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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a high mortality rate, poor prognosis, and
a mere 7.7% 5-year survival rate [1] compared to 65% for all cancer types [2]. Approximately 80% of patients are
diagnosed at the advanced stage [3], for which only palliative chemo(radio)therapy remains as treatment option.
However, the efficacy of chemotherapy varies among patients, e.g. FOLFIRINOX has a response rate of only
25-30% in metastatic patients and a disease control rate of 70.95% [4]. Therefore, stratifying patients is crucial
for individual benefit and for addressing the socioeconomic challenge of rising healthcare costs and increasing
cancer incidence. This master thesis aims to investigate the relationships between tumor markers CA19-9 and
CEA as well as blood marker data, both before and after one cycle of FOLFIRINOX and their correlation to
the chemotherapy response. The goal is to subsequently develop a robust classification model to improve patient
stratification and facilitate personalized treatment approaches.

The analyzed cohort comprises 247 PDAC patients of which 55% are male and 45% are female participants.
Among them, 152 had (borderline) resectable, 54 locally advanced and 41 metastatic PDAC. All patients received
FOLFIRINOX treatment, and tumor responses were categorized using RECIST 1.1 [5]. First a thorough data anal-
ysis, including outlier and principal component analysis (PCA) is conducted to identify patterns and relationships
between and within variables. Subsequently, a robust classification model was built using random forest modeling,
accounting for dataset imbalance. Three optimal models are proposed based on (a) only pre-chemotherapy values,
(b) values before and after the first FOLFIRINOX cycle and (c) only the top 10 identified variables in (b). For
each of the most important variables, partial dependence and accumulated local effect plots are generated to gain
further insights into their marginal effect on the classification outcomes.

The initial data analysis revealed the prognostic and predictive significance of the tumor marker CA19-9, both
before and after one cycle of treatment, and the difference in its levels. Additionally, various blood markers,
including Hemoglobin, Thrombocytes and γ-Glutamyl Transferase, showed associations with treatment outcomes.
The assessment of variable importance further confirmed these relationships between tumor and blood markers and
their impact on treatment response. However, PCA did not identify significant patterns or relationships within or
between groups of blood markers. Moreover, the developed random forest classification models exhibited promising
balanced accuracy, with values of 0.97, 0.98, and 0.90 for models (a), (b), and (c), respectively, in stratifying PDAC
patients into the two distinct response groups (disease control and progressive disease), facilitating treatment
decision-making.

In conclusion, this master thesis emphasizes the crucial role of comprehensive and rigorous data analysis in PDAC
research, particularly when employing machine learning for predicting treatment outcomes. Integrating informa-
tion from measured tumor and blood markers into the random forest models enables the prediction to FOLFIRI-
NOX therapy both before and after one cycle. The implications of these findings are significant, as they can lead
to improved patient management, efficient allocation of resources, personalized approaches, and contribution to
the research and development efforts in PDAC. To validate and expand upon the presented results, further studies
are required, ultimately advancing the field of personalized medicine in pancreatic cancer.

Keywords: pancreatic cancer, PDAC, prediction model, random forest, data analysis, outlier analysis, principal
component analysis.
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Nomenclature

Abbreviation Meaning
AF Alkaline Phosphatase
ALAT Alanine Aminotransferase
ALE Accumulated Local Effects
AUC Area Under the Curve
ASAT Aspartate Aminotransferase
BR Bilirubin
CA19-9 Carbohydrate Antigen 19-9
CEA Carcinoembryonic antigen
CII Complete Class Inclusion
CR Complete Response
CRP C-Reactive Protein
DC Disease Control
GFR Glomular Filtration Rate
GGT Gamma-Glutamyl Transferase
HB Hemoglobin
IQR Inter-Quartile Range
INR International Normalized Ratio
K Potassium
LAPC Locally Advanced Pancreatic Cancer
LC Lymphocytes
LK Leukocytes
ML Machine Learning
M-plot Marginal Effect Plot
NLR Neutrophil-to-Lymphocyte Ratio
NP Neutrophils
OOB Out-Of-Bag
OS Overall Survival
OVB Omitted Variable Bias
PCA Principal Component Analysis
PC Principal Component
PD Progressive Disease
PDAC Pancreatic Ductal Adenocarcinoma
PDP Partial Dependence Plot
PFS Progression Free Survival
PLR Platelet-to-Lymphocyte Ratio
PR Partial Response
RECIST Response Evaluation Criteria in Solid Tumors
ROC Receiver Operating Characteristic
ROSE Random Over-Sampling Examples
SII Systemic Inflammation Index
SD Stable Disease
TB Thrombocytes
WBC White Blood Cells

Table 1: Table of abbreviations and their full meaning used in this thesis.
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Variable name Meaning Response
Label

Response
value

Study Subject ID Study Subject ID
Protocol ID Protocol ID

INFORMED_CONSENT_E1_C1 Informed consent
given No, Yes 0,1

DATE_IC_E1_C1 Date of Informed
consent

DATE_BIRTH_E1_C2 Date of Birth
GENDER_E1_C2 Gender Male, Female 0,1
LENGTH_E1_C2 Length (cm)
WEIGTH_E1_C2 Weight (kg)

STAGE_DISEASE_E1_C2 Stage of disease

(Borderline)
resectable,
Locally advanced,
Metastatic disease

0, 1, 2

CA199_DIAGN_E1_C2 CA-19.9 (kU/L) at diagnosis
CEA_DIAGN_E1_C2 CEA (µg/L) at diagnosis

FAMILY_HISTORY_E1_C2 Positive family history
for pancreatic cancer No, Yes, Unknown 0, 1, 2

SMOKING_E1_C2 Smoking Never, Former,
Current, Unknown 0, 1, 2, 3

ALCOHOL_E1_C2 Alcohol use No, Yes, Stopped,
Unknown 0, 1, 2, 3

DM_E1_C2 Diabetes mellitus No, Yes 0, 1
HISTORY_PANCREAT_E1_C2 History of pancreatitis No, Yes 0, 1
HISTORY_MALIGN_E1_C2 History of malignancy No, Yes 0, 1

HISTORY_MALIGN_SPEC_E1_C2 Previous malignancy
specified

HISTORY_CHEMO_E1_C2 History of
chemotherapy No, Yes 0, 1

Table 2: Patient characteristic variable names and their corresponding definitions.

Variable Name Meaning Section Label Unit
CA199_CHEMO_E2_C3 CA19-9 (tumor marker) LAB_CHEMO kU/L
CEA_CHEMO_E2_C3 CEA (tumor marker) LAB_CHEMO µg/L
HB_CHEMO_E2_C3 Hemoglobin LAB_CHEMO mmol/L
TROMBOCYTES_CHEMO_E2_C3 Thrombocytes LAB_CHEMO 109/L
LEUKOCYTES_CHEMO_E2_C3 Leukocytes LAB_CHEMO 109/L
NEUTROPHILS_CHEMO_E2_C3 Neutrophils LAB_CHEMO 109/L
LYMPHOCYTES_CHEMO_E2_C3 Lymphocytes LAB_CHEMO 109/L
CREATININ_CHEMO_E2_C3 Creatinin LAB_CHEMO µmol/L
GFR_CHEMO_E2_C3 Glomular Filtration Rate LAB_CHEMO mL/min
SODIUM_CHEMO_E2_C3 Sodium LAB_CHEMO mmol/L
POTASSIUM_CHEMO_E2_C3 Potassium LAB_CHEMO mmol/L
ASAT_CHEMO_E2_C3 Aspartate Aminotransferase LAB_CHEMO U/L
ALAT_CHEMO_E2_C3 Alanine Aminotransferase LAB_CHEMO U/L
AF_CHEMO_E2_C3 Alkaline Phosphatase LAB_CHEMO U/L
GGT_CHEMO_E2_C3 γ-Glutamyl Transferase LAB_CHEMO U/L
BR_CHEMO_E2_C3 Bilirubin LAB_CHEMO µmol/L
INR_CHEMO_E2_C3 International Normalized Ratio LAB_CHEMO U/L
ALB_CHEMO_E2_C3 Albumin LAB_CHEMO g/L
CRP_CHEMO_E2_C3 C-Reactive Protein LAB_CHEMO mg/L

Table 3: Table of the measured variable names and their respective meaning in the dataset.
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Variable Name Meaning Response label Response
Values

SURVIVAL_
STATUS_E6_C10 Survival status Alive, Dead,

Lost in follow-up 0, 1, 2

DATE_DEATH
_E6_C10 Date of death

CAUSE_DEATH
_E6_C10 Cause of death

Progression of
disease,
Complications
of treatment
chemotherapy
or surgery),
Unknown, Other

0, 1, 2 , 3

DATE_LAST_
ALIVE_E6_C10 Date last seen alive

OTHER_TREATMENT
_E6_C10

Other treatment after
chemotherapy No, Yes, Unknown 0, 1, 2

TREATMENT_
SPEC_E6_C10 Type of therapy Radiotherapy, Surgery,

Immuno therapy, Other 0, 1, 2, 3

PROGRESSION
_E6_C10 Progression No, Yes, Unknown 0, 1, 2

DATE_
PROGRESSION
_E6_C10

Date of progression

CYCLES_
FOLFIRINOX
_E6_C11

Total amount of cycles
FOLFIRINOX received

FINAL_
RESPONSE_
OUTCOME_
E6_C11

Final response outcome

Complete response,
Partial response,
Progressive disease,
Stable disease,
Unknown

0, 1, 2, 3, 4

FINAL_R
ESPONSE_
DICHOTOMIZED
_E6_C11

Disease control
(= stable disease,
partial response or
complete response) or
progressive disease
after last
cycle of
FOLFIRINOX

Disease control,
Progressive disease,
Unknown

0, 1, 2

G_CSF_
YES_NO
_E6_C11

Granulocyte Colony Stimulating Factor received No, Yes 0, 1

G_CSF_
PROPHYLAXIS
_E6_C11

Granulocyte Colony Stimulating Factor prophylaxis No, Yes 0, 1

G_CSF_
AFTER_
CYCLE_E6_C11

Granulocyte Colony Stimulating Factor start

Table 4: Table of variable names and their respective meaning in the dataset.
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1 | Introduction

Pancreatic ductal adenocarcinoma (PDAC) ranks as the 12th most common cancer worldwide according to the
World Cancer Research Fund International [6]. The mortality rates for PDAC are alarmingly high, almost equal
to the incidence rates, with a mere 7.7% 5-year survival rate [1]. Its incidence is rising [7], and by 2030, PDAC
is predicted to be the second leading cause of cancer-related deaths, surpassing colorectal and breast cancer
[8]. PDAC presents significant challenges in terms of diagnosis and treatment, particularly due to the majority
of patients (80%) being diagnosed at an advanced stage [3], rendering them ineligible for surgical resection [9].
Currently, chemotherapy serves as the standard treatment for these patients, while the search for more effective
therapies continues.

Figure 1.1: Illustration of the anatomy of the most important organs surrounding the pancreas [10].

Class Criteria

Complete Response (CR) Disappearance of all target lesions
Partial Response (PR) Decrease of ≥ 30% in the sum of diameters of target lesions

Progressive Disease (PD) Increase of ≥ 20% in the sum of diameters of target lesions
or the appearance of a new cancer lesion.

Stable Disease (SD) Neither sufficient shrinkage nor increase to be classified as PR or PD.

Table 1.1: Classification of PDAC patients based on the Response Evaluation Criteria in Solid Tumors (RECIST)
1.1 criteria [5].

For a long period of time, upfront surgery followed by adjuvant gemcitabine has been the standard treatment for
(borderline) resectable PDAC [11]. However, neoadjuvant therapy has emerged as a promising strategy for local-
ized PDAC, offering potential advantages over upfront surgery [3]. FOLFIRINOX, a combination of fluorouracil,
leucovorin, irinotecan, and oxaliplatin, has shown promise in the neoadjuvant setting, although further random-
ized studies are needed to establish its efficacy. One such study is the Dutch PREOPANC-2 trial, a multicenter
randomized phase III trial conducted by the Dutch Pancreatic Cancer Group [12]. The trial demonstrated a signif-
icant improvement in overall survival (OS) with neoadjuvant therapy compared to upfront surgery [12]. Therefore,
pre-operative chemotherapy may become the new standard in the future. For locally advanced pancreatic cancer
(LAPC) and metastatic disease, FOLFIRINOX is considered the preferred treatment option. In a phase III multi-
center randomized study, FOLFIRINOX demonstrated superior outcomes compared to gemcitabine monotherapy,
with significantly longer median progression-free survival (PFS) (6.4 vs. 3.3 months) and OS (11.1 vs. 6.8 months)
[13]. The survival benefits were consistent across patient subgroups, and additional evidence from pooled phase
II trials and off-trial series supported the observed OS of approximately 10-11 months with FOLFIRINOX [13].
A recent meta-analysis showed a response rate 1 of only 25-30% in metastatic patients treated with FOLFIRI-
NOX, indicating that a substantial proportion of patients may not derive significant clinical benefit from this

1The Overall Response Rate refers to the PR and CR groups together. However, the disease control rate consists of PR, CR and
SD. Consequently the percentages are higher.
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treatment [4]. When considering the disease control rates (DCR), they found that overall the DCR was 70.95%
(95% CI 58.0-83.9%) [4]. However, other studies like [14] show a FOLFIRINOX DCR of 77.2% in LAPC and
51.4% in metastatic patients, respectively. An overview of the current way of deciding between treatment options
based on the different stages of PDAC is provided in Figure 1.2. Further information on clinical trials and their
phases can be found in Appendix E. Besides, treatment with FOLFIRINOX based chemotherapy in particular,
is also associated with significant side effects. Reports have indicated high rates of ≥ grade 3 toxicities, reaching
60-70% [15] [16] [17]. Adverse effects commonly encountered with FOLFIRINOX include leukopenia, diarrhea,
polyneuropathy, and infectious complications. Leukopenia, infections, and diarrhea are most likely to occur during
the initial cycles of chemotherapy, while polyneuropathy occures later. Strategies such as dose modifications and
the use of growth factor support, including Granulocyte-Colony-Stimulating Factor (G-CSF) and erythropoietin,
have been suggested to improve tolerability and manage these adverse effects. These growth factors stimulate the
production of white and red blood cells, helping to prevent or manage complications such as infections and anemia
during chemotherapy.

Figure 1.2: Current treatment guideline for different disease stages in PDAC [18].

Moreover, certain biomarkers have already been linked to influence OS in PDAC patients. One established con-
ventional tumor marker, Carbohydrate Antigen 19-9 (CA19-9), is widely studied as a diagnostic, prognostic and
predictive biomarker in PDAC [19]. Nevertheless, up to 20% of the pancreatic cancer patients is Lewis negative
and cannot synthesize CA19-9 [20] [21]. Azzariti et al investigated CA19-9 levels in metastatic patients treated
with FOLFIRINOX. Twenty-seven patients were studied of which twenty-one received FOLFIRINOX and six
gemcitabine based treatment. CA19-9 levels pre-treatment and post-treatment were compared within the PR,
SD and PD patient groups. Decreasing CA19-9 levels after treatment were found in patients with PR or SD,
while an increasing trend was found in patients with PD [22]. Another conducted by Schlick et al. [23] identified
two other accessible factors that independently influence OS in patients receiving FOLFIRINOX therapy, namely
elevated Carcinoembryonic Antigen (CEA) levels > 4 and a body mass index (BMI) > 25 prior to the initiation
of palliative chemotherapy. These factors were identified as negative prognostic indicators for OS. Additionally,
the study revealed that thrombocytosis and low BMI were predictors of early treatment-related toxicity [23]. Fur-
thermore, in recent years, there has been an increasing interest in the identification of ciculating biomarkers to
predict the response to chemotherapy. Various biomarkers, including genetic and immunological markers, have
shown potential prognostic value. Van der Sijde et al. [24] discovered a panel of circulating biomarkers with
promising predictive capabilities. However, comparing findings across studies is challenging due to variations in
biomarkers, cut-off values, and chemotherapy regimens. Due to limited validation and small patient populations
in many studies, these biomarkers can only be considered potential predictors for now.



Despite advancements in pancreatic cancer research, a knowledge deficit remains in analyzing complex datasets
for disease management. This master’s thesis aims to develop a robust classification model for PDAC patients
treated with FOLFIRINOX using comprehensive blood results from two multi-center trials in the Netherlands
(PREOPANC-2 NL7094, and iKnowIT NL7522). The dataset includes patients with all stages of PDAC, and
measurements were performed before and after the first chemotherapy cycle. Data analysis techniques such as
principal component analysis, outlier analysis, and random forest modeling are used to classify patients into disease
control (DC) and progressive disease (PD) groups, classified according to the RECIST 1.1 criteria [5]. The analysis
also identifies key variables contributing to the model’s performance, providing insights into significant blood and
tumor markers for PDAC patient outcomes.

The master’s thesis is structured into several sections aimed at analyzing the provided dataset comprehensively.
Section 2.1 offers background information on PDAC and the measured variables. This section serves as a foundation
for understanding the subsequent analyses. Following the literature review, the dataset undergoes a thorough
data analysis in section 3.1. This analysis aims to explore the dataset and gain insights into the blood markers
associated with PDAC, as well as identify potential relationships and differences across the final response groups.
A detailed account of the data analysis is provided in Appendix B.1. To ensure the accuracy and reliability
of subsequent analyses, outlier analysis is performed in section 3.2, with an in-depth examination presented in
Appendix B.2. This process identifies and addresses any anomalous data points that could impact the validity of the
results. To reduce the dataset’s dimensionality while preserving its most informative features, principal component
analysis (PCA) is used. This technique is applied after grouping the blood markers based on their characteristics,
providing a comprehensive understanding of the underlying patterns within each group. A summary of the most
significant findings from the PCA is outlined in section 3.3, with the complete analysis based on the correlation
matrix provided in Appendix B.3, the covariance matrix in Appendix B.5 and without outliers in Appendix B.6.
Subsequently, three random forest classification models are developed in section 5, with additional mathematical
background provided in section 4.1. These models use the blood results as predictors to classify PDAC patients
into the DC or PD categories. The three models include a random forest model incorporating all variables after
removal of outliers, a model featuring only the top 10 most important variables identified in the previous model,
and a model solely using variables measured pre-chemotherapy. Performance assessment of the random forest
classifier includes metrics such as balanced accuracy, precision, and f1-score, and strategies to address the class
imbalance between the DC and PD group.

Additionally, a variable importance analysis is conducted based on the optimized random forest models to identify
the most important blood markers contributing to the classification model’s predictive performance. In order to
enhance the understanding of the relationship between the identified key variables and the final response, partial
dependence plots and accumulated local effect plots, are presented in section 5.2 of which the mathematical
background for these visualizations is explained in section 4.2. These plots provide insights into the marginal
effects of the most important variables on the final response. Medical interpretation of the important variables
is provided in section 5.3 with clinical implications given in section 5.4. Finally, section 6 addresses the study’s
limitations and presents recommendations for future research and section 7 offers a conclusive summary of the
thesis. Overall, using data analysis and machine learning, this study intents to contribute to clinical decision-
making and patient stratification. Ultimately, this might lead to improved patient outcomes and efficient resource
utilization in the management of pancreatic cancer care.

Figure 1.3: Steps taken in this master thesis from data analysis to final model



2 | Literature Review

2.1. Background information

This section aims to provide background information on relevant papers that were reviewed to gain a comprehensive
understanding of PDAC, FOLFIRINOX treatment, biomarkers, and other important concepts used throughout the
thesis. Key concepts from previous studies as well as relevant clinical background information will be summarized.
Additionally, a concise explanation of the measured tumor and blood markers will be provided.

2.1.1 Pancreatic Ductal Adenocarcinoma

Pancreatic cancer has exhibited a significant increase in incidence over the years, with new cases rising from
approximately 1400 in 1995 to approximately 2922 in 2021 in the Netherlands [25]. Within the realm of pancreatic
cancer, Pancreatic Ductal Adenocarcinoma (PDAC) emerges as the most predominant subtype, accounting for
about 93% of diagnosed cases. Other subtypes, such as Neuro-Endocrine Tumors (NET), are less prevalent
[25]. Moreover, the survival rate for PDAC remains significantly lower compared to other cancer types. While
the collective 5-year survival rate for all cancers hovers around 65%, the corresponding rate for pancreatic cancer
(encompassing all subtypes) is merely 7%. Notably, PDAC patients experience an even more dismal 5-year survival
rate of only 3.8% compared to those with other subtypes.

In the context of the Netherlands, PDAC cases are evenly distributed between men and women, with an average
age of approximately 71 years. A substantial proportion, around 71%, of diagnosed patients exhibit a good
performance status based on the ECOG performance status score (ECOG 0-1) [15] [25]. Moreover, more than
half of pancreatic cancer patients have reported comorbidities, with 28% diabetes, 12% lung problems, 8% history
of other cancers diagnosis, and 7% having a history of a heart attack [25]. The diagnosis of pancreatic cancer
primarily relies on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans, and other tissue
research methods. Among the diagnosed cases, more than half of the tumors are located in the head of the
pancreas. Due to the manifestation of symptoms at an advanced stage, a majority (57%) of diagnosed patients
already present with metastatic cancer. The most prevalent form of distant metastasis in these cases is observed
in the liver, affecting approximately 75% of patients with metastatic disease, with 43% having isolated metastases
in the liver [25].

Figure 2.1: Stadium at diagnosis of pancreatic cancer [25].
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2.1. Background information

Figure 2.2: Pancreatic Cancer data in the Netherlands. (a) Relative survival rate of PDAC patients from 1989
to 2019 (dark blue = 1 year, light blue = 3 years, orange = 5 years survival rate) (b) Location of pancreatic
cancer (c) Performance status at diagnosis of pancreatic cancer in 2019 (d) Number of comorbidities at diagnosis
of pancreatic cancer in 2019[25].

2.1.2 Biomarkers

Biomarkers are defined as measurable indicators of biological processes, disease states, or responses to treatments
and play a crucial role in providing information about normal physiological processes, pathological conditions,
or the effects of interventions. They encompass a wide range of molecules, substances, or characteristics that
can be objectively measured and evaluated. Examples include proteins, genetic markers, imaging markers, and
physiological measurements [26]. Ideally, biomarkers should be cost-effective, easy to analyze, and non-invasive for
the patient. The current PREOPANC2-iKnowIT dataset only consists of the tumor markers CA19-9 and CEA,
as well as conventional blood markers. Therefore, the data will be divided into two categories: tumor markers and
blood markers. The tumor markers will encompass the CA19-9 and CEA, while the blood markers will be grouped
based on their properties. Blood samples have garnered increasing attention in PDAC biomarker research due to
their distinctive attributes, such as accessibility and potential for non-invasive monitoring of treatment response.
Additional reasons that underscore the usefulness of blood samples in PDAC biomarker research are as follows:

• Representative tumor biopsies: Blood samples offer an alternative to invasive biopsies, allowing for
accessible and non-invasive investigation of molecular characteristics of cancer cells or the immune component
of the disease.

• Intratumoral heterogeneity: PDAC exhibits significant intratumoral heterogeneity 1, which cannot be
adequately captured by a single biopsy. However, blood samples have the potential to provide a more
comprehensive molecular profile of both the primary tumor and its distant metastases.

• Longitudinal monitoring: Peripheral blood can be sampled repeatedly with minimal safety risks and
discomfort, allowing for longitudinal monitoring of PDAC patients and assessment of treatment response
over time.

1Intratumoral heterogeneity refers to the presence of diverse genetic and molecular characteristics within the same tumor. This
variation can lead to differences in how tumor cells behave and respond to treatments, making it challenging to predict and target
the tumor’s behavior uniformly. Essentially, it means that different parts of the same tumor can exhibit distinct genetic profiles,
potentially influencing disease progression and treatment outcomes.
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2.1.3 Tumor Markers

2.1.3.1 Carbohydrate Antigen 19-9 (CA19-9)

Carbohydrate Antigen 19-9 (CA19-9) is a sialylated Lewis blood group antigen associated with various cancers,
including PDAC [19]. It is widely investigated as a diagnostic, prognostic, and predictive biomarker in PDAC
[27], [28]. The recommended upper limit of CA19-9 as a biomarker for pancreatic cancer, as suggested by medical
experts, is 37 U/mL [29]. However, approximately 20% of patients with pancreatic cancer exhibit no or low
secretion of CA19-9. Specifically, the Lewis (-) individuals, comprising about 5%-10% of the global population, have
been identified as lacking or minimally expressing CA19-9 [30], [31], [20], [21]. The Lewis genotypes, determined
by certain variants in the Lewis gene, such as T59G, T202C, C314T, G508A, and T1067A, play a role in the
absence of CA19-9 expression [32]. Prognostically, Lewis (-) patients with advanced pancreatic cancer exhibit
worse outcomes compared to Lewis (+) patients [33]. Hence, despite the promise of CA19-9 as a tumor marker,
it cannot be used for Lewis (-) individuals.

Furthermore, several studies have demonstrated that Lewis (+) pancreatic cancer patients with normal CA19-9
levels (< 37 U/mL) exhibit better prognoses in comparison to those with elevated CA19-9 levels (> 37 U/mL)
[34], [35], [36]. These findings suggest that pancreatic cancer patients with low CA19-9 secretion and Lewis (+)
genotype may have long-term survival prospects. Additionally, a collective analysis of multiple studies has indicated
that baseline as well as post-treatment CA19-9 levels are generally higher in non-responders than in responders.
Particularly, the post-treatment CA19-9 levels have shown more significant differences between responders and
non-responders. In general, the overall consensus is that CA19-9 levels decrease over time in responders, while
they either remain unchanged or increase in non-responders [24].

2.1.3.2 CarcinoEmbryonic Antigen (CEA)

CarcinoEmbryonic Antigen (CEA) is another promising tumor marker that is known to be over-expressed in
various cancers, including breast, lung, and thyroid cancers [37], [38], [39]. Elevated levels of CEA have been
observed in patients with PDAC and have been suggested as an independent predictor of poor survival rates in
these patients [40], [41], [42]. In a study conducted by Hiroshi et al. [40], a cohort of 433 patients with metastatic
disease was examined, and their CEA and CA19-9 levels were analyzed. Among these patients, 36 had normal
levels of both CEA and CA19-9, 149 had elevated levels of both markers, 30 had high CEA levels alone, and
218 had high CA19-9 levels alone. The study revealed that patients with high CEA levels had a significantly
higher prevalence of liver metastasis, while patients with normal CEA levels had a significantly higher prevalence
of lung metastasis. Furthermore, the median overall survival (OS) was significantly shorter for patients with
high CEA levels compared to those with normal CEA levels (6.8 months vs. 10.3 months, respectively). These
findings suggest that patients with elevated CEA exhibit distinct biological behavior compared to those with
normal CEA levels. It is important to note that the patients included in the study received different forms of
therapy, and there were no statistically significant differences in outcomes between patients treated with single-
agent chemotherapy or combination chemotherapy [40]. Additionally, CEA, along with CA125, has been identified
as important biomarkers for Lewis (-) individuals [33].

2.1.4 Blood Markers

A brief explanation of each of the measured blood markers provided in the PREOPANC2-iKnowIT dataset and
their functionality in the human body is provided in this subsection. A summary of the data analysis is given in
section 3.1 with the full analysis in Appendix B.1. The blood markers are categorized into groups based on their
type and function to explain their functionality as in Table 2.1. When conducting principle component analysis
(PCA) in section 3.3, with the full analysis presented in Appendix B.3, these groupings will be used.
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2.1. Background information

Group Blood Markers

Blood Cells Hemoglobin (HB), Thrombocytes (TB), Leukocytes (LK),
Neutrophils (NP), Lymphocytes (LC)

White Blood Cells Leukocytes (LK), Neutrophils (NP), Lymphocytes (LC)

Kidney Function Sodium (Na), Potassium (K), Creatinin (CR),
Glomular Filtration Rate (GFR)

Liver Function
Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT),

Alkaline Phosphatase (AF), Gamma-Glutamyl Transferase (GGT),
Bilirubin (BR), International Normalized Ratio (INR)

Nutritional
Status Albumin (Alb), Sodium (Na), Potassium (K)

Inflammation
Systemic Inflammation Index (SII), Neutrophil-to-Lymphocyte Ratio (NLR),

Platelet-to-Lymphocyte Ratio (PLR),
C-reactive protein (CRP), Leukocytes (LK)

Table 2.1: Blood marker grouping based on their type and functionality.

2.1.4.1 Blood cells: Hemoglobin (HB), Thrombocytes (TB), Leukocytes (LK), Neutrophils (NP),
Lymphocytes (LC)

The group of blood cell measurements designated for this study comprises of hemoglobin (HB), thrombocytes (TB),
leukocytes (LK), neutrophils (NP), and lymphocytes (LC). Hemoglobin is essential for the proper functioning of
the human body as it plays a crucial role in transporting oxygen from the lungs to the organs and tissues. This
protein is present in red blood cells (erythrocytes) and is composed of four protein molecules, called globulin
chains, along with four heme molecules that contain iron. Moreover, thrombocytes, also referred to as platelets,
are small cell fragments present in the blood that are responsible for blood clotting. These platelets rush to
the sites of injury, where they aggregate to form a clot, which helps to stop bleeding and facilitates the healing
process. Additionally, leukocytes, also known as white blood cells, play a crucial role in the body’s immune system
by fighting off infections and diseases. Among leukocytes, neutrophils are a specific type that primarily work
by engulfing and destroying invading microorganisms. Similar to neutrophils, lymphocytes are also a type of
leukocyte and their main responsibility is the identification and neutralization of foreign invaders, such as viruses
and bacteria.

The bone marrow plays a crucial role in the production of erythrocytes, thrombocytes, and leukocytes. These
precursor blood cells are classified as rapidly dividing cells, similar to tumor cells. Therefore, chemotherapy, which
primarily targets rapidly dividing cells, with the aim of tumor cells, will as a result also unintentionally affects
healthy rapidly dividing cells leading to a decline in bone marrow function. This phenomenon is known as “bone
marrow depression" and hinders the production of new blood cells. Consequently, the efficacy of chemotherapy is
impacted, as not only the tumor cells are killed but also many healthy cells. Especially neutrophils are affected,
leading to a condition known as neutropenia, characterized by a low count of neutrophils [43]. This condition
can increase the patient’s risk of developing infections. Additionally, chemotherapy can lead to a decrease in the
number of lymphocytes, leading to a condition known as lymphopenia. Therefore, medication is often provided to
simulate white blood cell production, such as granulocyte-colony stimulating factor (G-CSF). Given the impact
of chemotherapy on white blood cell counts, it becomes crucial to monitor their levels throughout the treatment
process. Analyzing the fluctuations in these cells’ levels can provide valuable insights into the patient’s response
to chemotherapy.

2.1.4.2 White Blood Cells: Leukocytes (LK), Neutrophils (NP), Lymphocytes (LC)

The White Blood Cell (WBC) group consists of the three measured white blood cell variables: Leukocytes (LK),
Neutrophils (NP) and Lymphocytes (LC). Leukocytes are actually another name for all the white blood cells
together, with NP and LC being two subtypes of LK. However, since we have measurements of all these three
variables, we will classify them all under the name white blood cell (WBC). To be specific, there exist two main
categories of leukocytes, these are granulocytes and agranulocytes of which the latter is split in lymphocytes,
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2.1. Background information

and monocytes. Granulocytes are split in neutrophils, eosinophils and basophil cells. The combined function of
leukocytes is to defend the body against pathogenic microorganisms and infections. The ‘hierarchy’ of leukocytes
can be described as follows:

• Leukocytes: Leukocytes, commonly known as white blood cells, are a type of cell that play a vital role in
the immune system. They are responsible for defending the body against foreign invaders, such as bacteria,
viruses and other pathogens. All white blood cells are produced in the bone marrow and can be found
throughout the body. They distinguish themselves from red blood cells and platelets by having nuclei.
Leukocytes can be split into two broad categories: granulocytes and agranulocytes.

• Granulocytes: Granulocytes, are a category of leukocytes that have granules in their cytoplasm. These
are characterized by the presence of specific granules that contain various enzymes and proteins. The three
main types of granulocytes are: neutrophils, eosinophils and basophils.

– Neutrophils: Neutrophils are the most abundant type of granulocytes. These are involved in the innate
immune response and are responsible for phagocytosis, targeting and destroying pathogens.

– Eosinophils: Eosinophils are primarly involved in allergic reactions and combating parasitic infections.

– Basophils: Basophils are the least common type of granulocyte. They play a role in allergic reactions
and inflammation by releasing histamine and other mediators.

• Agranulocytes: Agranulocytes are a category of leukocytes that do not possess granules in their cytoplasm.
The two main types of agranulocytes are: lymphocytes and monocytes

– Lymphocytes: Lymphocytes are involved in adaptive immunity. They can be further classified into
B-cells, T-cells and natural killer (NK) cells. B-cells produce antibodies, T-cells participate in cell-
mediated immunity and NK cells are responsible for recognizing and eliminating infected or abnormal
cells.

– Monocytes: Monocytes are the largest type of leukocytes. They circulate in the blood stream and
can differentiate into macrophages or dendritic cells when they migrate into tissues. Macrophages are
involved in phagocytosis and antigen presentation, while dendritic cells are responsible for capturing
and presenting antigens to activate the immune response.

A schematic overview of the ‘hierarchy’ in white blood cells is presented in Figure 5.17. More detailed information
about B-cells, T-cells, Granulocytes, Monocytes, Macrophages and Dendritic cells can be found in Appendix E.

Figure 2.3: Overview of the different types of white blood cells [44].

In the context of pancreatic cancer, elevated leukocyte levels can be attributed to the immune response of the body
against the tumor. Specifically, increased counts of neutrophils [43] , [45], monocytes [46], [47], and regulatory T-
cells [48] have been identified as poor prognostic factors for survival, whereas elevated levels of total lymphocytes
have shown associations with more favorable outcomes [49], [50], [51]. However, the functions of immune cells
are often complex, and cell counts alone do not always indicate strictly positive or negative outcomes. The
negative impact of elevated neutrophil counts on survival appears contradictory at first. An increased count could
suggest an activated immune system that is actively combating cancer cells. However, in PDAC, neutrophilia

22
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is associated with poorer overall survival, whereas chemotherapy-induced neutropenia in patients with advanced
PDAC is correlated with improved overall survival [45] [43]. This inverse correlation may be explained by an
altered balance of pro-inflammatory and anti-inflammatory cytokines induced by tumors.

2.1.4.3 Kidney function: Sodium (Na), Potassium (K), Creatinin (CR), Glomular Filtration Rate
(GFR)

The variables Sodium (Na), Potassium (K), Creatinin (CR) and Glomerular Filtration Rate (GFR) provide im-
portant information about the kidney functionality. Specifically, GFR is an indicator of the amount of blood
(in milliliters) that is filtered by the kidneys per minute. Higher GFR values are generally indicative of better
kidney function. Creatinin, on the other hand, is a waste product that results from the breakdown of proteins, for
example from muscles. Its levels can increase as a result of cancer and/or chemotherapy. When GFR decreases,
the kidneys filter creatinin less effectively, leading to an increase in creatinin concentration in the blood. However,
individuals with lower muscle mass tend to have lower levels of creatinin overall, meaning that even if kidney
function decreases, creatinin levels may remain low. Hence, elderly individuals and women tend to have lower
creatinin levels compared to men.

Moreover, sodium is an important electrolyte that helps regulate fluid balance in the body. High levels of sodium
can lead to fluid retention and swelling, while low sodium levels can cause muscle cramps, weakness and confusion.
Potassium, another key electrolyte, plays a critical role in regulating fluid balance and muscle function. High levels
of potassium can cause muscle weakness, heart palpitations and even cardiac arrest, while low levels can lead to
muscle cramps, constipation and weakness. Cancer treatment can have side-effects, such as diarrhea or vomiting,
that result in dehydration and alterations in sodium and potassium levels. Because both sodium and potassium
are excreted by the kidneys, their levels also reflect the functioning of these organs.

2.1.4.4 Liver function: Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT),
Alkaline Phosphatase (AF), Gamma-Glutamyl Transferase (GGT), Bilirubin (BR), Inter-
national Normalized Ratio (INR)

The liver function of a patient can be characterized by levels of Aspartate Aminotransferase (ASAT), Alanine
Aminotransferase (ALAT), Alkaline Phosphatase (AF), Gamma-Glutamyl Transferase (GGT), Bilirubin (BR)
and International Normalized Ratio (INR). ASAT, ALAT, AF and GGT are enzymes that are synthesized in the
liver and released into the bloodstream when liver cells are damaged. In cases of pancreatic cancer, increased levels
of these markers can indicate the spread of cancer and may serve as indicators for monitoring liver functionality.
Bilirubin is a waste product resulting from the breakdown of red blood cells in the liver. It typically increases
when bile flow is obstructed, which may occur when a tumor is pressing against bile ducts. This obstruction can
also result in elevated levels of ASAT, ALAT, AF and GGT. To prevent or resolve narrowing of the bile ducts
from the tumor, a stent may be inserted to maintain their patency. Additionally, chemotherapy may cause toxicity
affecting the liver, leading to elevated levels of ASAT,ALAT, AF and GGT. Conversely, when the tumor shrinks,
the pressure on the bile ducts reduces and consequently bilirubin levels may decrease.

In addition, the international normalized ratio (INR) is a measure of blood clotting time that is frequently used
to monitor liver function, as the liver synthesizes clotting factors. Therefore, increased INR values may indicate
diminished liver functionality, as the liver is unable to produce adequate clotting factors. However, due to the lack
of observations (n=19), INR will not be taken into account in further analyses.

2.1.4.5 Nutritional Status: Albumin (Alb), Sodium (Na), Potassium (K)

The nutritional status of a patient can be determined using the Albumin (Alb), Sodium (Na) and Potassium (K)
levels. Albumin is an important protein synthesized in the liver that plays a crucial role in maintaining fluid
balance in the body. Chemotherapy is known to cause nausea in patients, which often results in poor appetite
and subsequent weight loss. This effect is compounded by the high energy demands of the tumor as well as
the chemotherapy treatment itself. Reduced levels of albumin in the bloodstream can serve as an indicator of
malnutrition, liver disease or other underlying conditions. Conversely, increased levels of albumin might be a
response to dehydration, which may result from vomiting or diarrhea. Furthermore, sodium and potassium are
electrolytes that can also be impacted by vomiting and/or diarrhea associated with side effects of chemotherapy.
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Low levels of sodium and potassium in the bloodstream may also signal malnutrition or dehydration, among other
possible conditions. Taken together, these factors can provide insights into the overall health status of the patient.

2.1.4.6 Inflammation: C-reactive protein (CRP), Leukocytes (LK), Systemic Inflammation Index
(SII), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR)

The variables categorized under inflammation include C-reactive protein (CRP), Leukocytes (LK), the Systemic
Inflammation Index (SII), Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR).
Leukocytes play a crucial role in fighting inflammation and infection in the body (as explained earlier in the (white)
blood cell group). Besides that, elevated leukocyte levels may also signify inflammation caused by pancreatic cancer
or by drugs such as G-CSF given to prevent leukopenia. On the other hand, CRP, a protein produced by the liver
in response to inflammation, can also increase due to the cancer or a chemotherapy-induced weakened immune
system. In order to not only look at individual inflammation values, we also consider the ratios between various
white blood cells, namely the SII, NLR and PLR to be specific. SII is calculated as follows,

SII =
N × P

L
(2.1)

where N is the absolute neutrophil count, P the platelet (thrombocyte) count and L the absolute lymphocyte
count. Elevated levels of SII can indicate a state of chronic inflammation and immune dysfunction. NLR and PLR
compare the levels of neutrophils and platelets to lymphocytes, respectively. Similar to SII, these can indicate
chronic inflammation and immune dysfunction. High levels of these markers are associated with worse outcomes
in pancreatic cancer patients [52] [53]. Finally, chemotherapy often weakens the patient’s immune system, making
them more susceptible to infections.

Figure 2.4: Overview of the groupings of the variables considered in the analyses.
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3 | Exploratory Data Analysis

3.1. Data Analysis

The patient data used in this study comprises individuals selected from two multicenter, prospective trials con-
ducted in the Netherlands. All four disease stages are present in the data. The first trial, registered as PREOPANC-
2 in the Dutch trial register (NL7094), employed a randomized clinical design comparing neoadjuvant FOLFIRI-
NOX with neoadjuvant gemcitabine-based chemoradiotherapy in resectable and borderline resectable patients.
Blood was obtained at several moments for biomarker investigation in both groups. However, only the blood
measurements of the patients who have undergone the FOLFIRINOX treatment have been used in this study.
The second trial, known as iKnowIT in the Dutch trial register (NL7522), focused on the predictive value of
circulating biomarkers and included patients with locally advanced or metastatic PDAC. From all the measured
blood samples, the measurements were taken before and after the first FOLFIRINOX cycle. Additionally, tumor
marker measurements of CA19-9 and CEA are also present in the data. The aforementioned trials received ethical
approval from the respective ethics committees of all participating hospitals contributing patients to this thesis.
These hospitals include: Erasmus Medical Center Rotterdam (MEC-2018-087 and MEC-2018-004), Amsterdam
UMC, location Academic Medical Center (2018_196 and 2018_138), Leiden University Medical Center (L18.070
and L18.053), Isala hospital Zwolle (180606), and Medisch Spectrum Twente Enschede (H18-81). All patients
provided written informed consent, and both studies were conducted in adherence to the principles outlined in the
declaration of Helsinki. In order to get a good understanding on the provided dataset a thorough data analysis
has been conducted. The full data analysis can be found in Appendix B.1. This section is a summary of the most
important findings. The explanation as well as the units of each measured variable in the dataset can be found in
Tables 2, 3 and 4.

To begin, the dataset comprises of 249 patients spanning the years 2018-2020, with one person from 2015. Two
patients, have been excluded from the analysis due to their lack of data. They only had reported Date of IC. Hence,
the total number of patients in the dataset that can be used is 247, with 137 male and 110 female participants.
In addition, there were eight patients with missing final response, who will be reported in the Not Available (NA)
group. To ensure the selection of the most relevant data, columns with a low number of observations were removed
from the dataset, i.e. less than twenty. Despite this step, missing values still exist in the remaining dataset. A
summary of the missing data for each variable is provided in Figure 3.1. In addition, the data analysis provided
later in this section will exclude missing values depending on the selected tumor or blood marker considered. The
final outcome, referring to the final response after chemotherapy treatment using FOLFIRINOX, categorizes the
patients into five different categories given in Table 3.1.

Figure 3.1: Overview of the variables in the PREOPANC2-iKnowIT dataset and the number of missing values for
each variable, n=247.

In the dataset provided, only 3 (1.3%) patients showed complete response to the chemotherapy, 48 (20%) showed
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3.1. Data Analysis

Number Final reponse Explanation

0 Complete Response (CR) The cancer can completely disappear
for a time after treatment

1 Partial Response (PR) The cancer shrinks at least by a
third after treatment.

2 Progressive Disease (PD) The cancer starts to grow again
3 Stable Disease (SD) The cancer neither shrinks nor grows after treatment
4 Unknown (Un) -

Table 3.1: Final response to chemotherapy.

partial response, 43 (18%) progressive disease, 122 (51%) stable disease and 23 (9.6%) were unknown. Note that
there was a separate number within the final response variable with the label ‘unknown’. These 23 patients are
subsequently also removed from the analysis later as the final response is unknown, e.g. because no evaluation scan
was performed or available for tumor measurements. Therefore, the total number of unknowns in the entire dataset
would be 23+8=31 with missing final response. In addition to that, the final response can also be dichotomized.
These two categories are defined as given in Table 3.2.

Number Dichotomous Final response Contains

0 Disease Control (DC) CR, PR, SD
1 Progressive Disease (PD) PD

Table 3.2: Dichotomized final response to chemotherapy.

In these categories, 173 (72%) patients were classified as DC and 43 (18%) as PD. The data analysis starts with
analyzing the patient characteristics, followed by the tumor markers and finally the blood markers grouped by
final response to chemotherapy. The most significant findings are summarized in the next subsection.

3.1.1 Overview of significant observations in the dataset

This subsection presents an overview of the significant findings related to patient characteristics, tumor markers
and blood markers in the provided dataset. The full analysis can be found in Appendix B.1 containing all the
histograms, boxplots, scatterplots, QQ-plots and more.

3.1.1.1 Patient characteristics

Patient characteristics consist of the demographic and clinical characteristics of the patients examined to assess
their potential influence on the final response to chemotherapy based on the clinical data provided. The gender
distribution in the study cohort was found to be approximately 55% male and 45% female. To assess the impact
of gender on the final response to chemotherapy, a stacked bar chart was generated (see Figure B.1). Surprisingly,
the analysis indicated that gender did not exert a significant influence on the outcome of chemotherapy treatment.
Furthermore, when examining the age range of the patients, it was found to span from 47 (minimum) to 82
(maximum) years, with an average age of 64 years. In order to investigate whether age played a role in the final
response to chemotherapy, data visualization was performed, see Figure B.2. Interestingly, the findings suggest
that age did not exert a significant effect on the outcome, as there were no notable variations observed across the
age range studied.

