often do you do the following?:
Driving so close to the car in front that it would
be difficult to stop in an emergency

0, 1-3, 4-6, 7-9, or 10 times
per month.

phone occurence How often do you do the following?:
Using a mobile phone without a hands-free kit.

0, 1-3, 4-6, 7-9, or 10 times
per month.

accident occurence How many accidents were you involved in when
driving a car in the last 3 years?

1, 2, 3, 4, 5, and more than 5
times.

Table 5: Inter group correlations.
(1) (2) (3) (4)

speed occurrence (1) 1.0
phone occurrence (2) 0.42 1.0
accident occurrence (3) 0.33 0.33 1.0
close occurrence (4) 0.49 0.44 0.38 1.0

Figure 7: Scree plot and cumulative eigenvalues of eigenvalues.
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6 Benchmark

With the reliability of the survey data established, the next step is setting a benchmark for the
model. The method used to provide a benchmark is multivariate regression. This is performed
on the features available from the dataset. Afterwards, a principle component analysis will
be performed to check for significant pixel-based features. This can indicate if relevant image
features are missing.

6.1 Multivariate regression

Multivariate regression can be used to predict the outcome of the experiment. Normally, the
principal components are used for a multivariate regression. We chose to use predictor variables
so we can also obtain the impact that predictor variables have on the prediction in the form of
standardised linear equation parameters (βstand). The relative size of the parameters resulting
from a multivariate regression indicate their influence on the result, and will in our case indicate
what variables make a situation risky. To perform multivariate regression, it is necessary to
determine the relevant predictors. Twenty-two features can be used, but not every feature is a
good predictor. To determine which features are good predictors, we calculate the eigenvalues
and the corresponding eigenvectors of the features (Figure 15 in the appendix). The eigenvalues
are sorted based on their values and shown in Figure 7 as a Scree plot. This will ensure that the
variables with the most variation are used in the multivariate regression.

The Scree plot shows that the influence of the eigenvectors diminishes fast. The ”elbow”
of the plot is between eigenvalue 5 and 8, which can be an estimate of the number of features
to use. If we use the Kaiser Rule, there are 7 eigenvalues larger than 1, which is similar to
the estimate from the Scree plot. To obtain the predictors from the features, we can use the
cumulative eigenvalues. The first 6 eigenvectors contain at least 80 per cent of the variation of
the data.

The features which have values higher than 0.4 in these 6 eigenvectors are taken as predictors.
This results in the 8 predictors shown in Table 6. The threshold value of 0.4 is chosen to result
in 8 predictor features. Both the Kaiser rule and the Scree plot method can overestimate the
number of features needed, although this is less likely with the large sample size used here [35].
Furthermore, using predictors from the dataset instead of the principal components will always
result in the necessity of an equal amount or more predictors to obtain the same variance.

With these predictors, linear multivariate regression is performed. The first step is a stan-
dardisation of the predictors. After the standardisation, the linear multivariate model is fitted to
the first half of the responses (image index 0-104). This fit is done using the SciPy sklearn linear
regression fitting which uses Ordinary Least Squares [30]. The values shown in Table 6 are the
values of the predictors without the bias/interception added, resulting in the relative influence
values. This results in a correlation of r = 0.70. This is a strong positive correlation, with the
general velocity predictor standing out because of the higher absolute βstand This regression will
be the benchmark for the model.
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6.2 Principal component analysis of the image

The linear multivariate regression model that was previously fitted on the data, is fitted on object
features. There are, however, more features which could possibly be important. These are the
raw image features or, in other words, the pixels. To check if the pixel features are important,
a principal component analysis is performed on the image pixels. The images of the dataset are
first scaled down to 621x188 pixels from their original amount of 1242x375 pixels. The amount
of components chosen for the analysis is 50, which is chosen as a balance between the number of
components and computing time. All colour channels are analysed separately, plus an additional
grey channel. The resulting principal components are correlated with the survey data, resulting
in the correlations shown in Figure 8.