Assessing the weight distribution among the patients showed that the average weight was 78 kg, ranging from
42 to 124 kg. The distribution of the weight values exhibited a reasonably normal pattern with a slight left
skew. Nevertheless, upon analyzing the plot in Figure B.3 no clear association between weight and final response
to chemotherapy could be identified. Next, after exploring the height (in the file named ‘Length’) data, it was
observed that the patients’ height ranged from 152 to 200cm, with an average height of 174cm. After analysis of
the plot in Figure B.4, no significant disparities were observed among the groups in terms of the final response to
chemotherapy. This suggests that height is unlikely to be a determining factor in treatment outcomes.
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3.1. Data Analysis

Furthermore, the body mass index (BMI) is calculated for the patients using the equation in Equation (B.2). The
values ranged from 15.9 (underweight) to 37.1 (obese) with a mean BMI of 25.5 (slightly overweight). While no
distinct pattern linking BMI to chemotherapy response emerged from the data, it is worth noting that patients
with higher BMI may have an increased risk of developing PDAC, possibly associated with unhealthy lifestyles.
Continuing the analysis of the stage of disease prior to chemotherapy, it revealed that all complete responders
(n=3) had resectable pancreatic cancer, as illustrated in Figure B.6. Nevertheless, this finding, despite the small
amount of patients, does support the notion that patients with (borderline) resectable PDAC generally exhibit a
more favorable disease outcome after chemotherapy.

Moreover, after examination of the influence of a positive history of family history of cancer on the final response
to chemotherapy, given in Figure B.7, it was found to have no significant effect. However, a positive family history
may serve as an indicator of an individual’s susceptibility to developing pancreatic cancer. Smoking is another
influential factor that may enhance the probability of developing cancer. From the data analysis, it was seen that
approximately half of the patients in the data set were smokers. Nonetheless, the bar chart analysis in Figure B.8
did not show a clear trend linking smoking to the response to chemotherapy. However, it is important to note
that smoking can adversely impact other blood markers and a patient’s overall health.

Regarding alcohol use, the chart in Figure B.9 displayed that patients who had a complete response to chemother-
apy did use alcohol. Though, it remains uncertain whether these patients were occasional drinkers or heavy
drinkers. Also, due to the small number of complete responders (n=3), strict conclusions cannot be drawn. In
contrast, patients who had stopped drinking tended to exhibit PR or SD as the final treatment outcome. In
addition, the presence of diabetes mellitus and its potential influence on the final response to chemotherapy is
examined using Figure B.10. However, no significant impact was identified.

After analyzing the history of pancreatitis among the patients in the cohort using Figure B.11, it was observed
that a positive history of pancreatitis tended to lead to SD as the final response to chemotherapy. Nonetheless,
it is crucial to mention that the dataset only included a limited number of eight patients with a positive of
pancreatitis, so clear conclusions cannot be drawn. Furthermore, only 37 patients in the dataset had a positive
history of malignancy. Among them, the figure in Figure B.12 shows that all the four final responses have been
observed. Hence, no definite conclusions can be drawn from the available data. Lastly, after examining the impact
of prior chemotherapy treatment on the final response to the current FOLFIRINOX chemotherapy cycle, it was
observed that of the 13 patients who had a positive history of chemotherapy, most of these exhibited either PR
or SD. This might be a consequence of a potential increased sensitivity to chemotherapy resulting from previous
treatment.

3.1.1.2 Tumor markers

Next, the tumor markers Carbohydrate antigen 19-9 (CA19-9) and Carcinoembryonic antigen (CEA) have been
analyzed. In the provided data, the levels of CA19-9 in almost all patients exceeded the healthy threshold of
37 kU/L, based on the advice of medical experts from the Erasmus Medical Center Rotterdam. Surprisingly,
the analysis demonstrated that chemotherapy did not have a significant impact on CA19-9 values. However, the
biggest difference in values before and after the first chemotherapy cycle, as well as the biggest CA19-9 values, are
observed in the patients with PD as final response. Moreover, no discernible gender-based differences were found
in CA19-9 levels. Similar to CA19-9, most patients exhibited elevated levels of CEA above the healthy reference
range. However, due to the presence of a high outlier value of 2822 in our study, the mean CEA level increased
after chemotherapy. In the absence of this outlier, no significant difference was observed in CEA values before
and after chemotherapy or between diagnosis and pre-chemotherapy levels. Furthermore, the plot depicted in
Figure B.41 did not indicate a clear association between smoking and CEA levels. Nevertheless, current smokers
showed a higher mean CEA level compared to non-smokers. The analysis of the relationship between CA19-9
and CEA levels did not reveal a consistent pattern between CA19-9 and CEA levels. Most patients with low
CA19-9 levels exhibited correspondingly low CEA levels, while high CA19-9 levels could be associated with low
CEA levels before and after chemotherapy. However, a number of outlier values were observed where high levels
of both CA19-9 and CEA were present.
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3.1. Data Analysis

3.1.1.3 Blood markers

To continue, the measured blood markers values before and after the first chemotherapy cycle are analyzed. Firstly,
the hemoglobin (HB) values exhibited a slight decrease after chemotherapy. Before and after chemotherapy, these
values followed a normal distribution, as can be seen from the QQ-plot and performed Shapiro-Wilk test in
Figure B.51 and Table B.7. There was no significant difference observed between the final response groups. As
expected, females tended to have lower HB values compared to males. In addition, the thrombocytes (platelets)
values decreased on average after chemotherapy, with the smallest differences observed in the PR group (they
were mostly within the healthy range too). However, there was no significant difference between the TB values of
the PD and SD groups. Next, the leukocyte (white blood cell) count significantly increased after chemotherapy
surpassing the healthy range. Unlike TB and HB, there was no significant difference observed across the final
response groups. Similar to the LK count, the neutrophil count (NP) dramatically increased after chemotherapy
for most patients, with no clear distinguishing pattern among the final response groups. On the contrary, the
lymphocyte (LC) values were not significantly affected by chemotherapy, as most of them remained within the
healthy range before and after treatment.

Incorporating leukocytes, neutrophils, and lymphocytes into a single graph may provide more informative insights
than analyzing them separately. Figure 3.2 depicts the values of these variables before the first chemotherapy
treatment, while Figure 3.3 displays the values after it. The influence of neutrophils and lymphocytes on leukocyte
count per patient can be clearly observed from these plots. Furthermore, note that the scale on the white blood
cell variables after treatment is more than twice as large as before treatment. After the first chemotherapy
treatment, the neutrophil count appears to dominate the entire leukocyte count, with little contribution from
lymphocytes. This suggests that neutrophils are more susceptible to chemotherapy treatment than lymphocytes,
although medication given to patients during treatment may also be a contributing factor. However, no clear trend
can be inferred between the final response groups and the leukocyte, neutrophil and/or lymphocyte counts.

Figure 3.2: White blood cell counts of Leukocytes (LK), Neutrophils (NP) and Lymphocytes (NP) before the
first chemotherapy cycle sorted based on their final response in 109/L blood, n = 119 (Complete response (CR,
n=2), Partial response (PR, n=21), Progressive Disease (PD, n=24), Stable Disease (SD, n=64) and Unknown
(Un, n=8).

Furthermore, creatinin values before and after the first chemotherapy cycle seem to follow a normal distribution.
However, due to the presence of a few outliers, which can be clearly seen in Figure B.82, the Shapiro-Wilk test
rejects the normal distribution. The outliers are likely caused by a couple of patients who were heavily affected
by chemotherapy treatment. Overall, chemotherapy did not have a significant impact on the CR values and no
clear differences were seen among the final response groups. However, it is worth noting that males tended to
have higher CR values compared to females, potentially due to their higher muscle mass. Likewise, the glomerular
filtration rate (GFR) was not significantly affected by chemotherapy, with a few exceptions again observed in the
individuals who exhibited a strong reaction to treatment. The majority of GFR values fell below the healthy range
and the smallest difference before and after chemotherapy was observed in the PR group.

Subsequently, sodium (Na) did not show a significant change before and after the first chemotherapy cycle and
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3.1. Data Analysis

Figure 3.3: White blood cell counts of Leukocytes (LK), Neutrophils (NP) and Lymphocytes (NP) after the first
chemotherapy cycle sorted based on their final response in 109/L blood, n = 119 (Complete response (CR, n=2),
Partial response (PR, n=21), Progressive Disease (PD, n=24), Stable Disease (SD, n=64) and Unknown (Un,
n=8).

no clear distinction was observed across the final response groups. Most Na values remained within the healthy
range both before and after treatment. However, this might be a consequence of medication given to the patients.
Contrasting, potassium (K) values exhibited a slight decrease on average after chemotherapy, but remained within
the healthy range for the majority of patients, with only a few falling below the healthy boundary. Also, the
potassium values were normally distributed as can be seen from Figure B.103. However, there was no clear
difference observed across the final response groups.

Continuing the analysis on the liver variables showed that Aspartate Aminotransferase (ASAT) values slightly
decreased in general, especially for the patients with initially high ASAT values before chemotherapy. However,
almost all values remained above the healthy range, and the biggest spikes were seen in the patients who exhibited
SD as final response. Nevertheless, there was no significant difference observed across the final response groups.
Similar to ASAT, Alanine Aminotransferase (ALAT) values also exhibited a slight decrease after chemotherapy,
particularly for patients with elevated ALAT levels prior to treatment. Yet, there was no notable difference
observed across the final response groups, nor between males and females. In contrast to ASAT and ALAT,
Alkaline Phosphatase (AF) values showed a slight increase after chemotherapy, with the largest difference before
and after treatment observed in the PD group due to a few outliers. Gamma-glutamyl Transferase (GGT) values
generally decreased after chemotherapy, with very few values falling within the healthy range despite the decrease.
No significant difference was found between the final response groups, nor between males and females, or across
alcohol usage.

Similar to the white blood cells, it may provide valuable insights to depict the ASAT, ALAT, and AF values
collectively in a single graph. This analysis was conducted and the results are presented in Figure 3.4 and
Figure 3.5. The graphical representations indicate a significant correlation between ALAT and ASAT values. It
is evident that patients generally exhibit comparable ALAT and ASAT levels both before and after undergoing
chemotherapy. Moreover, the AF values tend to be higher in comparison to the ALAT and ASAT values across
all patients. Notably, among patients with elevated levels of ASAT and ALAT, the AF value tends to be higher as
well, with the exception of one particular patient who demonstrates exceptionally high pre-chemotherapy ALAT
and ASAT values but a comparatively low AF value.

The analysis of the Bilirubin (BR) values shows that these values significantly decreased after the first chemother-
apy cycle, transitioning from initially high, unhealthy levels to values within the healthy range for almost all
patients. The smallest difference before and after chemotherapy was observed in the PR final response group.
Albumin (Alb) levels slightly decreased after chemotherapy for the majority of patients with a few exceptions.
Most values fell within the healthy range before the first chemotherapy treatment, but dropped below the healthy
range afterwards. Nonetheless, there was no significant pattern observed across the final response groups. On the
contrary, C-reactive protein (CRP) levels increased significantly for most patients following chemotherapy, with
almost all values exceeding the healthy range both before and after treatment. The largest changes were observed
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3.1. Data Analysis

Figure 3.4: ALAT, ASAT and AF values before the first chemotherapy cycle sorted based on their final response
in U/L blood, n = 175 (Complete response (CR, n=3), Partial response (PR, n=40), Progressive Disease (PD,
n=32) and Stable Disease (SD, n=100).

Figure 3.5: ALAT, ASAT and AF values after the first chemotherapy cycle sorted based on their final response
in U/L blood, n = 175 (Complete response (CR, n=3), Partial response (PR, n=40), Progressive Disease (PD,
n=32) and Stable Disease (SD, n=100).

in the PD and SD groups. Unfortunately, due to the limited amount of available data (n=19) for the international
normalized ratio (INR), no meaningful conclusions can be drawn.

Finally, the inflammation indices SII, NLR and PLR are examined. SII, the Systemic Inflammation Index, showed
a increasing trend in general after chemotherapy for most patients, shifting from values within the healthy range
to values above the healthy boundary of 900, set according to medical experts. From the analysis, it can be seen
that the smallest difference before and after the first chemotherapy cycle was found in the PR group. Likewise,
the NLR increased in general after chemotherapy, with the most substantial increases observed in the PD and SD
groups. However, no significant difference was observed between males and females. In contrast to the NLR, PLR
generally decreased after chemotherapy, transitioning from initially high, unhealthy values to lower values, with
most falling within the healthy range. Nevertheless, no differences were observed between males and females, nor
across the final response groups. Overall, these findings highlight the varied effects of chemotherapy on different
blood markers, indicating the complex interplay between treatment and physiological responses. A summary of
the most important findings is provided in Table 3.6. Further investigation is required to fully understand the
underlying mechanisms and potential implications of these observations.
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3.1. Data Analysis

3.1.2 Overview tables data analysis

Categorical Variables Full data
(n=247)

No missing values
(n=216)

No outliers based on GFR
and BR (n=203)

Gender
Male 137 122 113

Female 110 94 90
Stage of disease

(borderline)
Resectable 152 137 130

Locally advanced 54 48 43
Metastatic 41 31 30

Family history
No 147 131 126
Yes 23 20 18

Unknown 77 65 59
Smoking
Never 108 97 91
Former 74 64 61
Current 50 43 39
Unknown 15 12 12
Alcohol

No 78 71 68
Yes 113 98 90

Stopped 38 33 31
Unknown 18 14 14

Diabetes mellitus
No 189 164 156
Yes 58 52 47

History of pancreatitis
No 239 208 195
Yes 8 8 8

History of malignancy
No 210 182 174
Yes 37 34 29

History of chemotherapy
No 234 204 191
Yes 13 12 12

Cycles of Folfirinox
0 3 - -
1 19 6 6
2 13 10 10
3 8 7 7
4 32 32 29
5 5 5 5
6 5 5 4
7 6 6 5
8 128 126 118
9 2 2 2
10 1 1 1
11 2 2 2
12 15 14 14

Unknown 8 - -
GCSF received

No 52 44 41
Yes 186 171 162

Unknown 9 1 -
GCSF prophylaxis

No 23 23 20
Yes 162 147 141

Unknown 62 46 42

Table 3.3: Overview patient characteristics categorical variables
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3.1. Data Analysis

Variables Disease Control
(n=173)

Progressive Disease
(n=43) p-value

Age (years), mean (SD) 64.8 (8.3) 63.5 (8.8) 0.431
BMI, mean (SD) 25.5 (3.8) 25.2 (4.3) 0.453

Length (cm), mean (SD) 174.5 (10.3) 175.2 (9.6) 0.787
Weight (kg), mean (SD) 78.0 (15.0) 77.1 (12.8) 0.826

Gender 0.270*
Male 94 28

Female 79 15
Stage of Disease 0.148

(borderline) Resectable 114 23
Locally advanced 38 10

Metastatic 21 10
Family history 0.516

No 103 28
Yes 15 5

Unknown 55 10
Smoking 0.814
Never 78 19
Former 50 14
Current 34 9
Unknown 11 1
Alcohol 0.552

No 55 16
Yes 80 18

Stopped 25 8
Unknown 13 1

Diabetes Mellitus 1
No 131 33
Yes 42 10

History of pancreatitis 1
No 166 42
Yes 7 1

History of malignancy 0.819
No 145 37
Yes 28 6

History of chemotherapy 1
No 163 41
Yes 10 2

Cycles of Folfirinox 0.0005
1 2 4
2 6 4
3 3 4
4 14 18
5 3 2
6 3 2
7 6 0
8 120 6
9 2 0
10 0 1
11 1 1
12 13 1

GCSF received 0.518
No 33 11
Yes 139 32

Unknown 1 0
GCSF prophylaxis 0.447

No 20 3
Yes 119 28

Unknown 34 12

Table 3.4: Overview categorical variables and p-values for dataset with no missing values split into the dichotomized
final response. Continuous variables were calculated using the Mann-Whitney U test and categorical variables using
the Fisher’s exact test when there was a small frequency number in the contingency matrix, otherwise the chi-
square test is used, see Appendix A for more information on these tests.
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3.1. Data Analysis

Patient
Characteristic

Influence
on Chemotherapy

Difference in
Final Response
Groups

Gender No No
Age No No
Weight No No
Length No No
BMI No No

Stage of disease CR were (borderline)
resectable No

Family history
of PDAC No No

Smoking No No

Alcohol usage CR were alcohol
users No

Diabetes mellitus No No
Pancreatitis No No
History of
malignancy No No

History of
chemotherapy No No

Table 3.5: Overview patient characteristics and whether there was a significant difference seen in final response in
chemotherapy as well as whether the characteristic itself would influence chemotherapy.
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3.1. Data Analysis

Tumor or Blood
Marker n Affected by Chemo

Difference in
Final Response
Groups

Normally
Distributed Male vs Female

CA19-9 131
Yes, slight increase
after chemo,
few outliers

Yes PD has largest
values and biggest
difference

No No

CEA 103 No, slight increase
after chemotherapy No No NA

HB 223 Yes, slight decrease No Yes
Yes, females
tend to have
lower values

TB 224 Yes, slight decrease No, but smallest
differences in PR No NA

LK 226 Yes, major decrease No No NA
NP 199 Yes, major decrease No No NA

LC 122 No, but maybe a
slight increasing trend No No NA

CR 224 No, but maybe a
slight increasing trend

No, but outliers
in SD group No Yes, males have

higher values

GFR 223 No No, but SD has the
largest differences No NA

Na 160 No No No NA
K 158 Yes, slight decrease No Yes NA

ASAT 192 No, but few outliers
decreased after chemo

Yes, biggest
differences
in SD group

No NA

ALAT 218 No, but few outliers
decreased after chemo No No No

AF 214 No Yes, largest
differences in PD No NA

GGT 191 No
Yes, PR and SD
have more positive
differences

No No

BR 219 Yes, major decrease
after chemo No No NA

Alb 161 Yes, slight decrease
after chemo No No, but

very close NA

CRP 127 Yes, increased after
chemo No No NA

INR 19 No (too few data) No No NA

SII 118 Yes, slight increase
in PD and SD

Yes, largest differences
and values in PD and SD No NA

NLR 119 Yes, increase
after chemo

Yes, largest increase
in PD and SD groups No No

PLR 121 Yes, decrease
after chemo No No No

Table 3.6: Summary of the key findings from the data analysis conducted in Section B.1 on tumor and blood
markers. ‘n’ is number of observations for each marker after excluding missing values, ‘Affected by Chemo’
indicates whether a significant change was observed in the marker value after the initial chemotherapy cycle,
‘Difference in Final Response Groups’ denotes whether there was a significant variation in values among the final
response groups (CR = Complete Response, PR = Partial Response, SD = Stable Disease, PD = Progressive
Disease), ‘Normally Distributed’ is based on the results of the KS-test and QQ-plot analysis in Section B.1, ‘Male
vs Female’ indicates the presence of a significant difference in marker values between males and females (NA =
not applicable when such analysis has not been performed).
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3.1. Data Analysis

Variable before
chemotherapy

Disease Control
(n=173)

Progressive Disease
(n=43) p-value

Tumor markers, median (IQR)
CA19-9 (kU/L) 136.1 (41.0-403.0) 687.5 (99.5-1970.8) 0.002
CEA (µg/L) 3.4 (2.1-7.2) 5.1 (2.9-12.4) 0.119

Blood markers, median (IQR)
HB (mmol/L) 7.9 (7.3-8.6) 7.8 (6.8-8.1) 0.032
TB (109/L) 278.0 (226.2-325.0) 253.0 (220.2-335.2) 0.562
LK (109/L) 7.9 (6.6-9.2) 8.1 (6.8-9.6) 0.659
NP (109/L) 8.1 (3.4-13.0) 7.7 (3.7-10.8) 0.206
LC (109/L) 1.7 (1.3-2.1) 1.8 (1.5-2.2) 0.312

CR (µmol/L) 69.0 (58.0-79.0) 69.0 (58.5-81.5) 0.632
GFR (mL/min) 90.0 (81.3-90.0) 90.0 (82.0-93.0) 0.352
Na (mmol/L) 139.0 (137.0-141.0) 140.0 (137.0-141.0) 0.515
K (mmol/L) 4.2 (3.9-4.4) 4.3 (4.1-4.7) 0.195
ASAT (U/L) 27.0 (20.0-36.0) 31.0 (21.0-46.0) 0.590
ALAT (U/L) 35.0 (24.0-57.0) 32.0 (19.0-50.0) 0.391

AF (U/L) 123.0 (90.5-179.0) 130.0 (102.0-187.5) 0.408
GGT (U/L) 72.0 (37.0-140.5) 128.0 (62.0-171.0) 0.083

BR (µmol/L) 14.0 (7.0-25.0) 17.0 (9.0-24.5) 0.278
Alb (g/L) 40.0 (36.0-43.0) 39.5 (35.3-41.8) 0.299

CRP (mg/L) 4.3 (1.5-9.5) 9.7 (2.7-15.5) 0.133
SII 764.9 (567.0-1131.9) 937.4 (520.5-1249.2) 0.533

NLR 3.0 (2.1-4.3) 3.1 (2.2-4.6) 0.723
PLR 163.5 (122.0-215.9) 148.4 (111.9-252.6) 0.663

Table 3.7: Overview measured tumor and blood variables measured before the first chemotherapy cycle and p-
values for dataset with no missing values split into the dichotomised final response: disease control and progressive
disease groups. P-values are determined using the Wilcoxon Ranksum test.

Variable after
chemotherapy

Disease Control
(n=173)

Progressive Disease
(n=43) p-value

Tumor markers, median (IQR)
CA19-9 (kU/L) 95.0 (33.9-448.3) 1087.0 (158.3-2047.0) 0.001
CEA (µg/L) 3.7 (2.2-7.2) 4.8 (2.9-12.1) 0.268

Blood markers, median (IQR)
HB (mmol/L) 7.6 (7.0-8.1) 7.4 (7.1-7.9) 0.430
TB (109/L) 199.5 (151.2-211.9) 223.0 (172.0-291.0) 0.074
LK (109/L) 11.9 (6.4-18.0) 11.9 (7.3-15.3) 0.854
NP (109/L) 8.1 (3.4-13.0) 7.7 (3.7-10.8) 0.734
LC (109/L) 1.9 (1.2-2.6) 1.9 (1.4-2.6) 0.657

CR (µmol/L) 70.0 (59.0-81.0) 66.5 (56.3-80.8) 0.359
GFR (mL/min) 89.5 (78.0-90.0) 90.0 (82.3-95.0) 0.082
Na (mmol/L) 139.0 (137.2-141.0) 140.0 (138.0-141.0) 0.539
K (mmol/L) 4.0 (3.6-4.2) 4.0 (3.7-4.2) 0.494
ASAT (U/L) 27.0 (22.0-34.0) 28.0 (21.0-36.0) 0.529
ALAT (U/L) 34.0 (25.0-51.0) 33.0 (27.0-43.0) 0.576

AF (U/L) 146.0 (110.0-193.0) 171.0 (115.0-214.5) 0.165
GGT (U/L) 72.0 (37.0-140.5) 82.0 (53.0-156.0) 0.064

BR (µmol/L) 7.0 (5.0-11.6) 9.0 (7.0-12.0) 0.138
Alb (g/L) 37.0 (33.0-40.0) 36.0 (33.0-40.0) 0.935

CRP (mg/L) 6.0 (2.6-21.3) 11.0 (3.7-28.2) 0.403
SII 764.8 (474.7-1354.3) 973.7 (737.3-1430.9) 0.173

NLR 4.2 (2.8-6.1) 4.4 (2.3-6.9) 0.835
PLR 107.3 (69.7-149.5) 116.0 (88.0-152.7) 0.280

Table 3.8: Overview measured tumor and blood variables measured after the first chemotherapy cycle and p-values
for dataset with no missing values split into the dichotomised final response: disease control and progressive disease
groups. P-values are determined using the Wilcoxon Ranksum test.
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3.1. Data Analysis

Variable difference before
and after the first cycle

Disease Control
(n=173)

Progressive Disease
(n=43) p-value

Tumor markers, median (IQR)
CA19-9 (kU/L) 0.0 (-44.0-35.0) -43.3 (-403.5-83.5) 0.078
CEA (µg/L) 0.0 (-1.1 -0.8) -0.4 (-0.7 - 0.8) 0.852

Blood markers, median (IQR)
HB (mmol/L) 0.4 (0.0-0.8) 0.2 (-0.2-0.5) 0.041
TB (109/L) 69.0 (28.8-113.0) 33.5 (0.8-70.8) 0.013
LK (109/L) -3.8 (-9.4-1.4) -2.7 (-7.5-0.9) 0.905
NP (109/L) -2.9 (-7.3-1.6) -1.8 (-4.7-1.6) 0.491
LC (109/L) -0.2 (-0.8 - 0.2) -0.1 (-0.5-0.2) 0.463

CR (µmol/L) -1.0 (-7.0 - 3.0) 0.0 (-3.0 - 3.0) 0.091
GFR (mL/min) 0.0 (-1.0 - 3.0) 0.0 (-2.0 - 1.0) 0.183
Na (mmol/L) 0.0 (-2.0-2.0) 0.0 (-22.0-1.3) 0.936
K (mmol/L) 0.3 (-0.1 - 0.6) 0.3 (-0.1 - 0.5) 0.960
ASAT (U/L) 1.0 (-7.0 - 8.8) 2.0 (-7.8 - 10.8) 0.971
ALAT (U/L) 1.0 (-12.0 - 14.0) -1.0 (-10.0 - 8.0) 0.589

AF (U/L) -20.0 (-59.0 - 22.0) -12.0 (-77.5 - 21.0) 0.551
GGT (U/L) 8.5 (-13.5 - 47.8) 5.0 (-30.0 - 51.8) 0.301

BR (µmol/L) 6.0 (1.0 - 13.0) 7.0 (1.0 - 11.0) 0.985
Alb (g/L) 3.0 (0.9 - 5.0) 3.0 (-0.3 - 4.3) 0.493

CRP (mg/L) -1.7 (-11.3 - 1.0) -0.5 (-7.5 - 6.3) 0.258
SII -46.6 (-386.5 - 377.9) 56.4 (-520.7 - 387.2) 0.747

NLR -1.33 (-3.3 - 0.5) -0.5 (-2.2 - 0.7) 0.230
PLR 62.3 (16.8 - 98.8) 23.2 (-3.1 - 53.0) 0.037

Table 3.9: Overview measured tumor and blood variables difference measured before and after the first chemother-
apy cycle and p-values for dataset with no missing values split into the dichotomised final response: disease control
and progressive disease groups. P-values are determined using the Wilcoxon Ranksum test.
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3.2. Outlier Analysis

In Appendix B.1 with a summary given in section 3.1, we performed a thorough data analysis on the complete
dataset and identified missing values for each variable. During this analysis, it was observed that many variables
contain (potential) outliers. Outliers are observations with exceptionally high or low values for a particular
variable and can significantly impact statistical and machine learning models (like random forests). These outliers
can introduce bias in the results, resulting in less accurate and reliable models. Thus, it is essential to identify and
appropriately handle outliers. In the case of random forests, removing outliers can improve the model-building
process by creating a more balanced and representative dataset. Outliers can skew the distribution of the data
and affect the split points chosen by the decision trees in the random forest algorithm. This can lead to overfitting,
where the model performs well on the training data but poorly on new, unseen data. By removing outliers, the
model can generalize better and make more accurate predictions on new data. However, it is important to keep
in mind that removing outliers can also lead to loss of information and potentially biased results. Therefore, it
is crucial to carefully evaluate the impact of outliers on the model and consider alternative approaches, such as
transforming the data or using robust algorithms that are less sensitive to outliers. The outlier analysis performed
on the provided PREOPANC2-iKnowIT dataset will be by use of the inter-quartile range (IQR) method. This
section will only include the rationale behind how the outlier analysis is performed as well as a summary of the
most important findings, whereas the full detailed outlier analysis can be found in Appendix B.2.

3.2.1 Outlier analysis using Inter-Quartile Range (IQR)

The Inter-quartile Range (IQR) method is a common technique used for outlier analysis in statistics. The IQR
is defined as the difference between the lower quartile (25th percentile) of a dataset and the upper quartile (75th
percentile). It provides a measure of the spread of the middle 50% of the data, which is more robust to outliers
than the standard deviation. To identify outliers using the IQR method, a common rule of thumb is to consider
any data point that falls more than 1.5 times the IQR below the lower quartile or above the upper quartile as
an outlier. These points are considered to be extreme values that are unlikely to have occurred by chance, and
may be indicative of errors in the data or genuine anomalies that require further investigation. By identifying and
removing outliers, the IQR method can help improve the accuracy and reliability of statistical analyses, as well as
machine learning models that rely on the input data being representative. To summarize, for outlier detection of
each of the provided variables, the following steps are taken using the IQR-method:

Algorithm 1 IQR algorithm for outlier detection
Require: Data D
1: Find the first quartile, Q1
2: Find the third quartile, Q3
3: Calculate the IQR:

IQR = Q3−Q1

4: Define the normal data range [Q1− 1.5× IQR, Q3 + 1.5× IQR]
5: Remove any data point outside this range and consider it as an outlier.

In the subsequent subsections, the outliers for the tumor markers and blood markers measured before and after the
initial chemotherapy cycle, will be determined using the IQR-method. For each variable, tables will be presented
displaying the Patient ID and corresponding outlier value. Additionally, boxplots and histograms will be used as
graphical representations of the values for each variable both before and after outlier removal. Lastly, a summary
table will be provided detailing the count of outliers for each variable, as well as whether the variable exhibits
normal distribution both before and after outlier removal, and any noteworthy observations. It is important to note
that the IQR method has no medical or biological basis for defining which values should be considered outliers.
As such, the interpretation of the results should be considered with caution and in conjunction with medical
experts. In the random forest model later on, outliers will be based on medical advice of GFR< 30mL/min and
BR> 50µmol/L, as outliers may carry important information or insights into the data, and their removal may
lead to a loss of valuable information. Instead, this outlier analysis should be considered as a complementary tool
to provide a comprehensive understanding of the dataset and its underlying patterns.
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3.2.2 Overview of the most important findings

The findings from the outlier analysis performed on the tumor and blood markers have revealed interesting insights.
In the CA19-9 analysis, it was observed that all outlier patients were the same, except for patient 001PANC0011,
who only appeared in the outlier table for CA19-9 values before the first chemotherapy cycle. After removing the
outlier observations, a clear reduction in the spread of CA19-9 values was observed, as depicted in the provided
boxplots and histograms in Figure B.191, Figure B.192, Figure B.193, and Figure B.194. Similar to the CA19-9
marker, many patients who exhibited outlier values for the CEA tumor marker at diagnosis and before the first
chemotherapy cycle continued to display such values after it. Removing the outlier observations resulted in a
noticeable reduction in the spread of CEA values.

Furthermore, since the the hemoglobin values already showed a normal distribution in the data analysis conducted
in Appendix B.1, removal of the two identified outliers did not change this. Conversely, the thrombocyte (TB)
values before and after the first chemotherapy cycle were not normally distributed before the removal of outliers.
However, after the removal of outliers, TB before the first cycle became normal, with a p-value of 0.61 determined
by the Shapiro-Wilk test. On the other hand, the TB values after the first cycle were still not considered normal
when, this was also evident in the left-skewed histogram in Figure B.206. In addition, removing the outliers led to a
significant decrease in the spread of leukocyte (LK) counts, with barely any outliers remaining in the new dataset.
The LK before the first cycle are now considered normally distributed, but the LK after remain left-skewed. A
similar trend is observed in the neutrophil counts, with the NP values before the first cycle becoming normally
distributed after the removal of outliers. On the contrary, both the lymphocyte counts before and after the first
cycle were normally distributed after the removal of outliers, as demonstrated by the histograms in Figure B.216
and Figure B.218.

To continue, the creatinine (CR) values before and after the first chemotherapy cycle followed a normal distribution
(p-values: 0.70 and 0.57) after removing outliers. Boxplots indicate that the CR data, without outliers, does not
contain any new outliers and falls within the determined IQR. On the other hand, the GFR data had numerous
outliers before and after the first cycle. Histograms reveal a non-normal distribution with a mode value of 90
mL/min for many patients. Sodium (Na) values were non-normally distributed and remained so even after removing
outliers. However, the p-values for Na before and after increased to 0.008 and 0.004, respectively. Only one outlier
was found in the potassium dataset, observed in a single patient (001PANC0015) after the first cycle. The
potassium values were already normally distributed and remained so even after removing this outlier, with higher
p-values.

The liver variables ASAT, ALAT, AF, and GGT had numerous extreme outlier observations, which were removed
using the IQR method. However, despite the reduction in spread in the variables, all variables remained non-
normally distributed. In contrast, bilirubin data did not have extreme outliers but removing detected outliers still
decreased the spread of values, resulting in a left-skewed histogram. Similarly, albumin values had a few outliers,
which, when removed, led to normal distribution for albumin after values and no outliers in the new dataset.
On the contrary, C-reactive protein values had many outliers and removing them reduced the range significantly.
Moreover, the examination of the inflammation indices SII, NLR and PLR revealed that removal of the outlier
observations resulted in the NLR and PLR values becoming normally distributed, both before and after the first
chemotherapy cycle. In summary, elimination of the outlier observations led to a normal distribution for some
variables, determined by the Shapiro-Wilk test with a significance level of α = 0.01, and reduced the spread within
nearly all variables under consideration, except for the HB, Na and K values, which exhibited only a few outlier
observations.

Finally, to make the analysis complete, the difference between the values before and after the first chemotherapy
cycle were also considered as a separate variable on which the exact same outlier analysis using the IQR-method
has been performed. Surprisingly, after removing the outliers, many of the previously non-normal distributions of
the difference variables exhibited a normal distribution. This was evident in 16 out of the 21 variables considered,
as indicated by the fitted density of their histograms resembling a normal distribution. The table provided in
Table B.96 provides a table with the patients (referred to by their respective Patient ID) and the number of
outliers, as well as the corresponding variables.
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3.2. Outlier Analysis

Variable #Outlier
values

Normal
Distribution
before removal

Normal
Distribution
after removal

Notes

CA19-9
diagnosis 10 No No

CA19-9
before 11 No No 001PANC0011

CA19-9
after 10 No No

CEA
diagnosis 9 No No Different outliers

CEA
before 11 No No 078PANC0001

CEA
after 10 No No

HB
before 1 Yes Yes 078PP20007

HB
after 1 Yes Yes 078PP20028

TB
before 7 No Yes

(p-value 0.61) One low value of 43.0

TB
after 10 No No

(p-value 0.0022) Different patients

LK
before 9 No Yes

(p-value 0.010) One low value of 2.50

LK
after 3 No No

NP
before 6 No Yes

(p-value 0.024) Different patients

NP
after 5 No No

LC
before 6 No Yes

(p-value 0.078)
LC
after 4 No Yes

(p-value 0.090) All patients in before too

CR
before 4 No Yes

(p-value 0.700)

CR
after 5 No Yes

(p-value 0.572)

001PP20040
huge CR
value of 952

GFR
before 26 No No large number

of outliers
GFR
after 25 No No

Na
before 1 No No

(p-value 0.0079)
Na
after 7 No No

(p-value 0.0043) No outliers

K
before 0 Yes

(p-value 0.228)
Yes
(p-value 0.244) No outliers

K
after 1 Yes

(p-value 0.390)
Yes
(p-vaue 0.547)

001PANC0015
only outlier
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3.2. Outlier Analysis

Variable #Outlier
values

Normal
Distribution
before removal

Normal
Distribution
after removal

Notes

ASAT
before 19 No No 001PANC0052

ASAT of1100
ASAT
after 16 No No

(p-value 0.0014)
001PANC0032
ASAT of222

ALAT
before 23 No No 001PANC0052

ALAT of1241
ALAT
after 16 No No 001PANC0032

ALAT of264
AF
before 14 No No

AF
after 12 No No

(p-value 0.0027)
GGT
before 18 No No 151PP20004

GGT of1110
GGT
after 17 No No 078PP20040

GGT of942
BR
before 5 No No 001PANC0025

BR of132
BR
after 5 No No

Alb
before 2 No No

(p-value of 0.0035)
Alb
after 3 No Yes

(p-value of 0.186)
CRP
before 17 No No

CRP
after 12 No No

SII
before 6 No No

(p-value 0.0012)
001PANC0036
SII of 7246.800

SII
after 8 No No

Almost all
different outlier
patients than
before

NLR
before 5 No Yes

(p-value 0.013)

NLR
after 9 No Yes

(p-value 0.012)

001PANC0015
and 151PP20004
very high NLR
(36.8 and 36.0)

PLR
before 6 No Yes

(p-value 0.020)
001PANC0036
PLR of 915.00

PLR
after 10 No Yes

(p-value 0.028)
151PP20004
PLR of 725.00

Table 3.10: Overview table of the outlier analysis for all the measured variables. Note that only the p-values of
the Shapiro-Wilk test of just (or just not) statistically significant (significance level α = 0.01) normal distributed
variables are given. Removal refers to removal of the outlier values of that particular variable with the IQR-
method.
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Variable
Difference

Number of
Outlier
values

Normal
Distribution
before removal

Normal
Distribution
after removal

Notes

CA19-9 27 No No
Large positive
and negative
Difference values

CEA 21 No Yes
(p-value 0.069)

Few patients
with big difference

HB 4 No Yes
(p-value 0.162) similar outlier values

TB 17 No Yes
(p-value 0.040)

LK 5 No Yes
(p-value 0.074) All negative

NP 4 No Yes
(p-value 0.044) All negative

LC 4 No Yes
(p-value 0.514)

151PP20034
only positive
Difference value

CR 15 No Yes
(p-value 0.269)

001PP20040
value of -843

GFR 37 No No

Na 0 Yes
(p-value 0.044)

Yes
(p-value 0.037)

No outliers
Distribution did
change after
removal of the other
Outlier values from
K and Alb

K 6 Yes
(p-value 0.171)

Yes
(p-value 0.015)

Alb 3 No Yes
(p-value 0.172)

ASAT 24 No Yes
(p-value 0.022)

001PANC0052
value of 1079

ALAT 33 No Yes
(p-value 0.056)

001PANC0052
value of 1183

AF 11 No Yes
(p-value of 0.054)

GGT 29 No No
BR 10 No No

CRP 16 No No
(p-value 0.001)

SII 11 No Yes
(p-value 0.558)

NLR 10 No Yes
(p-value of 0.183)

PLR 7 No Yes
(p-value of 0.096)

Table 3.11: Overview table of the outlier analysis of the difference variables. Note that only the p-values of the
Shapiro-Wilk test of just (or just not) statistically significant normal distributed variables are given.
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3.3. Principal Component Analysis

To gain a deeper understanding of the structures, patterns, and interrelationships among the variables, principal component
analysis (PCA) has been conducted. The aim of PCA is to reduce the dimensionality of the dataset, while retaining as
much of the original information as possible. Before applying PCA, the measured blood markers were organized into groups
based on their specific characteristics. The variable INR was excluded from the analysis due to its limited number of data
points. This section begins by elaborating the mathematical background of PCA followed by a summary of the findings
of PCA conducted on the entire dataset using both the correlation and covariance matrix and on the dataset excluding
outliers based on GFR and BR. The complete PCA using the correlation matrix can be found in Appendix B.3, using the
covariance matrix in Appendix B.5 and without outliers based on GFR and BR in Appendix B.6. Furthermore, the analysis
will encompass the following additional categories:

• Patient Characteristics: Height, Weight, BMI and Age

• Tumor Markers: CA19-9 and CEA

• All variables

• All variables, Age, BMI and the differences between the variables before and after the first chemotherapy treatment

• Age, BMI and the differences between the variables before and after the first chemotherapy treatment.

3.3.1 Principal Component Analysis Background Information

PCA is a statistical method used to reduce the dimensionality of a large dataset while preserving important information.
It achieves this by transforming the original data into a new coordinate system called the principal component space.
This transformation is a linear combination of the original variables, with each principal component (PC) capturing the
highest variance in the data. By representing the data with a smaller number of uncorrelated variables, PCA enables the
identification of key features and patterns while minimizing information loss. The PCs are ranked based on the amount of
variance they explain, with PC1 capturing the most variance, followed by PC2, and so on. PCA is an unsupervised learning
method, focusing only on the features and excluding the response variable (e.g., final response to chemotherapy). This
prevents overfitting and unrealistic expectations. In this analysis, missing values are removed to ensure unbiased results,
and the grouping of blood markers is done due to their potential correlations. Overall, PCA is a valuable tool for simplifying
complex datasets and identifying the most significant features driving variability in the data.

3.3.1.1 PCA (mathematical details)

PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear space, the principal subspace,
such that the variance of the projected data is maximized [54]. In order to understand the mathematics behind PCA,
consider a dataset {xi} of i = 1, . . . , n observations and xi represents a vector in Rp with p features. The goal is to project
the data onto a subspace having dimensionality m with m < p, while maximizing the variance of the projected data. For
simplicity, we will focus on the projection onto a one-dimensional space (m = 1), which can easily be generalized to any
m ∈ N. Define the direction of this space using a p−dimensional vector ϕ1. Without loss of generality, we can impose the
constraint ∥ϕ1∥ = 1, since we are interested in the direction rather than the magnitude of ϕ1. Each data point xi is then
projected onto the value ϕT

1 xi for i = 1, . . . , n. The mean of the projected data is ϕ1xi, where xi is the sample mean given
by Equation (3.1) and the variance of the projected data is then given by Equation (3.2) with S the covariance matrix given
by Equation (3.3).

x =
1

n

n∑
i=1

xi (3.1)

1

n

n∑
i=1

(
ϕT
1 xi − ϕ1x

)2

= ϕ1Sϕ1 (3.2)

S =
1

n

n∑
i=1

(xi − x)(xi − x)T (3.3)

To maximize the projected variance ϕT
1 Sϕ1 with respect to ϕ1 while preventing ∥ϕ1∥ → ∞, the appropriate constraint

comes from the normalization condition of ∥ϕ1∥ = 1. This leads to an optimization problem with a Lagrange multiplier,
expressed as,
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J = ϕT
1 Sϕ1 + λ1(1− ϕT

1 ϕ1). (3.4)
To find the stationary points of this optimization problem, we set ∂J

∂ϕ1
= 0, while yields Sϕ1 = λ1ϕ1. This means that

ϕ1 must be an eigenvector of S. By left-multiplying by ϕT
1 and considering ∥ϕ1∥ = 1 we find that the variance is given

by ϕ1Sϕ1 = λ1, thus the variance is maximum when ϕ1 is equal to the eigenvector having the largest eigenvalue λ1. This
eigenvector is known as the first principal component loading vector, containing the coefficients of the linear projection of the
original data. Subsequently, additional principal component loading vectors can be defined in a similar manner by selecting
directions that maximize the projected variance among all possible directions orthogonal to the previous components. In
general, for any positive integer m ∈ N, the linear projection is defined by the m eigenvectors ϕ1, . . . , ϕm of the data
covariance matrix S corresponding to the m largest eigenvalues λ1, . . . , λm [54]. Note that all the ϕi, i = 1, . . . ,m are real
since S is a symmetric matrix.

As a result of projecting the original standardized data onto the PCs, the new data becomes completely uncorrelated,
causing the covariance matrix of the PCs to be a diagonal matrix. Specifically,

Cov(Z1, . . . , Zm) = Diag(λ1, ..., λm),

where λ1, ..., λm represent the eigenvalues associated with m PCs. In total there can be m = min{n − 1, p} PCs. If we
denote the set of p features by X1, . . . , Xp, then PC1 can be defined as a normalized linear combination of these features
that exhibits the largest variance as given in Equation (3.5).

Z1 = ϕ11X1 + ϕ21X2 + . . .+ ϕp1Xp, (3.5)

subject to
∑p

j=1 ϕ
2
j1 = 1 with the elements ϕ11, . . . , ϕp1 being the loadings of the first principal component. Together these

loadings make up the principal component loading vector ϕ1 = (ϕ11ϕ21 . . . ϕp1)
T , which we found earlier. Then, the scores,

which are the projected values of the original data onto the first principal component, is calculated as follows,

zi1 = ϕ11xi1 + ϕ21xi2 + . . .+ ϕp1xip = ϕT
1 X (3.6)

where the values z11, . . . , zn1 correspond to the scores of PC1 and X = (X1, . . . , Xp)
T . When PC1 obtained from the

features, PC2 can be derived by taking the linear combination of X1, . . . , Xp that has maximal variance among all the
possible linear combinations that are uncorrelated with Z1. In general, PCj can be expressed as:

Zj = ϕT
j X (3.7)

subject to∥ϕj∥2 = 1 (3.8)
where ϕj is the principal component loading vector with elements ϕ1j , ϕ2j , . . . , ϕpj . The proportion of variance explained
by the mth PC is given in Equation (3.9). It is the ratio of the variance explained by the mth principal component divided
by the total variance present in the data. The choice of m < p is usually taken such that the cumulative variance explained
is larger than 80% or 90%. Equation (3.9) assumes that the features Xj are all centered around the mean zero. To find the
cumulative proportion of variance explained we sum up the Equation (3.9) over the first m PCs.∑n

i=1

(∑p
j=1 ϕjmxij

)2∑p
j=1

∑n
i=1 x

2
ij

(3.9)

There are two versions of PCA depending on whether X is only centered or also standardized and the optimization problem
can be solved using either an eigendecomposition or a singular value decomposition. Standardization refers to the technique
of scaling the values in such a way to have a distribution with mean zero and unit variance. For each feature Xj with mean
µj and standard deviation σj and xij an observation, the standardized observation is given as,

xstandardized
ij =

xij − µj

σj
. (3.10)

Covariance PCA uses only a centered data matrix X and is used when the variables are on the same or similar scales. On
the other hand, correlation PCA uses the standardized data and is preferred when the scales of the data are significantly
different.

3.3.1.2 PCA approach in this data analysis

In this dataset, after categorizing the tumor and blood markers in the categories described in section 2.1, PCA is performed
using the full data set on both the covariance as well as the correlation matrix and subsequently also after removal of
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outliers based on GFR and BR. A threshold of a cumulative variance explained of at least 80% is used and determined
using scree plots. Subsequently, several other plots are used for the analyses. The interpretation of the plots is explained
in Appendix B.3.

3.3.2 PCA on the various groups

This subsection contains a detailed PCA of the various groups described before and stated in Table 3.12. The final response
analyzed is the dichotomized final response, where 0 = Disease Control (CR, PR, SD) and 1 = Progressive Disease (PD).
The full PCA analysis can be found in Appendix B.3. However, to illustrate how the PCA analysis is performed as well
as how to interpret the provided plots, the blood cell group will be examined in detail in the following subsection. Similar
analyses have been performed in the other groups for both the full dataset using correlation and covariance matrices as well
as after removal of outliers based on GFR and BR.

Group Variables
Blood HB, TB, LK, NP, LC

White Blood
Cells LK, NP, LC

Kidney Na, K, CR, GFR
Liver ASAT, ALAT, AF, GGT, BR and INR*

Nutrition Alb, Na, K
Inflammation CRP, LK, SII, NLR, PLR

Patient Characteristics Height, Weight, BMI, Age

All measured variables HB, TB, LK, NP, LC, Na, K, CR, GFR, ASAT,
ALAT, AF, GGT, BR, Alb, CRP, LK, SII, NLR, PLR

All, Age, BMI and differences
HB, TB, LK, NP, LC, Na, K, CR, GFR,
ASAT, ALAT, AF, GGT, BR, Alb, CRP,
LK, SII, NLR, PLR, Age, BMI

All, Age, BMI only differences
HBdiff, TBdiff, LKdiff, NPdiff, LCdiff, Nadiff, Kdiff, CRdiff, GFRdiff,
ASATdiff, ALATdiff, AFdiff, GGTdiff, BRdiff, Albdiff, CRPdiff,
LKdiff, SIIdiff, NLRdiff, PLRdiff, Age, BMI

Table 3.12: Grouped variables used for PCA

3.3.2.1 PCA on the Blood Cell group

The blood cell dataset consists of variables related to HB, TB, LK, NP, and LC before and after chemotherapy, as well as
the differences between their values. The dataset contains 109 observations with 15 explanatory variables. The correlation
matrix in Figure 3.6 reveals strong positive correlations between HB values before and after the first chemotherapy cycle,
as well as between LC values before and after. Additionally, correlations are observed between LK, NP, and LC, which is
consistent with their nature as white blood cells. HB shows no significant correlation with other variables, except for TB
before and after treatment. Differences in LK, NP, and LC exhibit high correlation, reflecting their common representation
as white blood cells. However, no correlation is observed between the difference in HB and TB, except for their own values
before and after treatment.

The screeplot in Figure 3.7 shows that the “elbow point" is not clear, but the first five PCs account for 81% of the total
variance, which is considered sufficient. Table 3.13 provides the standard deviation, proportion of variance explained,
and cumulative proportion for the first five PCs. The standard deviation reflects the variability captured by each principal
component, and higher eigenvalues indicate greater variance accounted for than a single original variable. Variance explained
indicates the proportion of variability captured by each principal component, while the cumulative proportion represents
the cumulative sum of explained variances. Next, the scatter plot in Figure 3.8 represents the observations in the principal
component (PC) space. Each individual’s position in the plot is determined by their scores along the PCs. The color of each
point indicates the quality of representation, with yellow and red indicating high-quality representation and blue indicating
low-quality representation. The plot shows that individuals closer to the center are poorly represented, while those further
away from PC1 or PC2 have better representation. The proximity of points to the horizontal axis indicates their correlation
with PC1, while proximity to the vertical axis indicates their correlation with PC2. Further patterns or clusters can be
observed, providing insights into the structure of the dataset.

Moving on, Figure 3.9 displays the contributions of the original variables in the blood dataset to each PC. Variables are
represented as arrows, with arrow length and direction indicating their relative importance and contribution to the principal
component’s direction. The ring in the plot illustrates the total variance captured by PC1 and PC2. Arrows close to the
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circle’s boundary imply less loss of information in that PC direction, while shorter arrows suggest smaller contributions.
Variables that are highly positively correlated appear as closely aligned arrows, while highly negatively correlated variables
form an angle larger than 90 degrees but smaller than or equal to 180 degrees. Uncorrelated variables are represented by
a 90-degree angle. This loading plot can be interpreted as follows: Initially, all variables were defined in a 15-dimensional
space (due to the 15 variables in the blood dataset). After PCA, this space is projected onto a 2D space, represented by PC1
and PC2. Variables such as NPdiff, LCdiff, HBdiff, LKafter, and NPafter are positioned close to PC1, indicating strong
positive or negative correlations with PC1. These variables also have relatively high loading scores in the loading score
matrix. Conversely, variables like TBbefore, TBafter, HBbefore, and HBafter are positioned near the vertical axis (PC2),
suggesting high correlations with PC2 and minimal correlation with PC1. These variables exhibit small loading scores in
dimension 1 but high loading scores in dimension 2. For more details, refer to the loading matrix shown in Figure 3.11.

As a pre-processing step, all variables in the blood data group were standardized according to Equation (3.10). As a
consequence, the cosine of the angle between two variables is equivalent to the correlation coefficient between them, provided
that the variables are well-represented. Hence, the plot in Figure 3.9 shows a geometrical representation of the correlation
coefficients between the variables in the blood data group. Note that this is only true in the high dimensional space (in this
case the 15 dimensional space), while the plot shows a visualization of the correlations between the variables in the projected
2D space. The variables LKafter and NPafter are located near the correlation circle, as can be seen by their long vectors
pointing close to its circumference. This indicates that they are well represented and that the projection depicted in the
plot is a close approximation of the actual vectors in the high-dimensional space. Similarly, the variables LKbefore, NPdiff,
and LKdiff also satisfy this condition. Therefore, the angle between the vectors can be used to visualize the correlation
between them. More precisely, the cosine of the angle between the projected values of LKafter and NPafter is almost the
same as the cosine of the angle of the original variables in the high dimensional space. Mathematically, the cosine of the
angle between the projected values PA and PB of variables A and B is almost equal to the cosine of the angle of the original
variables in the high dimensional space, as given in equation (3.11), provided that the variables are well-projected.

cos(θA,B) ≈ cos(θPA,PB )if the variables are well-projected (close to the correlation circle). (3.11)

However, variables that are not well-projected, such as LCdiff and HBdiff (indicated by small arrows and more blue values),
may have a small angle in the projection plane while having a much larger angle in the original space. Thus, the cosine of
the angle in the projection plane does not accurately estimate the cosine of the angle in the original space, making it difficult
to determine the correlation coefficient between poorly represented variables. Only well-projected variables, those close to
the correlation circle, can be reliably interpreted. Consequently, it is not possible to estimate the correlation coefficient
between two poorly represented variables based solely on the projection.

Moreover, the biplot shown in Figure 3.10 combines the scatter plot from Figure 3.8 and the loading plot from Figure 3.9,
and can be interpreted similarly. Firstly, the position of the points represents the observations projected onto the principal
component space defined by PC1 and PC2. The proximity of observations in the biplot indicates their similarity or
dissimilarity. The direction of the arrows represents the direction of highest variance for each variable, while the length
of the arrows reflects the strength of the variables in that direction. Positive correlations between variables are depicted
by arrows pointing in the same direction, while negatively correlated variables have arrows pointing in opposite directions.
Uncorrelated variables have perpendicular arrows. Additionally, the proximity of observations to a variable indicates
the correlation between the observation and the variable. For instance, vectors representing variables like NPdiff and
LKdiff predominantly point to the right in the horizontal direction, indicating high positive correlations with PC1. Thus,
observations close to these variables have high values for NPdiff and LKdiff, while those far to the left have smaller values.
On the other hand, variables such as LKafter and NPafter exhibit a correlation close to -1 with PC1, resulting in values
moving in the opposite direction. Consequently, the first dimension of the biplot separates patients with high LK and NP
after values (on the left) from those with high NPdiff and LKdiff values (on the right), representing the primary source
of variability. The second dimension indicates the high representation of variables LKbefore, NPbefore, and TBbefore.
Observations close to these vectors exhibit high correlation with these variables and have high values for them. Conversely,
HBbefore has a correlation coefficient close to -1, causing observations with small values in the second dimension to be
positioned on the same side as the corresponding variables with high values but opposite to variables with low values.
Consequently, observations can be far from variables for which they have small values. For example, variables with large
negative values near the vertical axis will have large negative values for HBbefore but small values for NPdiff or LKafter.

The correlation matrix and the cos2 bar chart in Figures 3.12 and 3.13, respectively, provide insights into the correlation
between the original variables and the PCs. The correlation plot shows absolute correlation values between the original
variables and the PCs. It confirms previous findings that PC1 is highly correlated with variables LKafter, NPafter, LKdiff,
and LPdiff. Additionally, in the second dimension, variables LKbefore and NPbefore exhibit high correlations. The quality
of representation is visualized in the cos2 plot, where variables LK, NP, and LC are identified as the most important in
the blood dataset. A high cos2 value indicates a good representation of the variable in that dimension and the variable
will also be positioned close to the circumference of the correlation circle given in Figure 3.9. Conversely, low cos2 values
indicate poor representation, and the variables will be closer to the center of the correlation circle. Therefore, cos2 values
are used to assess the quality of representation of the original variables in the principal component space. Variables highly
correlated with the first two PCs are crucial in explaining the total variability in the dataset, as PC1 and PC2 capture the
most variance. Variables with small correlations or high correlations in the last dimension may be removed to simplify the
analysis. Furthermore, the contribution of the original variables to the PCs is visualized in Figure 3.14, with darker colors
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and larger sizes indicating greater contributions of the original variables to specific dimension

Finally, in Figure 3.15 a PCA plot is shown with the data points projected onto the first two PCs. The percentage of
variance explained by each PC is displayed on the axes, indicating how much of the variability in the data is captured by
each PC. Each data point represents an observation from the original dataset with the color and shape determined by the
final response. 95% Prediction ellipses are plotted to indicate the regions of the plot where the majority of the points are
expected to fall. From the figure it can be seen that the ellipses overlap mostly, indicating that the first two dimensions
are not able to separate the blood data based on the final response. However, it is also possible that the overlap is due to
high variability within each group or due to the fact that the original chosen variables may not be the best ones to use for
distinguishing between the groups. Logically, it makes sense, since blood values alone are most likely insufficient to predict
a final response to chemotherapy. Since the first two dimensions were not able to clearly separate the two final response
groups, the plot in Figure 3.16 shows a matrix scatter plot of the two groups in the first four dimensions. It is apparent
from this graph that there is no clear trend. Closer inspection only shows that the DC group seems to be more scattered
throughout the spaces compared to the PD groups based on the blood values. Nevertheless, this might a consequence of
the smaller sample size in the PD group. The 3D-plots in Figure 3.17 and Figure 3.18 show the scores of the observations
projected onto the first three PCs in a 3D visualization.

Blood PC1 PC2 PC3 PC4 PC5
Standard
Deviation 2.174 1.586 1.359 1.307 1.189

Proportion
of Variance
Explained

0.315 0.168 0.123 0.114 0.094

Cumulative
Proportion 0.315 0.483 0.606 0.720 0.814

Table 3.13: PCA summary values of the blood group (n=109 (Disease control (n=85), Progressive disease (n=24))).
It shows the standard deviation, proportion of variance explained and cumulative proportion of the first five PCs.

Figure 3.6: Correlation Matrix of the various variables in the Blood group, n=109 (Disease control (n=85),
Progressive disease (n=24)). Red = Positive correlation, Blue = negative correlation and White = No correlation.
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Figure 3.7: Scree plot of the blood group variables, n=109 (Disease control (n=85), Progressive disease (n=24)).

Figure 3.8: Scatter plot of the blood group variables, n=109 (Disease control (n=85), Progressive disease (n=24)).

Figure 3.9: Loading plot of the blood group variables n=109 (Disease control (n=85), Progressive disease (n=24)).
The circle reflects how well the variables are described. The longer the loading vector (so closer to the circle), the
more the information is captured of that variable. The length of the arrow is proportional to how well the variable
is explained.
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Figure 3.10: Biplot plot of the blood group variables n=109 (Disease control (n=85), Progressive disease (n=24)).

Figure 3.11: Loading matrix of the blood group variables of the first 5 PCs, n=109 (Disease control (n=85),
Progressive disease (n=24)).

Figure 3.12: Correlation of the original blood group variables with the PCs, n=109 (Disease control (n=85),
Progressive disease (n=24)).
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Figure 3.13: Cos2 bar chart of the original blood group variables, n=109 (Disease control (n=85), Progressive
disease (n=24)).

Figure 3.14: Contribution of the original blood group variables to the PCs, n=109 (Disease control (n=85),
Progressive disease (n=24)).

Figure 3.15: PCA plot of the blood group with prediction ellipses, n=109 (Disease control (n=85), Progressive
disease (n=24)). The final dichotomized response is coloured, Blue = 0 (Disease control) and Red = 1 (Progressive
disease).
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Figure 3.16: Scatter matrix plot of the first four PCs, n=109 (Disease control (n=85), Progressive disease (n=24)).
The subplots between PC1, PC2, PC3 and PC4 are provided of the dataset containing the blood group variables
with the final dichotomized response is coloured, Blue = 0 (Disease Control) and Red = 1 (Progressive Disease).

Figure 3.17: 3D plot of the blood group variables projected onto the first three PCs, n=109 (Disease control
(n=85), Progressive disease (n=24)).

Figure 3.18: 3D plot of the blood group variables with the final dichotomized response is coloured and shaped,
where Blue = 0 (Disease control) and Red = 1 (Progressive disease), n=109 (Disease control (n=85), Progressive
disease (n=24)).
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3.3.3 Overview of significant PCA findings

This section presents a brief overview of the key results obtained from the PCA conducted on the original standardized
variables using the correlation matrix. A summary of the main findings is provided in Table 3.14. The first column of the
table lists the group of variables that were analyzed using PCA. The second column reports the number of observations
in each data set with the number of patients classified as DC and PD in brackets respectively, along with the number of
explanatory variables and PCs needed to explain at least 80% of the total variance in the data. The subsequent column
presents the variables that are most influential in driving the variation in the data (i.e., those with the highest correlation
with the first principal component), which can be viewed as the primary factor that explains the structure in the data
if the majority of the information is captured by the first principal component. The prediction ellipse column provides
information on the shape and overlap of the final response 95% prediction ellipses, while the last column includes any
notable correlations or other observations that emerged from the analysis.

The blood data group showed positive correlations among many before and after values of the same variables. However,
HBdiff and TBdiff had no correlation with each other or with differences in the white blood cell variables. Moreover,
LKdiff and NPdiff exhibited a strong positive correlation, which aligns with their biological connection, as NP are a type
of LK. The most important variables in determining PC1 were LKafter, NPafter, LKdiff, and NPdiff. Of these, LKafter
and NPafter were highly positively correlated with each other, while strongly negatively correlated with LKdiff and NPdiff.
Strong correlations among variables indicate dependencies and shared factors in the data. When considering only the white
blood cell variables, the same variables as before were the key variables capturing variation in PCA. However, projecting
the data onto the first two or three dimensions did not distinguish between the DC and PD groups.

In contrast, the kidney function dataset showed no clear correlations among variables, except for their respective before,
after, and difference values. CRbefore, CRafter, GFRbefore, and GFRafter were most influential for PC1, Kbefore for PC2,
and Kdiff and Kafter for PC3. Nevertheless, no clear separation between DC and PD groups was found after projecting the
variables onto the first two or three PCs. This lack of distinct separation suggests that the variability in kidney function as
well as the (white) blood cell groups is not sufficient for distinguishing between the two response groups.

Moreover, the liver group dataset exhibits strong positive correlations among most variables. Surprisingly, the before and
after values of ASAT and ALAT showed weak correlations. However, there was a notable positive correlation between ASAT
and ALAT values, as well as between their respective differences. PCA identified ALATbefore, ASATbefore, ASATdiff, and
ALATdiff as influential variables for PC1, while AFafter and GGTafter predominantly contribute to PC2. Despite these
correlations and variable importance, the 2D and 3D projections of the data fails to provide a clear distinction between
the DC and PD groups. Unlike the liver group dataset, the nutrition data group demonstrated weak correlations among
variables, except for the before, after, and difference values of each variable, which displayed either positive or negative
correlations. Naafter and Albafter were identified as the most influential variables for PC1, capturing significant variation
in the dataset. PC2 was mainly influenced by Kafter, while PC3 was determined by Kdiff. Despite the significance of these
variables and PCA, projecting the data onto the first two or three PCs did not distinctly separate the DC and PD groups.
Thus, the analyzed liver and nutrition variables alone may not possess sufficient discriminatory power to differentiate
between the DC and PD groups. Additional factors need to be considered for a comprehensive assessment.

Similar to the liver group dataset, the inflammation dataset exhibits several correlations among the variables, particularly
for SII, NLR, and PLR. These correlations are expected, given the calculation methods for these inflammation ratios.
However, the CRP difference variable showed no correlation with the LK difference and only weak negative correlations
with SII, NLR, and PLR differences. On the other hand the before, after and difference values of each variable displayed
strong positive or negative correlations with each other, consistent with the definition of these variables. These correlation
patterns are evident in the loading and biplots. The most important variables in determining PC1 were SIIdiff, NLRdiff,
and PLRdiff, which can be explained by the strong correlations among them. The high importance of these variables reflects
their contribution to the primary dimension capturing significant variation in the dataset. However, despite the presence of
these correlations and the importance of the identified variables, projecting the data onto the first two or three dimensions
did not result in a clear distinction between the DC and PD groups. Moreover, in the patient characteristics dataset, weight
and height exhibited a strong positive correlation, as expected due to their inherent relationship. Similarly, BMI and weight
showed a strong positive correlation, consistent with the calculation of BMI. Age, on the other hand, showed no correlation
with other variables, as anticipated given its independence in this context. Weight and BMI were identified as the most
influential variables in determining PC1, capturing significant variation in the dataset. PC3 was primarily influenced by
age. However, considering only these four patient characteristics is insufficient to effectively distinguish between the DC
and PD groups. Despite using three components to explain nearly all the variation in the data, projecting the scores onto
the first two or three PCs did not reveal a clear distinction between the two response groups. Besides the blood markers, the
tumor markers CA19-9 and CEA, play a crucial role in the prognosis of PDAC. Upon examining the correlation matrix in
Figure B.393 it becomes evident that the diagnosis, before, and after values of the tumor markers exhibit very strong positive
correlations, while the difference values do not show significant correlations. This correlation pattern is reflected in the
determination of PC1 and PC2. PC1 is primarily determined by the CEA and CA19-9 diagnosis, before, and after values,
whereas PC2 is influenced by the CEAdiff and PC3 is mainly determined by the CA19-9diff. Despite these correlations
and the ability of the PCs to explain a substantial amount of variation, projecting the data onto two or three dimensions
did not result in a clear distinction between the DC and PD groups. This suggests that relying solely on the tumor marker

51



3.3. Principal Component Analysis

values, specifically CA19-9 and CEA, may not be sufficient to effectively differentiate between the final response groups.

After analyzing the blood markers and tumor markers separately, we now combine all these variables into one comprehensive
dataset. The correlation matrix did not reveal any new correlations between the variables, except for a strong negative
correlation between CR before and GFR before. The screeplot illustrates that no single principal component captures a
substantial amount of variability in the data. Examination of the cos2 bar chart reveals that the variables best represented
in dimensions 1 and 2 are CEAbefore, GGTafter, AFafter, CEAafter, and GGTbefore. Again, it becomes apparent that
projecting the data onto the first two or three PCs does not yield a clear separation between the DC and PD groups.
Furthermore, the patient characteristics dataset was expanded to include additional variables, namely Age and BMI, while
excluding Weight and Height due to the strong correlation observed between them. However, the screeplot showed that
no individual principal component dominates the overall variability. The most important variables determining PC1 and
PC2 include ALATdiff, ALATbefore, ASATdiff, ASATbefore, GGTdiff, GGTbefore, LKafter, NPafter and BRbefore. As
previously observed, ALAT and ASAT values exhibit a strong positive correlation, as do LKafter and NPafter. Consequently,
when projecting the data onto the first two or three dimensions, no clear differentiation between the DC and PD groups is
apparent. This analysis emphasizes that despite incorporating patient characteristics and a comprehensive set of blood and
tumor markers, the PCs derived from the data do not exhibit distinct separability between the two final response groups.

Finally, PCA was further conducted on the dataset containing only the patient characteristics Age and BMI alongside the
difference before and after the first chemotherapy cycle values of the blood and tumor markers. The analysis showed a
strong correlation between LK and NP was observed as well as between ASAT and ALAT values. Furthermore, positive
correlations were identified among AF, GGT and BR variables, all conforming previous observations. Despite the presence
of these correlations, no single principal component was able to account for a substantial portion of the total variation
in the dataset. The most influential variables in determining PC1 were ASATdiff, ALATdiff, AFdiff, GGTdiff and BRdiff
while PC2 was primarily determined by LKdiff and NPdiff. Nevertheless, projecting the data onto the first two or three
dimensions did not reveal a clear distinction between the DC and PD groups.

In summary, PCA was performed on various datasets, including bloodcell values, tumor markers, liver function, nutrition
data, inflammation data, patient characteristics, and a comprehensive dataset combining all variables as well as their dif-
ferences. The results revealed positive correlations among many before, after and difference values of the same variables
in data groups. The most important variables in the blood dataset and white blood cell data were the same. Surprisingly
the before and after values of both ASAT and ALAT showed weak or no correlation, while the two variables themselves
showed an extreme positive correlation. Moreover, the variables in the nutrition dataset exhibited weak correlations with
each other. Furthermore, the inflammation data showed strong correlations among specific inflammation ratios, and pa-
tient characteristics demonstrated expected correlations between weight and height, and BMI and weight. Overall, this
analysis has the overarching conclusion that the studied variable groups as well as all the variables together do not exhibit
distinct separability between the final response groups in the first two or three dimensions, despite having explored various
combinations of the variables. However, PCA assumes linear relationships between variables. Thus, if there are non-linear
relationships present, PCA may not accurately capture the underlying structure and patterns in the data. Moreover,
exploring non-linear modeling approaches and incorporating more comprehensive datasets could provide further insights
into the complex relationships between variables and improve the understanding of the factors influencing the response to
chemotherapy in PDAC patients.

3.3.4 PCA with covariance matrix overview

The previous PCA was conducted using the correlation matrix after centering and scaling the original measured values
of all variables. However, considering unscaled values in PCA could provide additional insights. Unscaled values may be
informative because variables with small variance can lead to larger values during standardization, because each value is
centered and divided by its standard deviation. The choice between using a covariance or correlation matrix in PCA can
impact the resulting PCs in terms of magnitude and direction. PCs derived from a covariance matrix reflect the covariance
structure of the original variables, while those derived from a correlation matrix reflect the correlation structure after
standardization. However, the overall pattern of variability across the PCs remains the same regardless of the matrix used.
Using a correlation matrix is more suitable when seeking relationships between the original variables, while a covariance
matrix is more appropriate when focusing on the overall variability of the variables.

If a single PC captures a significant portion of the total variation in the data, it suggests the dominance of a specific factor
driving the variation. For example, suppose we are analyzing a dataset that contains measurements of various physical
properties of different fruits, such as weight, color, sweetness, and acidity. If PC1 captures 97% of the total variation in
the data, it means that one of these properties (or a combination of them) is driving most of the variation in the dataset.
We might interpret this to mean that the weight of the fruit, for example, is the most important factor in determining the
overall structure of the dataset, and that other properties like sweetness and acidity are less important. Note that these
properties might be dominant in high order PCs. However, it’s important to note that reducing the dimensionality to a
single principal component may result in the loss of information about other important factors contributing to the variation.
Careful consideration is needed to balance dimensionality reduction and information preservation when interpreting PCA
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results for a specific analysis or application. An overview of all the findings using PCA on the covariance matrix can be
found in Table 3.15 with the full analysis presented in Appendix B.5. This analysis reveals a significant dominance of
CA19-9, as it appears that almost all the variance in the dataset is predominantly captured by CA19-9 when considering
the entire dataset.

3.3.5 PCA after removal of outliers overview

The PCA was performed without removal of outliers due to the small sample size and the potential loss of valuable
information or distortion of the data structure. Including outliers in the analysis ensures the integrity of the dataset and
provides a robust assessment of the PCA results. However, outliers can have a significant influence on PCA as they can
distort the estimation of the PCs and the representation of the majority of the data points. They can increase the variance
and covariance in certain dimensions, leading to a distortion of the covariance matrix. Moreover, outliers can bias the
directions of greatest variation towards themselves, potentially distorting the overall representation. Additionally, outliers
with large variances can dominate the total variance, causing certain components to explain a disproportionate amount of
the variance. This can lead to an overestimation of their importance and an underestimation of others. Finally, outliers
can significantly impact the projection of the data onto the selected PCs, as they skew the data distribution. This was
observed in many variables in the analysis conducted in Appendix B.1.

A brief examination of the PCA results on the dataset, excluding outliers based on BR> 50mol/L and GFR< 30mL/min
values, as suggested by medical experts from the Erasmus MC Rotterdam, before chemotherapy, is presented in this section.
The rationale for selecting these values is further elaborated in Section 5. An overview of the PCA results after outlier
removal is summarized in Table 3.16. In this table, the data groups are defined as explained earlier, with ‘n’ representing
the total number of observations. The values within parentheses denote the breakdown of observations into DC and PD
groups. For instance, ‘105 (83,22)’ indicates a group comprising 105 observations after removing missing values, with 83
patients classified as DC and 22 patients as PD. Similar to the overview table in Table 3.14, ‘EV’ denotes the number of
explanatory variables within each data group. ‘PCs’ represents the minimum number of PCs required to explain at least
80% of the total variation in the data. The cumulative variance explained is presented in the column labeled ‘Cum var
expl’. Furthermore, the most significant variables in each data group, based on their cos2 values, are identified in the
column ‘Important variables’. Additionally, a brief description of the shape of the 95% prediction ellipses is provided in the
‘Prediction Ellipse’ column and the final column compares the PCA results with the analysis conducted in Appendix B.3,
encompassing scree plots, loading plots, and other relevant plots used in the analysis of different groups. These comparisons
reveal minimal differences in certain groups, while notable changes are observed in others. The plots that have changed
compared to the previous PCA are presented in Appendix B.6.
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Data
Group n #EV #PCs

Cumulative
variance
explained

Important
Variables

Prediction
Ellipse Notes

Blood 109(88,23) 15 5 81.4%

NPdiff, LKdiff
LKafter, NPafter
LKbefore,
NPbefore

Overlap almost
entirely,
most variation
in PC1

High correlation
in LK and
NP values

White
Blood
Cells

111(87,24) 9 3 90.5%
Npafter, LKafter,
LKdiff, NPdiff,
LKbefore

Overlap almost
entirely,
most variation in PC1

High correlation
in LK and NP
values

Kidney 145(114,31) 12 5 80.5% CRbefore, GFRbefore
CRafter, GFRafter

Overlap,
DC within PD

Almost no
correlations
between the
different
variables

Liver 166(135,31) 15 4 82.5%

ASATbeofre
ALATbeofre
ASATdiff
ALATdiff

Overlap,
DC within PD

ASAT/ALAT,
GGT/AF,
show positive
correlations

Nutrition 102(80,22) 9 5 90.8%
Naafter,
Albafter,
Kafter

Overlap,
DC within PD
DC circular

No strong
correlations
between the
original variables

Inflammation 90(71,19) 15 4 83.1%
SIIdiff,
NLRdiff
PRdiff

Overlap

SIIdiff,
NLRdiff,
PLRdiff highly
correlated

Patient
Characteristics 189(151,38) 4 3 99.9% Weight, BMI Overlap

Weight and
Height show
positive
correlation

Tumor
Markers 96(76,20) 8 2 82.8%

CA199after,
CA199before,
CA199diag,
CEAdiag,
CEAbefore,
CEAafter

Overlap,
DC within PD

CA199diff
and CEAdiff
show strong
positive
correlation

All blood
& tumor
variables

59(44,15) 34 11 82.7%

CEAbefore,
GGTafter,
AFafter,
CEAafter,
GGTbefore

Overlap,
DC within PD

Most important
variables are:
CEA, GGT, AF,
ALAT, ASAT,
GFR, CA19-9

All variables
+ Age + BMI
+ Differences

59(44,15) 53 13 81.8%

ALATdiff,
ASATdiff,
GGTdiff,
LKafter,
NPafter,
BRbefore

Overlap,
DC within PD

Most important
variables are:
ALAT, ASAT,
GGT, LK, NP,
BR and AF

Age + BMI +
Differences 59(44,15) 19 9 81.6%

ALATdiff,
GGTdiff,
ASATdiff,
BRdiff,
AFdiff,
LKdiff,
NPdiff

Overlap,
DC within PD

NPdiff/LKdiff,
ALATdiff/ASATdiff,
are highly correlated
variables

Table 3.14: Overview table of PCA performed on the correlation matrices of the analyzed data sets, EV =
Explanatory Variables, PC = Principal Component.
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Group #PCs
Cumulative
variance
explained

Important
Variables

Ellipse
overlap?

Blood 2 99% TBbefore, TBdiff,
TBafter Yes

WBC 1 92% LKafter, LKdiff,
NPafter, NPdiff Yes

Kidney 1 92% CRafter, CRdiff,
CRbefore Yes

Liver 3 91%
GGTbefore, GGTafter
GGTdiff, AFbefore,
ALATdiff, ALATbefore

Yes

Nutrition 3 91%
Albafter, Albbefore,
Albdiff, Naafter, Nadiff,
Nabefore

Yes

Inflammation 2 99% SIIdiff, SIIafter,
SIIbefore Yes

Patient
Characteristics 3 100% Weight, Height,

Age Yes

Tumor
Markers 1 97%

CA19-9after,
CA19-9before,
CA19-9diag

Yes

All blood
& tumor
variables

1 97% CA19-9after,
CA19-9before Yes

All variables
+ Age + BMI
+ Differences

2 99% CA19-9after,
CA19-9before Yes

Age + BMI
+ Differences 1 96% CA19-9diff Yes

Table 3.15: Overview table of PCA performed on the covariance matrix. The first column contains the group of
variables considered in the PCA analysis that have been centered, but not scaled to unit variance. The second
column shows how many PCs are necessary to explain at least 90% (or more) of the total variation the data.
The third column contains the variables that are most important in driving this variation in the data and can be
interpreted as the dominant factor that explains the structure in the data. Finally, the last column contains a Yes
if either the prediction ellipses completely overlap or one ellipse is contained entirely within the other (in this case
DC prediction ellipses are contained within the progressive disease ellipses).
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Data
Group n #EV #PCs

Cum
var
expl

Important
variables

Prediction
Ellipse

Same
as full

Blood 105
(83,22) 15 5 81.4%

LKafter,
NPafter
LK diff,
NP diff,
LK before

Almost
completely
overlap

Yes, exactly the
same

White
Blood
Cells

111
(87,24) 9 3 90.5%

LKdiff,
LK after,
NPdiff,
NPafter,
LKbefore

Almost
completely
overlap

Yes, exactly
the same

Kidney 139
(110,29) 12 5 80.2%

CRafter,
GFRbefore,
CRbefore
CRdiff

DC within
PD

No, representations
and directions changed
for a few, PD ellipse
more elongated

Liver 160
(131,29) 15 4 82.8%

ALATdiff
ASATdiff
GGTafter
ALATbefore

DC almost
entirely
within PD

barely, PC1 explains 37.2%,
but for the rest, almost
no difference

Nutrition 99
(78,21) 9 5 90.7%

Naafter,
Kafter,
Nabefore

DC circle,
PD ellipse
with overlap

No, directions have
changed, same for
ellipse

Inflammation 87
(69,18) 15 4 83.1%

SIIdiff,
NLRdiff,
PLRdiff

Overlapping
ellipses
in opposte
directions

Yes, barely any difference.
Scree plot %s might differ
with + or - 0.1%

Patient
Characteristics

179
(143,36) 4 3 99.9% Weight,

BMI, Age
Overlapping
ellipses

Yes, barely any difference.
Only difference in %s
in screeplot

Tumor
Markers

93
(74,19) 8 2 83.7%

CA19-9 after
CEAdiag
CA19-9before

DC completely
within PD

Yes, barely any difference
PC1 explains 68.4% only
difference

All blood
and tumor
markers

57
(43,14) 34 10 80.5%

CEAbefore
AFafter,
GGTafter

DC more
circular
within PD

No, directions mirrored
wrt PC2 and representations
changed

All variables
+ Age + BMI
+ Differences

57
(43,14) 53 13 82.7%

ALATdiff,
ASATdiff,
ALATbefore

DC completely
within PD
ellipse

No, directions mirrored
wrt PC1 and representations
changed, ellipses also
changed

Age + BMI +
Differences

57
(43,14) 19 9 81.7%

ALATdiff,
LKdiff
ASATdiff
NPdiff

DC ellipse
within PD

No, directions changed
slightly for some variables
and also representation

Table 3.16: Overview table of PCA performed on the correlation matrices of the analyzed data sets after removal
of outliers based on GFR< 30mL/min and BR> 50µmol/L. EV = Explanatory Variables, PC = Principal Com-
ponent.

56



4 | Methodology

4.1. Random Forest background information

The objective of this thesis is to develop a predictive model for disease or tumor response in PDAC patients undergoing
FOLFIRINOX chemotherapy using the provided dataset. Artificial Intelligence (AI) and Machine Learning (ML) have
gained significant attention in the medical domain. Selecting the appropriate ML model depends on various factors, such
as the trade-off between underfitting and overfitting, the type of learning method (supervised or unsupervised), and the
specific application context. Underfitting occurs when the ML model is overly simplistic relative to the complexity of the
problem and the dataset, resulting in poor performance and a high bias. Conversely, overfitting arises when the model is
excessively complex with numerous parameters relative to the problem’s complexity and dataset size. This leads to excellent
performance on the training data but poor generalization on the test set, characterized by high variance. The ideal scenario
is to achieve a balance with low bias and low variance. In this case, we have labeled data and thus need for a supervised
learning method for the classification of PDAC patients. We aim to find a model that exhibits good performance, ease
of interpretability and implementation, and has no strong underlying assumptions. Among the available options, Random
Forest stood out as the most suitable choice. This method effectively handles noisy data, is well-suited for large and
heterogeneous datasets, and demonstrates robust classification performance. It also implicitly performs feature selection
by ranking features during the classification process. Compared to more complex methods like Neural Networks or Deep
Learning, Random Forests are easier to comprehend and require less computational power. Due to the small dataset size,
deep learning models are also more prone to overfitting and regularization techniques or extensive hyperparameter tuning
would be required. On the other hand, simpler methods such as k-nearest neighbors or support vector machines are prone
to overfitting, sensitive to outliers, and face challenges in handling noisy or missing data. Furthermore, these often rely on
strong assumptions, such as linear separability [55].

This section focuses on constructing a random forest model using the PREONPANC2-iKnowIT dataset, excluding missing
values and identified outliers. The model generates a binary response (0 = disease control, 1 = progressive disease). To
comprehend the model, it is important to establish background knowledge about decision trees and random forests. The
following subsection provides this information along with mathematical details. Subsequently, a random forest will be
trained and evaluated.

4.1.1 Decision Trees

Decision trees are a class of supervised learning algorithms used in machine learning. They recursively split a dataset into
categories based on whether a condition is true or false until there are only pure leaf nodes left, which have data with only
one type of class. There are two types of decision trees: classification and regression trees. While the former is used for
classifying data, the latter is used for predicting numeric values. In this case, the objective is to predict the final response
as either disease control (0) or progressive disease (1), making classification trees more suitable. Hence, the focus will
be on classification trees. Both numeric and categorical data can be used to classify observations in classification trees.
Furthermore, different numeric thresholds can exist for the same data. For example, CA19-9 levels < 80000 kU/L can be in
one decision node, and CA19-9 levels < 5000 kU/L can be another decision node below that decision node. In general, the
rule is moving left if a statement is true and right if it is false. The top node of a decision tree is called the root, the internal
nodes are called branches or decision nodes, and the leaf nodes represent the final classified observations. An example of a
decision tree can be found in Figure 4.1.

The decision tree algorithm creates a tree-like model that uses nodes for input features, branches for decisions, and leaves for
class labels. The tree is built top-down, starting from the root node and recursively splitting it based on an input feature’s
value. Impurity measures like entropy or Gini impurity help identify the best splits. The goal is to minimize impurity by
optimal data splitting. To classify new data, the decision tree is traversed from root to leaf. At each node, the algorithm
compares the input feature’s value to a threshold and follows the appropriate branch until a leaf with the predicted class
label is reached. To understand how a decision tree works, consider a fruit dataset that needs to classify apples and pears
based on features like color, shape, and weight. The first step is to choose a feature as the root node, such as color with two
possible values: red and green. This creates two branches. Then, another feature is selected, like roundness for red fruits
and pear-shape for green fruits, to further split the data. This process continues with additional features until reaching
the leaf nodes, which represent the final decisions (apple or pear) based on fruit characteristics. Once the decision tree is
trained on the dataset, it can be used to classify new fruits by traversing the tree from the root to the leaf node, which
determines the final decision.
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Figure 4.1: Example of a Decision tree created using the original training dataset, n=194, 0=Disease Control
(n=120), 1=Progressive disease (n=74).

Decision trees have several advantages, such as interpretability, ease of use, and the ability to handle different types of data.
However, they also have limitations, including overfitting, sensitivity to data changes, and handling complex relationships
between features. To address these limitations, ensemble methods like random forests are commonly used. Random forests
combine the predictions of multiple decision trees to improve accuracy and stability. In the next subsections, we will explore
key concepts to better comprehend the construction of decision trees.

4.1.1.1 Entropy

Entropy is a measure of data impurity or randomness. In decision trees, it helps determine the feature for data splitting
at each node. To elaborate, entropy quantifies the level of uncertainty or heterogeneity in a set of samples based on their
classifications. In a binary classification scenario (which we have), entropy can be computed using Equation (4.1) as follows:

E(S) = −p1 log2(p1)− p2 log2(p2), (4.1)

where S is the set of observations, p1 is the proportion of samples belonging to one class and p2 the proportion of
samples belonging to the other class, under the condition that p1, p2 ∈ [0, 1] and p1 + p2 = 1. To be more specific
p1 = number of samples in class 1

total number of samples in the data and p2 = number of samples in class 2
total number of samples in the data . When all the samples belong to the same

class, the entropy is zero, indicating that the set is completely homogeneous and there is no uncertainty in classification.
Conversely, if the samples are equally divided split between the two classes, the entropy is one. The higher the entropy
value, the higher the level of disorder indicating a lower level of purity.

4.1.1.2 Gini Impurity

Another measure of impurity or randomness in a dataset is the Gini impurity. The Gini impurity of a set of observations
(samples) is the probability of misclassifying a randomly chosen sample in that set, if it were labeled randomly according
to the distribution of labels in the set. For the binary classification problem, Gini impurity can be calculated as:

Gini(S) = 1− p21 − p22 (4.2)

where S, is the set of samples, p1 is the proportion of samples belonging to class 1 and p2 the proportion of samples
belonging to class 2, under the conditions that p1, p2 ∈ [0, 1] and p1 + p2 = 1. When all the samples belong to the same
class, the Gini impurity is zero, indicating that the set S only contains observations from one class. On the other hand,
if the samples are split 50/50 between the two classes, the Gini impurity is 1, indicating the highest degree of impurity or
randomness in the dataset.

Gini impurity can also be used to determine the best feature to split the data on at each node of the decision tree. In
general, the feature with the lowest Gini impurity is chosen as the split feature. The formula for calculating the Gini
impurity of a split on feature A is:
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GiniA(S) =
∑

v∈V alues(A)

|Sv|
|S| Gini(Sv) (4.3)

where S is the set of samples, A is the feature or variable being considered, Sv is the subset of S in which feature A has
value v, and V alues(A) is the set of possible values that feature A can take. To calculate the Gini impurity of the split on
feature A, take the weighted sum of the Gini impurities of its subsets Sv, where the weight is the proportion of samples in
Sv with respect to the total number of samples in S. Then the feature with the lowest Gini impurity is selected as the split
feature at that node.

4.1.1.3 Difference Gini impurity and entropy

The main difference between Gini impurity and entropy is the way they measure the impurity of a split in a decision tree.
The Gini impurity measures the probability of misclassifying a randomly chosen element if it is randomly labeled according
to the distribution of labels in the set. It is based on the idea of the probability of two random elements in the same set
being of different classes. In addition, it is computationally faster to compute the Gini impurity than entropy because it
does not involve logarithmic calculations. Entropy, on the other hand, measures the amount of uncertainty or randomness
in a set of data. It calculates the amount of information needed to convey the class distribution of the data. Moreover,
entropy tends to penalize the tree for having too many branches, as it gives more weight to smaller subsets of data with
fewer classes.

When looking at the graphs, the Gini index has values inside the interval [0, 0.5] while Entropy on the other hand has values in
their interval [0,1] by definition. Actually, Gini(S) ≈ 1

2
E(S). This is illustrated in Figure 4.2 using the two class case where p

= probability of class 1 and 1−p = probability of class 2. Note that 1−p2−(1−p)2 = 1−p2−1+2p−p2 = 2p−2p2 = 2p(1−p).

Figure 4.2: Graphs of the Entropy and Gini impurity with the probability of class 1 p on the x-axis for the two
class case: (a) both original graphs Gini(p) = 2p(1 − p) and E(p) = −plog2(p) − (1 − p)log2(1 − p) (b) 2×Gini
and the original Entropy graph 2×Gini(p) = 4p(1− p) and E(p) = −plog2(p)− (1− p)log2(1− p).

There is no consensus on which impurity measure is better as it depends on the problem and dataset. Both measures yield
similar results in practice, and the choice is often based on computational efficiency. In general, Gini impurity is preferred
for large datasets or complex decision trees, where efficiency is crucial. It favors balanced partitions and is less sensitive to
outliers compared to entropy, which considers the log-likelihood of the class probabilities.

4.1.1.4 Information Gain

Information gain is a metric used in decision tree algorithms to assess the usefulness of a feature in predicting the target
variable. It quantifies the reduction in entropy, Gini impurity, or other impurity measures achieved by splitting the data on
a specific feature at a particular level. Higher information gain corresponds to lower entropy or Gini impurity, indicating
more useful splitting. Conversely, lower information gain indicates higher impurity. Mathematically, information gain can
be defined as the difference between the entropy of the original set of samples and the weighted average of the entropy of
its subsets. The subsets are formed based on the possible values that the feature being considered can take. The feature
with the highest information gain is chosen as the split feature at that node of the decision tree. The information gain is
calculated using the following equation:

InformationGain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S| Entropy(Sv), (4.4)
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where S is the set of samples, A is the feature being considered, Sv is the subset of S in which feature A has value v, and
V alues(A) is the set of possible values that feature A can take. In summary, information gain is a measure of the reduction
in the disorder in the target variable or class given additional information provided by a particular feature. It is a useful
tool in determining which variable to split the data on at each node of the decision tree, with the feature that gives the
highest information gain being selected as the split variable.