The figure shows that there are several components with a small correlation. For some
components, for example, component three, all colour channels have roughly the same correlation.
This indicates that the principal component is an illumination component. Other components,
for example, 16, show a difference in positive and negative correlation per colour channel. This
indicates that the principal component is a colour component. Principal component three is
shown as an eigenimage in Figure 9. The white section at the bottom of the image indicates
that the component is responsible for the variance of the road illumination. A possible reason
for this correlation could be that when vehicles are close, the illumination of the road in front
of the vehicle changes because a vehicle obstructs the view of the road. It is important to
note that the principal components with high correlations could be a valuable addition to the
multivariate regression. The downside to using these features is that every eigenimage needs
interpretation of what the image represents. This is increasingly harder to do with increasing
eigenvalues. Eigenimage with eigenvalue seven is similar to eigenimage with eigenvalue three,
but it is already difficult to interpret the shapes in the image.

Table 6: Predictors of multivariate regression, with their corresponding coefficient, mean of
predictions, standard deviation of predictions, confidence interval of predictions (α = 0.05), and
scale. The training set was the first half of the images, sorted by index (0-104). The testing set
was the remainder (105-209).

Predictor βstand µ σ Upper Lower Scale

Training manual brakelight 1.6351 0.4200 1.8404 0.7737 0.0663 Ratio
size mean -1.0272 -0.7543 1.1293 -0.5373 -0.9713 Ratio
alpha min 0.9210 0.6421 0.8944 0.8140 0.4702 Ratio
size min 0.5618 0.3023 0.6212 0.4217 0.1829 Ratio
road city 1.1061 0.8492 1.1330 1.0669 0.6314 Binary
general velocity -3.7882 -6.1793 3.7090 -5.4665 -6.8921 Ratio
manual car toward 1.1105 0.7781 1.2431 1.0170 0.5392 Ratio
road residential 0.7841 0.5861 0.7984 0.7395 0.4327 Binary

Testing manual brakelight 1.6351 0.3111 1.4162 0.5833 0.0389 Ratio
size mean -1.0272 -0.6879 0.9237 -0.5104 -0.8655 Ratio
alpha min 0.9210 0.6041 0.9550 0.7876 0.4205 Ratio
size min 0.5618 0.2338 0.4992 0.3297 0.1378 Ratio
road city 1.1061 0.7151 1.0852 0.9237 0.5065 Binary
general velocity -3.7882 -6.6278 3.8884 -5.8805 -7.3752 Ratio
manual car toward 1.1105 0.6225 0.9656 0.8081 0.4369 Ratio
road residential 0.7841 0.5227 0.7758 0.6719 0.3736 Binary
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Figure 8: Correlations for the eigenvalue for each eigenimage.

Figure 9: Eigenimage with third principal component (top), and seventh principal component
(bottom).
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7 Model Results

After the creation of the benchmark, we analyse the results of the literature-based model. The
correlations of the model with the participants responses are examined first, then we will examine
the images ranked by the model.

7.1 Correlations

The output of the model with non-optimised feature estimates as described by Equation 2 is
correlated with the responses of the participants and all individual features. The resulting
correlation is r = 0.28 for the model combination (R), r = 0.47 for the model type (t), r = 0.28
for the model imminence (m), and r = −0.34 for the model probability (r). These are small to
medium correlations, and not as high as the benchmark (r = 0.7). On overview of all correlations
is shown in appendix B.

The literature-based model is now optimised, with bounds at 0 and 10 for every feature this
results in r = 0.54 for the model combination, r = 0.48 for the model type, r = 0.35 for the model
imminence, and r = 0.34 for the model probability. These are medium correlations, with the
combination correlation being the highest, and the probability correlation now being positive.
The model is optimised again, but this time with bounds chosen at -100 and +100. This results
in r = 0.57 for the model combination, r = 0.5 for the model type, r = 0.27 for the model
imminence, and r = 0.35 for the model probability. This final optimisation shows an increase in
the model combination correlation, but a decrease in type correlation.