Calculation Example of classifying pets

To clarify the usage of Gini impurity, entropy, and information gain, consider an example of a decision tree classifying pets
as either “dog" or “cat" based on their characteristics. We have a dataset that includes information on weight, fur length,
and tail presence. To build the decision tree, we need to determine the root node, which can be determined by calculating
the Gini impurity and information gain. Let us focus on the weight feature. Suppose the dataset has 100 pets, with 60 dogs
and 40 cats. We split the dataset based on weight, creating two subsets: pets under 10 pounds and pets over 10 pounds.
The subsets are as follows: 70 pets under 10 pounds (40 dogs, 30 cats) and 30 pets over 10 pounds (20 dogs, 10 cats).
To calculate the Gini impurity of the weight feature, we first need to calculate the Gini impurity of the original dataset,
denoted as Goriginal:

Goriginal = 1− (
60

100
)2 − (

40

100
)2 = 0.48 (4.5)

Then calculate the Gini impurity of the two subsets after splitting the dataset based on weight, call these Gw1 , Gw2 :

Gw1 = 1− (
40

70
)2 − (

30

70
)2 ≈ 0.49 (4.6)

Gw2 = 1− (
20

30
)2 − (

10

30
)2 ≈ 0.44 (4.7)

To calculate the information gain of the weight feature, take the weighted average of the Gini impurities of the two subsets
and subtract it from the Gini impurity of the original dataset:

Information gain = 0.48− (
70

100
∗ 0.49 + 30

100
∗ 0.44) ≈ 0.048 (4.8)

In this example, the information gain for weight was found to be 0.048, which suggests that weight may not be the best
feature to use as the root node. This process can be repeated for the other features (fur length and tail), and the feature
with the highest information gain is chosen as the root node of the decision tree. This is because the feature with the highest
information gain contributes the most to the classification of the dataset. Note that instead of Gini impurity, entropy or
any other impurity measure can also be used to calculate the information gain.

4.1.1.5 Pruning

Another important concept to discuss in decision tree learning is pruning. Pruning is a technique used to address the
problem of overfitting in decision trees. Overfitting occurs when a decision tree is too complex and becomes too closely fit
to the training data, resulting in poor performance on new data. Pruning works by selectively removing branches or nodes
from a decision tree that do not significantly contribute to the overall accuracy of the tree, essentially “cutting" the tree
at a certain depth. There are two primary approaches to pruning: pre-pruning and post-pruning. Pre-pruning involves
setting a stopping criterion based on an impurity measure, such as Gini impurity or entropy, or an error measure before
the tree is fully grown. This can be an effective way to prevent overfitting and reduce the size of the tree, but it can also
lead to underfitting if the stopping criterion is overly strict. In contrast, post-pruning involves growing the decision tree to
its full size and then removing branches or nodes that do not improve the performance of the tree on a validation set. This
approach is often more effective than pre-pruning, as it allows the tree to reach its maximum potential size before removing
any unnecessary branches or nodes.

4.1.1.6 Choosing the variables and thresholds

In decision tree algorithms, the variable and threshold selection for splitting rely on information gain, which is based on
the reduction of an impurity measure like entropy or Gini. The objective is to find the best combination that effectively
partitions the data, maximizing class classification. To illustrate this concept, we can refer to the graphs shown in Figure 4.3.
These graphs depict the distribution of data points, with blue dots representing one class and red stars representing another
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class. The decision boundary is determined by a specific threshold value applied to the variable x1 represented on the
x-axis. By visually examining the graphs, it appears that the split at x1 = t3 provides the most favorable classification
outcome. This split results in only blue dots on the left side, translating to a ‘pure node’ in a decision tree, containing
only blue points, while maintaining the smallest number of both red and blue points on the other side. In other words,
if a randomly chosen point has a value of x1 < t3, it is likely to belong to the blue class. Similarly, if a randomly chosen
point has a value of x1 > t2, it is likely to belong to the red class. However, such a clear inference cannot be made at t1.
To make an informed decision about the optimal threshold, we evaluate the distribution of data points on either side of
each threshold and compare it to the distribution before the split. The objective is to identify the threshold that yields the
most favorable data distribution, ideally placing a majority of points from one class (blue in this case) on one side while
minimizing the presence of the other class (red in this case) on the other side of the split. Mathematically, this involves
assessing the impurity measure of the data prior to the split and selecting the threshold that maximizes the reduction in
impurity. In the decision trees generated in the coming models, this impurity measure will be represented by the Gini
impurity.

Therefore, the selection of the threshold in decision tree algorithms involves an evaluation of the impurity measures before
and after the split, aiming to identify the threshold that results in the most significant improvement in data purity and
classification effectiveness.

Figure 4.3: Illustration of defining the threshold for the ‘best’ split of the two groups of data. (a) t1 = threshold
1 (b) t2 = threshold 2 (c) t3 = threshold 3.

To further illustrate this, consider the following dataset given in Table 4.1 with two explanatory variables X1 and X2 and
response y. The datasets has four points for class 0 and four for class 1. Thus the Gini impurity before the split can be
calculated as given in Equation (4.9):

G(before split) = 1− (
n0

N
)2 − (

n1

N
)2

= 1− (
4

8
)2 − (

4

8
)2

= 1− 1

4
− 1

4
= 0.5

(4.9)

where n0 denotes the number of points of class 0 (n0 = 4 in this case) and n1 the number of points of class 1 (n1 = 4 in this
case) and N the total number of points (N = n1 + n2 = 8 in this case). If we consider the split at a threshold of X2 = 5
the data distribution would look like Figure 4.4. Then the Gini impurity for both the splits is given in Equations (4.10)

X1 X2 y
8 3 1
4 4 0
6 4 1
7 4 1
8 6 1
5 8 0
4 9 0
9 9 0

Table 4.1: Example data with X2 sorted by magnitude.

and (4.11).

G(X2 < 5) = 1− (
1

4
)2 − (

3

4
)2 = 0.375 (4.10)

61



4.1. Random Forest background information

Figure 4.4: Example data with X2 sorted by magnitude and the boundaries for splitting at X2 = 5.

G(X2 > 5) = 1− (
3

4
)2 − (

1

4
)2 = 0.375 (4.11)

Thus, the overall information gain is:

IG(G) = ∆G = G(before split − G(X2 < 5) +G(X2 > 5)

2
= 0.5− 0.375 + 0.375

2
= 0.125 (4.12)

This can be done for all the possible thresholds of X2. Four examples are listed below in Table 4.2, but note that an
algorithm would range over the entire range of possible values for a variable (in this case X2) from minimum to maximum
value. This results into different thresholds with different calculated gains. The same process can repeated for the other
feature, X1 and an example table is provided in Table 4.3.

Threshold G(before split) G(< threshold) G(> threshold) Gain
3.5 0.5 0 0.49 0.255
5.0 0.5 0.375 0.375 0.125
7.0 0.5 0.320 0 0.340
8.5 0.5 0.528 0 0.236

Table 4.2: Example table of threshold values for variable X2, the calculated Gini impurity before the split (G(before
split)), the Gini impurity less than the given threshold (G< threshold), the Gini impurity bigger than the given
threshold (G> threshold) and the information gain (Gain).

Threshold G(before split) G(< threshold) G(> threshold) Gain
4.5 0.5 0 0.444 0.278
5.5 0.5 0 0.32 0.340
6.5 0.5 0.375 0.375 0.125
7.5 0.5 0.48 0.444 0.038
8.5 0.5 0.49 0 0.255

Table 4.3: Example table of threshold values for variable X1, the calculated Gini impurity before the split (G(before
split)), the Gini impurity less than the given threshold (G< threshold), the Gini impurity bigger than the given
threshold (G> threshold) and the information gain (Gain).

In this specific example, the highest information gain value (0.340) remains the same whether the data is split at X1 = 5.5
or X2 = 0.340. When faced with multiple features offering the same maximum gain, the feature located furthest to the left
(in the original data) is chosen. Following this principle, the optimal splitting point for this example is at X1 = 5.5. Thus,
by setting our decision node at X1 = 5.5, we can construct a decision as shown in Figure 4.5. Then, repeat these steps for
each split dataset until all divisions consist solely of pure samples from a single class, indicated by an impurity measure of
zero.
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Figure 4.5: Example decision tree after the first split based on X1 < 5.5.

4.1.2 Random Forest

One approach for improving decision trees is to use a random forest. A random forest is an ensemble of decision trees,
where each tree is trained on a randomly selected subset of the original dataset (with replacement). This process, known as
bootstrapping, ensures that the model does not rely solely on the same data for every tree, thereby mitigating its sensitivity
to the specific characteristics of the original training data. In order to make the final class label prediction, majority voting
among the generated forest of decision trees is used. This averaging of the results decreases the variance in the classification
model. Together, the two techniques are called ‘bagging’, which is short for bootstrap aggregation and explained in more
detail below. Aside from bagging, a random subset of features is used to split the data at each node within the decision trees.
This practice effectively diminishes the correlation among the trees. The rationale behind this feature selection process is
to alleviate the potential problem of having identical trees possessing identical decision nodes when all features are used.
Consequently, the trees would act in a similar manner, increasing the variance of the model. To be specific, each new tree
is built using a random sample of say m < p features chosen as split candidates from the full set of p features. The split in
turn only uses one of those m features. This results in a forest of decorrelated trees. As an example, suppose that there
is one very strong feature in the dataset, along with a number of other moderately strong features. Then in the collection
of bagged trees, most or all of the trees will use this strong feature in the top split. In our dataset, the most likely feature
that will be used in the root node will be CA19-9 value. As a consequence, all of the bagged trees will look quite similar to
each other. Hence the predictions from the bagged trees will be highly correlated and averaging these results will not lead
to a reduction in variance. Therefore, random forests force each decision tree to consider only a subset of the features, so
on average p−m

p
of the trees will not even consider the strong feature and so other features will have more of a chance. This

makes the trees less correlated, thereby making the average of the resulting trees less variable and more reliable. However,
since a substantial number of trees are generated within the random forest, ‘suboptimal’ predictions tend to cancel each
other out. By combining bagging and random feature selection, random forests create trees that are trained on different
subsets of the data with different subsets of features. As a result, each tree in the random forest learns different aspects
of the data and makes decisions based on different sets of features. This diversity helps to reduce the correlation between
the trees and reduces the tendency for all trees to make similar predictions. Moreover, each tree is trained on ≈ 2

3
of the

bootstrapped sample, called the ‘in bag’ sample and performance is tested on the remaining Out-Of-Bag (OOB) sample.
The optimal splitting criterion in each decision tree is based on an impurity measure like Gini or entropy, as explained in
the previous subsection. There are some common stopping rules to prevent overfitting in random forests, namely:

1. ntree = Number of trees in the forest

2. mtry = Number of features considered for splitting a node

3. maxdepth = Maximum number of levels in each decision tree

4. minsamples−split = Minimum number of data points in a node before the node is split

5. minsamples−leaf = Minimum number of data points allowed in a leaf

Subsequently, the test dataset is used to make predictions and these predictions are averaged at the end to result in a final
prediction, which in classification is determined using majority voting. A pseudo-code of the random forest algorithm is
provided in Algorithm 2 and the algorithm is visualized in Figure 4.6. In the random forests build in Section 5 only the
first two are considered, namely ntree and mtry. This because of small training and test sizes.

4.1.2.1 Bagging

Bagging, short for bootstrap aggregation, is a procedure that reduces the variance of a statistical learning method by
training multiple models on different subsets of the training data. These models’ predictions are then aggregated to make
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a final prediction. In bagging, each subset is created by sampling with replacement from the original training dataset.
Random forest is an extension of bagging that further enhances model diversity. In addition to creating models using
different subsets of the training data, random forest also randomly selects a subset of features for each model. The number
of selected features, denoted as m < p, is less than the total number of features (p). When m = p, random forest and
standard bagging are equivalent. Thus, the key distinction between bagging and random forest lies in the random selection
of feature subsets in addition to generating bootstrapped samples from the original training data.

4.1.2.2 Out-Of-Bag Error (OOB error)

The fundamental principle behind bagging involves fitting models (in this case decision trees) repeatedly to subsets of the
observations using bootstrapping with replacement. This implies that some observations in the original training dataset
may not be included in any of the subsets used to train a specific model, and these observations are called out-of-bag (OOB)
observations for that model. The OOB error estimate is a way to assess the performance of a model without requiring
a separate validation set or the use of cross-validation. The OOB error is calculated by predicting the outcome of each
observation in the original dataset using only the trees that were built without incorporating that observation in their
bootstrap sample. It is expressed as the proportion of misclassified observations. In an ideal scenario, the OOB sample
comprises around 37% (≈ 1

3
) of the total training data. To explain its functioning in more detail, consider each observation

in the original dataset. If an observation was not part of the bootstrap sample used to train a specific tree, it is labeled as an
“out-of-bag" observation for that tree. The OOB observations are subsequently used to assess the prediction capability of the
corresponding tree. The prediction process involves passing the out-of-bag observation through the tree and consolidating
the outcomes based on the majority vote (for classification problems) or averaging (for regression problems) of predictions
from all trees that did not use that particular observation during training. Then, the OOB error is computed by comparing
the predicted values for the out-of-bag observations with their true values, with the use of the appropriate error metric such
as misclassification rate or mean squared error. It provides an unbiased estimate of the model’s performance, facilitates
accuracy assessment, and simplifies model training by eliminating the need for a separate validation set.

Algorithm 2 Random Forest Algorithm (Classification)

Require: Training dataset D, number of trees T , number of features p, number of data points n
1: for t = 1 to T do
2: Randomly select a subset of of the training dataset of D with replacement, this is called bootstrapping.

This creates a new dataset of the same size |D| as the original, but with some repeated observations and other
omitted. Call this bootstrap sample Dt.

3: Randomly select a subset m ⊂ p features from the Feature set for each tree. Generally m =
√
p, the square

root of the total number of features is used as the maximum number of features to select.
4: Train a decision tree using each bootstrap dataset Dt independently using the ‘in bag’ samples and the

selected m features. Each tree is grown to the largest extent possible and there is no pruning. Performance is
tested on the OOB samples and reported in the OOB-estimate.

5: Store the trained tree in the Random Forest model RF
6: Repeat steps 1-3 to create the Random Forest RF (default is 500 trees) for each tree.
7: To make a prediction for a new observation, pass the test set through each decision tree in the forest and

store the predicted class label. Then take the majority vote over all the predictions for the final prediction (in
the classification case). This process of combining results from multiple models is called aggregation.
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Figure 4.6: Random forest algorithm for classification with a dataset D containing n observations, p features with
a chosen number of T trees and m < p features to consider per tree.
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4.1.3 Imbalanced Data

The dataset used in this study is imbalanced, with a majority of patients (173/216) categorized as DC (0) and 43/216
labeled as having PD (1). This imbalance poses a challenge for classifiers like random forest, which tend to prioritize
accuracy. As a result, the random forest classifier may classify all observations as DC to achieve a high overall accuracy.
However, this approach is not ideal, as it fails to accurately identify patients with PD (the minority class) who may not
respond well to chemotherapy. Misclassifying DC patients as having PD should also be avoided, as it could prevent them
from receiving potentially beneficial treatment. On the other hand, misclassifying PD patients as having DC is also costly,
since we give ineffective treatment to these patients. Therefore, different approaches to address the issue of imbalanced
data will be explored in the following section.

• Under-sampling or downscaling: This technique involves randomly removing instances that belong to the over-
represented class. As an example, in this case, patients classified as DC are the over-represented or majority class. By
reducing the number of DC samples, more emphasis is placed on accurately classifying individuals with PD. However,
a significant drawback of random under-sampling is the potential loss of valuable information, particularly when the
minority class (PD) is considerably smaller relative to the majority class.

• Over-sampling or upscaling: Similar to under-sampling, over-sampling aims to address class imbalance by ran-
domly duplicating instances from the minority class. By adding more copies of PD patients (in this case), the classifier
focuses on correctly classifying this group. However, a significant drawback of over-sampling is the increased risk of
overfitting, as it generates exact replicas of the minority class samples, potentially leading to an overly optimistic
estimation of model performance.

• Combination of under- and over-sampling: This approach involves applying a balanced combination of under-
sampling and over-sampling techniques. It includes a moderate amount of oversampling for the minority class and a
modest amount of undersampling for the majority class. This strategy aims to improve the bias towards the minority
class while also reducing the bias towards the majority class, striking a balance between preserving information and
addressing class imbalance.

• Cost-sensitive learning (CSL): Cost-sensitive learning involves assigning weights or costs to misclassified instances
based on their class membership. It highlights the imbalanced learning problem by utilizing cost matrices that describe
the cost of misclassification. For example, misclassifying a healthy person as unhealthy might be considered less costly
than misclassifying an ill patient as healthy. In the context of random forests, these weights can be incorporated into
the process of finding splits and the voting mechanism for each classification, effectively adjusting the importance of
different instances based on their associated costs.

These approaches offer solutions to address the dataset’s imbalance and enhance classification for PD patients while con-
sidering the risk of misclassifying DC patients. The selection of a specific approach depends on dataset characteristics
and the balance between preserving information, mitigating overfitting, and effectively handling class imbalance. In the
upcoming section, all these methods will be employed and explored in training the random forest. Furthermore, the ROSE
and Complete Class inclusion methods will also be utilized and discussed below.

4.1.3.1 Random Over-Sampling Examples (ROSE)

In addition to the aforementioned techniques, Random Over-Sampling Examples (ROSE) is another method that can be
used to tackle imbalanced datasets. ROSE aims to address the class imbalance by generating synthetic samples based on
the existing minority class samples. This technique involves creating a modified dataset that combines the original minority
class samples with the newly generated synthetic samples, which can be considered as oversampling with random noise. The
synthetic samples are generated by randomly selecting existing minority class samples and introducing slight modifications
while preserving the overall characteristics of the minority class. These modifications can include variations in feature values
or the introduction of random noise to the samples. The primary goal of the ROSE method is to increase the representation
of the minority class in the dataset, thus mitigating the class imbalance issue through the generation of synthetic samples.

However, ROSE’s effectiveness depends on the quality of the synthetic samples generated and their representation of the
minority class. While ROSE can be effective in some scenarios, it is not a universal solution and its performance may vary
based on dataset characteristics and the chosen machine learning algorithm. Evaluation, trade-offs, and limitations should
be considered when using ROSE for imbalanced datasets. The ROSE algorithm can be summarized as follows:

1. Class imbalance ratio calculation: The initial step involves calculating the imbalance ratio (IR) between the majority
and minority classes. This ratio is determined by dividing the number of majority class samples by the number of
minority class samples.

2. Determination of synthetic sample count: Using the computed IR, the desired number of synthetic samples for the
minority class is established. This count is obtained by multiplying the number of original minority class samples by
(IR - 1).
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3. Nearest neighbor identification: For each minority class sample, a process is undertaken to identify its k nearest
neighbors within the minority class. The parameter k is user-defined and determines the number of neighbors
considered.

4. Synthetic sample generation: With the nearest neighbors identified, a random selection is made for each minority
class sample. The chosen neighbor acts as a base for generating a synthetic sample. Slight modifications are applied
to the feature values of the base sample to create the synthetic sample. Techniques such as adding random noise or
employing interpolation methods are commonly used for these modifications.

5. Iterative repetition: Steps 3 and 4 are repeated for each minority class sample until the desired count of synthetic
samples is generated.

6. Integration of original and synthetic samples: The final step involves combining the original minority class samples
with the newly generated synthetic samples, thereby forming a modified dataset. Through this integration, a more
balanced representation of the minority class is achieved.

Mathematically, let the binary response variable be denoted as yi, where i ∈ {0, 1} represents the class labels belonging to
the set {Y0, Y1}, and x ∈ Rd represents a vector of predictors for a dataset consisting of n subjects indexed as i, i = 1, . . . , n,
with an unknown probability density function f(x). Let the training set of size n is denoted as Tn defined by the pairs
(xi, yi), i = 1, . . . , n. Also let the number of observations in each class Y0 and Y1 be denoted by nj < n, j ∈ {0, 1}. The
ROSE procedure for generating a new artificial example involves the following steps:

1. Select y∗ = Yj with probability πj . In this step, we choose the class label for the artificial example. The selection is
made based on the probabilities associated with each class. For example, if π0 is the probability of class Y0 and π1

is the probability of class Y1, we select Y0 or Y1 with their respective probabilities.

2. Select (xi, yi) ∈ Tn, such that yi = y∗ with probability 1
nj

. Once we have determined the class label y∗, we randomly
choose an example from the original dataset Tn that belongs to the selected class yi = y∗. The selection is done
uniformly at random from the examples of the selected class. For instance, if we chose Y0 in the previous step, we
randomly pick an example (xi, yi) from Tn where yi = Y0.

3. Sample x∗ from KHj (·,xi) with KHj a probability distribution centered at xi and covariance matrix Hj . Finally,
we generate a new artificial example x∗ by sampling from a probability distribution KHj , which is centered at the
selected example xi. The distribution KHj is defined by a covariance matrix Hj specific to the selected class y∗.
This step introduces some variation and randomness to create a new example x∗ that resembles the original example
xi.

By repeating these steps for multiple iterations, we can generate a set of artificial examples for the minority class, thereby
balancing the class distribution in the dataset. Essentially, the ROSE method selects an observation that belongs to one
of the two classes and generates new samples (x∗, y∗) within its neighborhood, where the width of the neighborhood is
determined by Hk, and the shape is determined by the contour sets of K. Given the selection of the class label Yj , the
generation of new samples from Yj using ROSE corresponds to generating data from a kernel density estimate of f(x|Yj),
where the kernel is represented by K and the smoothing matrix is denoted as Hj [56]. Repeating steps 1-3 m times produces
a new synthetic training set T∗

m of size m where the imbalance level is defined by the probabilities πj . The size m can
be set to the original training set size n or any other choice. Note that if πj = 1

2
then approximately the same number of

samples belong to each of the two classes. Note that when Hj → 0, ROSE ‘converges’ to a standard combination of over-
and under-sampling [56].

4.1.3.2 Cost sensitive learning

When dealing with imbalanced datasets, cost-sensitive learning approaches can be used to address the bias caused by
the skewed class distribution. In the context of random forests, cost-sensitive learning involves adjusting misclassification
costs associated with different classes during training and prediction. Misclassification costs assign penalties or weights to
different types of misclassifications based on their consequences. By incorporating misclassification costs, a classification
model can optimize its predictions considering the specific costs associated with different types of misclassifications. In
binary classification, a 2×2 misclassification cost matrix is used to assign costs to the four possible outcomes: True Positive
(TP), True Negative (TN), False Positive (FP), False Negative (FN). An example of a misclassification cost matrix is
provided in Table 4.4. In this matrix, the costs are specified as follows:

• c00: The cost of misclassifying an actual Class 0 instance as Class 0 (TP).

• c01: The cost of misclassifying an actual Class 0 instance as Class 1 (FP).

• c10: The cost of misclassifying an actual Class 1 instance as Class 0 (FN).

• c11: The cost of misclassifying an actual Class 1 instance as Class 1 (TN).
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Customizable costs based on domain knowledge can be assigned in cost-sensitive learning. Misclassification costs enable
optimization of predictions by considering the total cost rather than overall accuracy. For example, in a medical diagnosis
scenario, misclassifying a patient with disease as non-disease (FN) might have more severe consequences than misclassifying
a non-disease patient as having a disease (FP). Therefore, generally higher costs are assigned to costly misclassifications,
prioritizing their minimization. In imbalanced data, the minority class is typically assigned a higher misclassification cost
for more accurate predictions. The objective is to optimize a cost-based criterion, such as weighted misclassification cost
or performance measures like F1 score or area under the Precision-Recall curve. In random forests this can be achieved
through class weights or modified splitting criteria.

Once a misclassification cost matrix is determined, we can for instance find the ‘optimal’ threshold p∗ can to classify an
observation x as either 0 or 1. In this case we let p = P(j = 0|x), the probability of being classified as class 0 given an
observation x. This p∗ can be determined as follows. Consider the cost matrix c = (c(i, j)(x)), where c(i, j)(x) represents the
cost of classifying instance x from class j as class i given in Table 4.4. For simplicity, we assume constant and class-dependent
cost functions.

Predicted Class
Class 0 Class 1

Actual Class Class 0 C(0, 0) = c00 C(0, 1) = c01
Class 1 C(1, 0) = c10 C(1, 1) = c11

Table 4.4: Misclassification Cost Matrix

Naturally, the following two conditions (also called the “reasonableness" conditions) have to be satisfied [57]:

(1)c01 > c00

(2)c10 > c11
(4.13)

Then a natural question arises:
Considering the cost matrix presented in Table 4.4 and a function f : X → [0, 1] that models the probability P(y = 1|x),
which criteria should be used to determine whether x should be classified as class 0 or 1?
Intuitively, we classify x as 1 if the expected cost of classifying it as 1 is lower than that of classifying it as 0. In other
words, the decision rule can be defined as follows:

P(j = 0|x)c10 + P(j = 1|x)c11 ≤ P(j = 0)c00 + P(j = 1|x)c01 (4.14)

if we write p = P(j = 1|x), we obtain:
(1− p)c10 + pc11 ≤ (1− p)c00 + pc01 (4.15)

If we have equality between the expected costs, it implies that predicting either class would be equally optimal. Therefore,
we need to determine the optimal threshold p∗ that ensures the expected values are equal. Mathematically, this can be
expressed as:

(1− p∗)c10 + p∗c11 = (1− p∗)c00 + p∗c01 (4.16)

solving this for p∗ gives,

p∗ =
c10 − c00

c10 − c00 + c01 − c11
(4.17)

This result was proven by Elkan in [57] in more detail. In practice, this threshold is taken to be 0.5 in general.

4.1.3.3 Complete Class Inclusion

The ‘Complete Class Inclusion’ (CII) method addresses dataset imbalance by including the entire minority class in the
training dataset. This helps reduce bias towards the majority class and improves the prediction of the minority class. By
retaining all instances of the minority class during training, valuable information specific to that class is preserved. This
approach can be seen as a form of ‘oversampling’ but does not necessarily achieve a 50/50 ratio between the majority and
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minority classes, as observed in traditional oversampling techniques. CII offers advantages such as exposure to the full
set of minority class instances, enabling the model to learn distinctive patterns and establish effective decision boundaries.
This comprehensive learning improves classification performance by capturing complex relationships and patterns between
the minority class and features. This is especially useful when dealing with a very small minority set, as many machine
learning models have troubles learning from a small sample. As a consequence, incorporating the minority class in training
enhances the model’s generalization ability to unseen samples during testing. However, CII alone may not fully address class
imbalance. The biggest disadvantage is the risk of overfitting and not having a totally independent test set to validate the
model performance on. Additional strategies like oversampling, undersampling, or adjusting class weights may be required
to further balance the class distribution and improve overall model performance.

4.1.4 Evaluation Metrics

In the provided random forest model, various evaluation or performance metrics are used. In this subsection a brief
explanation on the interpretation of these metrics is provided in the context of the random forest model. Note that many
metrics can be generalized.

4.1.4.1 Confusion Matrix

The confusion matrix is a common tool for evaluating machine learning classification problems. It is a table that summarizes
the predicted and actual values. It includes true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). From the confusion matrix, various performance metrics can be calculated, such as recall, precision, specificity, and
accuracy.

• True Positive (TP): The model correctly predicted a value as true, and it is indeed true (correctly classified).

• True Negative (TN): The model accurately predicted a value as negative or false, and it is indeed negative or false
(correctly classified).

• False Positive (FP) or Type I error: The model incorrectly predicted a value as positive or true, but in reality, it is
negative or false.

• False Negative (FN) or Type II error: The model erroneously predicted a value as negative or false, but in reality, it
is true or positive.

Consider the example of a confusion matrix depicted in Figure 4.7. Formulas for computing different performance measures
are provided below:

• Recall: Recall is also referred to as sensitivity, detection rate, or true positive rate (TPR), is calculated using
Equation (4.18) and a higher recall value is more desirable.

TPR = Recall :
TP

TP + FN
(4.18)

• Precision: Precision is also known as positive predictive value (PPV), is determined by Equation (4.19). Precision
signifies the proportion of predicted positives that are truly positive. Hence, a higher precision value is preferable.

PPV = Precision :
TP

TP + FP
(4.19)

• Accuracy (ACC): Accuracy is defined by Equation (4.20). It reflects the proportion of correctly classified instances
over the total number of instances and provides a general measure of the model’s overall correctness. However,
accuracy alone might not be sufficient, especially in the presence of class imbalance.

ACC = Accuracy :
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(4.20)

• The F1-score: The f-1 score denoted as the harmonic mean of precision and sensitivity, is given by Equation (4.21).
Comparing models with low precision and high recall, or vice versa, can be challenging. The F1-score serves as a
composite metric that balances both precision and sensitivity. The highest achievable score is 1.0, while the lowest is
0. A value closer to 1 indicates a better-performing model. when dealing with imbalanced class distributions or when
the costs associated with false positives and false negatives significantly differ, the F1-score is particularly valuable .

F1 score =
2× TP

2× TP + FP + FN
(4.21)
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• Specificity or True Negative Rate (TNR): Specificity or True Negative Rate measures the proportion of true
negatives (class 1 predicted as class 1) out of all actual negative instances (class 1), as given in Equation (4.22).

Specificity =
TN

TN + FP
(4.22)

• Negative Predictive Value (NPV): Negative Predictive Value represents the proportion of true negatives (class
1 predicted as class 1) out of all instances predicted as negative (class 1).

NPV =
TN

TN + FN
(4.23)

• Prevalence: Prevalence represents the proportion of total positive instances in the dataset.

Prevalence =
P

P +N
(4.24)

• Detection Prevalence: Detection prevalence represents the proportion of instances predicted as positive by the
model.

Detection Prevalence =
TP + FP

TP + FP + FN + TN
=

P

P +N
(4.25)

• Balanced Accuracy: Balanced accuracy is the average of sensitivity and specificity. Higher balanced accuracy
values indicate better overall classification performance, taking into account both the positive and negative instances.

BA =
TPR+ TNR

2
(4.26)

Figure 4.7: Confusion matrix with the formulas of the performance metrics: sensitivity, specificity, accuracy,
precision and negative predictive value. P = Total number of positives = TP + FP, N = Total number of
negatives = FN + TN.

4.1.4.2 ROC and AUC

The Receiver Operating Characteristic (ROC) curve is a graph showing the trade-off between a classifier’s sensitivity (True
Positive Rate) and specificity (1 - False Positive Rate). It illustrates how well the classifier distinguishes between positive
and negative classes. The curve plots the False Positive Rate (FPR) on the x-axis and the True Positive Rate (TPR) on
the y-axis. A classifier with a curve closer to the top-left corner is considered to have better performance. The Area Under
the Curve (AUC) measures the separability of the classes depicted by the ROC curve. A higher AUC value (closer to 1.0)
indicates better predictive performance. For example, an AUC of 0.8 means an 80% chance of correct class separation,
while an AUC close to 0.5 suggests poor separation. Figure 4.8 illustrates three scenarios for the ROC curve and AUC. A
perfect classifier with an AUC of 1.0 shows an ROC curve in the top-left corner, indicating complete class distinction. In
contrast, when there is significant overlap between the classes, resulting in limited separability, the AUC is approximately
0.5, and the ROC curve resembles a diagonal line.
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Figure 4.8: The top graph shows the ROC and corresponding AUC from ‘best’ model to ‘worst’ with on the
bottom the overlap between the positive and negative classes presented. [58]

4.1.4.3 Other important metrics used in the random forest output

When evaluating the performance of the random forest model on an independent test set, next to the aforementioned
evaluation metrics based on the confusion matrix, other metrics are used to asses its performance as well. Note that these
are all in the context of the random forest model, since for instance ‘p-values’ in general have a much broader interpretation
as well as confidence intervals. A brief explanation based on the interpretation of such an output as in Figure 4.9 will be
provided at the end.

1. 95% confidence interval: A 95% confidence interval is a range of values that is likely to contain the true unknown
parameter of interest. It provides a measure of uncertainty or variability associated with estimating a parameter based
on a sample dataset. In the context of random forest model performance accuracy, the confidence interval quantifies
the plausible values within which the true accuracy is expected to lie with a 95% level of confidence. This means
that if the experiment were to be repeated numerous times, the calculated confidence intervals would include the
true ‘accuracy’ of the random forest model in approximately 95% of those experiments. Larger sample sizes generally
lead to narrower confidence intervals, as they provide more precise estimates. Similarly, lower data variability and
higher confidence levels result in narrower intervals, signifying increased confidence in the estimated accuracy. It
is important to interpret the confidence interval properly, recognizing that it does not provide information about
specific values within the range. Rather, it conveys a range of plausible accuracy values, emphasizing the uncertainty
inherent in the estimation process.

2. No Information Rate (NIR): The No Information Rate (NIR) is a benchmark used to assess the performance
of a predictive model. It quantifies the accuracy attained by a model that consistently predicts the majority class,
such as disease control in this case. The NIR functions as a baseline for comparison and characterizes the accuracy
achieved by a simplistic model that solely predicts the majority class, devoid of any sophisticated analysis or learning.
By establishing the NIR, practitioners and researchers can evaluate the efficacy of their models relative to this trivial
baseline. Comparing the accuracy of a predictive model against the NIR provides insights into its ability to surpass
the simplistic approach of merely predicting the majority class. Models that exhibit accuracy higher than the NIR
demonstrate their capacity to capture patterns and make informed predictions beyond what can be achieved by a
rudimentary baseline model. It is worth noting that the NIR is particularly valuable in imbalanced datasets, where
the majority class overwhelmingly dominates the minority class(es). In such cases, the trivial model that predicts
the majority class at all times would yield a high accuracy. Consequently, a more sophisticated model that surpasses
this accuracy threshold signifies its effectiveness in identifying meaningful patterns and making accurate predictions
that go beyond what is achieved by the most basic strategy.

3. P-Value [Acc > NIR]: The p-value [Acc > NIR] serves as a statistical metric that assesses the significance of a
predictive model’s accuracy relative to the NIR explained before. In this context, the null hypothesis states that the
accuracy of the model is equal to the NIR. By calculating the p-value, we can determine the likelihood of obtaining
the observed accuracy solely due to random chance, assuming that the model’s accuracy is no different from the
baseline represented by the NIR. A higher p-value, e.g. 0.6741, indicates that there is insufficient evidence to reject
the null hypothesis and suggests that the model’s accuracy does not significantly differ from the NIR. Conversely,
lower p-values, e.g. < 0.05, indicate stronger evidence against the null hypothesis, suggesting a significant difference
between the model’s accuracy and the NIR. In such cases, researchers can infer that the observed accuracy is unlikely
to occur by chance alone, implying that the model’s performance is better than the NIR.
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The p-value is calculated using a permutation test called the “Out-of-Bag (OOB) Estimate of Error Improvement" also
referred to as the “Permutation Test of Variable Importance". This test measures the improvement in accuracy when
the predictions of the random forest are permuted for a particular variable while keeping other variables constant.
The variable importance is calculated based on the decrease in accuracy resulting from the permutation. To obtain
the p-value for Acc > NIR, the random forest algorithm performs permutations of the predicted class labels and
computes the accuracy for each permutation. Then it compares the observed accuracy with the distribution of
permuted accuracies to calculate the p-value. If the observed accuracy is significantly higher than the accuracies
obtained by permutations, the p-value will be small, indicating a statistically significant difference between accuracy
and NIR. The following algorithm is used.

(a) Calculate the observed accuracy difference: Acc−NIR.

(b) Perform a large number of permutations (e.g., 10 000) of the predicted class labels. For each permutation:

i. Randomly shuffle the predicted class labels while keeping the actual class labels unchanged.
ii. Calculate the accuracy difference for the permuted labels: PermAcc −NIR.

(c) Count the number of permutations where the accuracy difference from step 2 is greater than or equal to the
observed accuracy difference from step 1.

(d) Divide the count from step 3 by the total number of permutations (e.g., 10 000) to obtain the proportion of
permuted accuracies that are as extreme as or more extreme than the observed accuracy.

(e) The p-value is the proportion calculated in step (d).

4. Cohen’s Kappa: Cohen’s Kappa is a statistical measure designed to assess the degree of agreement between two
classifiers while considering the potential agreement that could occur by chance alone. This metric is particularly
valuable when evaluating the performance of a classification model, especially in scenarios where there might be an
imbalance in the distribution of classes, which is the case in this study. The kappa coefficient ranges from -1 to +1
and provides insight into the level of agreement between the classifiers under examination. In the context of the
random forest model output, Cohen’s kappa compares the agreement between the predicted class labels generated
by the random forest algorithm and the true class labels of the data. Different values within this range have specific
interpretations:

• A kappa coefficient of +1 indicates perfect agreement between the two classifiers. This implies that the observed
agreement exceeds what would be expected by chance alone, indicating a high level of consistency and reliability
in their classifications.

• A kappa coefficient of 0 denotes agreement equivalent to what would be expected by chance alone. In other
words, there is no systematic agreement or disagreement between the classifiers beyond what random chance
would produce.

• Negative values of the kappa coefficient indicate agreement that is worse than what would be expected by chance
alone. This suggests that the classifiers exhibit a level of disagreement that is more substantial than random
chance would account for, indicating a poor level of agreement.

In general, a higher kappa value corresponds to a better performance of the classifiers. A higher value indicates a
greater level of agreement between the classifiers, surpassing what would be expected by chance alone. Consequently,
a higher kappa value suggests a higher degree of consistency and reliability in the classifications made by the classifiers.
To calculate Cohen’s Kappa, the formula in Equation (4.27) is used,

κ =
Po − Pe

1− Pe
(4.27)

where Po is the observed agreement probability and Pe is the expected agreement probability by chance alone.
These are based on an agreement matrix or contingency table that shows the observed frequencies of the different
categories for each classifier. The observed agreement Po is calculated by summing the diagonal elements of the
contingency table and dividing it by the total number of observations. On the other hand, the expected agreement by
chance Pe is calculated by considering the probabilities of each classifier selecting each category independently. Since
the interpretation of Cohen’s kappa can vary depending on the field or context, generally the following guidelines,
proposed by Landis and Koch [59] are used.

Kappa Level of Agreement
> 0.8 Almost perfect
> 0.6 Substantial
> 0.4 Moderate
> 0.2 Fair
> 0 Slight
< 0 No agreement

Table 4.5: Cohen’s Kappa and level of agreement by Landis and Koch [59]
.
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Example calculation Suppose we have two different classifiers to classify a patient as disease control or progressive
disease. And the contingency table in Figure 4.9 is provided. Then in this case

Po =
38

61
+

9

61
=

47

61
≈ 0.770

Pe =
42

61
· 48
61

+
19

608
· 13
61

≈ 0.61

thus κ is
κ =

Po − Pe

1− Pe
≈ 0.770− 0.608

1− 0.608
≈ 0.414

which is the same as the Cohen’s kappa given in Figure 4.9.

5. McNemar’s Test P-Value: McNemar’s test is a statistical procedure used to compare the performance of two
models or classifiers using paired data. It is commonly used when evaluating the effectiveness of a model in relation
to a baseline or when comparing two different models. The test aims to determine whether there exists a significant
difference in the classification performance between the two models. The test relies on a 2 × 2 contingency table
that represents the counts of the four possible outcomes, as given in Table 4.6 or Figure 4.7. This table captures the
number of observations where both models agree, where the first model predicts correctly while the second model
predicts incorrectly, where the first model predicts incorrectly while the second model predicts correctly, and where
both models predict incorrectly. To compute McNemar’s test statistic, the chi-squared statistic is used. This statistic
is derived from the contingency table and is calculated using the formula given in Equation (4.28), where A,B,C, and
D represent the counts from the contingency table in Table 4.6 as described earlier. Once the chi-squared statistic is
obtained, it is compared to the chi-squared distribution with 1 degree of freedom to determine the associated p-value.
The p-value reflects the probability of observing the given data, or data more extreme, under the assumption that
the two models are equally effective. If the calculated p-value is lower than a predetermined significance level (e.g.,
0.05), it suggests a significant difference in performance between the two models.
It tests the null hypothesis: H0 = pB = pC stating that the proportion of the frequencies in cells B and C are equal,
while the alternative hypothesis is H1 = pB ̸= pC . So it only uses the cells of the contingency table where there is
a disagreement between the two classifiers. Then using the Chi-squared test statistic given in Equation (4.28) the
value is calculated. Then the area to the right-hand side of this value in a chi-square distribution with one degree of
freedom is calculated. This area represents the p-value of the test.

Model 2 Correctly Classified Model 2 Misclassified
Model 1 Correctly Classified A B
Model 1 Misclassified C D

Table 4.6: McNemar’s Test Contingency Table

χ2 =
(|B − C| − 1)2

B + C
(4.28)

Example calculation: In the contingency table provided in Figure 4.9 to calculate the χ2 statistic with one degree
of freedom used in McNemar’s test, we get:

χ2 =
|(4− 10| − 1)2

4 + 10
=

25

14
≈ 1.79 (4.29)

Then the corresponding p-value is calculated to be ≈ 0.18 (using statistical software like R), which is exactly the
same as the P-value given in Figure 4.9.

Here is a brief interpretation of the aforementioned metrics in relation to the example confusion matrix provided in Figure 4.9.

1. Accuracy: The accuracy is a measure of the overall correctness of the classification model. In this case, the accuracy
is 0.7705, which means that the model correctly predicts the outcome for approximately 77.05% of the cases.

2. 95% CI: The 95% confidence interval provides a range of plausible values for the true accuracy of the model. In this
case, the confidence interval is (0.645, 0.8685), suggesting that we can be 95% confident that the ‘true’ accuracy falls
within this interval.

3. No Information Rate: The no information rate is the accuracy that would be achieved by simply predicting the
majority class. In this case, the no information rate is 0.7869, indicating that if we always predicted the majority
class, we would achieve an accuracy of approximately 78.69%.

4. P-Value [Acc > NIR]: This p-value tests whether the observed accuracy is significantly different from the no
information rate. In this case, the p-value is 0.6886, suggesting that there is no significant difference between the
observed accuracy and the no information rate.
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Figure 4.9: Example of an output of a confusion matrix after testing a fitted random forest model on an independent
test set.

5. Kappa: Kappa is a measure of the agreement between the predicted and actual classes, taking into account the
agreement that would be expected by chance. A kappa value of 1 indicates perfect agreement, while a value of 0
indicates agreement due to chance. In this case, the kappa value is 0.4143, indicating a fair agreement between the
predicted and actual classes.

6. McNemar’s Test P-Value: McNemar’s test is used to assess whether there is a significant difference between the
predicted classes when comparing paired observations. In this case, the p-value is 0.1814, suggesting no significant
difference in the predicted classes.

7. Sensitivity: Sensitivity (also known as the true positive rate or recall) is the proportion of actual positive cases
correctly identified by the model. In this case, the sensitivity is 0.7917, indicating that the model correctly identifies
approximately 79.17% of the positive cases.

8. Specificity: Specificity is the proportion of actual negative cases correctly identified by the model. In this case, the
specificity is 0.6923, indicating that the model correctly identifies approximately 69.23% of the negative cases.

9. Pos Pred Value: The positive predictive value is the proportion of predicted positive cases that are actually positive.
In this case, the positive predictive value is 0.9048, suggesting that when the model predicts a positive case, there is
a 90.48% chance that it is indeed positive.

10. Neg Pred Value: The negative predictive value is the proportion of predicted negative cases that are actually
negative. In this case, the negative predictive value is 0.4737, indicating that when the model predicts a negative
case, there is a 47.37% chance that it is indeed negative.

11. Prevalence: Prevalence is the proportion of positive cases in the dataset. In this case, the prevalence is 0.7869,
indicating that approximately 78.69% of the cases are positive.

12. Detection Rate: The detection rate (also known as the true positive rate or recall) is the proportion of actual
positive cases correctly identified by the model. In this case, the detection rate is 0.6230, which is the same as the
sensitivity value.

13. Detection Prevalence: Detection prevalence is the proportion of predicted positive cases. In this case, the detection
prevalence is 0.6885, indicating that approximately 68.85% of the cases are predicted as positive.

14. Balanced Accuracy: The Balanced Accuracy value is 0.7420. This indicates thatthe model generally classifies
approximately 74.20% of the instances correctly, considering both the sensitivity (ability to correctly identify positive
instances) and specificity (ability to correctly identify negative instances).

4.1.5 Variable Importance

The variable importance in the Random Forest models is determined using two metrics, namely: mean decrease in accuracy
and mean decrease in Gini index. When dealing with imbalanced datasets, it is generally recommended to use the mean
decrease in Gini index rather than accuracy. This is because accuracy can be misleading in imbalanced datasets where the
majority class dominates, leading to biased variable selection. Conversely, the Gini index takes into account the relative
frequencies of the classes and is less sensitive to class imbalance. For a binary classification problem:

Gini = 1− (p2 + q2),
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where p is the probability of selecting a sample from the positive class and q is the probability of selecting a sample from
the negative class and p + q = 1, assuming that the data is split into two classes: positive and negative. A Gini index
close to 0 indicates a ‘pure’ node, predominantly from a single class, while a value close to 0.5 indicates an ‘impure’ node
corresponding to a balanced distribution between the classes. Gini is less affected by class imbalance, because it considers
the squared probabilities of each class and aims to minimize impurity within each node, giving more weight to correctly
classifying instances of the minority class. On the other hand, accuracy is defined as the ratio of correctly classified samples
to the total number of samples,

Accuracy =
TP + TN

(TP + TN + FP + FN)
,

with TP, TN, FP and FN derived from the confusion matrix. It treats all classes equally and does not consider the
distribution of classes. In imbalanced datasets, where one class dominates the dataset, a model that always predicts the
majority class can achieve high accuracy, while performing poorly on the minority class. This can mask the poor performance
on the minority class, which is often more critical.

Moreover, the mean decrease in accuracy measures the reduction in the accuracy of the model when a particular predictor
variable is randomly permuted. This metric reflects the importance of a variable in predicting the outcome of the model. If
permuting a variable results in a significant drop in model accuracy, then that variable is considered to be more important
in predicting the model outcome. In contrast, if permuting a variable has no effect on model accuracy, then the variable
is deemed less important in predicting the model outcome. When computing the mean decrease in accuracy, the variable
importance measure is determined by permuting the values of each predictor variable in the out-of-bag (OOB) samples
of the random forest model. Permutation means that the values of a particular predictor variable are randomly shuffled,
breaking the relationship between the predictor variable and the outcome variable (e.g. CA19-9 before value and the final
response to chemotherapy). The permuted OOB samples are then re-evaluated using the trained random forest model to
obtain the new accuracy score. The difference between the original accuracy score and the permuted accuracy score for
each predictor variable is then averaged over all trees in the random forest to obtain the mean decrease in accuracy value
for that variable.

Similarly, the mean decrease in Gini index measures the total decrease in impurity in the dataset when a particular predictor
variable is selected for a split in a decision tree. This metric assesses the importance of a variable in splitting the data
into smaller, more homogeneous groups. A higher decrease in Gini index indicates that the variable is more important in
splitting the data and is thus more influential in the model’s predictions. For mean decrease in Gini index, the variable
importance measure is determined based on the number of times a particular predictor variable is used to split the data
in the decision trees of the random forest model. Each time a variable is used to split the data, the decrease in impurity
(measured by the Gini index) is recorded. This is repeated across all trees in the random forest model, and the total
decrease in impurity is averaged over all trees to obtain the mean decrease in Gini index value for that variable.

4.1.5.1 Ranking the variables - Ranksum

After having found an optimal random forest model for the classification of PDAC patients, the performance of the random
forest model as well as the variable importance is determined by running a simulation in which in every iteration a new
optimized random forest model is created and subsequently the top 15 variables are determined based on the mean decrease
in Gini impurity. This metric is chosen above the mean decrease in accuracy as explained previously. Accuracy can be
misleading in imbalanced datasets where the majority class dominates the classification and therefore lead to a biased
variable selection. On the other hand, the Gini index takes into account the relative frequencies of the classes and is less
sensitive to class imbalance. Then in order to find the most important variables, the ‘ranksum’ of each variable is computed
using the following:

rsi =

ni∑
j=1

1

rij
× fij (4.30)

where, rsi is the rank sum of the ith variable, ni is the total number of different ranks variable i gets, rij is the rank of i for
the jth rank and fij the corresponding frequency. So in words, every iteration each variable gets an importance rank. At the
end of the simulation run (in this case we choose k = 100 runs), every variable will have 100 (potentially different) ranks.
To calculate the ranksum, we first count the number of times a variable gets a certain rank. Suppose that ‘CA199-before’
gets ranked ‘1’, 98

100
runs and ‘2’ 2

100
runs. Then the ranksum of ‘CA19-9 before’ is computed as:

rsCA19-9 before =
1

1
× 98 +

1

2
× 2 = 99. (4.31)

This is then done for each of the variables and based on this ranksum, the top 10 most important variables are determined.
Thus the ranksum varies between [0, k], with k the number of runs.
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4.2. Partial Dependence and Accumulated Local Effects

Notation: the following section uses random vectors X = [X1, . . . , Xp]
T , where each random variable Xi, i = 1, . . . , p has

distribution FXi(xi), assuming that the vector has p predictor variables. To distinguish between a random variable and a
value of a particular random variable, we use capital letters X to denote a random variable or vector and small letters x to
denote the values a random variable or vector takes on. Note that in the vector case, x is also a vector of values. Depending
on whether the set S consisting of the feature of interest contains 1 or more variables, XS is a random variable in case
|S| = 1 and a random vector is |S| > 1, similarly for the values xS. f is the true underlying function of the model, f̂ refers
to the prediction function based on the data in the model, while f̃ refers to the approximated function.

4.2.1 Partial dependence plots (PDP)

A partial dependence plot (PDP) is a graphical representation that illustrates the marginal impact of a feature on the
predicted outcome of a machine learning model. It provides insights into the relationship between the target variable and
a particular feature. For example PDPs always exhibit a linear relationship for linear regression models. A PDP is able to
visualize the relationship between a feature and the predicted outcome, while marginalizing the effects of the other features
in the model by holding all other features constant and only varying the value of that particular feature. As the feature of
interest varies across a range of values, the effect of that variation on the predicted outcome is shown.

Let X = [X1, X2, . . . , Xp]
T represent a random vector of the p predictors or features in a model with prediction function

is f̂(X) based on the observed data. Then partition X into X = XS ∪ XSc , with S ⊂ {1, . . . , p} the set containing the
feature of interest (or two or more features of interest) and Sc the set containing the remaining features, the complement
of S. The definition of a partial dependence function fS,PD(XS) with respect to the marginal distribution of the features
XSc at a value XS = xS is as follows,

fS,PD(xS) = EXSc (f̂(xS , XSc)) =

∫
f̂(xS , XSc)dP(XSc) (4.32)

where f̂(xS , XSc) is the predictor function from the model. In simpler terms, given a value of XS = xS , we calculate
the average predicted outcome while averaging over all the other remaining features. This involves integrating over the
marginal distribution of all the other features. The term dP(XSc) =

∫
p(XSc)dXSc , is the marginal probability density of

XSc . Furthermore, Equation (4.32) can be estimated using the Monte Carlo method from a training dataset consisting of
n data points using the following formula:

f̃S(xS) =
1

n

n∑
i=1

f̂(xS , xi,Sc) (4.33)

where xi,Sc (i = 1, 2, . . . , n the number of observations) are the values of XSc that occur in the training sample. In other
words, we average out the effects of all the other predictors in the model in which we are not interested.

In classification using the random forest model, the PDP shows the probability associated with a specific class when varying
the values of the feature(s) of interest in a set S. It provides an estimation of the average effect on the predicted outcome
when a particular feature variable, such as X1, is changed. The plot allows for a global interpretation of the relationship
between the feature and the predicted outcome, considering all instances in the dataset. However, it assumes that the
features in Sc are independent of the features in S, and extrapolation issues may arise if this assumption is violated.
The ‘extrapolation’ issue refers to the problem that a PDP may incorporate data points that are highly unlikely or even
impossible to occur.

4.2.1.1 PDP algorithm

In practical terms, constructing a PDP involves the following steps provided in Algorithm 3. For simplicity, consider only
one feature of interest, denoted as XS = X1. Suppose that we have a dataset of n observations of which X1 takes on k
unique values, that is {x11, x12, · · · , x1k}, then the partial dependence of the response on feature X1 can be constructed as
follows:
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The algorithm for constructing PDP can be summarized in words as follows:

1. Select a range of values for the variable of interest, denoted as X1. Typically, this range encompasses the minimum
and maximum values observed for that variable in the dataset. Replicate the entire dataset (excluding the feature of
interest) for each unique value of X1. For instance, if the dataset contains 100 observations and X1 has 20 unique
values, the resulting sample will consist of 100× 20 instances as each unique value of X1 is assigned to 100 samples.

2. For each unique value of the variable, calculate the model’s predictions while keeping all other variables constant.

3. Compute the average of the predicted outcomes for each unique value of the variable. These averaged values represent
the PDP values, indicating the average effect of the variable on the model’s predictions. In the given example, if there
are 100 predictions per unique value of X1, the average is taken over these 100 outputs to obtain the final output
value for each unique value of X1. So in this example we would have 20 average values for the 20 unique values of
X1.

4. Plot the values of the variable of interest against the averaged predicted outcomes obtained from the model. This
plot is the Partial Dependence Plot, where the unique values of X1 are plotted against the corresponding averaged
predictions.

4.2.1.2 Advantages and Disadvantages of PDPs

PDPs are an easy way to get an understanding of the marginal effect of a particular feature on the predicted outcome.
However, as mentioned earlier, one of the strong underlying assumptions in the interpretation of a PDP is the assumption of
independence. This assumption may not hold when features are correlated, potentially leading to the inclusion of unrealistic
data points in the average calculation (the extrapolation issue). In this section, we will discuss some of the advantages and
limitations of PDPs and propose better alternatives in the next subsections.

Advantages of PDPs

• Interpretability: PDPs provide a clear interpretation of the relationship between a specific feature and the average
prediction in the dataset. Assuming independence among features, PDPs show how changing the feature of interest
affects the average prediction and thus offer a straightforward understanding of feature influence.

• Visual representation: PDPs offer a visual representation of the relationship between a feature and predictions.
They provide a concise summary that helps identify trends and patterns more easily.

• Identification of non-linear relationships: PDPs can reveal non-linear relationships between variables and the
outcome. They can uncover complex interactions that may not be evident in simple linear analyses.

• Feature importance ranking: PDPs assist in ranking the importance of variables by examining the magnitude
and shape of their effects. Variables with steeper slopes or larger effects are likely to have greater influence on the
model’s outcome.

Limitations of PDPs

• Independence assumption and Extrapolation issue: PDPs assume variable independence, which can be prob-
lematic when variables actually interact and influence each other’s predictions. Improbable data points may be
created, leading to inaccurate representations. For instance, consider a model attempting to predict an individual’s
running speed based on their height and weight. In the PDP for height, the assumption is made that weight is not
correlated with height, which is an incorrect assumption. When computing the PDP at a specific height (e.g., 200cm),
the average is taken over the marginal distribution of weight. This can include improbable weight values (e.g., 35kg)
for a person of such height, resulting in the creation of new data points in regions of the feature distribution with
extremely low actual probabilities.
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• Concealment of heterogeneous effects: PDPs only show the average marginal effects of a variable, potentially
hiding heterogeneous effects where different parts of the dataset exhibit opposite associations.

• Misinterpretation: PDPs represent average effects and can be misleading, particularly when the model contains
interactions. Due to the probable inclusion of improbable data points, they can lead to biased interpretations.

Figure 4.10: Motivation of correlated features and the PDP plot. (a) red points represent the artificial grid points
and the black points the observed data points. PD plots average over predictions of artificial points that are out of
distribution, which are the red points. This can lead to biased interpretation, especially when the model contains
interactions too. (b) black points are the observations and the curve drawn in grey is the marginal distribution of
x2 at x1 = 0.0.

To give a more visual representation of the problem of correlation in PDPs, consider the two figures in Figure 4.10. In
Figure 4.10(a), the plot on the left, both the artificial grid points (depicted in red) and the corresponding observed data
points (depicted in black) are displayed. PDPs average predictions over the artificial points, of which some have a low or
no probability of occurrence in reality. For instance, the earlier example of an individual who is 200cm tall but weighs
35kg exemplifies this scenario. Consequently, such instances can lead to potentially misleading interpretations, particularly
when the model contains interactions. To delve further into this matter, we can refer to the plot in Figure 4.10(b), which is
presented on the right side. Consider the fixed value of feature X1 = x1 at x1 = 0.0. The PDP averages predictions using the
marginal distribution of X2, accounting for all possible feature values of X2. As a result, the PDP also averages predictions
in regions where there is a scarcity or absence of observed data points, as indicated by the tails of the plot. Consequently,
such averaging can contribute to misleading interpretations when utilizing PDPs and create unrealistic scenarios. This is
the extrapolation issue.

4.2.2 Marginal effect plots (M-plots)

One potential solution to address the issue of the independence assumption in PDPs, as well as the usage of the entire
marginal distribution of other variables, is to use Marginal Effect Plots (M-plots). By using M-plots, we calculate averages
using the conditional distribution instead of the entire marginal distribution of the other variables, ensuring that only points
close to the conditional distribution of a specific variable (e.g., X2) given a certain value of another variable (e.g., X1 = x1)
are considered. Rather than incorporating the entire range of values for X2 and averaging over all these values, we define a
neighborhood set N(x1) = {i : x1i ∈ [x1− ϵ, x1+ ϵ]} for some ϵ > 0 consisting of observations in close proximity, allowing us
to solely average points within the neighborhood of X1 = x1. This approach enables the approximation of the conditional
distribution of X2 given X1 = x1. Mathematically, in terms of expectations, PDPs average predictions over the marginal
distributions. If we only consider the features X1 and X2 in this case at a fixed value of X1 = x1:

EX2(f̂(x1, X2)) ≈ f̃1,PD(x1) =
1

n

n∑
i=1

f̂(x1, X2,i) (4.34)

Contrastingly, in M-plots the expectation is represented by a conditional expectation and estimated using a neighborhood
set, as given in Equation (4.35),
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N(x1) = {i : x1i ∈ [x1 − ϵ, x1 + ϵ]} for some ϵ > 0 (4.35)

and the following approximation,

E(f̂(x1, X2|X1 = x1)) ≈ f̃1,M (x1) =
1

|N(x1)|
∑

i∈N(x1)

f̂(x1, X2,i) (4.36)

In general, M-plots average the predictions over the conditional distribution, that is:

fS,M (xS) = E[f̂(XS , XSc |XS = xS)] =

∫
XSc

f̂(xS , XSc)dP(XSc |XS = xS) (4.37)

with f̂(xS , XSc) in turn estimated by,

f̃S(xS) =
1

|N(xS)|

n∑
i=1

f̂(xS , Xi,Sc |XS = xS) (4.38)

with N(xS) = {i : x1i ∈ [x1 − ϵ, x1 + ϵ]} the neighborhood set around XS = xS for a given ϵ > 0 and |N(xS)| denoting the
number of observations in this given set.

Figure 4.11: (a) PDP of X1 against X2, where the black dots represent the observations, the grey density at
X1 = 0.0 is the marginal distribution of X2 at this point. The red circle indicates a position where the problem
lies in PDPs, as it also takes into account these values which are not observed at X1 = 0.0. (b) M-plot of the same
observations, but with the conditional distribution of X2|X1 = 0.0 drawn in grey. M-plot averages f(X1, X2) over
the conditional distribution of X2|X1 = x1 defined in the neighborhood N(X1 = x1).

In summary, M-plots involve averaging predictions based on conditional distributions (e.g. PX2(·|X1 = x1)) as an alternative
to PDPs, thereby mitigating extrapolation issues. However, M-plots are susceptible to omitted variable bias (OVB) as they
incorporate effects of other dependent features, rendering them ineffective for assessing the marginal effect of a feature when
feature dependencies exist. To illustrate this concern, consider the following simulation example. A linear model is fitted to
500 identically and independently distributed observations with features X1 and X2 following a normal distribution N(0, 1),
with Cor(X1, X2) = 0.9. The true underlying function is given by

y = −x1 + 2× x2 + ϵ, ϵ ∼ N(0, 1). (4.39)

Equation (4.39) represents a linear relationship between the dependent variable and the independent variables, with a
negative coefficient for X1 and a positive coefficient for X2. This scenario is depicted in Figure 4.12(a). The goal is to
examine the marginal effect of X1 on y, while holding X2 constant. It is evident from the correlation of 0.9 that X1 and X2

are strongly correlated. To illustrate this concern, an M-plot is created to visualize the marginal effect of X1. The M-plot
compares the predicted values of y based on the observed values of X1 while keeping X2 constant at its observed values.
However, the M-plot significantly deviates from the true marginal function of X1, which is represented by

f1(x1) = −x1, (4.40)

a linear line with a negative slope. In this context the true marginal function of X1 refers to the part of the original true
function y that only depends on the variable X1, which in this case is only f1(x1) = −x1, as this captures the marginal
effect of X1 on the function y in Equation (4.39).
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Consequently, when estimating the marginal effect of X1, one would anticipate a linear line with a slope of -1. Nevertheless,
the M-plot exhibits a substantial deviation as it takes into account the effect of the second feature. As a result, the effects
of both X1 and X2 are aggregated, resulting in a sum of −1 + 2 = +1, causing the green line to deviate entirely from the
true marginal effect of x1. It should be noted that in the absence of any interactions (e.g., no cross-terms x1×x2), PDPs do
not suffer from extrapolation issues and perform well. This can be observed in Figure 4.12(b), where the blue line (PDP)
closely aligns with the red line (true function).

The deviation observed in the M-plot, where the estimated marginal effect of X1 differs from the true marginal function, can
be attributed to Omitted Variable Bias (OVB). OVB occurs when relevant variables (X2 in this case) that are correlated
with both the independent variable of interest (X1) and the dependent variable (y) are not included in the model. In this
example, the correlation between X1 and X2 is strong (correlation coefficient of 0.9), indicating a high degree of association
between the two variables. Thus, when fitting the linear model with only X1 as an independent variable, the effect of X2

is omitted from the model. As a result, the estimated marginal effect of X1 in the M-plot is confounded by the omitted
variable X2, leading to biased estimates. Mathematically, when fitting the linear model with only X1 as the independent
variable, the estimated model becomes:

ŷ = β̂0 + β̂1X1, (4.41)

where ŷ represents the predicted values of y based on the estimated model coefficients β̂0 and β̂1. Since X2 is omitted from
the mode, the estimated coefficient β̂1 captures both the true marginal effect of X1 and the association between X1 and X2.
Consequently, the estimated marginal effect of X1 in the M-plot is affected by the presence of X2 in the underlying data.
As a result, the M-plot deviates from the true marginal function of X1, which is represented by f1(x1) = −x1. The effect
of X2 causes the estimated marginal effect to differ from the true effect, resulting in a deviation from the expected slope of
-1. This deviation in the M-plot highlights the omitted variable bias, as the effect of the omitted variable (X2) influences
the estimation of the marginal effect of X1.

Figure 4.12: (a) Scatterplot of the generated i.i.d. observations from y = −x1 + 2× x2 + ϵ, ϵ ∼ N(0, 1), X1, X2 ∼
N(0, 1) with Cor(X1, X2) = 0.9. (b) Red = f̂1(x1) = −x1, Green = M-plot, Blue = PDP.

However, the green line of the M-plot is correct when the two features would be independent. This can be explained using
the construction of the two correlated random variables X1 and X2 based on a linear transformation of two independent
distributed variables X1 and U , where X1, U ∼ N(0, 1) using the following. Since the joint distribution of (X1, X2, y) alone
does not specify what we want. The construction is as follows,

X =

[
X1

X2

]
=

[
1 0√

1− α2 α

] [
X1

U

]
(4.42)

Then

XTX =

[
1 0√

1− α2 α

] [
1

√
1− α2

0 α

]
=

[
1

√
1− α2

√
1− α2 1

]
(4.43)
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For the determination of α, since Cor(X1, X2) = 0.9, we need to have that
√
1− α2 = 0.9. Hence, α =

√
1− (0.9)2 ≈ 0.44.

Subsequently, if we replace X2 with X2 =
√
1− α2X1 + αU , then we obtain the following:

f(X1, X2) = −X1 + 2X2 + ϵ

f(X1, U) = −X1 + 2(
√

1− α2X1 + αU) + ϵ

f(X1, U) = (2
√

1− α2 − 1)X1 + 2αU + ϵ

(4.44)

From this we can see that the coefficient in front of X1 is 2
√
1− α2−1 with α ≈ 0.44. Calculating this gives 2(

√
1− (0.44)2−

1) = 0.8 which is exactly the slope of the green line. This shows that if the two features would be independent, the M-plot
would be correct.

4.2.3 Accumulated Local Effects (ALE)

4.2.3.1 Intuition behind ALE

To gain a better understanding of the limitations of PDPs and M-plots and the intuition behind Accumulated Local Effects
(ALE), consider an example involving a machine learning model used to predict the price of a house based on the number of
rooms and the size of the living area. We are specifically interested in assessing the effect of the living area on the predicted
price. Suppose we want to predict the price of an apartment and have a data set with ranging apartments from 25−1000m2

and rooms ranging from 1 − 20. In the case of PDPs, the approach involves selecting (a) the feature of interest (size of
living area), (b) defining a grid, and (c) for each unique grid price, replacing the feature with that price and averaging
the predictions. Finally, (d) draw a curve. However, when calculating the first grid value of the PDP, 25m2, the living
area for all the observations is replaced by 25m2, including houses with a large numbers of rooms. Consequently, the PDP
incorporates unrealistic houses, such as a house with an area of 25 m2 having 15 rooms (this is most likely not possible),
thereby affecting the estimation of the feature’s effect on the predicted price. M-plots, on the other hand, average the
predictions of houses with similar living areas (around 25 m2), thereby ‘solving’ the unrealistic scenario problem. But they
estimate the combined effect of the living area and the number of rooms due to their correlation. Note that we assume that
larger houses have more rooms, thus a positive correlation between these two variables. However, even if we suppose that
the living area has no direct effect on the predicted price, with only the number of rooms having an impact, the M-plot
would still indicate that an increase in living area leads to an increase in the predicted price. This occurs because the
M-plot incorporates the effects of all correlated features and thus mixes the effect of the feature of interest with the effects
of other correlated features. In this case the M-plot still shows that the size of the living area increases the predicted price,
since the number of rooms increases with the size of the living area.

A solution to address these limitations is the use of Accumulated Local Effect (ALE) plots. ALE plots overcome these issues
by calculating the differences in predictions instead of averaging them. For instance, when examining the effect of a living
area of 25m2, the ALE method considers all houses with similar sizes in the neighborhood of the area of consideration. So
for a living area of around 25m2, it obtains model predictions assuming these houses had an area of for instance 26m2, and
subtracts the predictions assuming they had for instance an area of 24m2. By using these differences, ALE plots provide a
pure estimation of the effect of the living area, without confounding it with the effects of correlated features. The use of
differences helps to isolate the effect of the feature of interest and blocks the influence of other features. In mathematical
terms, the concept of ALE plots involves the usage of partial derivatives. The idea behind ALE plots is to eliminate the
undesired marginal effects from other features by first computing the partial derivative of the model’s prediction function,
f̂ , with respect to the feature of interest, say Xj . Subsequently, these partial derivatives are integrated with respect to the
same feature. This process can be summarized as follows:

1. Removal of other main effects: The partial derivative of f̂ with respect to Xj , ∂f̂
∂Xj

, is computed. This step aims to
eliminate the influence of other features and isolate the effect of Xj .

2. Recovery of the main effect of Xj: The resulting partial derivatives ∂f̂
∂Xj

are integrated with respect to the variable

Xj ,
∫

∂f̂
∂Xj

dXj . This integration process recovers the main effect of Xj .

To acquire a mathematical intuition of ALE, we shall consider an illustrative example involving a predictive function with
additive properties that depend solely on two variables, denoted as X1 and X2 given in Equation (4.45), similar to the
example given in the simulation example concerning the problem with M-plots in the previous subsection. However, the
only difference is that the noise ϵ is now replaced with the interaction term 4x1x2. Let us further assume our objective is
to examine only the impact of X1 on the predicted outcome. In order to do so, we calculate the partial derivative of the
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predicted function f̂ with respect to X1, yielding the expression given in Equation (4.46). To make it clear that we are
dealing with the values of the random variables X1 and X2, we shall use the small x1 and x2 in the following notation:

f̂(x1, x2) = −x1 + 2x2 − 4x1x2 (4.45)

∂f̂(x1, x2)

∂x1
= −1− 4x2 (4.46)

From Equation (4.46) it can be seen that by taking the partial derivative with respect to x1, the marginal effect of x2 is
removed, as the term 2x2, present in the original Equation (4.45) has disappeared. However, the interaction effect of x1 and
x2 is still present. To continue, integrate the aforementioned partial derivative with respect to x1, resulting in the following,

∫
∂f̂(x1, x2)

∂x1
dx1 =

∫
−1− 4x2dx1 = −x1 − 4x1x2 + C, with C an arbitrary constant. (4.47)

Therefore, by integrating the partial derivative, we successfully eliminate the main effect of x2, which was our objective and
recovered only the terms of the true underlying function which are affected by x1. To be more specific, the only terms that
remain in this marginal effect function of x1 depend on x1. As a result, ALE plots avoid the OVB concerns that are present
in M-plots. It is important to note that if a third feature, such as x3, were included in the function and an interaction
term, such as x2x3, taking the partial derivative would have eliminated both terms. However, the constant C in this case
is actually a function of all the other variables that we ‘removed’. In this case C = C(x2), a function of the variable x2.
If there would have been more features, say x3 and x4, then C = C(x2, x3, x4). The point is, is that this constant C is
independent of x1 and when changing a value of x1, this constant is not affected. Hence, we have obtained the marginal
effect of x1.

4.2.3.2 Accumulated Local Effects mathematical details

Having developed an intuitive understanding of ALE plots, we shall delve into the mathematical details in this section.
Recall that ALE plots are constructed by integrating partial derivatives. This unique approach circumvents two key issues:
the extrapolation encountered in PDPs and the OVB problems that arise when features are dependent in M-plots. Suppose
the feature of interest is XS . Then ALE plots can be constructed based on the following steps:

1. Estimation of the local effects: Compute the partial derivative ∂f̂(xS ,XSc )
∂xS

evaluated at specific points XS = xS

defined within a neighborhood N(xS). These local effects quantify the impact of variations in xS while keeping the
remaining features, XSc , constant.

2. Averaging of local effects: Average the local effects over the conditional distribution PXSc (·|XS = xS), similar to
the approach used in M-plots. By taking the expectation the issue of extrapolation encountered in PDPs is addressed.

3. Integration of averaged local effects: to estimate the global effect of XS and mitigate the OVB issue, integrate
the averaged local effects x drawn from the distribution PXS (xS). This accumulation of local effects provides an
estimation of the overall impact of xS , while simultaneously removing any undesired main effects that were eliminated
during the initial step (1).

To be more specific, denote XS as the feature of interest, where min(XS = xS) = z0, and XSc represents all other features
(complement of S). The uncentered first-order ALE function, denoted as f̂S,ALE(x), at a specific feature value x ∼ P(XS),
can be defined as in Equation (4.48):

f̂S,ALE(x) =

∫ x

z0

E
(∂f̂(zS , XSc)

∂zS
|XS = zS

)
dzS (4.48)

Unlike PDPs, the first-order ALE function is centered by subtracting the average value of the uncentered ALE curve. Note
that this average is a constant value. By doing so, the centered ALE curve, denoted as f̂S,ALE , attains a mean of zero with
respect to the marginal distribution of the feature of interest, xS . That is,

f̂S,ALE(x) = f̂S,ALE(x)−
∫ ∞

−∞
f̂S,ALE(xS)dP(xS). (4.49)

82



4.2. Partial Dependence and Accumulated Local Effects

4.2.3.3 ALE estimation

In practice, taking partial derivatives may not be feasible, particularly in tree-based models such as random forests. In
random forests, the function f̂ is piece wise constant so ALE is more a ‘smoothing’ method as every partial derivative will
be zero locally. To address this problem, we resort to approximating the partial derivatives using finite differences based
on predictions obtained from partitioning the range of values of the specific feature of interest, denoted as XS , into K + 1
grid points zi,S , for i = 0, . . . ,K, such that

min(XS) = z0,S < z1,S < . . . < zK,S = max(XS). (4.50)

Thus we can write,

x ∈ (min(XS),max(XS)] = ∪K
i=1(zi−1,S , zi,S ]

⇐⇒ x ∈ (z0,S , z1,S ] ∨ x ∈ (z1,S , z2,S ] ∨ . . . ∨ x ∈ (zK−1,S , zK,S ]
(4.51)

where z0,S = min(XS), the minimum value of the feature of interest, and zK,S = max(XS) the maximum value. One
approach to create K disjoint intervals for the feature of interest XS is to use its quantiles. In this method, the interval
bounds z1,S , . . . , zK−1,S are determined by the K − 1 quantiles, excluding the 0th quantile (minimum) and the maximum
quantile. More explanation on quantiles can be found in Appendix D. To continue, let us focus on the estimation of the
uncentered effect first,

f̃S,ALEunc(x) =

kS(x)∑
k=1

1

nS(k)

∑
i:x

(i)
S

∈NS(k)

[
f̂(zk,S , x

(i)
Sc)− f̂(zk−1,S , x

(i)
Sc)

]
(4.52)

where kS(x) denotes the interval index a feature value x ∈ XS falls in, nS(k) = |NS(k)| denotes the number of observations
inside the kth interval of XS and with NS(k) = {i : zi,S ∈ [xS − ϵ, xS + ϵ]} the neighborhood set around XS = xS for a
given ϵ > 0.

The breakdown of the formula is as follows. Starting from the right side, the ALE method calculates the differences in
predictions by replacing the feature of interest with the grid values zi,S . This difference in prediction represents the effect
the feature has for an individual observation within a specific interval. The first sum calculates the cumulative effect by
summing up the effects for all instances within the interval defined as the neighborhood NS(k). Then, we divide this sum
by the number of observations in that interval, yielding the average difference in predictions for that interval. This average
within the interval is referred to as the local effect in the ALE terminology. Finally, the left sum signifies the accumulation
of average effects across all intervals up to the specific point of interest. For example, if the feature value lies within the
third interval, we sum the effects of the first, second, and third intervals together. This accumulation reflects the concept
of accumulated in ALE, as we progressively accumulate the average effects. To center the effect, we subtract a constant
value, which is the average of the uncentered ALE curves. This constant represents the overall average effect of the feature
across the data. The formula for the centered estimation of ALE can be found in Equation (4.53).

f̃S,ALE(x) = f̃S,ALEunc(x)−
1

n

n∑
i=1

f̃S,ALEunc(x
(i)
S ). (4.53)

Overall, the ALE method combines the local effects within intervals and accumulates them to capture the cumulative effect
of the feature while providing a centered perspective by subtracting the average uncentered ALE curves. The value of the
ALE can be interpreted as the main effect of the feature of interest at a specific value, relative to the average prediction
of the entire dataset. For instance, consider an ALE estimate of -2 at xS = 1500. This indicates that when the feature of
interest in the set S takes a value of 1500, the prediction is lower by 2 units compared to the average prediction. Moreover,
to define the intervals, the quantiles of the distribution of the feature of interest are used as a grid. The choice of quantiles
ensures that each interval contains an equal number of data points. This is important for maintaining consistency in the
analysis. However, using quantiles can have a drawback in situations where the feature of interest is highly skewed, with a
large number of low values and only a few high values. In such cases, the intervals may have unequal lengths, which can
lead to unusual or unexpected patterns in the ALE plots.

Example:
Suppose we have two features, X1 and X2, and the feature of interest is X1, an example dataset is visualized in Figure 4.13.
To begin, we select a partition of the range of values of X1 into intervals. In this example, in order to make it visually
easy to interpret, we divide the range into four intervals, indicated by the vertical lines, see Figure 4.13(b). Each interval
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contains a set of observations represented by black points. Within each interval, we calculate the difference in predictions by
replacing the feature value of X1 = x1 with the lower and upper bounds of the interval, denoted by zi,1, i = 1, 2, 3, 4, while
keeping the other feature values unchanged. This calculation provides an approximation of the local effect using the first
order finite difference method (see Appendix D). The resulting differences are denoted by the blue points in Figure 4.13(b).
Subsequently, these finite differences, which approximate the local effects, are accumulated and centered to obtain the final
ALE plot. The accumulation involves summing up the effects from each interval to capture the overall effect of the feature
of interest across its range and centering is performed by subtracting the average of the uncentered ALE curves.

Figure 4.13: (a) Scatterplot of the data with features X1 and X2 as the x-axis and y-axis respectively and X1 the
feature of interest. (b) Same scatterplot as (a) but with vertical lines dividing the range of X1 values into four
intervals. Blue points are the lower and upper interval bounds used to compute the prediction difference.

Figure 4.14: (a) Scatterplot of the data with features X1 and X2 as the x-axis and y-axis respectively and X1 the
feature of interest. (b) Same scatterplot but with the value of X1 = x1 of interest indicted by the red cross. To
compute the ALE value of x1, we will sum up all the local effects up to the third interval.

Mathematically, for the feature of interest in the set S, this process can be represented as follows:

1. For the data point X(i) = (x
(i)
S , X

(i)

SC ), with the value of x
(i)
S located within the kth interval of XS , that is x

(i)
S ∈

[zk−1,S , zk,S ], replace x
(i)
S by the lower and upper interval bounds while keeping all the other feature values X

(i)
S

constant.

2. The finite difference corresponds to computing: f̂(zk,S , X
(i)
Sc ) − f̂(zk−1,S , X

(i)
Sc ). We do this for all the points within

this interval, resulting in a set of finite difference values for this specific interval.

3. Estimate the local effect of XS within each interval by averaging all the calculated finite differences. This is an
approximation of the inner integral (expectation) that integrates over the local effects with respect to the PXSc (·|zS)
(conditional distribution).

4. To estimate the outer integral, sum up the local effects of all the intervals up to the point of interest.
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By following these steps, we can obtain the ALE plot, which provides insights into the main effect of the feature of interest,
taking into account the conditional distribution and accumulation of local effects. To go back to the example described
earlier, if for instance the value of X1 = x as can be seen by the red cross in Figure 4.14(b), to obtain the ALE estimate,
we would sum up all the local effects of intervals 1, 2 and 3 as x is located in the third interval.

4.2.3.4 ALE estimation algorithm

The procedure for computing ALE plots using the approximation explained earlier is described in words in Algorithm 4.

4.2.3.5 Advantages and Disadvantages of ALE

Advantages of ALE

• No extrapolation issue and omitted variable bias: ALE ‘solves’ these downsides of PDPs and M-plots, respec-
tively, using both the conditional distribution and integration of partial derivatives, as explained previously.

• Clear interpretation: ALE plots provide a clear interpretation of the effects of changing a feature on the prediction,
conditional on a given feature value. In addition, since ALE plots are centered at zero, the value at each point of the
ALE curve is the difference to the mean prediction.

• Fast computation: ALE plots are computationally efficient. They can be computed quickly due to the use of grid
point estimations. To be more specific, the computational complexity of ALE plots scales linearly with the number
of observations. They are O(n), as the largest possible number of intervals is equal to the number of observations,
which corresponds to placing each observation in its own interval. As a consequence, ALE plots are faster to compute
compared to other methods such as PDPs, which require n times the number of grid point estimations.

Disadvantages of ALE

• Choice of number of intervals: ALE plots can exhibit instability and fluctuations when a high number of intervals
is used. In such cases, reducing the number of intervals improves the stability of the estimates but also obscures some
of the true complexity of the prediction model. Choosing the ideal number of intervals is challenging since a small
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number may lead to less accurate estimates, while a high number may introduce excessive fluctuation. Finding the
right balance between stability and capturing the complexity of the prediction model can be difficult.

• No Individual Conditional Expectation (ICE) curves: Unlike PDPs, ALE plots do not include Individual
Conditional Expectation (ICE) curves. ICE curves are useful for assessing the heterogeneity of the feature effect,
indicating how the effect varies across different subsets of data. In ALE plots, it is only possible to evaluate whether
the effect differs between instances within each interval, but since each interval comprises different instances, it does
not provide the same level of information as ICE curves.

• Misinterpretation with highly correlated features: while ALE plots are unbiased in handling correlated fea-
tures, interpreting the effects of individual features becomes challenging when there are strong correlations. In such
cases, it may be more meaningful to analyze the combined effect of changing multiple features together rather than
isolating the effect of a single feature.

4.2.4 Summary PDP, M-plots and ALE plots

In summary, PDPs average the predictions over the marginal distribution at a value XS = xS ,

f̂S,PDP (x) = EXSc [f̂(xS , XSc)] =

∫
XSc

f̂(xS , XSc)dP(XSc). (4.54)

This value corresponds to the prediction function f̂ evaluated at the feature value XS = xS of interest in the feature set S,
averaged across all the features in XSc . The averaging process involves taking the marginal expectation over the features
in the set Sc, which entails integrating the predictions weighted by the probability distribution. In the case of M-plots, the
predictions are averaged over the conditional distribution, which focuses on the specific values of the features in S while
keeping the remaining features in Sc constant.

f̂S,M (xS) = E[f̂(XS , XSc |XS = xS)] =

∫
XSc

f̂(xS , XSc)dP(XSc |XS = xS). (4.55)

ALE plots, on the other hand, involve averaging the changes in predictions conditional on each grid value of the feature of
interest. ALE plots calculate the local effects within specific intervals of the feature of interest and accumulate them over
the range of feature values. The averaging is performed over the conditional distribution P(XSc |XS = xS), which takes into
account the dependencies between the feature of interest and the complement features. Finally, ALE plots are centered to
have a mean of zero.

f̂S,ALE(xS) =

∫ xS

z0,S

E[∂f̂(zS , XSc)

∂XS
|XS = zS ]dzS − constant

=

∫ xS

z0,S

( ∫
xSc

∂f̂(zS , XSc)

∂zS
dP(XSc |XS = zS)

)
dzS − constant.

(4.56)

4.2.5 Interpretation of PDP and ALE plots

In section 5.2, the PDP and ALE plots for the most significant predictor variables will be presented. Interpreting these plots
can provide valuable insights into the relationship between predictor variables and the response variable as learned by the
model. A general framework for comprehending and deriving insights from these plots can be done as stated below. Overall,
PDP and ALE plots help identify important variables and reveal how they influence the model’s predictions. They provide
valuable insights into the direction, strength, and shape of the relationships between predictors and the outcome variable.
However, it’s crucial to interpret these plots in conjunction with domain knowledge and consider potential confounding
factors or interactions among variables to ensure accurate and meaningful conclusions.

PDP interpretation:

1. Each PDP represents the marginal effect of a single predictor variable on the predicted outcome, while holding other
variables constant.

2. The y-axis of the PDP represents the predicted outcome, such as the probability of an event or the mean response.
The x-axis represents the range of values for the specific predictor variable being examined.
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3. A flat line at a certain y-value indicates no effect of that variable on the predicted outcome, while a non-linear line
suggests a more complex relationship.

4. Positive slopes indicate a positive association between the predictor variable and the outcome, while negative slopes
indicate a negative association.

5. The magnitude of the slope represents the strength of the relationship, with steeper slopes indicating stronger effects.

6. The intercept represents the baseline level of the predicted outcome when all predictor variables are held constant at
their reference or average values. It signifies the predicted outcome value in the absence of any influence or changes
in the specific variable being examined.

ALE interpretation

1. ALE plots capture the cumulative effect of a variable on the model’s predictions by integrating the partial effects
over the range of values.

2. The y-axis represents the change in the predicted outcome caused by variations in the specific predictor variable. The
x-axis represents the range of values for the variable.

3. A flat line at zero indicates no effect of the variable on the outcome.

4. Positive values suggest a positive impact, while negative values suggest a negative impact.

5. The slope of the ALE plot represents the average change in the predicted outcome for each unit change in the predictor
variable, considering its cumulative effect over its entire range. This slope captures the average effect of the variable
on the outcome across its varying values.

6. The magnitude of the slope indicates the strength of the effect, with steeper slopes suggesting larger impacts.

7. The intercept in an ALE plot corresponds to the average predicted outcome when all other variables are held constant.
It represents the baseline level of the outcome, typically observed when the predictor variable of interest is at its
reference value or average level.
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5 | Results

5.1. Model building using Random Forest

This section aims to explain the model building process using random forest and uses the techniques, evaluation metrics
and graphs explained in section 4.1. It is worth mentioning that the missing values of the variables in consideration are
imputed using the random forest itself. First, the complete dataset is used for model building followed by the dataset with
removed outliers based on Bilirubin and Glomular Filtration Rate.

The random seed generator is used during the model building and training process. Setting a specific seed value ensures
reproducibility of the results. In this case, the random seed is set to 123 for reproducibility, but it can be adjusted to any
desired value or omitted.

5.1.1 Model building process

In order to build a random forest model the following steps have been taken:

1. Split the original dataset into 70% training and 30% testing data.

2. Add all the patients who have PD as final response to chemotherapy to the training data, while leaving the test set
untouched. From now on, this training set will be referred to as the (enhanced) original training dataset. By doing
this, we guarantee the independence of the test set from the training data used in subsequent predictions.

3. Based on this (enhanced) original training dataset, make oversampled, undersampled, both over- and undersampled
and ROSE training datasets.

4. Train a random forest model on the different training datasets with or without the addition of misclassification
weights.

5. Tune the ‘mtry’ parameter in the random forest model to optimize its predictive accuracy. ‘mtry’ determines the
number of randomly selected features at each split in the decision tree building process. By exploring different values,
the optimal ‘mtry’ can be identified with the default value being the square root of the total number of features.
By selecting the ‘mtry’ value that yields the best performance, one can optimize the random forest and improve its
predictive power. This ‘tuned’ random forest will then be used in the next steps.

6. Generate a confusion matrix to evaluate the model performance.

7. Create a variance importance plot with two subplots. The left subplot displays the mean decrease in accuracy when
removing each variable, indicating the importance of each variable based on how much the model’s performance is
affected. Higher mean decrease in accuracy implies greater importance. The right subplot shows the mean decrease
in Gini index, which measures the purity of the leaves at the end of each tree without each variable. Higher values
indicate greater importance of the variable in the model. Note that the random forest algorithm grows fully expanded
trees without pruning, where each tree’s terminal nodes represent pure subsets of the data.

8. Plot the error rate of the random forest. This includes the OOB-error rate as a function of the number of trees in the
forest as well as the error rate on the training dataset for both the DC as well as the PD patient groups. Based on
when the OOB-error stabilizes, a maximum number of trees in the forest can be determined to reduce computation
time or to add more trees to have a stable OOB-error.

9. Retune the random forest based on the optimal value of mtry as well as the selected number of trees in the forest
based on the OOB-error rate.

10. Make predictions on the test dataset to evaluate the model performance.

5.1.2 Datasets used in the random forest

In order to deal with the class imbalance that is present in the provided PREOPANC2-iKnowIT dataset, we will use different
training datasets to find the optimal random forest model. These will be created as follows, after splitting the entire dataset
(either the full dataset or the dataset after removal of outliers based on GFR and BR) in 70% training and 30% testing as
mentioned before. The test dataset is left untouched and the entire minority class (PD) is added to the training dataset
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using complete minority class inclusion. Then based on this ‘enhanced’ training dataset the following training datasets are
created:

1. Oversampled training dataset: The oversampled training dataset will have an equal number of DC as well as PD
patients. In order to do this, samples in the PD group will be replicated using oversampling until it has the same
number of samples as in the DC group. Suppose we have nDC = 120 in the original training dataset and nPD = 74,
then we oversample until noverPD = 120 = nDC = noverDC , making a total of nover = 240.

2. Undersampled training dataset: Similar to the oversampled training dataset, the undersampled training dataset
is created. However, the opposite is now done. In this case samples in the DC group will be randomly removed until
the DC group has the same number of samples as the PD group. Thus, suppose we have nPD = 74 and nDC = 120,
then 46 samples will be randomly removed from the DC group in order to have nunderDC = 74 = nPD = nunderPD .

3. Both over- under sampling training dataset: In this case a combination of both under- and oversampling is
used using a sampling ratio p that determines the split between over- and undersampling. However, we want the
total number of samples in this training dataset to be the same as the original training dataset. Thus, suppose we
have ntraining = 194 then ncombi = 194 and then depending on the sampling ratio (usually this is taken to be 0.5)
the number of DC and PD patients is determined.

4. ROSE: Since in ROSE we synthetically generate samples, in this case any number of samples can be used.

In the subsequent sections, during the model building process, the number of observations in each dataset will be provided
in a table including the split between DC and PD groups.

5.1.3 Decision trees (full dataset)

Prior to delving into the training of random forest, it is worth considering decision trees to have a visual intuition. The
decision trees generated in this context are derived from the following methodologies in order to deal with the class imbalance
present in the dataset using the previously explained training datasets: original, oversampled, undersampled, both over- and
undersampled and ROSE training dataset. An examples of a decision trees (seed = 123) created using the original training
dataset is provided in Figure 5.1. Other possible decision trees generated using the other training datasets can be found
in Appendix D.2. The Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values depicted
in Figure 5.2 demonstrate that the decision tree created using the undersampled training dataset yields the most accurate
classification. Interestingly, the application of the ROSE method does not outperform random classification, neither does
oversampling or the combined utilization of oversampling and undersampling techniques yield significantly higher AUC
values or ROC curves either compared to the original training dataset. One explanation why the undersampled tree
performs best might be due to the fact that undersampling the majority class can reduce the dominance of it and allow
the decision tree to focus more on learning the patterns and characteristics of the minority class. By default the stopping
criterion is to attempt a split if the current node has at least a minimum number of 20 observations (minsplit = 20) and
only accept a split if the resulting nodes have at least round(minsplit

3
) observations and the resulting overall fit improves by

δGini = 0.01 (if Gini index is chosen to be the splitting criterion).

The decision trees can be interpreted as follows: Each box represents a node classification based on a specific variable (e.g.,
CRdiff < −9.5). The number within the box, ranging from 0 to 1, indicates the proportion of observations that are not
classified as 0 or 1 in that particular node. For example, in Figure 5.1, the top box shows a ‘0’ and the value underneath
is 0.38, indicating that 38% of the observations in this node are classified as ‘1’ rather than ‘0’. The subsequent number,
100%, represents the total percentage of observations included in that node. Since this is the root node, all 100% of the
observations are present.
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Figure 5.1: Decision tree (DT) created using the original training dataset, n=194, 0=Disease Control (n=120),
1=Progressive disease (n=74).