Table 7: Model predictor variables before optimisation (Init.), after optimisation (Opt.), and
Pearson’s correlation coefficient of the model with the survey results.

feature Init. Estimate Opt. Small bounds Opt. Large bounds

wt type/car 0.20 0.00 9.75
type/van 0.40 6.90 87.3
type/truck 0.60 4.71 45.1
type/ped 1.00 6.37 94.1
type/pedsit 0.20 8.69 99.6
type/cycl 1.00 3.47 83.2
type/tram 0.60 0.00 -100
type/misc 0.20 5.59 94.6
type/dc 0.00 7.35 -28.3

wr prob/city 0.32 9.76 44.1
prob/residential 0.32 7.26 27.2
prob/road 1.43 0.59 -85.8

wm imm/gain 1.00 0.86 0.00
imm/bias 0.50 5.09 0.09

r model combination 0.28 0.54 0.57
model type 0.47 0.48 0.50
model imminence 0.28 0.35 0.27
model probability -0.34 0.34 0.35
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The feature values of the estimates, optimisation with small bounds, and optimisation with
large bounds are shown in table 7, together with the correlations of the model, where r is the
correlation. The result that is the most interesting in the initial estimate is the negative sign
of the model probability. This indicates that participants find city and residential roads more
risky than other roads. This is contrary to the initial estimated, where the speed of the vehicles
was assumed to influence the perception of risk more. This unexpected negative weight of the
model probability, which is not accounted for in the initial estimate, is accounted for when the
model is optimised. The weight for the road types are adjusted, which result in a similar, but
positive, result.

Even after optimisation, the model still performs worse than the benchmark. The chosen
predictors in the benchmark differ substantially with the features used in the model, where
manual brakelight, size mean, alpha min, size min, and manual car towards are absent. The
only shared features are the road type and general velocity features. The difference between the
model and benchmark is therefore probably due to the difference in feature selection method
(literature based or principle component based), and not a difference in chosen weights or a
different method of combining the features. The correlation between the optimised model with
small bounds and the responses of the participants are shown in Figure 10. Although the op-
timised model does not outperform the benchmark, it does perform better than most random
individual participants (rparticipants = 0.43 < rmodel = 0.54). This is shown in Figure 11, where
the correlation of individual respondents with the other respondents is shown.

Figure 10: Correlation between the model and the experiment result.

Figure 11: Correlations of individual respondents and model with all respondents.
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7.2 Ranked images

The final optimised model did not exactly rank the images the same as how the participants
ranked them, but there are image features that can be recognised in both the ranking of the
model, and the ranking of the participants. The least risky images, as predicted by the model,
are similar to the least risky images of the participants (figure 12 top). It is the same road with
no other road users and a clear view as the participants ranked (figure 6 top). Furthermore, the
most and least risky images as ranked by the participants, are found in the top and bottom 10%
images ranked by the model respectively.

The image that was ranked third most risky by the participants, figure 13 top, is an unusual
result in the model results: this image is the 161th most risky image by the model. The difference
in rank could be explained by the unpredictable movement of the garbage truck. It is also hard
to see in the image if the vehicle is turning left already, or waiting on the truck. This explanation
is supported by the images where the garbage truck is moving away, figure 13 bottom, where the
further the garbage truck is around the corner, the lower the perceived risk. Showing that it is
not the garbage truck itself, but the position of the truck compared to the vehicle.
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Figure 12: Images ranked by model, with least risk (top), and most risk (bottom)

Figure 13: 3rd Most risky image by participants, 161th most risky by model(top). 105th Most
risky image by participants, 175th most risky by model (bottom)
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8 Discussion

The first question that follows from the results is: Why is a higher speed perceived as lower risk?
We think it is unlikely a causation. It is, however, possible that both the higher speed and the
lower risk perceived have a common cause. An example of this cause could be the environment
where the vehicle is driving. A clear road, with no other road users and safety features facilitating
higher speeds, could provide a safer perception. Whereas driving slow in a hectic city street could
provide an unsafe perception, with a corresponding high perceived risk. The medium correlation
of the road type feature with the velocity hints that this could be indeed the case (appendix B).
Further investigation of the velocity risk correlation reveals that road type does influence the
strength of the correlation. The correlation is lowest in ‘city’ road types, and highest in ‘road’
road types, this is illustrated in Figure 14.

Figure 14: Correlation of velocity with perceived risk (response mean), with separation by road
type

Another possible explanation is the medium correlation between the number of road users
and the velocity. Brackstone et al. found a negative correlation between the velocity of the
vehicle and the amount of vehicles per kilometre [36]. We can check if that is also the case here,
by analysing the correlation between the velocity and the number of vehicles. This correlation
is r = −0.32 (appendix B), which is similar to the result found by Brackstone et al., but at the
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same time a weaker correlation. This indicates that this cannot be the full explanation for this
phenomenon.