Figure 5.2: Receiver Operating Characteristic Curves (ROC) and Area Under the Curve (AUC) for the deci-
sion trees created using the (a) ROSE training dataset (n=500, Disease Control (n=265), Progressive disease
(n=235)), (b) Oversampled training dataset (n=240, Disease Control (n=120), Progressive disease (n=120)), (c)
Undersampled training dataset (n=148, Disease Control (n=74), Progressive disease (n=74)), (d) Both over- and
undersampled training dataset (n=194, Disease Control (n=100), Progressive disease (n=94)), (e) Original train-
ing dataset (n=194, Disease Control (n=120), Progressive disease (n=74)).
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5.1.4 Random Forest (full dataset)

This section aims to explain the exploration conducted on different random forests created using various datasets: original,
oversampled, undersampled, both over- and undersampled and ROSE training dataset. For each random forest model, the
optimal value for the “mtry" parameter is determined by tuning it based on the Out-of-Bag (OOB) error estimate. Subse-
quently, a plot is presented, showcasing the OOB error and training error for the two final response groups. Furthermore, a
variance importance plot is generated, using the Mean Decrease in Accuracy and Mean Decrease in Gini index as metrics.
The Mean Decrease in Accuracy reflects the reduction in model accuracy when excluding a particular variable from the
analysis. On the other hand, the Mean Decrease in Gini index pertains to the decrease in impurity within the leaf nodes of
the model when a specific variable is omitted.

Full dataset Disease
Control (0)

Progressive
Disease (1)

Total number
of patients (n)

Full dataset 173 43 216
Training dataset 120 74 194
Test dataset 53 12 65
Oversampled data 120 120 240
Undersampled data 74 74 148
Both over- and undersampled 100 94 194
ROSE 265 235 500

Table 5.1: Number of patients in each dataset used in the training of the random forest models.

Recall that random forest is an ensemble learning method where each tree is trained on approximately 63.2% of the total
training data using random sampling with replacement (bootstrapping). Additionally, a random subset of variables is
selected from the total variables for each tree’s construction. Unlike standard decision trees that consider all variables for
node splitting, random forest uses a subset m < p of predictor variables. The remaining 36% of the data, known as the
OOB data, is used to calculate the OOB error rate for each tree. Aggregating the OOB error rates provides an overall
estimate of the model’s performance on unseen data. Moreover, random forest models are inherently stochastic, meaning
that they produce different outcomes with each run due to the randomness involved in the algorithm. The construction of
each tree involves bootstrapping and random variable selection, resulting in unique training sets and variable subsets for
each tree. As a result, the OOB-error estimate plots and variable importance plots generated for random forests can vary
between runs. The plots presented in this context serve as examples to illustrate the potential output of a random forest
model. It is important to note that due to the inherent randomness, different runs of the algorithm can produce distinct
plots with varying OOB error rates and variable importance rankings. Examples of such plots are provided in Appendix
C.2.1.

The figures provided in Figure C.21 and Figure C.22 in Appendix C.2 show the confusion matrix based on the OOB-
samples as well as the evaluation metrics. It can be seen from the confusion matrices that the original random forest has
the best accuracy and predicts every patient correctly. The second best model is the random forest model created using
the oversampled training dataset. However, this can be expected as oversampling tends to lead to overfitted models. After
this model, the random forest created using both the under- and oversampled training dataset performs best. Therefore,
it has been chosen to continue evaluating the random forest model on the original training dataset and the random forest
model created using the under- and oversampled dataset.

Model Original Over Under Both ROSE
Number of
Trees 500 500 500 500 500

Number of
variables per split
(optimal)

4 2 4 4 7

OOB estimate 7.73% 4.58% 18.24% 8.76% 5.2%
Accuracy 1.00 0.98 0.91 0.88 0.85
Balanced
Accuracy 1.00 0.96 0.94 0.86 0.58

Table 5.2: Random forest output of the models trained using the original, oversampled, undersampled, both over-
and undersampled and ROSE training datasets. The number of variables per split is optimized per model (mtry)
and the OOB estimate refers to the OOB estimate of the error rate. The accuracy and balanced accuracy are
based on the predictions made using the trained model and compared to the reference test set.
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Figure 5.3: (a) Out-Of-Bag Error and Training error (b) Top 15 variable importance plot of the random forest
created using the original training dataset, n=194, Disease Control (n=120), Progressive disease (n=74).

To optimize the random forest model trained on the over- and undersampled training dataset, a grid search is performed to
fine-tune the sampling ratio parameter denoted as ‘p’. The study sets the sampling ratio to approximately 50% (p = 0.5)
to retain a balanced representation of the minority class. Small adjustments to the sampling ratio, such as p = 0.51 or
p = 0.49, are explored to assess performance improvements. The final grid search includes ratios of p = 0.5, 0.51, 0.49, 0.48,
and 0.52. Due to model randomness, evaluation metrics varied across runs but yielded consistent outcomes. Ultimately,
the original sampling ratio of p = 0.5 was selected for its consistently desirable results.

5.1.4.1 Misclassification Costs (full dataset)

Another approach to address imbalanced datasets is to incorporate misclassification costs or weights, where the misclassifi-
cation of certain classes is considered more costly than others. This is particularly important when misclassifying instances
from the minority class can have severe consequences. Optimal weights can be determined through a grid search using
evaluation metrics like accuracy, F1-score, and balanced accuracy score, which are informative for imbalanced datasets. In
this study, two random forest models will be trained: one on the original dataset and another on an over- and undersam-
pled dataset. Assigning clear costs to misclassifications in a medical context is challenging, but misclassification can have
significant implications. Accurate classification is crucial as misclassifying a patient with PD as DC could lead to missed
treatment opportunities, while misclassifying a patient with DC as having PD could result in unnecessary chemotherapy.

Misclassification Costs for the Original Random Forest
To begin, consider the random forest trained on the original (enhanced) training dataset. A grid search across the values
1-1000 are used for the weight values where we assign a class weight of ‘1’ for misclassifying a DC patient as PD and a value
between 1-1000 as well as 0-1 (by the grid search) to misclassifying a PD patient as DC. Then the optimal random forest is
trained based on either the best accuracy score, f1-score and balanced accuracy. The results of the grid search on the random
forest model trained using the original training dataset is provided in Table 5.3. Surprisingly, the misclassification costs for
both groups remain at 1, indicating that the best performance is achieved when the weights assigned to misclassifications
are equal across the classes.

Misclassification Costs for the Over- and undersampled Random Forest
A comparable grid search is conducted to determine the optimal misclassification weights for the random forest models
trained on the original and over-undersampled training datasets. The results show that the misclassification weights for
both groups remain at 1. This consistent pattern suggests that assigning higher weights to the minority class did not
improve performance. Instead, the best results were achieved when costs for both classes were equal. This finding reinforces
the importance of equal misclassification costs for DC and PD patients, more details can be found in Table 5.4.

In conclusion, the analyses of the random forest models on the original and over-undersampled training datasets consistently
indicated that assigning higher misclassification weights to the minority class did not improve performance. The best results
were consistently achieved when equal misclassification costs were assigned to both DC and PD patients. These findings
highlight the balanced significance of accurate classification across the dataset and emphasize the importance of equal
misclassification costs for both classes. However, it should be noted that the full dataset contains outliers, as discussed in
Section B.2. Consequently, the construction of the “optimal model" using random forest and imbalanced dataset methods
will be based on the dataset after outlier removal in subsequent sections. Nevertheless, considering the entire dataset could
still provide valuable insights.
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Original Random
Forest Model Best Accuracy Best f1-score Best Balanced

Accuracy
OOB estimate
of error rate 9.28% 10.82% 10.31%

Accuracy 0.953 1.000 0.985
Sensitivity 0.941 1.000 0.980
Specificity 1.000 1.000 1.000
Balanced Accuracy 0.971 1.000 1.000
Weights (DC, PD) (1,1) (1,1) (1,1)

Table 5.3: Output of the Random forest trained on the original training dataset (ntree = 500, mtry = 7) with
a grid search (1-1000) performed for the misclassification costs based on optimizing the accuracy, f1-score and
balanced accuracy scores, n=194, Disease Control (n=120), Progressive disease (n=74).

Over- and Under sampled
Random Forest Model Best Accuracy Best f1-score Best Balanced

Accuracy
OOB estimate
of error rate 7.5% 8.5% 10.5%

Accuracy 0.939 0.908 0.923
Sensitivity 0.941 0.902 0.922
Specificity 0.929 0.929 0.929
Balanced Accuracy 0.935 0.915 0.925
Weights (DC, PD) (1,1) (1,1) (1,1)

Table 5.4: Output of the Random forest trained on the over- and undersampled training dataset (ntree = 500,
mtry = 7) with a grid search (1-1000) performed for the misclassification costs based on optimizing the accuracy,
f1-score and balanced accuracy scores, n=200, Disease Control (n=90), Progressive disease (110).

5.1.4.2 Optimal model (full dataset)

Based on previous analyses of various random forest models, the “original" random forest model consistently outperformed
other models and the inclusion of misclassification costs did not improve performance. Therefore, the optimal model
is determined to be the random forest model trained on the original dataset without costs. To gain a comprehensive
understanding of this model, 100 runs were conducted, each training a new random forest model optimized by adjusting
the “mtry" parameter as the random forest model’s inherent randomness may result in slight variations between runs. The
results presented here are based on the average outcomes derived from these 100 random forests.

Previous analyses revealed that both the OOB error and classification errors for the two groups stabilize around 300 trees.
Therefore, training the random forest with 300 trees is deemed sufficient for achieving the desired accuracy. After fine-tuning
the “mtry" parameter to optimize its value, the resulting optimal “mtry" value will be reported in each run. Performance
will be accessed using accuracy, f1-score, and balanced accuracy calculated for each random forest model and averaged
across the 100 iterations. This approach provides a more reliable estimation of overall performance compared to relying on
a single score from a single random forest model. Additionally, the 15 most important variables, based on mean decrease in
Gini index, will be identified in each iteration. The Gini index is chosen as the measure of importance because it considers
class frequencies and node purity within decision trees, making it more sensitive to class imbalances and better suited for
capturing the quality of splits compared to accuracy.

Table 5.5 presents statistics for the “mtry" variable and performance scores. From this, it can be concluded that the median
optimal “mtry" value is 5, and the median accuracy, f1-score, and balanced accuracy is 1.00. All together suggesting a high
level of performance. The histograms and boxplots in Figure 5.4 provide a more detailed distribution. However, the perfect
classification of the test set might be caused by the CII used in the training of the model as well as the small test set size
of ntest = 65 observations with 53 DC and 12 PD. Furthermore, the rank sum of the top 15 variables, determined based
on their mean decrease in Gini index, is calculated using Equation (4.30) and visualized in Figure 5.5. From this it can
be deduced that the variable “CA19-9 before" holds the highest importance across all random forest models, followed by
“Hemoglobin difference" and “Thrombocyte difference." This suggests that these variables play a crucial role in determining
the final response to chemotherapy.
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Optimal Random Forest
Full Dataset Mtry Accuracy F1-score Balanced Accuracy

Min 2 0.95 0.97 0.97
1st quartile 4 0.98 0.99 0.99
Median 5 1.00 1.00 1.00
Mean 5.3 0.99 1.00 1.00
3rd quartile 7 1.00 1.00 1.00
Max 10 1.00 1.00 1.00

Table 5.5: Statistics of the number of variables per split (mtry), and performance scores: accuracy, f1-score and
balanced accuracy of the random forests (ntree = 300) across 100 runs trained on the original training dataset,
n=194, Disease Control (n=120), Progressive disease (n=74).

Figure 5.4: (a) Histograms of the optimal tuned number of variables per split (‘mtry’), accuracy, f1-score and
balanced accuracy (b) Boxplot of accuracy, f1-score and balanced accuracy of the optimal random forest (ntree =
300) across 100 runs trained on the original training dataset, n=194, Disease Control (n=120), Progressive disease
(n=74).

Figure 5.5: Top 10 ranked variables based on their corresponding ranksum (calculated using (4.30)) based on the
mean decrease in Gini index in each of the optimal random forest (ntree = 300) tuned to their respective optimal
mtry value across 100 runs trained on the original training dataset, n=194, Disease Control (n=120), Progressive
disease (n=74).
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5.1.5 Decision Trees (after removal of outliers based on GFR and BR)

Despite the comprehensive outlier analysis conducted in Section 3.2, the outcomes were not incorporated into the modeling
process. This decision stems from the utilization of the IQR-method to identify outliers, which could have categorized
certain patients as outliers for specific variables that might not be deemed outliers from a medical standpoint. Additionally,
removing all patients flagged as outliers would result in an empty dataset, rendering the modeling infeasible. Consequently,
the identification of outliers has been guided by advice of medical experts from the Erasmus MC. They suggest that patients
with a Glomular Filtration Rate (GFR) value below 30 mL/min and patients with a Bilirubin value exceeding 50 µmol/L
prior to chemotherapy should be considered as outlier values and thus excluded from the dataset. These patients are
deemed ineligible for chemotherapy treatment due to a failing kidney function and gallbladder obstruction. Following the
removal of these individuals, the dataset consists of a total of 203 observations, with 163 classified as DC and 40 as PD. The
subsequent analysis employs the same random forest methodology as previously described to evaluate this refined dataset.

After partitioning the dataset into 70% training and 30% testing data and enhancing the training dataset with the minority
class, the split between DC and PD are stated in Table 5.6. Examples of possible decision trees created using the various
training datasets are depicted in Figures C.6, C.7, C.8, C.9 and C.10 in Appendix C.1.2. Their corresponding ROC curves
and AUC values are shown in Figure 5.6. The tumor marker CA19-9 before emerged as the most important variable in
all decision trees except for the tree generated using the ROSE method, which identified CA19-9 difference as the most
important variable. The former is consistent with previous literature indicating that CA19-9 is prognostic for determining
chemotherapy response as well as earlier findings in the full dataset model. Interestingly, the second most important variable
for the PD group is the PLR difference before and after the first chemotherapy in both the ‘original’, ‘under’ and ‘over’
trees. In contrast, no clear dominant parameter was observed for the DC group. Finally, the decision tree generated using
the both the over- and undersampled training set performed best in terms of AUC as indicated by the ROC curves.

Figure 5.6: Receiver Operating Characteristic Curves (ROC) and Area Under the Curve (AUC) for the decision
trees created after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values using the (a)
ROSE training dataset (n=500, DC(n=265), PD(n=235)), (b) Oversampled training dataset (n=230, DC(n=115),
PD(n=115)), (c) Undersampled training dataset (n=134, DC(n=67), PD (n=67)), (d) Both over- and under-
sampled training dataset (n=182, DC (n=95), PD (n=87)) (e) Original training dataset (n=182, DC(n=115),
PD(n=67)).
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After removal of outlier values
based on GFR < 30 and
BR > 50

Disease
Control (0)

Progressive
Disease (1)

Total number
of Patients (n)

Full dataset 163 40 203
Training dataset 115 67 182
Test dataset 48 13 61
Oversampled data 115 115 230
Undersampled data 67 67 134
Both over- and undersampled 95 87 182
ROSE 265 235 500

Table 5.6: Number of patients in each dataset used in the training of the different decision tree and random forest
models after removal of the outlier values based on a Glomular Filtration Rate value < 30 mL/min and a Bilirubin
value of > 50µmol/L.

5.1.6 Random Forest Model (after removal of outlier values based on GFR and BR)

After removing outliers, the datasets are subjected to a similar random forest analysis as conducted on the full dataset.
Each training dataset is used to train a random forest model and ‘mtry’ is tuned in the process as well. The reported OOB
error estimate, as well as the (balanced) accuracy and f1-score are reported in Table 5.7. The resulting confusion matrices
of a random run of the trained random forests on the test set for the original, ROSE, oversampled, undersampled, and
both over- and undersampled training datasets are displayed in Appendix C.2.3. From the confusion matrices it can be
seen that the two best models are the original random forest and the both over- and undersampled random forest models.
The ROSE approach remains the least effective, indicating that the usage of random sampling via ROSE is not beneficial
for this dataset. Consequently, only the random forest models trained on the original and both over- and undersampled
training datasets will be used in further analyses.

The figures presented in Figure 5.7 depict the OOB error estimate and the error made on two final response groups to
chemotherapy during the training of the random forest model. The OOB error for the PD group in the original random
forest stabilizes at around 60 trees, while the errors for the DC group only stabilize after around 200-300 trees. This
suggests that using 300 trees in the original random forest would be sufficient to achieve the same error. However, the
errors in the random forest trained on both the over- and undersampled training data continue to fluctuate without any
clear stabilization. Figure 5.7(b) indicates that this error stabilizes around 400-500 trees. Thus, using 500 trees in the forest
would be sufficient in general for this model.

Model Original Over Under Both ROSE
Number of
Trees 500 500 500 500 500

Number of
variables per split
(optimal)

7 5 5 7 7

OOB estimate 10.44% 6.09% 18.66% 10.44% 1.40%
Accuracy 0.95 0.92 0.79 0.74 0.66
Balanced
Accuracy 0.97 0.89 0.86 0.78 0.50

Table 5.7: Random forest output of the models trained using the original, oversampled, undersampled, both over-
and undersampled training datasets after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L)
values. The number of variables per split is optimized per model (mtry) and the OOB estimate refers to the OOB
estimate of the error rate. The accuracy and balanced accuracy are based on the predictions made using the
trained model and compared to the reference test set.

Furthermore, the variable importance plots based on the mean decrease in accuracy Gini index of both models are presented
in Figure 5.8. The plots show that the most important variable remains CA19-9 before the first chemotherapy cycle,
consistent with previous findings. In the random forest trained on the original training dataset, AF and CA19-9 after the
first cycle are the second most important variables based on the mean decrease in accuracy and Gini, respectively. The
subsequent other important variables differ per metric as well. In contrast, the random forest trained on both the over- and
undersampled training dataset shows that the second most important variable is GGT before the first chemotherapy cycle,
followed by the GGT after the first cycle. After that, depending on the metric used, the variables differs. Nevertheless, it is
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noteworthy that as explained earlier, accuracy does not take the minority class into account in the way that the Gini index
is able to. Therefore, it is wise, when dealing with an imbalance in classes to value the variable importance based on the
mean decrease in Gini index over the mean decrease in accuracy. These plots show clearly that depending on the metric
used, the results differ.

Figure 5.7: Out-Of-Bag Error and Training error of the random forest created using the (a) original training
dataset after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values, n=182, Disease
Control (n=115), Progressive disease (n=67) (b) both the over- and undersampled training dataset after removal
of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values trained using 1000 trees, n=182, Disease
Control (n=95), Progressive disease (n=87).

Figure 5.8: Top 15 variable importance plot of the random forest created using (a) the original training dataset
after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values, n=182, Disease Control
(n=115), Progressive disease (n=67), (b) the both the over- and undersampled training dataset after removal of
outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values, n=182, Disease Control (n=95), Progressive
disease (n=87)

5.1.6.1 Misclassification costs after removal of outliers

Similar to the random forest build on the original full dataset, misclassification costs are introduced in both the original
well as the model trained on the over- and undersampled training dataset. Based on the metrics accuracy, f1-score and
balanced accuracy a grid search is performed to find the optimal model with misclassification costs. Surprisingly, regardless
which metric is used, the optimal misclassification weights remain one for both final response groups in the random forest
trained on the original training dataset without outliers. On the contrary, the random forest trained on both the under- and
oversampled training dataset does weigh misclassifying a PD patient as DC twice as costly. However, the results are pretty
similar with only some small differences due to the inherent randomness in the random forest model itself. Nevertheless,
despite having a lower OOB error estimate compared to the original, the both over- and undersampled random forest model
does not perform better in terms of accuracy and other evaluation metrics. Therefore, the original random forest model
is chosen to be the ‘optimal model’ after removal of outliers based on GFR and BR, which is consistent with the previous
‘optimal model’ found on the full dataset.
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Original Random Forest
without outliers Best Accuracy Best f1-score Best Balanced

Accuracy
OOB estimate of
error rate 10.44% 10.99% 11.54%

Accuracy 0.95 1.00 0.98
Sensitivity 0.94 1.00 0.98
Specificity 1.00 1.00 1.00
Balanced Accuracy 0.97 1.00 0.99
Weights (DC, PD) (1,1) (1,1) (1,1)

Table 5.8: Output of the Random forest trained on the original training dataset (ntree = 500, mtry = 7) with
a grid search (1-1000) performed for the misclassification costs based on optimizing the accuracy, f1-score and
balanced accuracy scores, n=182, Disease Control (n=115), Progressive disease (n=67).

Both over- and undersampled
Random Forest
without outliers

Best Accuracy Best f1-score Best Balanced
Accuracy

OOB estimate of
error rate 7.69% 9.34% 8.24%

Accuracy 0.79 0.79 0.75
Sensitivity 0.77 0.77 0.73
Specificity 0.85 0.85 0.85
Balanced Accuracy 0.81 0.81 0.78
Weights (DC, PD) (1,2) (1,2) (1,2)

Table 5.9: Output of the Random forest trained on the both over- and undersampled training dataset (ntree = 500,
mtry = 7) with a grid search (1-1000) performed for the misclassification costs based on optimizing the accuracy,
f1-score and balanced accuracy scores, n=182, Disease Control (n=95), Progressive disease (n=87).

5.1.6.2 Optimal Model after removal of outliers based on GFR and BR

After exploring various random forest models with different training datasets and considering misclassification costs, the
optimal model remains the original random forest model trained on the dataset without any misclassification costs. This
model consistently outperformed other models in previous analyses and is therefore chosen as the ‘optimal model’ for this
dataset. The histograms and boxplots in Figure 5.9 display the distribution of the optimal ‘mtry’ parameter and the
performance metrics (accuracy, f1-score, and balanced accuracy) across 100 optimized random forest model. The results
show that the optimal ‘mtry’ value is predominantly 5, indicating the use of five variables per split in most models. F1-score
and (balanced) accuracy values are also consistently high across the 100 models, averaging at 0.98 for both metrics f1-score
and balanced accuracy and 0.94 for accuracy. This indicates that the model has good classification performance overall.
Note that the values of these metrics can range between 0 and 1, where 1 represents perfect classification performance,
and 0 represents no predictive power. Note that the model’s classification performance is consistent across all the random
forests, which suggests that the model is robust and not overfitting to the data. More detailed statistical analysis of the
performance scores for can be found in Table 5.10. Moreover, from the 15 most important variables based on the mean
decrease in Gini determined during the 100 runs of the random forests, the most important variable that dominates is
remains CA19-9 value before the first chemotherapy cycle. The second most important variable was either with CA19-9
after the first cycle or CA19-9 difference. In general, it is clear that CA19-9 is very important in determining the final
response to chemotherapy as it dominates the top 3 in all models.

The ranksum of the top 15 variables selected based on the mean decrease in Gini of the 100 optimal random forests is
calculated and used to generate visual representations of the top 10 variables with the highest ranksum, displayed Figure 5.10.
CA19-9 before consistently holds the top rank followed by CA19-9 after and CA19-9 difference. Other important variables
include: HB difference, TB difference, GGT before and after the first chemotherapy cycle. As previously explained, Gini
index is favored over accuracy as it accounts for class frequencies and prioritizes node purity, thereby providing a more
accurate reflection of the significance of correctly classifying the minority class. Table C.1 in Appendix C provide a more
detailed ranking of the variables as well as their respective counts.
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Optimal random forest
No outliers based
on GFR and BR

Mtry Accuracy F1-score Balanced Accuracy

Min 2 0.92 0.95 0.95
1st quartile 4 0.96 0.98 0.98
Median 5 0.95 0.98 0.98
Mean 5.6 0.94 0.98 0.98
3rd quartile 7 0.95 0.99 0.99
Max 10 0.98 1.00 1.00

Table 5.10: Statistics of the number of variables per split (mtry), accuracy, f1-score and balanced accuracy of
the random forests (ntree = 300) across 100 runs trained on the original training dataset after removal of outliers
based on GFR (< 30mL/min) and BR (> 50µmol/L) values, n=182, Disease Control (n=115), Progressive disease
(n=67).

Figure 5.9: (a) Histograms of the optimal tuned number of variables per split (‘mtry’), accuracy, f1-score and
balanced accuracy (b) Boxplot of accuracy, f1-score and balanced accuracy of the optimal random forest (ntree =
300) across 100 runs trained on the original training dataset after removal of outliers based on GFR (< 30mL/min)
and BR (> 50µmol/L) values, n=182, Disease Control (n=115), Progressive disease (n=67).

Figure 5.10: Top 10 ranked variables based on their corresponding ranksum based on the mean decrease in Gini
index in each of the optimal random forest (ntree = 300) tuned to their respective optimal mtry value across
100 runs trained on the original training dataset after removal of outliers based on GFR (< 30mL/min) and BR
(> 50µmol/L) values, n=182, Disease Control (n=115), Progressive disease (n=67).
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5.1.7 Random Forest (optimal model with only top 10 variables)

To gain further insights, it is worthwhile to evaluate the performance of the original random forest model on the top 10
variables selected based on the ranksum derived from the 100 runs in the preceding sections. These variables include CA19-9
before, CA19-9 after, CA19-9 difference, HB difference, TB difference, GGT before, GGT after, BR after, AF after, and K
before, where “before" and “after" refer to the measurements taken before and after the first chemotherapy cycle. Similar
to the previous approach, the training dataset is augmented by including the full minority class to ensure comprehensive
model training. The distribution of patients across the datasets is the same as before, given in Table 5.6. The OOB-error
plot in Figure 5.11(a) illustrates that the OOB error, as well as the classification errors for both response groups, converge
to around 0.12 after approximately 150 trees. Furthermore, the top 10 variables are re-evaluated based on these 10 variables
alone. Interestingly, the order of importance differs from the previous analysis, as depicted in Figure 5.11(b). However,
CA19-9 before remains the most significant variable, followed by either the HB or TB difference, depending on whether the
mean decrease in accuracy or the Gini index is utilized as the criterion.

A similar approach to the previous analysis is employed to obtain a robust assessment of the model’s performance using
only the top 10 variables. The resulting histograms and box plots can be found in Figure 5.12. In this case the optimal
“mtry" on average, the f1-score and balanced accuracy are approximately 0.89 and 0.90, respectively, compared to 0.98
when considering all variables in the dataset. This implies that by using only the top 10 variables, the model is still able
to successfully capture a significant portion of the dataset’s information, suggesting their crucial role in determining the
final response to chemotherapy. Moreover, the rankings of the top 10 variables based on their mean decrease in the Gini
index is visualized in Figure 5.13. This shows that CA19-9 before and CA19-9 after the first chemotherapy cycle remain
the most important variables. However, the relative importance of the TB difference and GGT before the first cycle has
increased, and the CA19-9 difference now ranks last. Overall, these findings highlight the significance of the top 10 variables
in predicting the response to chemotherapy in PDAC patients.

Figure 5.11: (a) Out-Of-Bag Error and Training error (b) Top 10 variable importance plot of the random forest
created using the original training dataset defined by the top 10 most important variables after removal of outliers
based on GFR (< 30mL/min) and BR (> 50µmol/L) values n=182, Disease Control (n=115), Progressive disease
(n=67).

Optimal Random Forest
trained only top 10
after removal of outliers
based on GFR and BR

Mtry Accuracy F1-score Balanced Accuracy

Min 2 0.79 0.84 0.86
1st quartile 2 0.84 0.88 0.90
Median 2 0.84 0.88 0.90
Mean 2.3 0.84 0.89 0.90
3rd quartile 2 0.85 0.90 0.91
Max 4 0.89 0.92 0.93

Table 5.11: Statistics of the number of variables per split (mtry), and performance scores: accuracy, f1-score and
balanced accuracy of the optimal random forest trained on the original training dataset defined by the top 10 most
important variables after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values n=182,
Disease Control (n=115), Progressive disease (n=67).
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Figure 5.12: (a) Histograms of the optimal tuned number of variables per split (‘mtry’), accuracy, f1-score and
balanced accuracy (b) Boxplot of accuracy, f1-score and balanced accuracy of the optimal random forest (ntree =
300) across 100 runs trained on the original training dataset defined by the top 10 most important variables after
removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values n=182, Disease Control (n=115),
Progressive disease (n=67).

Figure 5.13: Top 10 ranked variables based on their corresponding ranksum (calculated using Equation (4.30))
based on the mean decrease in Gini index in each of the optimal random forest (ntree =300) tuned to their
respective optimal mtry value across 100 runs trained on the original training dataset defined by the top 10 most
important variables after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values n=182,
Disease Control (n=115), Progressive disease (n=67).
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5.1.8 Random forest (only pre-chemotherapy values)

In addition to optimizing the model using both pre- and post-chemotherapy values, it is important to establish a model
using only pre-treatment values. These values, measured before any intervention, can assist in deciding whether to initiate
chemotherapy, considering its toxicity in PDAC. Similar to the previous approach, various techniques including oversam-
pling, undersampling, a combination of both, and the ROSE technique were tested, but the original random forest model
remained the ‘best’ model among them. Introducing misclassification costs did not improve the model’s performance either.
Therefore, the optimal model remains the original random forest.

The pre-treatment dataset consists of 23 variables including the dichotomized final response. The distribution of the final
response groups in the complete dataset, enhanced training dataset, and test dataset can be found in Table 5.6. After
optimizing the number of variables per split (“mtry"), we determined the number of trees to use to be 300, based on the
stabilization of the OOB error and classification errors of the training set. The variable importance plot in Figure 5.14(b)
confirms the top three significant variables found in the previous models, namely: CA19-9 before, GGT before, and HB
before. Next, in the simulation consisting of 100 newly optimized random forest models, each composed of 300 trees, the
variable importance is determined using the mean decrease in Gini index, following the same methodology as before. The
results of the 100 random forests, constructed with the optimized number of trees and variables per split, are summarized
in Table 5.12. The most frequently observed optimal number of variables per split is 3, as indicated by the histogram in
Figure 5.15(a). The model performs exceptionally well, with an average accuracy of 0.95, an average f1-score of 0.97, and
an average balanced accuracy of 0.97 on the test set. This demonstrates the predictive power of utilizing only the pre-
chemotherapy values in determining the final response. The variable importance plot in Figure 5.16 reveals that CA19-9
before is the most informative variable, followed by the GGT value. Surprisingly, neutrophils and other factors such as age
and BMI also exhibit notable importance in predicting the final response to chemotherapy.

Figure 5.14: (a) Out-Of-Bag Error and Training error (b) Top 15 variable importance plot of the random forest
created using the original training dataset with only the before chemotherapy values after removal of outliers
based on GFR (< 30mL/min) and BR (> 50µmol/L) values n=182, Disease Control (n=115), Progressive disease
(n=67).

Optimal Random Forest
trained only on before
chemotherapy variables
after removal of outliers
based on GFR and BR

Mtry Accuracy F1-score Balanced Accuracy

Min 2 0.90 0.93 0.94
1st quartile 2 0.93 0.96 0.96
Median 3 0.95 0.97 0.97
Mean 2.9 0.95 0.97 0.97
3rd quartile 4 0.97 0.98 0.98
Max 6 1.00 1.00 1.00

Table 5.12: Statistics of the number of variables per split (mtry), and performance scores: accuracy, f1-score and
balanced accuracy of the optimal random forests (ntree = 300) across 100 runs trained on the dataset with only
the before chemotherapy values after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L)
values.
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Figure 5.15: (a) Histograms of the optimal tuned number of variables per split (‘mtry’), accuracy, f1-score, balanced
accuracy)(b) Boxplot of the accuracy, f1-score and balanced accuracy of the optimal random forest (ntree = 300)
across 100 runs trained on the original training dataset with only pre-chemotherapy values after removal of outliers
based on GFR (< 30mL/min) and BR (> 50µmol/L) values n=182, Disease Control (n=115), Progressive disease
(n=67).

Figure 5.16: Top 10 ranked variables based on their corresponding ranksum (calculated using (4.30)) based on the
mean decrease in Gini index in each of the optimal random forest (ntree =300) tuned to their respective optimal
mtry value across 100 runs trained on the original training dataset with only the pre-chemotherapy values after
removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values n=182, Disease Control (n=115),
Progressive disease (n=67).

103



5.1. Model building using Random Forest

5.1.9 Overview of the top 10 most important variables

After optimizing four distinct random forest models using four different datasets, namely: (1) full dataset, (2) dataset with
outliers removed based on GFR (< 30mL/min) and BR (> 50µmol/L) values, (3) dataset based on the top 10 variables
identified by (2), (4) dataset after removal of outliers based on GFR and BR values containing only pre-chemotherapy
values, the top 10 most important variables were identified. This is done using the mean decrease in Gini index in each
random forest, and then their corresponding ranksum across the 100 runs was calculated. An overview of the rankings
for each model is presented in Table 5.13. The results highlight that “CA19-9 before" consistently emerges as the most
important variable across all models. Besides “CA19-9 before," variables such as HB, TB and GGT consistently emerge
as important factors in determining the response to chemotherapy across all models. These variables provide valuable
insights into a patient’s overall health and can impact treatment outcomes. Lower hemoglobin levels may indicate anemia
or compromised oxygen-carrying capacity, affecting treatment tolerance and efficacy. Abnormalities in thrombocyte counts
can indicate issues with clotting and immune function, while elevated GGT levels may suggest liver dysfunction, which can
affect drug metabolism and clearance.

In addition, experts from Erasmus MC Rotterdam have identified a set of ten crucial variables for predicting the response
to chemotherapy. In alignment with the random forest models they propose CA19-9 to be the most important variable.
In contrast to the predictions made by the models, the experts propose that CEA should be considered the second most
important variable. This recommendation is supported by existing literature, which establishes CEA as another noteworthy
tumor marker with strong prognostic value [40] [41]. Subsequent to CA19-9 and CEA, they suggest that GGT before values
and the difference in SII should be taken into account, along with differences in NP and TB. However, it should be noted
that the latter two variables are already encompassed within the SII calculation, as defined by Equation (B.4). Additionally,
it might be valuable to know what variables would constitute the top 10 when considering them individually, independent
of whether these are ‘before, after or difference’. In that case, in the random forest without outliers based on BR and GFR,
the unique top 10 variables identified include NP, NLR, and PLR.

Top 10 most
important
Variables

Random Forest
Model full
dataset

Random Forest
Model No
outliers

Random Forest
Model top 10

Random Forest
Only before

Advice from
medical experts
Erasmus MC

Random Forest
No Outliers
Unique top 10

1 CA19-9 before CA19-9 before CA19-9 before CA19-9 before CA19-9 before CA19-9
2 HB diff CA19-9 after CA19-9 after GGT before CA19-9 after HB
3 TB diff CA19-9 diff TB diff NP before CA19-9 diff TB
4 HB before HB diff GGT before HB before CEA before GGT
5 GGT after TB diff AF after K before CEA after BR
6 CEA before GGT before HB diff TB before CEA diff AF
7 CR diff GGT after K before Age GGT before K
8 GGT diff BR after GGT after CEA before SII diff NP
9 TB before AF after BR after BMI NP diff NLR
10 CA19-9 after K before CA19-9 diff AF before TB diff PLR

Table 5.13: Overview of the top 10 ranked variables based on the ranksum calculated after a running 100 optimized
random forests for each of the four datasets. These include the full dataset (n=194, Disease Control (n=120),
Progressive disease (n=74)), the dataset after removal of outliers based on GFR (< 30mL/min) and BR (>
50µmol/L) values (n=182, Disease Control (n=95), Progressive disease (n=87)) , the dataset containing only
the top 10 variables (n=182, Disease Control (n=115), Progressive disease (n=67)), the dataset with only pre-
chemotherapy values (n=182, Disease Control (n=115), Progressive disease (n=67)), the top 10 variable rank
according to medical experts from the Erasmus Medical Centre Rotterdam in the Netherlands and the top 10
‘unique’ variables in the dataset after removal of outliers based on GFR and BR.

One possible explanation why CEA is not present in the top 10 identified variables by the random forest model could be
its strong correlation with CA19-9, as identified in the PCA analysis (see section 3.3 and Appendix B.3). Notably, CA19-9
has already demonstrated good predictive performance in literature studies and exhibits a stronger correlation with the
final response compared to CEA, see Table 5.14. Previous research by Nicodemus and Malley [60] suggests that random
forest tends to favor uncorrelated predictors during the construction of decision trees within the forest when using the
Gini index. Additionally, Meng et al. [61] found that the strength of association between a predictor and the response
significantly influences the impact of predictor correlation on random forest’s performance. In a simulation study conducted
by Nicodemus et al. [62], a simple linear model consisting of 12 predictors was utilized. Among these predictors, four were
strongly correlated (with a correlation of r = 0.9), and eight were uncorrelated. Three of the four correlated predictors
and three of the eight uncorrelated predictors possessed non-zero coefficients. The findings of this study revealed that at
the first split in the tree, correlated predictors were more frequently selected. However, as the parameter ‘mtry’ increased,
the preference for uncorrelated predictors became more pronounced when considering all splits. Uncorrelated but strongly
associated predictors tended to be selected more frequently across all trees in the random forest when the pool of potential
predictor variables (mtry) was set to be larger. The increase in mtry allows for a broader range of candidate predictors,
making it more likely for uncorrelated but relevant predictors to be chosen in the tree construction process. Specifically,
the preference for correlated predictors as the first splitting variable was observed only when these predictors exhibited an
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Figure 5.17: Overview of the groupings of the variables considered in the analyses with the top 10 identified
variables in green, when considering only the ‘unique’ variables.

association with the outcome.

Furthermore, other potential reasons for CEA’s lower variable importance in the random forest model might be attributed
to the influence of other features. In the random forest algorithm, variable importance is not solely dependent on individual
features but also on their interactions with other features in the dataset. Despite the high correlation between CA19-9 and
CEA, they might interact differently with other influential features in the dataset. It is possible that CA19-9 has stronger
interactions with certain influential features, leading to a higher importance score, while CEA’s interactions might not be
as impactful. Additionally, the proven prognostic and predictive value of CA19-9, particularly in the Lewis (+) population,
could further contribute to its higher importance in the random forest model. As a result of its superior performance
in predicting the final response, CA19-9 might be consistently favored over CEA during the tree construction process.
Moreover, a potential reason why SII has not been included in the top 10 variables in the random forest might be due to
the large number of missing values (98) compared to the other variables. Nevertheless, the random forest imputes these
missing values based on the other data.

Variable Pearson’s Correlation with Final response p-value
CA19-9 before 0.204 0.0035
CEA before 0.125 0.0756
CA19-9 after 0.207 0.0031
CEA after 0.138 0.0495
CA19-9 diff -0.143 0.0419
CEA diff -0.009 0.8986
HB diff -0.163 0.0205
TB diff -0.078 0.2659

Table 5.14: Estimated Pearson’s correlation and corresponding p-value with the final response outcome.
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5.2. PDP and ALE plots optimal random forest model without outliers

In the preceding section, we have successfully derived the optimal random forest models for predicting the final response
to chemotherapy based on the measured blood variables present in the provided dataset. In this section, we intend to
investigate the marginal impact of the most significant features on the predicted outcome of the random forest machine
learning model. One approach to accomplish this is by the use of partial dependence plots (PDPs). However, due to the
strong assumption of independence in PDPs, and taking into account earlier observations in Appendix B.1 and Appendix
B.3, where we discovered substantial correlations among multiple variables, we will also construct accumulated local effect
plots (ALE) plots for a more comprehensive analysis. As emphasized earlier in section 5.2, the selection of an appropriate
grid size is of importance when constructing ALE plots. The rationale for choosing the grid size is demonstrated through
Figure 5.18, which displays three ALE plots for the HB difference (mmol/L) using grid sizes of (a) 13, (b) 30, and (c)
182, respectively. These choices are based on the general rule of thumb of taking the grid size to be the square root of
the number of observations. In this case we have 182 observations, hence

√
182 ≈ 13.49 ≈ 13. However, since we want to

see the impact of a smaller grid size, we have chosen 30 and 182 as well. Note that an excessively coarse grid size may
mask potential complexities in the model, while an excessive number of intervals can lead to instability and fluctuations
in the plots. Nevertheless, implementing a finer grid, such as 200, would be illogical as certain intervals would be devoid
of observations. To illustrate this distinction, the plots in Figure 5.18 can serve as exemplars. Specifically, Figure 5.18(a)
exhibits a comparatively smoother curve, while Figure 5.18(b) displays a greater degree of fluctuations, and Figure 5.18(c)
exhibits the most pronounced fluctuations. Consequently, for the purpose of this analysis, a grid size of 30 is deemed
appropriate for generating the ALE plots, striking a balance between capturing essential details and minimizing excessive
instability. Additionally, given that the PDP and ALE plots for the DC and PD groups are opposites of each other, it
suffices to present the plots for only one of the groups. However, to demonstrate this contrast, both the PDP and ALE
plots will be shown for the most important variable, CA19-9 before. These plots can be seen in Figure 5.19.

Furthermore, PDP and ALE plots are primarily used to analyze and interpret the behavior of a model based on its learned
patterns from the training dataset. These plots help understand the relationship between individual predictor variables
and the response variable to gain insights into the effects and importance of different features on the model’s predictions.
Therefore, the PDP and ALE plots in Figures 5.19, 5.20, 5.21 and 5.22 below are generated using the training dataset
to provide a visual representation of the final response to changes in specific variables. These plots are not intended to
evaluate the model’s generalization performance on unseen data, but rather to understand how it behaves on the data it
was trained on.

The PDP and ALE plots in Figure 5.19 show the relationship between the variable CA19-9 before and the final response.
The grey areas depicted in the PDPs represent 95% confidence intervals for the PDP curve. From the plots, it is evident
that values below ≈ 1000 − 1500 kU/L indicate a high probability of PD, while higher values suggest DC. The ALE plot
closely aligns with the PDP curves, indicating a consistent effect of CA19-9 before on the final response across its range. In
Figure 5.20, similar patterns emerge for CA19-9 difference and CA19-9 after. A negative CA19-9 difference implies a low
probability of DC and a high probability of PD. Unlike the CA19-9 tumor marker plots, the HB and TB difference plots
lack a clear boundary to effectively distinguish the two groups. The plots for the HB difference shows that a positive value
is associated with DC, while a negative value indicates PD (see Figure 5.21(a) and (c)). For the TB difference, values within
0-200 ×109/L are linked to DC, compared to values outside this range, as seen in Figure 5.21(b) and (d). The difference
in shape in the PDP and ALE plots for both HB and TB difference might be due to the underlying assumptions of PDPs
discussed in section 4.2, therefore the ALE plot is preferred for interpretation purposes.

Lastly, the PDP and ALE plots in Figure 5.22 reveal insights into the classification probabilities for the DC and PD groups
based on SII difference and CEA difference. For the SII difference, values between approximately [-500, 1800] indicate a
high probability of DC, while negative values below -500 suggest a significantly higher likelihood of PD and values above
1800 do not show a clear distinction between the groups. These patterns are consistent in both the PDP and ALE plots.
In contrast, for the CEA difference, negative values correspond to a high probability of DC, while positive values indicate a
higher likelihood of PD. This relationship is consistent in both the PDP and ALE plots. The PDP and ALE plots for the
other identified important variables are presented in Appendix D.2. Finally, it is important to note that in this case we are
only considering the marginal probabilities of one variable on the final response and keep all the other variables constant
and these plots are only intended to have some insights into the relationship between important predictors and classification
probabilities for DC and PD. As a side note, the PDP and ALE plots presented in this section and in Appendix D.2 clearly
show the non-linear relationships present between the variables and the final response. This might be why PCA was not
able to distinguish between the two responses.
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Figure 5.18: Accumulated Local Effect Plots of the Hemoglobin difference values (mmol/L) based on the random
forest trained using the original training dataset after removal of outliers based on GFR (< 30mL/min), BR
(> 50µmol/L) (n=182, Disease Control (n=115), Progressive disease (n=67)) using three different grid-sizes: (a)
Grid-size of 13 (b) Grid-size of 30 (c) Grid-size of 182.

Figure 5.19: Partial Dependence Plots and Accumulated Local Effect plots of the CA19-9 before (kU/L) values
based on the random forest trained on the original training dataset after removal of outliers based on GFR
(< 30mL/min), BR (> 50µmol/L) (n=182, Disease Control (n=115), Progressive disease (n=67)): (a) PDP plot
with 95% confidence interval of CA19-9 before (kU/L) for DC as response (b) PDP plot with 95% confidence
interval of CA19-9 before (kU/L) for PD as response (c) ALE plot of CA19-9 before (kU/L) for DC as response
(grid size = 30) (d) ALE plot of CA19-9 before (kU/L) for PD as response (grid size = 30).
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Figure 5.20: Partial Dependence Plots and Accumulated Local Effect plots of the CA19-9 difference (kU/L) and
CA19-9 after the first chemotherapy cycle values based on the random forest trained on the original training
dataset after removal of outliers based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182, Disease Control
(n=115), Progressive disease (n=67)): (a) PDP plot with 95% confidence interval of CA19-9 difference (kU/L) for
DC as response (b) PDP plot with 95% confidence interval of CA19-9 after (kU/L) for DC as response (c) ALE
plot of CA19-9 difference (kU/L) for DC as response (grid size = 30) (d) ALE plot of CA19-9 after (kU/L) for
DC as response (grid size = 30).
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Figure 5.21: Partial Dependence Plots and Accumulated Local Effect plots of the Hemoglobin and Thrombocyte
differences before and after the first chemotherapy cycle based on the random forest trained on the original
training dataset after removal of outliers based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182, Disease
Control (n=115), Progressive disease (n=67)): (a) PDP plot with 95% confidence interval of Hemoglobin difference
(mmol/L) for DC as response (b) PDP plot with 95% confidence interval of Thrombocyte count difference (109/L)
for DC as response (c) ALE plot of Hemoglobin difference (mmol/L) for DC as response (grid size = 30) (d) ALE
plot of Thrombocyte count difference (109/L) for DC as response (grid size = 30).
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Figure 5.22: Partial Dependence Plots and Accumulated Local Effect plots of the Systemic inflammation index
and CEA differences before and after the first chemotherapy cycle based on the random forest trained on the
original training dataset after removal of outliers based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182,
Disease Control (n=115), Progressive disease (n=67)): (a) PDP plot with 95% confidence interval of Systemic
Inflammation Index difference for DC as response (b) PDP plot with 95% confidence interval of CEA difference
(µg/L) for DC as response (c) ALE plot of Systemic Inflammation Index difference for DC as response (grid size
= 30) (d) ALE plot of CEA difference (µg/L) for DC as response (grid size = 30).
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5.3. Interpretation of the findings for top 10 variables

In this section we want to combine all the findings of the exploratory data analysis and random forest modelling together.
The focus will be on the top 10 most important variables identified using the random forest based on the dataset after
removal of outlier values using GFR and BR. In addition, relevant studies will be mentioned to deepen the understanding
from a medical perspective.

CA19-9 has been widely established in the literature as a diagnostic, prognostic, and predictive biomarker for patients
with PDAC [24]. This research aligns with existing evidence, as initial data analysis already indicated that PD patients
exhibited the highest CA19-9 values, followed by the SD group, with no discernible difference between genders. The
Wilcoxon Ranksum test also showed a significant difference between the CA19-9 values between the DC and PD groups for
the CA19-9 values measured before and after the first chemotherapy cycle (CA19-9 before p = 0.002 see Table 3.7, CA19-9
after p = 0.001 see Table 3.8, respectively in section 3.1), confirming the observations in several studies like [35] [36] [24].
Higher CA19-9 levels may indicate an increased risk of having PD as final response. During PCA, strong correlations were
observed between CA19-9 and CEA values at diagnosis, before and after the first chemotherapy cycle. However, solely
relying on CA19-9 and CEA was insufficient to have a distinct differentiation between the two groups. Surprisingly, when
the covariance matrix was used, CA19-9 before and after emerged as the primary variables that accounted for 97% of the
overall variance within the dataset when considering all the measured markers together. When considering only the Age,
BMI, and tumor and blood marker difference values before and after the first chemotherapy cycle, CA19-9 difference stood
out as the most important marker capturing 96% of the total variance in the data. This finding signifies that CA19-9 levels,
both before and after diagnosis as well as the difference, play a crucial role in explaining the majority of the variability in
the dataset.

Moreover, after training and optimizing random forest models, and conducting variable importance analysis using the mean
decrease in the Gini index, CA19-9 before consistently remained the most significant variable across all optimal models.
After removal of outliers based on GFR and BR values, CA19-9 after emerged as the second most important variable after
the CA19-9 before variable. This suggests that the CA19-9 value determined before initiating chemotherapy can serve as
an early indicator of the patient’s ultimate response to chemotherapy, while after one cycle, both before and after values
are important. Additionally, the analysis of PDP and ALE plots indicated that a “cut-off" value of approximately 1000-
1500 kU/L could distinctly differentiate DC from PD, with higher CA19-9 levels before treatment correlating to a greater
probability of being classified as PD. Similarly, a negative CA19-9 difference after the first cycle of chemotherapy, implying
an increase in CA19-9 levels, was also prognostic for a final response of PD. Lee et al. also found that reduced CA19-9
concentrations after neoadjuvant chemotherapy has comparable prognostic performance in PDAC patients with borderline
resectable and LAPC [63].

A major limitation of CA19-9 as biomarker for PDAC is the Lewis (-) population, whose serum CA19-9 tends to be
consistently low because they do not produce CA19-9. To address these challenges, several studies have explored potential
adjustments to enhance the usage of CA19-9 measurements. A commonly used approach involves normalizing the CA19-9
value by the bilirubin level in patients with jaundice like the study by Liu et al. [64]. Huang et al. [65] sought to refine the
preoperative serum CA19-9 value by dividing it by liver enzyme levels of ASAT and GGT in pancreatic cancer patients with
jaundice. They compared the adjusted CA19-9 values with previously reported studies to evaluate their prognostic value in
predicting patient survival. The study revealed that combining the scoring of CA19-9/ASAT and CA19-9/GGT emerged
as an independent predictor of overall survival in patients with PDAC whose preoperative serum total bilirubin exceeded
102.6 µmol/L [65]. Additionally, the study by Li et al. [66] showed that the preoperative γ-glutamyltransferase-to-albumin
ratio (GAR) is an independent prognostic factor for prediction of surgical outcomes in PDAC patients. Future investigation
is necessary to be able to draw definitive conclusions on the prognostic and predictive power of these ratios. Moreover,
Ermiah et al. [67] also found a strong correlation between CA19-9 and CEA values. Higher CEA and CA19-9 serum levels
were significantly associated with a malignant phenotype and shorter overall survival rates as well as lower disease-free
survival rates. Nevertheless, CEA did not show to be as prognostic as CA19-9 in this research as in the optimal random
forest after removal of outliers based on BR and GFR values, no CEA variable was present in the top 10 variables based
on the variable ranksum. However, CEA before does seem to be important in the optimal model based on the full dataset
as well as the optimal model using only the pre-chemotherapy values, ranking 6th and 8th respectively.

The analysis revealed that hemoglobin difference (HBdiff) and thrombocyte difference (TBdiff) were ranked as the second
and third most influential variables in the model, following CA19-9. However, the variables alone were insufficient in
predicting response to chemotherapy, which supports findings by for instance Wu et al. [68], which found that solely using
the HbA1C level was insufficient to be prognostic. However, this study looked at the association of elevation in glycated
hemoglobin (HbA1c) (see Appendix E) instead of the normal hemoglobin values. After examination of the hemoglobin
levels before and after the initial chemotherapy cycle in the initial data analysis in this study, no evident differences were
observed between the final response groups, and HBdiff did not exhibit a distinct separation either. However, the Wilcoxon
ranksum test did show a significant difference between the DC and PD groups with a p-value of p = 0.032 for the HB
before and p = 0.041 for the HB difference values, but not for the HB after value, which only had a p-value of 0.430 (see
Table 3.7, Table 3.8, Table 3.9, respectively). Additionally, it is noteworthy that hemoglobin was one of the few variables
that showed a normal distribution. Moreover, PCA indicated that HBdiff displayed weak correlations with other blood
cell variables and did not significantly contribute to the primary principal components. The significance of the HB before
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and after the first cycle of chemotherapy indicates its relevance in the context of PDAC and its potential implications for
treatment outcomes. Changes in hemoglobin levels can indicate various physiological conditions including anemia, which
is characterized by a decrease in red blood cell count or hemoglobin concentration. Significant changes in hemoglobin
levels might indicate the presence of anemia or other underlying health conditions that can impact treatment outcomes.
Cancer patients often experience anemia as it occurs in more than 40% of the cases [69]. Especially in patients treated
with chemotherapy, the incidence of anemia may rise to 90% [70]. Caro et al.[71] found that in cancer patients, anemia is
identified as an adverse prognostic factor. Anemia can be caused by various factors such as hemolysis, herediatry diseases,
nutritional inefficiencies or other underlying inflammatory diseases [72]. It can contribute to fatigue, reduced oxygen supply
to tissues and impaired overall health 1 which may influence the patient’s response to chemotherapy. Dicato et al. [73]
demonstrated that inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), among others,
play a major role in the pathophysiology of anemia in cancer patients.

On the other hand, thrombocytes (TB) emerged as the most crucial variable in PCA when using the covariance matrix, while
contributing solely to PC4 in PCA. Data analysis showed a slight decreasing trend in TB count after the first chemotherapy
cycle, without clear differentiation among the final response groups. Contrastingly, the most substantial differences in TB
levels were observed in the PD and SD groups. This is reflected in a p = 0.013 in the initial data analysis, see Table 3.9 in
the TB difference variable. Nevertheless, unlike CA19-9, no definitive cut-off value to distinguish the PD group from the
DC group was evident in the PDP and ALE plots for both HBdiff and TBdiff. However, regarding HBdiff, in general an
increase in hemoglobin levels after chemotherapy likely indicates an inclination towards PD. Likewise, elevated TB levels
after chemotherapy suggests a similar tendency. Yet, a substantial increase in TB may also serve as an indicator of PD.
Recent research has indicated that TB have broader implications in maintaining a balance between health and disease.
The presence of tumor cells can influence TB counts through various mediators, cytokines, and tumor cell-induced platelet
activation, which represents the initial step towards cancer-induced thrombosis [74]. Conversely, emerging evidence suggests
that complex interactions between tumor cells and circulating TB may significantly impact tumor growth, dissemination,
and angiogenesis. This reciprocal relationship between tumors and TB appears to promote tumor-induced thrombosis
while facilitating the development and metastasis of malignant tumors [75] [76]. Therefore, a bidirectional relationship
between tumors and thrombocytes seems to exist, promoting tumor-induced thrombosis on one hand and the establishment
of malignant tumors and their metastasis on the other.

Another influential variable in the analysis was γ-Glutamyl Transferase (GGT) before and after values. In the random forest
model, GGT before ranked as the second most significant variable following CA19-9 before. GGT is a liver enzyme involved
in glutathione metabolism, as well as the breakdown of food, drinks, and waste materials and reflects the liver functionality.
The initial data analysis did not reveal any evident differences across the final response groups or between genders based
on GGT levels before or after chemotherapy. However, a notable observation was that almost all GGT values before and
after the first chemotherapy cycle exceeded the predetermined healthy range of 40 U/L for males and 25 U/L for females.
Although most GGT before values were higher compared to GGT after values, there was no clear distinguishable pattern
as it varied among each patient. Nevertheless, GGT before and after values exhibited strong correlations with each other,
as well as with Alkaline Phosphatase (AF) before and after values, as demonstrated by the correlation matrix during PCA.
However, their contributions to the first and second principal components (PC1 and PC2) were not as prominent compared
to Alanine Aminotransferase (ALAT) and Aspartate Aminotransferase (ASAT) values. From literature it is becoming more
and more clear that inflammation is a critical component in tumor initiation and progression [77]. Especially oxidative stress
can activate a series of transcription factors, leading to expressions of pro-inflammatory molecules and therefore promoting
the transformation of normal cells into tumor cells, tumor cell survival, proliferation and invasion [78]. GGT plays a pivotal
role in maintaining sufficient levels of Glutathione, which protects the cells from oxidative damage. GGT has been shown
to be elevated under oxidative stress [79]and a common variation in the GGT1 gene was found to be involved in pancreatic
carcinogenesis [80]. Based on the observations in this research as well as the other literature mentioned, GGT does not only
inform about liver functionality, but is also reflects internal inflammation.

In addition to GGT, Bilirubin (BR) and Alkaline Phosphatase (AF) values after the first chemotherapy cycle emerged
as the most significant variables identified by the optimal random forest model. Similarly to GGT, BR and AF serve as
indicators of liver functionality. Data analysis in this research revealed a significant decrease in BR values after the first
chemotherapy cycle, transitioning from a high, unhealthy range to a lower, healthier range. Yet, no distinct differences
were observed across the final response groups. Considering that the outliers were also partially identified based on BR
values, it would be prudent to ensure the presence of healthy BR levels prior to initiating chemotherapy. As for AF levels,
there was considerable variation among patients, with some showing an increase and others experiencing a decrease after
the first chemotherapy cycle. No clear patterns emerged among the final response groups. The only noticeable trend was
the largest differences in AF levels before and after the first chemotherapy cycle were observed in the PD group. Still,
since this pattern was only evident in three patients, drawing conclusive interpretations is not feasible. Notably, AF values
exhibited a strong positive correlation with GGT values, while BR showed correlations only with its own measurements
(before, after, and difference). Consequently, in the PCA using the correlation matrix, AF after and GGT after values
predominantly contributed to the PC2, while BR after became apparent in the fourth or fifth dimension. Conversely, in
the PCA conducted using the covariance matrix, BR after was primarily prominent in the tenth dimension.

1This might be a sign of bone marrow depression according to the medical experts from Erasmus MC
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From a medical perspective, the importance of GGT, BR, and AF values lies in their association with liver functionality.
The decrease in BR values within a healthier range after the first chemotherapy cycle suggests potential improvements in
liver function. Yet, the absence of clear distinctions among the final response groups implies that BR alone may not serve
as a reliable predictor of chemotherapy response. Similarly, the variability in AF levels and the lack of consistent patterns
among response groups hinder its utility as a definitive indicator. The strong correlations observed between GGT and AF
highlight their interconnectedness in reflecting liver function. This suggests that liver enzyme levels after the first cycle
of chemotherapy may provide valuable insights into how patients are likely to respond to subsequent cycles of treatment.
Consequently, this information can aid clinicians in making informed decisions regarding the continuation or discontinuation
of chemotherapy. The association between higher liver enzyme levels and PD may be attributed to the impact of pancreatic
cancer on liver function or the overall disease progression itself. Additionally, liver enzyme levels can be influenced by
factors such as inflammation and cholestasis, which commonly occur in pancreatic cancer patients. Early detection of
elevated liver enzyme levels may prompt further investigations and adjustments to the treatment plan, potentially leading
to improved patient outcomes. A properly functioning liver is crucial for the processing and elimination of drugs, including
chemotherapeutic agents. Impaired liver function can affect the metabolism and excretion of drugs, thereby potentially
influencing the response to chemotherapy.

Potassium (K) values before chemotherapy were found to be the tenth most important variable in the optimal random forest
model. Although this variable did not appear in the optimal random forest model trained on the full dataset, it ranked fifth
in importance when considering only the before chemotherapy values. The presence of electrolyte abnormalities, including
hyperkalemia, hyponatremia, hypophosphatemia, and hypercalcemia, is commonly observed in cancer patients, which can
be attributed to the cancer itself or its treatment [81]. Such electrolyte disorders in cancer patients have been associated
with unfavorable prognoses. Hyperkalemia, characterised by higher levels of serum or plasma K levels than normal, is
in cancer patients often linked to conditions such as acute kidney injury, rhabdomyolysis, or tumor lysis syndrome [81].
Furthermore, the data analysis revealed a slight decrease in K levels after the first chemotherapy cycle. However, drawing
definitive conclusions from these findings is challenging due to the considerable variation in K levels among patients, which
can be influenced by factors such as the occurrence of side effects (e.g., vomiting, diarrhea) and the use of medications.
These factors can either decrease or increase K levels in individuals. Nevertheless, no clear distinction was observed between
the final response groups based on this measured blood marker. The correlation matrix used in the PCA provided insights
into the relationships between K values and other variables. Specifically, K after values displayed positive correlation with K
before values and a strong negative correlation with K difference. However, minimal correlations were observed between K
values and other measured variables. The PDP en ALE plots in Figure D.3(a) and Figure D.3(c) provide additional support
to this finding, indicating that higher K levels prior to chemotherapy are indicative of PD. Recent research by scientists at
the National Cancer Institute’s Center for Cancer Research revealed that harnessing T-cell “stemness" could enhance cancer
immunotherapy [82]. Surprisingly, pre-chemotherapy K levels, associated with electrolyte imbalances in cancer patients,
align with treatment response and may impact the effectiveness of cancer immunotherapies. Further studies are required
to establish potassium’s role in cancer and chemotherapy response.

Furthermore, the initial data analysis revealed an increase in Systemic Inflammation Index (SII) after the first chemotherapy
cycle (detailed analysis provided in Appendix B.1). However, it should be noted that SII did not consistently increase after
the first cycle; in some patients, it exhibited a slight decrease. Nevertheless, for these patients, the SII levels were already
close to the considered healthy range of 900. After the first chemotherapy cycle, a significant number of SII values exceeded
the healthy range. Furthermore, the difference in SII before and after the first chemotherapy cycle indicated that the
largest differences occurred in the SD group, while the smallest differences were observed in the PR group. Nonetheless,
no significant differences were seen in the SII variables between the DC and PD groups. Since SII is calculated according
to Equation (B.4), it exhibits strong positive correlations with neutrophil-to-lymphocyte ratio (NLR) and platelet-to-
lymphocyte ratio (PLR), as demonstrated in the correlation matrix obtained from the PCA (refer to Appendix B.4 for
detailed information). SII difference emerged as the most important variable in PC1, followed by NLR difference and PLR
difference. Outlier analysis revealed that after removing outliers based on the interquartile range, SII difference exhibited a
normal distribution (p-value = 0.558). These findings are partly confirmed by the PDP and ALE plots presented in Section
5.2. Specifically, in Figure 5.22(a) and Figure 5.22(c) it can be observed that a increase in SII values strongly predict a
patient as having PD, while values between 0-900 indicate a high probability of classifying a patient as having DC. After
an SII difference value of approximately 1000, the classification probability becomes evenly distributed between the two
groups. On the contrary, Murthy et al. [53] demonstrated that a high SII was associated with unfavorable outcomes in
PDAC. Specifically, they found that an SII > 900 before resection in patients treated with neoadjuvant therapy was linked
to a worse prognosis compared to an SII ≤ 900 [53]. Interestingly, when considering the variable importance ranking based
on the random forest model, SII did not emerge among the top 10 ranking factors, which might be due to the large number
(n=98) of missing values. In the 100 runs conducted it only appeared once at rank 8 and 9, respectively.

Moreover, the data analysis revealed a slight decrease in TB count and a significant increase in NP after the first chemother-
apy cycle, while LC were minimally affected, only exhibiting a small increase. Consequently, the rise in SII is primarily
attributed to the substantial increase in neutrophil levels. Several studies support the prognostic significance of the NLR
in pancreatic cancer patients. For instance, Iwai et al. [83] demonstrated that NLR independently predicts outcomes in
patients with unresectable pancreatic cancer. Additionally, Yang et al. [84] reported that elevated NLR in peripheral
blood is associated with poor prognosis in PDAC patients, as increased neutrophil infiltration creates a favorable tumor
micro-environment for cancer progression. Consequently, it may be advisable to consider NLR as a prognostic factor instead
of SII. However, when assessing the top 10 variables, it was observed that the neutrophil count only ranked among the
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5.3. Interpretation of the findings for top 10 variables

top 10 factors in the optimized random forest model based on pre-chemotherapy values. This suggests that the neutrophil
count before initiating chemotherapy may already possess strong prognostic value in determining the patients’ ultimate
response to treatment. Nevertheless, referring back to the data analysis conducted in Appendix B.1.3, it was observed that
neutrophil levels for almost all patients were within the healthy range before chemotherapy, and they rapidly increased after
the first cycle, without clear differentiation between the final response groups supported by p-values > 0.05. Conversely,
when considering the NLR value, rather than the neutrophil count alone, the analysis in Appendix B.1.3 indicated that the
NLR value remained relatively stable before and after the first chemotherapy cycle in the PR group, while in the PD and
SD groups, the NLR significantly increased for many patients following the first cycle. Hence a clinical implication is that
stable NLR levels have higher probability of DC.

Lastly, the variables ‘Age’ and ‘BMI’ were found to be significantly important in the random forest model based on pre-
chemotherapy values. Despite Age and BMI not acting as independent predictive factors found in the initial data analysis,
their significance becomes evident when considered in combination with other markers in the random forest model. This was
also seen in the PCA analysis in Section 3.3 with the full analysis present in Appendix B.3, Age determined one principal
component and BMI another, indicating that they are both uncorrelated and capture different structures in the dataset.
However, BMI and Age alone were not sufficient to make a distinguishment between the two final response groups. In
literature a prognostic effect of BMI remains unclear for patients under therapy for pancreatic cancer as published results
are contradictory [85] [86]. Nevertheless, the study by Sclick et al. [23] did identify a BMI>25 to be a negative prognostic
indicator for OS and low BMI as predictor of early treatment related toxicity. These contradictions may arise due to the fact
that studies do not always analyze homogeneous patient populations in regard to inclusion of obese or overweight patients.
Therefore, the only conclusion that can be drawn is that BMI and Age could be taken into account when deciding to give
a patient chemotherapy or not, but these are not the most important factors. However, it can be said that generally obese
patients have a higher probability of having other diseases such as high blood pressure (hypertension), high LDL cholesterol,
and coronary heart disease [87]. These other health-related conditions could impact their response to chemotherapy as well.
On the other hand, the older the patient, the more likely it is that they may have other health-related issues, such as
osteoarthritis, chronic obstructive pulmonary disease, and diabetes, according to the World Health Organization [88]. All
these other health conditions can also affect their response to chemotherapy.
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5.4. Clinical Implications

5.4. Clinical Implications

From the findings of all the analyses in this research, clinical implications can be deduced. It is important to take these
clinical implications as suggestions and not as rigorous rules. In addition, the analysis in this study only focused on PDAC
patients treated with FOLFIRINOX and took into account only the patients who have reported CA19-9 values. The
following key recommendations for clinical practice, based on the analysis of tumor and blood markers, can be made:

1. Comprehensive measurement of tumor and blood markers: It is advisable to measure tumor and blood
markers prior to initiating chemotherapy. This provides essential baseline information to assess the patient’s condition
and potential treatment response. Additionally, measuring these markers after the first cycle of chemotherapy can
offer valuable insights into the early treatment effects and guide subsequent therapeutic decisions. Especially the
top 10 important tumor and blood markers should be taken into rigorous consideration. These are: CA19-9 before,
CA19-9 after, CA19-9 difference, HB difference, TB difference, GGT before, GGT after, BR after, AF after and K
before.

2. Integration of marker values into predictive models: The measured marker values should be incorporated
into the optimized predictive random forest models to estimate the patient’s (potential) response to chemotherapy.
These models can assist doctors and other healthcare professionals in evaluating the likelihood of treatment success
and tailoring the treatment plan accordingly. However, it is crucial to remember that these predictions are based on
historical data and should be considered as indications rather than definitive decisions of individual patient outcomes.

3. Consideration of baseline characteristics: In addition to tumor and blood markers, it is important to consider
various patient-specific factors, including age, BMI, history of chemotherapy, history of malignancy, family history,
disease stage, smoking history, alcohol usage, diabetes, pancreatitis, and other relevant health conditions. These
baseline characteristics provide a broader context for treatment decision-making and can help to personalize the
therapeutic approach.

4. Individualized approach: Each patient is unique, and treatment decisions should be tailored to their specific
circumstances. While predictive models and marker values offer valuable insights, clinical decisions should always
be made in conjunction with patient preferences and individual considerations. The discussion between healthcare
professionals and patients regarding the initiation and continuation of chemotherapy should involve a comprehensive
evaluation of all available information and together with the patient him or herself.

5. Management of side effects: Once chemotherapy is initiated, it is essential to proactively manage potential
side effects. Medications such as granulocyte-colony stimulating factor (G-CSF) to stimulate the production of
neutrophiles, granulocytes and blood cells and erythropoietin-stimulating agents to boost red blood cell levels can be
considered to mitigate adverse effects and improve patient well-being.

Figure 5.23: Current way of deciding FOLFIRINOX chemotherapy, the standard of care in the Netherlands is
provided in the Richtlijnendatabase [89] [90].
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5.4. Clinical Implications

The administration of FOLFIRINOX chemotherapy is currently determined based on the patient’s health condition, as
illustrated in Figure 5.23. When the medical professional assesses that the patient is in a suitable health state to undergo
chemotherapy, four cycles of FOLFORINOX are administered. Following this, treatment continuation or alternative thera-
pies are decided based on the patient’s response to the treatment, whether it shows disease control or progression of disease
based on radiologic imaging and circulating tumormarkers [89] [90]. To enhance the treatment decision-making process, an
alternative approach is proposed, depicted in Figure 5.24. This approach involves employing the random forest model before
initiating chemotherapy, utilizing measurements of blood and tumor values. Based on the model’s predictions of DC or PD,
chemotherapy is either initiated or a discussion is held with the patient to evaluate whether to proceed with chemotherapy
or consider other options. After the first cycle of FOLFORINOX, tumor and blood values are measured again and fed into
the random forest model to predict the patient’s response (DC or PD). Treatment continuation is determined for cases of
DC, while for those showing PD the decision is made considering the patient’s overall health condition, potentially leading
to alternative therapies.

Figure 5.24: Proposed way of decision making for FOLFIRINOX chemotherapy based on the optimized random
forest models. The standard of care in the Netherlands is provided in the Richtlijnendatabase [89] [90].
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6 | Discussion

This Master thesis aimed to conduct a thorough data analysis in order to build a robust prediction model to classify PDAC
patients based on measured tumor and blood markers for their response to FOLFIRINOX chemotherapy. Stratifying PDAC
patients for chemotherapy is crucial. Not only for individual patient benefit by reducing treatment-associated morbidity
and mortality, but also for addressing the socioeconomic challenge posed by increasing cancer incidence worldwide and
rising healthcare costs [1]. Ineffective chemotherapy treatments and associated toxicities represent significant financial
burdens in the management of PDAC patients and require urgent improvement. Machine learning models have shown
potential in breast cancer prediction, like the random forest model, with superior predictive performance among various
other classification models that Meti et al. considered [91]. Similarly, Guo et al. [92] proposed a classification model
for cervical cancer patients. However, robust machine learning models that use blood and tumor markers for predicting
chemotherapy response in PDAC are scarce. Nasief et al. did propose a delta-radiomics-based machine learning approach
using cross-validated support vector machines to predict distant metastasis after chemo-radiation therapy in pancreatic
cancer. Yet, they only showed that the combination of delta-radiomics, CA19-9 and PanIN was a potentially predictive
biomarker [93].

Currently, about 60% of all PDAC patients in the Netherlands does not receive treatment but primarily receive best
supportive care to manage symptoms [2]. These treatment decisions rely predominantly on CT-scans, CA19-9 and clinical
experience of physicians. However, non-metastatic and metastatic patients receiving only supportive care have a median
survival rate of 1.4 and 3 months, respectively, whereas FOLFORINOX chemotherapy demonstrated a median survival
of 8.0 months [2]. Therefore, it is interesting to predict whether a patient would benefit from receiving FOLFIRINOX
based chemotherapy. The proposed models in this study complement the existing approaches by providing these treatment
outcome predictions. To demonstrate the predictive capability, if the entire dataset (n = 203) is run in the optimized model,
it would predict 44

203
≈ 22% of patients as PD and 159

203
≈ 78% as DC 1. Of these 44 patients, only 4 were misclassified as

PD instead of DC. However, the model is trained using 70% of the same dataset, but it still shows a good classification
performance of the model. In practice, it means we would ‘save’ 40 patients from ineffective chemotherapy. Nevertheless,
every patient who is classified as PD would undergo a discussion with a medical team to decide whether to start chemotherapy
or not, hence the misclassified patients might still be offered chemotherapy. It is important to note that the random forest
model’s inherent randomness can lead to varying numbers of misclassifications in different runs. For instance, in one run,
only one patient may be misclassified, while in another run, two patients may be misclassified. This variability arises from
the random selection of samples and features during the model’s construction, which can influence the final outcomes across
multiple runs 2.

In terms of cost savings, consider a hypothetical scenario with an estimated 3200 new PDAC patients in 2023 3. Assume
that approximately 40% of these patients receive treatment and among them, 30% receive FOLFIRINOX. This means that
about 384 patients4 would be treated with FOLFIRINOX chemotherapy [2]. Suppose that based on the current data,
around 22% of patients exhibit PD. That means that approximately 85 patients could be spared unnecessary chemotherapy
treatment. Attard et al.[94] reported the cost of one cycle of FOLFIRINOX to be ≈ $1633.21 ≈5 e1480.51. A typical
treatment consists of 8 cycles for (borderline) resectable or LAPC and 12 cycles for metastatic PDAC, respectively in the
Netherlands [2]. Thus, a total cost savings of approximately e11,844.08 to e17,766.12 per patient exhibiting PD could
be achieved. According to the NKR 6 in the Netherlands, approximately 43% of patients are diagnosed with borderline
resectable or LAPC and 57% metastatic PDAC [2]. In total, under the given assumptions, potential annual cost savings
of approximately 0.43 × 85× e11,844,08 + 0.57 × 85× e17,766.12 ≈e1,293,670 ≈ e1,3 million could be realized. This
calculated figure concerns specifically to the cost of FOLFIRINOX chemotherapy and does not include additional expenses
like supplementary medication, hospital admission, or other interventions required to manage side effects.

Despite FOLFIRINOX being the current standard treatment for borderline resectable, LAPC and metastatic PDAC patients
[16], for PDAC patients with resectable disease, alternative therapies like chemo-radiotherapy or surgery are currently the
standard. Consequently, the developed random models can be adapted by training them on datasets comprising exclusively
(borderline) resectable PDAC patients or locally advanced and metastatic PDAC patients. Subsequently, predictions can
be made for this subgroup of PDAC patients. In addition, the model can be applied to various chemo(radio)therapy
treatments, not limited to FOLFIRINOX alone. It requires training on a dataset specific to the chosen treatment, using
the same or a greater number of measured tumor and blood markers, to predict the final response to therapy. Then, the
model’s performance can be validated using an independent test set.

1The DCR falls within the 95% CI established in literature [4]
2Despite the randomness, the model achieved an average accuracy of 0.94 across 100 runs, misclassifying 0-5 patients.
3This assumption is based on the statistics from [25].
4in 2019, 368 patients received FOLFIRINOX as first-line treatment, while 458 patients received it as second-line treatment[2].
5Based on current state of $1.00 ≈ e0.91 [95].
6Dutch Cancer Registry
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Strengths of the random forest models developed in this study are that it uses easily obtainable data, namely tumor and
blood biopsies, an interpretable approach (forest of decision trees), provides variable importance rankings and can capture
nonlinear relationships. As a result, the models are able to help with personalized treatment decisions, optimize resource
allocation, reduce treatment burden and contribute to research and development efforts in this field. In addition to the
biomarkers investigated in this study, integrating other genetic and immunological markers with potential predictive value
into the dataset could further enhance the model’s predictive capabilities, such as investigated by Van der Sijde et al
[96]. These markers may include cytokines, macrophages, specific T- or B-cells, tumor DNA, or immune checkpoints.
Incorporating such specific markers in future studies would provide a more comprehensive understanding of the underlying
mechanisms and improve the accuracy of the predictive model, ultimately facilitating the identification of personalized
treatment approaches for pancreatic cancer patients.

Furthermore, the thorough data analysis conducted on the measured tumor and blood markers used in this study showed
that the measured markers and groups based on similar functions alone, are insufficient to predict a patient’s response to
chemotherapy. It is necessary to consider all variables together, especially CA19-9, HB, TB and GGT. Of these, CA19-9
measured before and after the first cycle emerged as the most important variables, aligning with findings from other studies
[24] [35] [36]. Nevertheless, approximately 20% of pancreatic cancer patients exhibit no or low secretion of CA19-9 due to
the Lewis (-) blood group phenotype. Consequently, the developed model cannot be directly applied to patients with the
Lewis (-) phenotype. CEA and CA125 have shown potential as alternative biomarkers for Lewis (-) PDAC patients, as
these markers have been associated with tumor metastasis and therapeutic response [33]. Future research endeavors should
focus on collecting more clinical data specifically for Lewis (-) patients and incorporating CEA and CA125 as biomarkers,
enabling the construction of a separate model tailored to this specific patient population or adjusting the proposed model,
as the proposed models in this study are not based on Lewis (-) patients.

Nevertheless, the present study also has certain limitations. Firstly, the uneven distribution of patients causes an imbalance
in the dataset. This imbalance was addressed by including the entire PD group in the training dataset, which may have
contributed to the high model performance. However, other techniques to address dataset imbalance yielded little results.
Nonetheless, not using complete class inclusion of the minority class, regardless of whether over- or undersampling or any
other method to deal with imbalanced datasets was used, resulted in the model consistently classifying patients as DC,
corresponding to the current practice. Therefore, it is suggested to conduct measurements of all the tumor and blood
variables used in this study before starting chemotherapy and running the optimal random forest model based on only
pre-chemotherapy values. Then based on the output, consider starting chemotherapy using FOLFIRINOX or not. Once
started, keep tracking the patient’s tumor and blood markers and use the optimized random forest model using both before
and after the first cycle values to reconsider the continuation of treatment or not after the first cycle. To gain a more
comprehensive understanding of the relationships between important variables, future studies are encouraged to explore
advanced techniques that incorporate both marginal and interaction effects in PDP and ALE plots to gain further insights
into their (combined) impact on a patient’s response to chemotherapy.

Moreover, outliers were initially identified based on the defined criteria of glomerular filtration rate (GFR) < 30mL/min
and bilirubin (BR) > 50µmol/L, as advised by medical experts at the Erasmus MC Rotterdam. However, further analysis
revealed the presence of additional potential outliers, indicating the importance of establishing consensus among medical
experts to define outlier classification in PDAC patients. Additionally, PCA did not reveal distinct patterns or structures
within the dataset. However, this might be because PCA captures linear relationships. The generated PDP and ALE plots
clearly show that many variables exhibit non-linear relationships, explaining why PCA failed to distinguish between the two
response groups. Non-linear dimensionality reduction techniques should be considered in further analyses. Furthermore,
it is important to note that individual patient responses to chemotherapy within the DC group can vary. While the
DC category generally indicates favorable outcomes, it encompasses a heterogeneous population with diverse treatment
responses, including CR, PR and SD. Variations in certain variables were observed among patients with SD, emphasizing
the need to consider the nuanced nature of treatment responses within the DC group. Consequently, the classification of DC
should be interpreted cautiously, considering the potential variations in individual treatment responses. This recognition
underscores the importance of personalized and patient-specific considerations in the clinical decision-making process for
chemotherapy management. Additionally, future studies are encouraged to use a more comprehensive dataset based on a
larger-scale multi-center prospective study, preferably characterized by a balanced distribution among the two classes, to
reevaluate the model’s classification performance prior to chemotherapy and after one cycle and further refine it based on
this expanded dataset.

Finally, while the random forest models demonstrated strong predictive performance, alternative modeling approaches
could be explored to validate further and compare the results. For instance, support vector machines or other gradient
boosting models like XGBoost or neural networks could be implemented to assess their ability to classify PDAC patients
based on measured tumor and blood markers. Especially the more advanced models like XGboost or neural networks
might be able to capture more complex relationships in the data that have not been identified by the random forest.
Also, regularization techniques like L1 or L2 regularization can help control model complexity and prevent overfitting.
Additionally, hyperparameters can be optimized using for instance Bayesian optimization to achieve potentially even better
performance. However, more complex models need not to be better, but it is worth trying and comparing the various
models performance to come to an ultimate model that can be used in practice.
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7 | Conclusion

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges due to late-stage diagnosis and limited treatment
options with low response rates. Accurate patient stratification is crucial for enhancing patient quality of life, reducing
health risks, and minimizing healthcare costs. Despite the increasing use of chemotherapy, a robust classification model
based on predictive blood and tumor markers for FOLFIRINOX chemotherapy response in PDAC is currently lacking.
From the extensive data analysis conducted, it was evident that individual markers and functional groupings alone were
insufficient to distinguish between chemotherapy responses. The two main proposed random forest models are based on (a)
pre-chemotherapy and (b) before and after one chemotherapy cycle variables. They exhibit outstanding performances with
high accuracy, f1-score, and balanced accuracy scores of (a) 0.95, 0.97 and 0.97 (b) 0.94, 0.98 and 0.98, respectively. Key
variables identified included CA19-9, Hemoglobin, Thrombocytes, and γ-Glutamyl Transferase. Nonetheless, validation
with a separate cohort is essential to ensure accuracy and reliability, considering the imbalanced and small dataset used for
testing. For clinical practice, the recommendation is to use the pre-chemotherapy random forest model for initial prediction
of chemotherapy response. Based on the outcome, decisions can be made regarding chemotherapy initiation or alternative
options. Measuring relevant tumor and blood markers before and after the first chemotherapy session can further aid in
decision-making using the other random forest model. This model can further help to predict treatment outcomes based on
one cycle. However, patient-specific factors, individual responses, and potential side effects should also be considered in the
decision-making process, promoting a patient-centered and personalized approach to optimize chemotherapy management.
By adopting such an approach, not only can costs be saved, but also unnecessary patient suffering can be minimized.
Finally, further clinical trials are necessary, involving more comprehensive data collection and analysis to identify potential
new or better predictive markers, to improve and validate upon the proposed models.
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A | P-values

A.1. P-values

In order to calculate the p-values between the two groups of patients, namely disease control and progressive disease,
different statistical tests have been used. For categorical variables the chi-squared and fisher’s exact test is used and for
continuous variables the Wilcoxon rank test is used. Standard we test the following two hypotheses, all with a significance
level α = 0.05 taken:

• H0 = there is no difference between the disease control and progressive disease groups based on the considered
categorical or numerical variable

• H1 = there is a difference between the disease control and progressive disease groups based on the considered
categorical or numerical variable

A.1.1 Chi-squared Test

Chi-squared tests are used to test whether there is a difference between groups of unpaired data based on categorical data.
There are two types of tests: Chi-squared test of independence and Chi-squared goodness of fit test. We will be focusing on
the chi-squared test of independence as we want to compare the two final response groups: disease control and progressive
disease with each other.

Assumptions of the chi-square test:

• Independence: the observations used in the test must be independent of each other.

• Sample size: the chi-squared test assumes that the sample size is sufficiently large. There is no fixed rule for deter-
mining the sample size, but a general guideline is that the expected frequency count for each cell in the contingency
table should at least be ≥ 5. Otherwise alternative tests (like the Fisher’s exact test) should be used.

Limitations of the chi-square test:

• Categorical variables: the chi-squared test can only be applied to categorical variables and it is not suitable for
continuous or ordinal variables.

• Cell frequencies: the chi-squared test assumes that the expected frequency count for each cell in the contingency table
is at least 5. If this condition is violated the test may become unreliable and alternative tests, such as the Fisher’s
exact test, should be considered.

• Does not indicate the strength of an association, e.g. p < 0.001 does not indicate a stronger association than p < 0.05.

In order to explain how the Chi-squared test is performed a corresponding p-value is calculated, consider a contingency
table with r rows and c columns:

Column 1 Column 2 . . . Column c
Row 1 O11 O12 . . . O1c

Row 2 O21 O22 . . . O2c

...
...

...
. . .

...
Row r Or1 Or2 . . . Orc

where Oij represents the observed count in the cell at the intersection of Row i and Column j. The null hypothesis H0 of the
Chi-Squared test states that there is no association between the row and column variables, and the alternative hypothesis
suggests that there is a significant association. To calculate the test statistic, we first calculate the expected frequencies
(Eij) assuming the null hypothesis is true. The expected frequency for each cell is given by:
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Eij =
(row total for Row i)× (column total for Column j)

total sample size

The test statistic is then calculated as:

χ2 =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij

Under the null hypothesis, the test statistic approximately follows a chi-squared distribution with degrees of freedom equal
to (r−1)×(c−1). Finally, we compare the obtained test statistic to the critical value from the chi-squared distribution with
the desired significance level α. If the obtained test statistic is greater than the critical value, we reject the null hypothesis
and conclude that there is evidence of an association between the variables. The chi-squared distribution table or statistical
software can be used to find the p-value associated with the calculated chi-squared test statistic and degrees of freedom.
Then compare the p-value to the predetermined significance level α to either reject the null hypothesis if p < α or not reject
if p > α [97].

A.1.2 Fisher’s Exact Test

Similar to the Chi-squared test, the Fisher’s exact test is used to compare two groups of unpaired categorical data and does
not assume any underlying distribution. Similar assumptions as for the chi-squared test are valid. However, the Fisher’s
exact test is better when dealing with small sample sizes, even though it is valid for all sample sizes. To explain how a
p-value is calculated using the Fisher’s exact test, consider the following 2× 2 contingency table.

a b a+ b
c d c+ d

a+ c b+ d n

Here, a, b, c, and d represent the observed frequencies and n the total number of observations. To calculate the p-value
for Fisher’s exact test, we use the hypergeometric distribution. The p-value represents the probability of obtaining a table
as extreme as or more extreme than the observed table, assuming the null hypothesis is true. In the context of statistical
hypothesis testing, “as extreme as" refers to outcomes that are at least as unlikely or as different from the null hypothesis
as the observed data. It is used to assess the significance of the observed results. When conducting a statistical test, we
compare the observed data to what would be expected under the null hypothesis, which assumes no association or effect.
If the observed data is significantly different from what would be expected under the null hypothesis, we consider it to be
“extreme." The p-value represents the probability of observing data as extreme as, or more extreme than, the observed data,
assuming the null hypothesis is true. For example, in the context of Fisher’s exact test, if the observed contingency table
shows a strong association between categorical variables, the p-value quantifies the probability of obtaining a contingency
table with a similar or stronger association (as extreme or more extreme) purely by chance, assuming the null hypothesis
of no association is true.

P (table) =
(
a+b
a

)(
c+d
c

)(
n

a+c

)
To determine the p-value, we calculate the probabilities of all tables as or more extreme than the observed table by
considering all possible rearrangements of the counts while keeping the row and column totals fixed. The p-value is then
obtained as the sum of these probabilities. Finally, we compare the p-value to a chosen significance level (e.g., 0.05) to
make a decision. If the p-value is less than the significance level, we reject the null hypothesis and conclude that there is
evidence of an association between the categorical variables [98].

A.1.2.1 Calculation example

Suppose we have two groups, Group 1 and Group 2, and we want to investigate if there is an association between their
smoking habits (smoker/non-smoker) and the occurrence of a respiratory disease (present/absent). We collect data from a
sample of 50 individuals and obtain the following contingency table:
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Group 1 Group 2
Smoker 10 5

Non-Smoker 15 20

Here, a = 10, b = 5, c = 15, and d = 20 represent the observed frequencies.

To calculate the p-value using Fisher’s exact test, we use the formula:

p =

(
a+b
a

)(
c+d
c

)(
n

a+c

)
where

(
n
k

)
represents the binomial coefficient. Here, n = a+ b+ c+ d = 50.

Substituting the observed frequencies into the formula:

p =

(
10+5
10

)(
15+20

15

)(
50

10+15

)
Simplifying further:

p =

(
15
10

)(
35
15

)(
50
25

)
Evaluating the binomial coefficients:

p ≈ 0.078

Therefore, the calculated p-value using Fisher’s exact test is approximately 0.078 and we would not reject the null hypothesis
if a significance level of α = 0.05 is taken and conclude that there is no significance association between smoking habits and
the occurrence of the respiratory disease.

A.1.3 Wilcoxon Rank Sum Test / Mann-Whitney U test

The Wilcoxon Rank Sum test, also known as Mann-Whitney U test, is a nonparametric statistical test used to compare two
groups and analyzes if they are statistically significant from each other. It is a nonparametric equivalent of the unpaired
t-test in which the data does not follow a normal distribution. It tests whether the two samples come from the same
population (i.e. have the same median) or alternatively differ from each other [99]. Assumptions of the Wilcoxon Rank test
are that the sample drawn from the population is random and that these samples are independent.

Consider two independent samples, Sample 1 and Sample 2, with sizes n1 and n2, respectively. The null hypothesis H0

of the Wilcoxon rank sum test states that there is no difference between the distributions of the two samples, while the
alternative hypothesis H1 suggests that there is a significant difference. Then to determine the critical value or p-value
using the Wilcoxon ranksum test, do the following:

1. Combine the data from both samples and assign ranks to the combined data. If there are ties, assign the average
rank to the tied values.

2. Calculate the sum of ranks for each sample:

• S1: Sum of ranks for Sample 1

• S2: Sum of ranks for Sample 2

3. Calculate the test statistic, U :

• If n1 ≤ n2, U = n1 · n2 +
n1·(n1+1)

2
− S1

• If n1 > n2, U = n1 · n2 +
n2·(n2+1)

2
− S2
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4. Determine the critical value or p-value:

• The critical value or p-value can be obtained from the standard normal distribution or appropriate tables.

• If the p-value is less than the chosen significance level (e.g., 0.05), we reject the null hypothesis and conclude
that there is a significant difference between the distributions of the two samples.