It is possible that the results are influenced by the way the question about perceived risk was
formulated. The question was: ”As a driver, how risky would you judge this situation (0 = no
risk, 10 = extreme risk)?”. The term risky can be interpreted differently by different participants.
We assumed that participants would interpret the question as: ”How unsafe do you think this
situation is?” or ”How dangerous do you think this situation is?”. This interpretation does not
separate potential hazards and apparent hazards. Drivers could interpret the question to exclude
potential hazards, and only include apparent hazards. This exclusion could explain why higher
speed, and potentially less apparent hazards score lower, while low speed and more apparent
hazards score higher.

The second question that follows is: Why are the features before the optimisation different
from the features after optimisation (Table 7)? The model probability features show an inverse
in magnitude, were the ‘city’ and ‘residential’ types increase and the ‘road’ type decreases. This
is because the predictor variables for the model probability have changed. The change shows
that the perceived risk in residential and city is higher than the perceived risk on other roads.
This is conflicting with the deadly accidents per km road length from literature. This could be
because of the usage of accident per road length, instead of per driven kilometre. The model
type features also show a very different result after optimisation than the initial estimate. Cars,
trams and ‘don’t care’ seem to matter little when predicting perceived risk. For trams and ‘don’t
care’, this is most likely due to the fact that there are very little images ranked with a tram or
‘don’t care’, resulting in overfitting.

9 Conclusion

The results of the online survey show that participants, in general, agree on risk perception. The
survey also shows that the images provided for risk ranking seem normally distributed instead
of uniformly distributed.

The model, with weights and features chosen by literature, is not capable of accurately
predicting risk in images. When optimising the weights, this model is moderately capable of
predicting risk in images, especially compared to individual participants. The best method
however, is a multivariate regression, resulting in a correlation of r = 0.7. This shows that the
model needs to be improved to achieve better performance. This could be done by using the
features resulting from the multivariate regression.

The benchmark shows that features other than time to collision or time headway, can be used
for risk perception models. This can be valuable in situations where information about other road
users’ movement and intention is not available. Furthermore, the predictors of the benchmark
provide new information about the human perception of the surroundings while driving. Creating
a better understanding why humans perceive risk the way they do, with information about other
road users’ location and heading, egovehicle velocity, and the road type having an important
role.
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10 Recommendations

To extend the contribution of this work, there are several recommendations. The first recom-
mendation is a different style of survey. A ranking by comparison of images, where participants
rank two or more images on risk at the same time can provide a support of this survey. Another
recommendation is the usage of video instead of images. Both the image ranking and the use of
video can provide further information on the large negative correlation of the velocity with the
responses, by being able to separate apparent and non apparent hazards.

A second recommendation is an extension of the question asked of participants. An addition
of a question ”If you think this is a risky situation, explain why”, could explain why certain
images that seem similar are rated differently, for instance the garbage truck example. This can
help determine why participants agree or disagree. Furthermore, extra questions that ask the
same, but in different ways can provide more information an participants’ consistency and may
improve survey reliability.

A third recommendation is the usage of accident occurrence per driven kilometre instead of
per kilometre road length. This will clarify the discrepancy between the literature-based model
and the perceived risk of the participants.

11 Resources

The code written to perform the analysis, the resulting images, and anonymous participant
data can be found online at: https://github.com/jhoogmoed/HumanThreatPerception. The
code is split in three sections: KITTI dataset parsing, survey data parsing, and model compari-
son/optimisation.
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A Eigenvector matrix

Figure 15: Eigenvector matrix of parameters.
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B Correlation matrix before optimisation

Figure 16: Correlation before optimisation.
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C Correlation matrix after optimisation with small bounds

Figure 17: Correlation after optimisation with small bounds.
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D Correlation matrix after optimisation with large bounds

Figure 18: Correlation after optimisation without bounds.
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E Online survey
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Perceived Risk Of Dash Camera Images

General questions

Instructions 

You are invited to participate in a research study entitled "Driver threat perception". The study is
being conducted by Jim Hoogmoed, master student Mechanical Engineering at the Delft University of
Technology, The Netherlands. He is supervised by Dr.ir. Joost de Winter, Ir. Jork Stapel and Dr. Pavlo
Bazilinskyy of the Department of Cognitive Robotics, Delft University of Technology, The
Netherlands. Contact: j.hoogmoed@student.tudelft.nl (mailto:j.hoogmoed@student.tudelft.nl).

The purpose of this research is to determine perceived risk of dash camera images. Your participation
in this study may contribute to a better understanding of risk and threat perception while driving, and
the creation of human threat perception models.

You are free to contact the investigator at the above email address to ask questions about the study.
You must be at least 18 years old to participate. The survey will take approximately 25 minutes of
your time. In case you participated in a previous survey of one of the researchers of this study, your
responses may be combined with the previous survey. The information collected in the survey is
anonymous. Participants will not be personally identi�able in any research papers arising from this
study. If you agree to participate and understand that your participation is voluntary, then continue. If
you would not like to participate, then please close this page. Before the study starts, the images will
be preloaded. This may take a few minutes depending on your Internet connection.

Have you read and understood the above instructions? (required)
 Yes

 No

What is your gender? (required)
 Male

 Female

 I prefer not to respond

What is your age? (required)

In which type of place are you located now? (required)
 Indoor, dark

 Indoor, dim light

 Indoor, bright light

 Outdoor, dark
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 Outdoor, dim light

 Outdoor, bright light

 Other

 I prefer not to respond

If you answered 'Other' in the previous question, please decribe the place where you
located now below.

Which input device are you using now? (required)
 Laptop keyboard

 Desktop keyboard

 Tablet on-screen keyboard

 Mobile phone on-screen keyboard

 Other

 I prefer not to respond

If you answered 'Other' in the previous question, please decribe your input device
below.

At which age did you obtain your �rst license for driving a car or motorcycle?

What is your primary mode of transportation (required)
 Private vehicle

 Public transportation

 Motorcycle

 Walking/Cycling

 Other

 I prefer not to respond

On average, how often did you drive a vehicle in the last 12 months? (required)
 Every day

 4 to 6 days a week

 1 to 3 days a week

 Once a month to once a week

 Less than once a month

 Never

 I prefer not to respond

About how many kilometers (miles) did you drive in the last 12 months? (required)
 0 km / mi
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 1 - 1,000 km (1 - 621 mi)

 1,001 - 5,000 km (622 - 3,107 mi)

 5,001 - 15,000 km (3,108 - 9,321 mi)

 15,001 - 20,000 km (9,322 - 12,427 mi)

 20,001 - 25,000 km (12,428 - 15,534 mi)

 25,001 - 35,000 km (15,535 - 21,748 mi)

 35,001 - 50,000 km (21,749 - 31,069 mi)

 50,001 - 100,000 km (31,070 - 62,137 mi)

 More than 100,000 km (more than 62,137 mi)

 I prefer not to respond

How many accidents were you involved in when driving a car in the last 3 years?
(please include all accidents, regardless of how they were caused, how slight they
were, or where they happened) (required)

 0

 1

 2

 3

 4

 5

 More than 5

 I prefer not to respond

How often do you do the following?: Becoming angered by a particular type of driver,
and indicate your hostility by whatever means you can. (required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Disregarding the speed limit on a motorway.
(required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Disregarding the speed limit on a residential
road. (required)

 0 times per month

 1 to 3 times per month
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Experiment 
You will be asked to leave Appen to participate in the rating task. You will need to open the link below.
Do not close this tab. In the end of the experiment you will be given a code to input in the next

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Driving so close to the car in front that it would
be dif�cult to stop in an emergency. (required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Racing away from traf�c lights with the
intention of beating the driver next to you. (required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Sounding your horn to indicate your annoyance
with another road user. (required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Using a mobile phone without a hands free kit.
(required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond
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question on this tab. Please take a note of the code. Without the code, you will not be able to receive
money for your participation. All images will be downloaded before the start of the experiment. It
may take a few minutes. Please do not close your browser during that time. 

Open this link (https://risk-dash-crowdsourcing.herokuapp.com/) to start experiment.

Miscellaneous questions

Test Validators

Type the code that you received at the end of the experiment. (required)

In which year do you think that most cars will be able to drive fully automatically in
your country of residence? (required)

Please provide any suggestions that could help engineers to build safe and enjoyable
automated cars.
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