A.1.3.1 Example Calculation

Suppose we have two independent groups, Group 1 and Group 2, with the following observed values:

Group 1: 6, 9, 7, 5, 8
Group 2: 4, 3, 2, 1

Let n1 and n2 represent the sample sizes of Group 1 and Group 2, respectively. In this case, n1 = 5 and n2 = 4. To
calculate the p-value using the Wilcoxon rank sum test, we do the following steps:

1. Combine the data from both groups and rank the values. In case of ties, assign the average rank.
Combined data: 1, 2, 3, 4, 5, 6, 7, 8, 9
Ranking: 1, 2, 3, 4, 5.5, 5.5, 7, 8, 9

2. Sum up the ranks for each group.
Sum of ranks for Group 1: R1 = 1 + 2 + 3 + 4 + 5.5 = 15.5
Sum of ranks for Group 2: R2 = 5.5 + 7 + 8 + 9 = 29.5

3. Calculate the U statistic for each group.
U1 = n1 · n2 +

n1·(n1+1)
2

−R1

U2 = n1 · n2 +
n2·(n2+1)

2
−R2

Substituting the values:
U1 = 5 · 4 + 5·(5+1)

2
− 15.5 = 10

U2 = 5 · 4 + 4·(4+1)
2

− 29.5 = 5

4. Determine the minimum U statistic as U = min(U1, U2).
In this case, U = min(10, 5) = 5.

5. Calculate the p-value using the appropriate distribution. For small sample sizes, we refer to critical values or tables.
For larger sample sizes, we can approximate the p-value using the normal distribution.

6. Interpret the result:

• If the p-value is less than the predetermined significance level (e.g., 0.05), we reject the null hypothesis and
conclude that there is a statistically significant difference between the groups.

• If the p-value is greater than or equal to the significance level, we fail to reject the null hypothesis, indicating
insufficient evidence to establish a significant difference between the groups.

In this example, the calculated p-value would be determined based on the appropriate distribution or approximation method.
By calculating the p-value using the Wilcoxon rank sum test, we can assess the significance of the difference between the
two independent groups [97].
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B | Exploratory Data Analysis (full)

B.1. Data Analysis

This section presents a comprehensive analysis of the PREOPANC2-iKnowIT data provided by the Erasmus MC, consist-
ing of 249 patients spanning the years 2018-2020, with one person from 2015. Two patients, identified with patient ID
059PP20013 and 059PP20014, have been excluded from the analysis due to their lack of data, with the exception of a Date
IC, hence the total dataset comprises of 247 observations. In addition, there were eight patients with missing final response,
these will be classified in the NA category in the subsequent data analysis graphs and charts provided.

B.1.1 Analysis of (baseline) Patient characteristics

B.1.1.1 Gender

With respect to gender, the dataset considers male and female, which are denoted by 0 and 1, respectively. Of the 239
subjects, 137 (55%) were male, while 110 (45%) were female. The stacked bar chart indicates that gender does not appear
to significantly influence the final response to chemotherapy as no significant differences across the two groups can be seen.

Figure B.1: Stacked bar chart displaying the final outcome categorized by gender, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), total n=247 (137 male, 110 female).

B.1.1.2 Age

The provided dataset lacks explicit information on the age of patients. Therefore, age is calculated by computing the
difference between the date of informed consent (DATE IC E1 C1) and the date of birth (DATE BIRTH E1 C2), as given
in (B.1):

Age = DATE IC E1 C1 − DATE BIRTH E1 C2. (B.1)

This method was deemed most suitable for estimating the patient’s age at the start of the research. The resulting age values
are in years and not rounded (i.e. patients can have an age of 64.28 years). Thus, a new column named ‘Agerounded’ has
been added to the dataset, where age values are rounded to the nearest integer. The analysis of the Age variable shows a
minimum age of 47 years, a mean age of 64 years, and the oldest patient in the dataset being 82 years old. Due to missing
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values in the DATE BIRTH E1 C2, 27 patients have missing age information. Furthermore, during the analysis, a clear
outlier in the dataset was detected, corresponding to patient number 239 with ID 165PP20017. The recorded date of birth,
2963-07-08, was evidently erroneous and has been corrected to 1963-07-08.

Figure B.2: Age distribution: (a) scatterplot of age data, (b) histogram with a fitted density curve (c) boxplot
showing the distribution of ages across different final response categories, including Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un),
total n=247.

B.1.1.3 Weight

The weight is provided in kg and range from a minimum of 42kg to 124kg with a mean value of 78kg.

Figure B.3: Weight distribution: (a) scatterplot of weight data, (b) histogram with a fitted density curve (c) boxplot
showing the distribution of weights across different final response categories, includingComplete response (CR,
n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown
(Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD,
5=Un), total n=247.
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B.1.1.4 Length

The data defined a patient’s height with the variable ‘LENGTH E1 C2’ and measured in centimeters. Upon initial inspection,
an abnormal value of 1886cm was observed, likely resulting from a typing error, which has been adjusted to the more realistic
value of 186cm for patient ID 078PP20038. The analysis revealed a minimum height of 152cm, a maximum of 200cm, and
a mean height of 174cm among patients. Additionally, there were 5 instances where height information was missing.

Figure B.4: Height distribution: (a) scatterplot of height data, (b) histogram with a fitted density curve (c) boxplot
showing the distribution of heights across different final response categories, including Complete response (CR,
n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown
(Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD,
5=Un), total n=247.

B.1.1.5 BMI

Solely examining the height and weight of patients does not provide enough information to determine their final response
to chemotherapy. Therefore, it is more informative to combine these measurements into a single metric. One of the most
commonly employed metrics is the Body Mass Index (BMI), computed using the formula presented in Equation (B.2):

BMI =
weight (kg)
height (m)2

(B.2)

Based on the available data, BMI values range from a minimum of 15.9 (indicating underweight) to 37.1 (signifying obesity),
with a mean BMI of 25.5. This mean BMI value falls just outside the healthy BMI range and is classified as overweight.
Thus, the majority of patients are on the heavier side. As a side note, there were 5 instances where BMI information was
missing.

B.1.1.6 Stage of Disease

The stage of disease is defined as 0 = (Borderline) resectable, 1 = Locally Advanced, 2 = Metastatic disease. In the dataset
provided, we have a total of 152 (62%) patients with (borderline) resectable PDAC, 54 (22%) patients with LAPC and 41
(17%) with metastatic PDAC.

B.1.1.7 Family history of pancreatic cancer

The presence of a positive family history of pancreatic cancer is indicated by whether or not the patient has one or
more family members who have been diagnosed with the disease in the past. In the present dataset, 147 patients (60%)
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Figure B.5: BMI distribution: (a) scatterplot of BMI data, (b) histogram with a fitted density curve (c) boxplot
showing the distribution of BMI across different final response categories, including Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un),
total n=247.

Figure B.6: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by stage of disease: (borderline) resectable (n=152), locally advanced (n=54),
metastatic disease (n=41)), total n=247.
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had no family history of PDAC, 23 (9%) had a positive family history, and in 77 cases (31%), such information was
unknown. Consequently, it remains unclear whether a positive family history of pancreatic cancer exerts any influence on
the outcome. In particular, based on the provided graph, it appears that a majority of patients with a positive family
history of pancreatic cancer exhibited stable disease. However, the large number of unknown cases makes drawing definitive
conclusions challenging.

Figure B.7: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by family history of pancreatic cancer of disease: no family history of pancreatic
cancer (n=147), positive family history of pancreatic cancer (n=23), unknown (n=77) total n=247.

B.1.1.8 Smoking

Smoking has been identified as one of the most significant risk factors for the development of PDAC. Cigarette smoke
contains various carcinogens that can damage the DNA of pancreatic cells and lead to the formation of cancerous tumors.
In the provided dataset, it is observed that a considerable proportion of the patients had a history of smoking. Specifically,
124 (50%) of the PDAC patients were current or former smokers, while 108 (44%) had never smoked. The remaining
patients had unknown smoking status. After considering the stacked bar chart, it can be hypothesized that a significant
proportion of the former and current smokers exhibit stable disease as well as progressive disease as their final response.
However, the impact of smoking on the final response of PDAC patients cannot be conclusively determined due to the
limited sample size and the high number of patients with unknown smoking status.

B.1.1.9 Alcohol usage

Furthermore, alcohol consumption is often considered as another risk factor for pancreatic cancer. In the provided dataset,
the patients’ alcohol use is categorized as either no usage (0), usage (1), stopped (2), or unknown (3). The range of
alcohol consumption is quite wide, as occasional consumption of a glass of wine is also classified as "usage" compared to
habitual heavy drinking. Out of the 247 patients, 78 (32%) reported no alcohol consumption, 113 (46%) reported alcohol
consumption, 38 (15%) reported quitting alcohol consumption, and 18 (7%) had unknown alcohol use. After examining the
stacked bar chart, it appears that all of the patients who showed a complete response to chemotherapy reported alcohol
consumption. However, how much alcohol these patients drank is unknown. Therefore, clear conclusions cannot be drawn.

B.1.1.10 Diabetes Mellitus

According to research by Li [100], there is a suggested relationship between diabetes and pancreatic cancer. The underlying
mechanisms contributing to the development of diabetes-associated pancreatic cancer include insulin resistance, hyper-
glycemia, hyper-insulinemia, and inflammation. In the provided dataset, 189 (77%) patients have no history of diabetes
while 58 (23%) have been diagnosed with the condition. This indicates that approximately one quarter of the patients may
have developed pancreatic cancer due to diabetes. A visual examination of Figure B.10 shows that the majority of patients
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Figure B.8: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by smoking: never (n=108), former (n=74), current (n=50), unknown (n=15),
total n=247.

Figure B.9: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by alcohol usage: no (n=78), yes (n=113), stopped (n=38), unknown (n=18),
total n=247.
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with diabetes reported stable disease. However, a similar trend is observed in the non-diabetic patients, making it difficult
to draw firm conclusions about the relationship between diabetes and pancreatic cancer in this dataset.

Figure B.10: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by presence of diabetes mellitus: no (n=189), yes (n=58), total n=247.

B.1.1.11 Pancreatitis

Pancreatitis is a condition characterized by inflammation of the pancreas, which may present as acute or chronic pancreatitis.
The latter may occur over an extended period and often recur, whereas acute pancreatitis is sudden and lasts for a few
days [101]. PDAC is a highly aggressive form of pancreatic cancer that originates from the exocrine cells of the pancreas.
These exocrine pancreatic cells produce enzymes that are secreted into the small intestine. In the provided dataset of 239
patients with PDAC, (97%) had no history of pancreatitis, while eight (3%) had a history of pancreatitis. Interestingly, the
majority of patients with pancreatitis showed stable disease. Although this suggests that a past history of pancreatitis may
not be a significant risk factor for the development of PDAC, it is important to note that the study was limited in scope and
may not represent the general population. Therefore, more research is needed to fully understand the relationship between
pancreatitis and PDAC.

Figure B.11: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by presence of pancreatitis: no (n=239), yes (n=8), total n=247.
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B.1.1.12 History of malignancy

History of malignancy refers to the presence of earlier cancer in the patient. It can be any type of cancer. The present study
involves a cohort of patients, of which 210 patients had no prior history of malignancy, while 37 had. The findings were
analyzed using a stacked bar chart, which shows that patients with a history of malignancy displayed mainly stable disease
as their final response. This observation could potentially be attributed to the possibility that patients with a history of
malignancy might have developed a heightened sensitivity to treatment as a result of their prior exposure to cancer therapy.
However, further research is necessary to establish a causal link between a history of malignancy and improved response to
treatment in PDAC patients.

Figure B.12: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by their history of previous malignancy: no (n=210), yes (n=37), total n=247.

B.1.1.13 History of chemotherapy

According to the analysis of the studied subjects, the majority of patients 234 (95%) did not have a prior history of
chemotherapy, whereas a minority 13(5%) did. The stacked bar chart in Figure B.13 depicts the distribution of final
response to chemotherapy among the patients based on their history of chemotherapy. Due to the sample size of patients
with a history of chemotherapy, solid conclusions cannot be drawn.

B.1.1.14 Cycles of FOLFIRINOX

The number of FOLFIRINOX cycles given to each patient in the data set varies per patient. It is worth mentioning that
three patients within the dataset did not undergo any chemotherapy treatment. Nevertheless, these patients are excluded
from the dataset after the removal of missing values. Among the included patients, the majority (n=128) received eight
cycles of FOLFIRINOX, followed by four cycles (n=32). A subset of fifteen patients received the highest number of cycles
recorded in the dataset, totaling twelve cycles of FOLFIRINOX, prior to the documentation of the final chemotherapy
response. The remaining patients received any number between 0 and 12 cycles of FOLFIRINOX. It is important to note
that the blood data measurements captured in this dataset were obtained both before and after the initial cycle, despite
subsequent cycles being administered to the majority of patients. Interestingly, all the patients who received 4 cycles of
FOLFIRINOX have been classified as PD or SD and patients who received in general more than 4 cycles are classified as
PR. The three patients who were classified as CR have received 7 or 8 cycles of FOLFIRINOX.

B.1.1.15 G-CSF received

Granulocyte-Colony Stimulating Factor (G-CSF) is a pharmaceutical agent that facilitates the production of additional
neutrophils within the body. Neutrophils are a specific subtype of granulocytes, which are a type of white blood cells.
Further information on white blood cells can be found in Section 2.1 and Appendix E. Colony-stimulating factors are
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Figure B.13: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by their history of chemotherapy: no (n=234), yes (n=13), total n=247.

Figure B.14: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by the number of FOLFIRINOX cycles they have received: 0 (n=3), 1 (n=19),
2 (n=13), 3 (n=8), 4 (n=32), 5 (n=5), 6 (n=5), 7 (n=6), 8 (n=128), 9 (n=2), 10 (n=1), 11 (n=2), 12 (n=15),
Unknown (n=8), total n=247.
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proteins that give instructions to cells what to do. G-CSF has the ability to instruct stem cells to differentiate into
neutrophils, leading to an increase in the number of neutrophils present in the body. Specifically, G-CSF is used during
the treatment of pancreatic ductal adenocarcinoma to manage and prevent neutropenia. Neutropenia refers to a condition
characterized by a lower-than-normal level of neutrophils in the blood, which can arise as a side effect of cancer treatment
and hinder the body’s ability to combat infections [43]. By stimulating the bone marrow, G-CSF encourages the production
of additional neutrophils, thereby reducing the risk of serious infections or fevers following chemotherapy. Additionally,
chemotherapy not only targets cancer cells but also damages healthy cells, including neutrophils. If left untreated, this
situation can pose a life-threatening risk [102]. From all the n=247 patients 52 have not received G-CSF, while 186 have
received it. This could potentially explain the large increasing trend seen in the number of neutrophils in many patients.

Figure B.15: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by whethery they have received G-CSF: no (n=52), yes (n=186), unknown (n=9),
total n=247.

B.1.1.16 G-CSF prophylaxis

G-CSF prophylaxis refers to whether G-CSF has been given to the patient before the start of chemotherapy or when it was
observed to be necessary. Patients are categorized into three groups: “no," “yes," and “unknown." The classification of “no"
signifies that the patient did not receive G-CSF prior to chemotherapy. On the other hand, “yes" indicates that the patient
was given G-CSF prior to the start of chemotherapy. The “unknown" category is assigned to patients for whom there is
insufficient information available regarding G-CSF administration. This classification system allows for a distinction to be
made based on whether G-CSF was administered as a preventive measure or if it was initiated in response to observed
requirements due to declining heatlth conditions. Expanding on this topic, it is important to note that the decision to
administer G-CSF prophylaxis is typically influenced by factors such as the patient’s individual risk factors, treatment
protocol, and the anticipated impact of chemotherapy on neutrophil levels. The majority of the patients who have received
G-CSF (n=162) have been given the drug before the start of chemotherapy, while 23 patients received it during treatment
and of 62 patients it is unknown.
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Figure B.16: Stacked bar chart displaying the distribution of treatment responses, Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), among patients grouped by G-CSF prophylaxis: no (n=23), yes (n=162), unknown (n=62), total n=247.

B.1.2 Tumor markers

B.1.2.1 Cancer Antigen 19-9 (CA19-9)

CA19-9, also known as cancer antigen 19-9, is a well-established tumor marker that is frequently used in the diagnosis and
treatment of pancreatic ductal adenocarcinoma. Tumor markers are substances produced by cancer cells or normal cells in
the body in response to cancer cells. Although healthy individuals may have low levels of CA19-9, it is a glycoprotein that
is primarily produced by pancreatic cancer cells, as well as other types of cancer cells and normal cells in the pancreas,
bile duct, and gastrointestinal tract. Elevated levels of CA19-9 in the bloodstream are most frequently associated with
PDAC. However, it is essential to note that approximately 10% of the population is unable to produce this marker [103],
and therefore, other diagnostic tests must be combined to accurately detect the presence of PDAC. According to medical
experts from the Erasmus Medical Centre Rotterdam, the normal range for CA19-9 in healthy males is below 37 U/mL,
and for females, it is below 27 U/mL. It is worth noting that the interpretation of CA19-9 levels may vary depending on
the specific laboratory and the clinical context in which the test is conducted. In general, a significant increase in CA19-9
levels over time may indicate the progression of PDAC or the emergence of a recurrence following treatment. Conversely,
a decrease in CA19-9 levels may suggest a positive response to treatment or the absence of disease [24].

CA19-9 Value Diagnosis Before 1st Chemo After 1st Chemo
Min 0 0 0
1st Quartile 50.3 50.0 41.5
Median 167.0 162.5 167.0
Mean 1964.2 2533.1 2509.5
3rd Quartile 782.5 838.2 943.0
Max 149230 121632 95696
Missing
Values 9 43 95

Table B.1: Summary statistics of CA19-9 values (kU/L) measured at diagnosis, before the first chemotherapy and
after the first chemotherapy cycle for all 239 patients in the dataset.

Figures B.17, B.18, and B.19 show plots of the CA19-9 values measured at diagnosis, before the first chemotherapy cycle,
and after the first chemotherapy cycle, respectively. Note that subplots (c) and (d) are made without the eight missing
values in the data set. The first plot in each figure displays a scatterplot of the CA19-9 values plotted against the patient.
The second plot shows a histogram of the CA19-9 values with a fitted density estimate. The third plot (lower left) shows a
boxplot of the CA19-9 values categorized per final response value. The lower right plot shows the same boxplot but plotted
in a different way. Analysis of the data shows that the first quartile and median values of CA19-9 did not change significantly
across the three time periods. The mean value did increase after diagnosis before the first chemotherapy, which is expected
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Figure B.17: CA19-9 distribution at diagnosis (kU/L) for the entire dataset: (a) scatterplot of CA19-9 at di-
agnosis, (b) histogram with a fitted density curve, (c) boxplot showing the distribution of CA19-9 at diagnosis
across different final response categories, including Complete response (CR, n=3), Partial response (PR, n=48),
Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un, n=31), (d) the same information
as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.18: CA19-9 distribution before the first chemotherapy cycle (kU/L) for the entire dataset: (a) scatterplot
of CA19-9 before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution of
CA19-9 before the first cycle across different final response categories, including Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un),
total n=247.
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Figure B.19: CA19-9 distribution after the first chemotherapy cycle (kU/L) for the entire dataset: (a) scatterplot
of CA19-9 after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of CA19-9 after the first cycle across different final response categories, including Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un),
total n=247.

as elevated levels of CA19-9 indicate pancreatic cancer. The third quartile increased before the first chemotherapy session
and after that as well, while the maximum value decreased after diagnosis. However, considering the increase in the number
of missing values, a comparison of only the patients with complete data might be more appropriate. This will be done next.

After removing all missing values from the CA19-9 data, a total of 131 patients remain, with 67 male and 64 female patients.
The summary statistics in Table B.2 show that the minimum values and the first quartile values remained approximately
the same across the three time periods. However, the median and mean values increased. The third quartile shows a slight
decrease in the CA19-9 value after the first chemotherapy, and the maximum value is slightly lower after diagnosis just
before the first chemotherapy. Out of the 131 patients with complete data, only one patient had a complete response as
a final response, while 25 patients showed partial response, 27 showed progressive disease, 69 showed stable disease, and 9
had an unknown final outcome.

CA19-9 value Diagnosis Before 1st Chemo After 1st Chemo Difference
Min 0.0 0.0 0.0 -50391.0
1st Quartile 39.5 40.0 41.0 -91.0
Median 147.0 159.0 167.0 0.0
Mean 1470.7 2422.7 2803.0 -380.6
3rd Quartile 662.6 992.5 946.0 35.0
Max 84341 83313 95696 8881

Table B.2: Summary statistics of CA19-9 levels (kU/L) in the dataset of all patients with missing values removed
at diagnosis, before the first cycle, after the first chemotherapy cycle and the difference between the before and
after chemotherapy values, n=131.

It may be more informative to rearrange the patient data in accordance with their final response (0, 1, 2, 3, 4) to detect
any trends in the CA19-9 value plot. Figure B.21 presents the plot of the CA19-9 values for the five categories based on
their final response. Notably, only one subject in this dataset exhibited a complete response, thus preventing any conclusive
observations from a single observation. However, it is noticeable that the CA19-9 values of partial responders are typically
lower, in contrast to the higher peak values among progressive disease patients. The stable disease group had a few elevated
values, but overall presented a comparable pattern to that of the partial response group. The unknown group’s values
cannot be interpreted, given the absence of knowledge about their final response.

An additional interesting analysis involves examining the difference between CA19-9 values measured prior to and following
the first chemotherapy session. To calculate this difference, the following formula is applied:
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Figure B.20: CA19-9 value at diagnosis, before the first chemotherapy and after the first chemotherapy session for
the CA19-9 dataset with all missing values removed, n = 131.

Figure B.21: CA19-9 values for each patient at diagnosis with all missing values removed, before the first chemother-
apy and after the first chemotherapy cycle, sorted by their final response to chemotherapy. The final response
is categorized as: Complete response (CR, n=1), Partial Response (PR, n=25) Progressive Disease (PD, n=27),
Stable Disease (SD, n=69) and Unknown (Un, n=9), total n=131. Red = at diagnosis, Green = before first cycle,
Blue = after first cycle, Purple = marks boundary between the final response.

143



B.1. Data Analysis

Figure B.22: Zoomed in plot of Figure B.21 with CA19-9 values restricted to levels below 50 kU/L sorted by final
response.

Figure B.23: CA19-9 values for each patient at diagnosis with all missing values removed, before the first chemother-
apy and after the first chemotherapy cycle, sorted by gender, n = 131 (67 male, 64 female). The final response
is categorized as: Complete response (CR, n=1), Partial Response (PR, n=25) Progressive Disease (PD, n=27),
Stable Disease (SD, n=69) and Unknown (Un, n=9), total n=131. Red = at diagnosis, Green = before first cycle,
Blue = after first cycle.
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Figure B.24: Same figure as Figure B.24 with CA19-9 values restricted to 50 kU/L, with a pink line indicating
the healthy range (below 37 kU/L).

∆ = vb − va (B.3)

Here, ∆ represents the difference between the values prior to (vb) and after (va) the first chemotherapy cycle. While the term
‘v’ is an acronym for ‘value’ and represents the CA19-9 marker in this section. However, in the following subsections, the
meaning of ‘v’ will differ depending on the investigated bloodmarker. Figure B.25 displays a graph depicting the difference
between CA19-9 values before and after chemotherapy. The most significant difference is apparent within the cohort of
patients whose final response was progressive disease. Nevertheless, this is valid for only one patient, who might be an
outlier. Therefore, clear conclusions cannot be drawn from this plot.

Figure B.25: Difference in CA19-9 values (kU/L) before and after first cycle for all patients with no missing
data, sorted by their final response. The final response is categorized as: Complete response (CR, n=1), Partial
Response (PR, n=25), Progressive Disease (PD, n=27), Stable Disease (SD, n=69) and Unknown (Un, n=9), total
n=131.

As previously noted, a proportion of the global population, approximately 5-10%, are unable to produce the CA19-9
tumor marker, and are classified as “non-producers". To ensure a more accurate analysis, it is preferable to exclude these
individuals from the dataset. In this context, non-producers are identified as patients whose CA19-9 concentration falls
below 35 kU/L. These patients are excluded from the dataset as well next to the patients with missing values. A similar
analysis as previously done is conducted and the summary values can be found in Table B.3. The plots provided below
show that the progressive disease group contains the largest values for CA19-9 after the first chemotherapy cycle as well as
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Figure B.26: Same plot as Figure B.25 but with CA19-9 values restricted between -1000 to +1000 kU/L.

the biggest differences before and after the first cycle.

CA19-9 value Diagnosis Before 1st Chemo After 1st Chemo Difference
Min 36.0 41.0 36.8 -50391.0
1st Quartile 127.0 138.9 130.5 -164.0
Median 354.0 388.0 467.0 -9.0
Mean 2056.0 3415.0 3971.4 -556.4
3rd Quartile 1006.0 1435.5 1668.0 77.9
Max 84341.0 83313.0 95696.0 8881.0

Table B.3: Summary statistics of CA19-9 levels (kU/L) of all patients with no missing values and non-producers
excluded at diagnosis, before the first chemotherapy, after the first chemotherapy cycle, and the difference between
the before and after first cycle values, n = 91.

Figure B.27: CA19-9 values, at diagnosis, before the first chemotherapy and after the first chemotherapy cycle in
a subset of patients with no missing data or non-producers (CA19-9 < 35 kU/L), n = 91.
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Figure B.28: CA19-9 values at diagnosis, before the first chemotherapy and after the first chemotherapy cycle, in
a subset of patients with no missing data or non-producers (CA19-9 < 35 kU/L) sorted by their final response to
chemotherapy, n = 91. The final response is categorized as: Complete response (CR, n=1), Partial Response (PR,
n=19), Progressive Disease (PD, n=21), Stable Disease (SD, n=42) and Unknown (Un, n=8), total n = 91.

Figure B.29: Same plot as Figure B.28 but with CA19-9 values ranging between 35-2000 kU/L. This zoomed-in
view allows for a closer examination of the CA19-9 levels within the clinically relevant range.
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Figure B.30: CA19-9 values, at diagnosis, before the first chemotherapy and after the first chemotherapy cycle in
a subset of patients with no missing data or non-producers (CA19-9 < 35 kU/L) sorted by gender, n = 91 (48
male, 43 female).

Figure B.31: Same plot as Figure B.30 with CA19-9 values ranging between 35-2000 kU/L, n = 91 (48 male, 43
female).
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Figure B.32: Difference in CA19-9 values (kU/L) before and after first cycle for subset of patients with no missing
data or non-producers (CA19-9 < 35 kU/L) , sorted by their final response. The final response is categorized
as: Complete response (CR, n=1), Partial Response (PR, n=19), Progressive Disease (PD, n=21), Stable Disease
(SD, n=42) and Unknown (Un, n=8), total n = 91.

Figure B.33: Same plot as Figure B.32 with CA19-9 difference values ranging between -1000 to + 1000 kU/L.
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B.1.2.2 Carcinoembryonic antigen (CEA)

Carcinoembryonic antigen (CEA) is another tumor marker, next to CA19-9, frequently used in the diagnosis and treatment
of different types of cancer. While CEA is normally produced during fetal development, its presence in healthy adults
is either negligible or completely absent. In cancer, the cancerous cells produce CEA, which is then released into the
bloodstream. It is essential to note that elevated CEA levels in the blood can also be caused by non-cancerous conditions,
such as inflammation, infection, and smoking. However, not all individuals with cancer have elevated levels of CEA, and
some individuals with non-cancerous conditions may have elevated CEA levels. Therefore, it is important to use CEA tests
in combination with other diagnostic tests to draw accurate conclusions. Some patients with PDAC have elevated levels
of CA19-9 but normal CEA levels, while others have elevated levels of both CA19-9 and CEA. For healthy adults, normal
CEA levels are below 2.5ng/mL for females and below 3.8ng/mL for males. However, in smokers, slightly higher levels up
to 5ng/mL may be considered normal. CEA levels greater than 10ng/mL are suggestive of extensive disease [104].

CEA value Diagnosis Before 1st Chemo After 1st Chemo
Min 0 0 0
1st Quartile 2.2 2.1 2.2
Median 3.9 3.7 3.9
Mean 54.3 16.4 33.6
3rd Quartile 7.7 8.1 8.2
Max 5374 543 2822
Number of NA’s 64 63 107

Table B.4: Summary statistics of CEA values measured at diagnosis, before and after the first chemotherapy cycle
for all 247 patients in the dataset.

Figure B.34: CEA distribution at diagnosis (µg/L) for the entire dataset: (a) scatterplot of CEA at diagnosis, (b)
histogram with a fitted density curve, (c) boxplot showing the distribution of CEA at diagnosis across different final
response categories, including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease
(PD, n=43), Stable disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a
different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

The summary statistics presented in Table B.4 show that the minimum, first quartile, median and third quartile values of
CEA levels are similar across the three measurements, whereas the mean value is highest at diagnosis and lowest before
the first chemotherapy. Moreover, the maximum value is highest at diagnosis, but after the first chemotherapy, it is only
about half of the maximum value at diagnosis, while the maximum value before the first chemotherapy is only about 10%
of the largest value found at diagnosis. Further inspection of the data shows that the high CEA values at diagnosis are
primarily found in two patients, with the five highest values being 5374, 2812, 255, 209, and 112.7 µg/L. The five highest
values before the first chemotherapy are 543, 299, 231, 226, and 119 µg/L. Additionally, only one patient exhibited a very
high CEA value of 2822 µg/L after the first chemotherapy, with the five highest values being 2822, 384, 241, 139, and 98.8
µg/L. Thus, there are three outlier values of 5374, 2812, and 2822 µg/L that deviate from the rest of the data, with these
values belonging to patients 078PANC0004, 002PANC0010, and 078PANC0006, respectively.

After removing all missing values, the dataset contains n=103 observations, with only one patient exhibiting a complete
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Figure B.35: CEA distribution before the first chemotherapy cycle (µg/L) for the entire dataset:(a) scatterplot of
CEA before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution of CEA
before the first cycle across different final response categories, including Complete response (CR, n=3), Partial
response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un, n=31),
(d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total
n=247.

Figure B.36: CEA distribution after the first chemotherapy cycle (µg/L) for the entire dataset: (a) scatterplot
of CEA after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution of
CEA after the first cycle across different final response categories, including Complete response (CR, n=3), Partial
response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un, n=31),
(d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total
n=247.
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response, 19 (18%) showing partial response, 20 (19%) showing progressive disease, 56 (54%) showing stable disease, and 7
(7%) having an unknown response. Grouping the patients based on their final response and plotting the CEA measurements
at the three time points in Figure B.38 reveals that the highest spikes occur in the progressive disease group, but patients
in the progressive response and stable disease group also contain patients with enormous peaks. However, the majority of
the patients in these two groups have a CEA value lower than 50 µg/L. In Figure B.42 a plot of the difference between the
CEA values before and after chemotherapy can be found and it can be seen that aside from a few outliers in the unknown
final response category, all the other values seem to be relatively stable around the origin. It is better to look at it zoomed
in, this figure can be found in Figure B.43.

CEA value Diagnosis Before 1st Chemo After 1st Chemo Difference
Min 0.0 0.0 0.0 -2822.0
1st Quartile 2.0 2.0 2.2 -1.1
Median 3.8 3.6 3.9 -0.1
Mean 11.3 15.1 42.4 -27.3
3rd Quartile 8.0 9.3 9.0 0.8
Max 225 299 2822 98

Table B.5: Summary statistics of CEA levels (µg/L) in the dataset of all patients with missing values removed at
diagnosis, before the first cycle, after the first chemotherapy cycle and the difference between the before and after
chemotherapy values, n=103.

Figure B.37: CEA values at diagnosis, before the first chemotherapy and after the first chemotherapy cycle with
all missing values removed, n = 103.

B.1.2.3 Comparison of CA19-9 and CEA levels

Investigating the relationship between CA19-9 and CEA levels in pancreatic ductal adenocarcinoma (PDAC) patients
can provide useful clinical insights. The potential relationship between these two biomarkers is examined in Figure B.44.
Although the plot suggests that high CA19-9 levels may be associated with high CEA levels, it is not a consistent trend across
all patients. To further explore this relationship, a more detailed visualization is presented in Figure B.45, Figure B.46,
Figure B.47, and Figure B.48. However, there appears to be no clear pattern or trend, except that most low CA19-9 values
correspond to low CEA levels. The data set has a total of n=103 observations with n=1 CR, n=19 PR, n=20 PD, n=56
SD and n=7 Unknown values. The relationship between CA19-9 and CEA in PDAC patients is complex and not fully
understood. While there may be some association between CA19-9 and CEA levels in PDAC patients, the relationship is
not straightforward, and further research is needed to fully understand their clinical significance.
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Figure B.38: CEA values at diagnosis, before the first chemotherapy and after the first chemotherapy cycle with all
missing values removed, sorted by final response to chemotherapy. The final response is categorized as: Complete
response (CR, n=1), Partial Response (PR, n=19) Progressive Disease (PD, n=20), Stable Disease (SD, n=56)
and Unknown (Un, n=7), total n=103. Red = at diagnosis, Green = before first cycle, Blue = after first cycle,
Purple = marks boundary between the final response.

Figure B.39: Same plot as Figure B.38, while constraining CEA values to the range of 0-25 µg/L. The chart
displays four distinct lines: a grey line at 10 µg/L, a purple line at 5 µg/L, a blue line at the male healthy
threshold of 3.8 µg/L, and a pink line at the female healthy threshold of 2.5µg/L. Additionally, black lines
separate the different response groups, namely: Complete response (CR, n=1), Partial Response (PR, n=19)
Progressive Disease (PD, n=20), Stable Disease (SD, n=56) and Unknown (Un, n=7), total n=103.
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Figure B.40: CEA values for a cohort of patients with missing data removed, sorted based on their smoking status.
Grey = µg/L, Purple = 5µg/L, Blue = healthy male boundary at 3.8 µg/L, Pink line = healthy female boundary
at 2.5µg/L. The distribution among the smokers is never (n=41), former (n=38), current (n=21) and unknown
(n=3), total n=103.

Figure B.41: Same plot as Figure B.41 with CEA values restricted from 0-15 µg/L.
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Figure B.42: Difference in CEA values (kU/L) before and after first cycle for all patients with no missing data,
sorted by their final response. The final response is categorized as: Complete response (CR, n=1), Partial Response
(PR, n=19) Progressive Disease (PD, n=20), Stable Disease (SD, n=56) and Unknown (Un, n=7), total n=103.

Figure B.43: Same plot as Figure B.42 with CEA values ranging between -300 to + 100 µg/L.
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Figure B.44: CA19-9 and CEA values at diagnosis, before the first chemotherapy and after the first chemotherapy
cycle for a subset of patients with missing values removed data, sorted based on their final response. The final
response is categorized as: Complete response (CR, n=1), Partial Response (PR, n=19) Progressive Disease (PD,
n=20), Stable Disease (SD, n=56) and Unknown (Un, n=7), total n=103.
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Figure B.45: Scatter plot of the cancer markers CEA (µg) and CA19-9 (kU/L) against each other, for a cohort of
patients prior to the first chemotherapy cycle, n=103.

Figure B.46: Same plot as Figure B.45 with CEA levels restricted from 0-50 µg/L and CA19-9 from 0-2000 kU/L.
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Figure B.47: Scatter plot of the cancer markers CEA (µg) and CA19-9 (kU/L) against each other, for a cohort of
patients after the first chemotherapy cycle, n=103.

Figure B.48: Same plot as Figure B.47 with CEA levels restricted from 0-50 µg/L and CA19-9 from 0-2000 kU/L.
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B.1.3 Blood markers

This section contains an analysis of the blood markers measured before and after the first chemotherapy cycle with FOLFIRI-
NOX. The measured blood markers are:

1. Hemoglobin

2. Thrombocytes

3. Leukocytes

4. Neutrophils

5. Lymphocytes

6. Creatinin

7. Glomular Filtration Rate

8. Sodium

9. Potassium

10. Aspartate Aminotransferase

11. Alanine Aminotransferase

12. Alkaline Phosphatase

13. Gamma-Glutamyl Transferase

14. Bilirubin

15. Albumin

16. C-Reatice Protein

17. International Normalized Ratio

18. Systemic Inflammation Index (added)

19. Neutrophil-to-Lymphocyte Ratio (added)

20. Platelet-to-Lymphocyte Ratio (added)
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B.1.3.1 Hemoglobin (HB)

Hemoglobin is a crucial protein found in red blood cells that plays a vital role in oxygen transport to the body’s organs and
tissues and removal of carbon dioxide from these tissues back to the lungs. According to medical sources, the normal range
of hemoglobin in healthy individuals is 13.2 to 16.6 g/dL for men and 11.6 to 15 g/dL for women [105]. When converted
to SI units, these values are approximately 8.7-11.2 mmol/L for men and 7.4-9.9 mmol/L for women. An examination of
the data statistics presented in Table B.6 indicates that the hemoglobin values before and after chemotherapy are relatively
similar, with some variations observed in the maximum values. However, these do not differ significantly.

Figure B.49 and Figure B.50 display various plots depicting the distribution of hemoglobin (HB) values. The histogram
suggests a normal distribution of HB values. To further investigate this, a QQplot is generated, and the plots for HB
values before and after chemotherapy are presented in Figure B.51. The QQplots, similar to the histogram, reveal that
the HB values are approximately normally distributed. However, there are some deviations from normality observed in the
tails, particularly after the initial chemotherapy session. In order to assess the normality of the data more rigorously, the
Shapiro-Wilk test and the Kolmogorov–Smirnov test were conducted on the dataset, and the outcomes are presented in
Table B.7. The Shapiro-Wilk test does not reject normality for both the before and after first cycle HB values, while the
KS-test indicates non-normality.

To provide some more background information on this observation. The Shapiro-Wilk test and the Kolmogorov-Smirnov
(KS) test are both statistical tests used to assess normality of a distribution. However, they are based on different criteria and
assumptions. The Shapiro-Wilk test is a sensitive test to detect deviations from normality in the center of the distribution.
It tests the null hypothesis that a sample is drawn from a normally distributed population. If the p-value is greater than
the significance level (usually 0.05), then the null hypothesis cannot be rejected, and the data is considered to be normally
distributed.On the other hand, the KS test is more sensitive to deviations from normality in the tails of the distribution.
It tests the null hypothesis that a sample is drawn from a specific continuous distribution, usually a normal distribution
(in this case as well). If the p-value is greater than the significance level, then the null hypothesis cannot be rejected, and
the data is considered to be consistent with the specified distribution. If the p-value is less than the significance level, then
the null hypothesis is rejected, and the data is considered to be inconsistent with the specified distribution. In the case of
the hemoglobin values, the histogram and QQplot suggest that the distribution is approximately normal. However, the KS
test indicates that the distribution is not exactly normal, especially in the tails. The Shapiro-Wilk test, being less sensitive
to deviations in the tails, does not detect non-normality in the data. Therefore, the Shapiro-Wilk test and the KS test
are not in contradiction with each other, but rather they provide complementary information about the normality of the
distribution.

HB value Before 1st Chemo After 1st Chemo
Min 5.5 5.4
1st Quartile 7.3 7.0
Median 7.9 7.5
Mean 7.8 7.5
3rd Quartile 8.5 8.0
Max 10.7 9.8
NA 7 14

Table B.6: Summary statistics of HB values (mmol/L) of the entire data set, n=247.

HB value Before 1st Chemo After 1st Chemo
SW-test W 0.991 0.175
SW-test pvalue 0.995 0.650
KS test pvalue Invalid Invalid

Table B.7: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
hemoglobin values, n=223.

To get a better understanding of the hemoglobin values, the missing data has been removed and the HB values are sorted
based on the patients’ response to chemotherapy. Table B.8 presents the summary statistics of the hemoglobin (HB) values in
mmol/L for a cohort of 223 patients, comprising 124 male and 99 female subjects. The table includes an additional column,
HBdiff, which represents the difference in HB values before and after chemotherapy. The final response to chemotherapy was
categorized into 3 complete response (CR), 46 partial response (PR), 40 progressive disease (PD), 118 stable disease (SD),
and 16 unknown responses (Un). Furthemore, the HB values before and after the first chemotherapy session are displayed
in Figure B.52. Figure B.53 illustrates the HB values sorted by the patients’ final response, with the healthy female range
indicated in pink and the male range in blue. A similar split between male and female can be seen in Figure B.54, where
the values differ per group. On average, the HB values were lower than the healthy range. Figure B.55 displays the
difference between the HB values before and after the first chemotherapy session. The decrease in hemoglobin can be
attributed to chemotherapy-induced anemia, which can result from a decrease in the number of red blood cells produced in
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Figure B.49: Hemoglobin distribution before the first chemotherapy cycle (mmol/L) for the entire dataset: (a)
scatterplot of hemoglobin values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot
showing the distribution of hemoglobin values before the first cycle across different final response categories,
including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable
disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.50: Hemoglobin distribution after the first chemotherapy cycle (mmol/L) for the entire dataset: (a)
scatterplot of hemoglobin values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of hemoglobin values after the first cycle across different final response categories, including
Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD,
n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR,
2=PR, 3=PD, 4=SD, 5=Un), total n=247.
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B.1. Data Analysis

Figure B.51: QQplot of the hemoglobin values before and after the first chemotherapy cycle, with a normal
distribution fitted in red, n=223.

the bone marrow or damage to the red blood cells themselves. Additionally, chemotherapy drugs can cause gastrointestinal
symptoms, such as nausea, vomiting, and diarrhea, which can lead to poor nutrient absorption and subsequent anemia.
Additionally, some chemotherapy drugs can cause damage to the red blood cells themselves, leading to hemolysis and a
decrease in hemoglobin levels.

HB value Before 1st Chemo After 1st Chemo Difference
Min 5.5 5.4 -1.7
1st Quartile 7.3 7.0 -0.05
Median 7.9 7.5 0.3
Mean 7.8 7.5 0.3
3rd Quartile 8.5 8.1 0.7
Max 10.7 9.8 2.1

Table B.8: Summary statistics of HB values (mmol/L) before and after the first chemotherapy cycle with all
missing values removed, n=223. An additional column displaying the difference between hemoglobin values before
and after the first cycle, denoted as HBdiff = HBbefore - HBafter, has been included.
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Figure B.52: Hemoglobin values (mmol/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=223.

Figure B.53: Hemoglobin values before and after the first chemotherapy cycle sorted by final response with no
missing values, n=223. The final response is classified as Complete Response (CR, n=3), Partial response (PR,
n=46), Progressive Disease (PD, n= 40), Stable Disease (SD, n=118), Unknown (Un, n=16). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Blue = healthy range for males, Pink = healthy
range for females.
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Figure B.54: Hemoglobin values (mmol/L) before and after the first chemotherapy cycle sorted by gender with no
missing values, n=223 (124 male, 99 female).

Figure B.55: Difference in hemoglobin values (mmol/L) between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=223. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=46), Progressive Disease (PD, n= 40), Stable Disease
(SD, n=118), Unknown (Un, n=16).
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B.1.3.2 Thrombocytes TB

Thrombocytes, also known as platelets, are tiny disc-shaped cells that are found in the blood and spleen. They play a
crucial role in the formation of blood clots to slow or stop bleeding and promote wound healing. According to medical
doctors a normal number of platelets in the blood is about 150-400 ×109/L blood. In the present dataset, a patient with ID
(9065PP20005) had reported TB value of 4.3 ×109/L blood which is corrected to 43 ×109/L as a more realistic value. In
Table B.9 summary statistics of thrombocyte counts in the patient cohort is presented. The results show a tenfold increase
in the minimum value after chemotherapy, whereas the first quartile value, median, mean, third quartile, and maximum
value have all decreased. The mean thrombocyte count falls within the healthy range of 150-450 as well as the first and
third quartile values. (as the first till third quartile values are all in the range). Overall, there is a decrease in the number of
platelets after the first chemotherapy session. In Figure B.56 various plots of the TB values before the first chemotherapy
are presented. The results indicate that the average values are consistent across all final responses, with the caveat that
the number of observations in the complete response group is only three. Therefore, any conclusions that could be drawn
are invalid for the complete response group due to the small sample size. This holds true for the further analyses done on
the other markers measured in the blood as well. Moreover, the histogram of the platelet values does show deviations from
normality, which is supported by the normality tests with p-values given in Table B.10 and confirmed by the QQplots in
Figure B.58. The same applies to the thrombocyte count after the first chemotherapy session.

To continue, the dataset is cleaned, whereby all missing values (NA) have been removed. The resulting dataset comprises
of 224 observations, with 123 being male and 101 being female. Regarding the final response, 3 individuals had a complete
response (CR), 47 had a partial response (PR), 40 had progressive disease (PD), while 118 had stable disease (SD). There
were 16 cases where the final response was unknown. A summary of these values is presented in Table B.11. These summary
values show close resemblance to those in Table 2 (see Table B.9). Additionally, Figure B.59 illustrates a plot of the values
before and after chemotherapy. It is apparent from the plot that the overall trend indicates a lower value of TB count after
chemotherapy, with the green graph averaging below the red graph. Figure B.60 presents the sorted values of the patients
based on their final response outcome, with the healthy range plotted between the pink horizontal lines. An interesting
observation is that the most significant spikes occur for patients with stable and progressive diseases. In contrast, most
partial responders remain within the healthy range.

Thrombocyte value Before 1st Chemo After 1st Chemo
Min 43.0 43.0
1st Quartile 225 159
Median 274 202
Mean 280 216
3rd Quartile 325 252
Max 709 630
NA 7 13

Table B.9: Summary statistics values of the thrombocyte count of the entire dataset in 109/L, n=247.

TB value Before 1st Chemo After 1st Chemo
SW-test W 0.954 0.899
SW-test pvalue 8.24e-7 1.87e-11
KS test pvalue Invalid Invalid

Table B.10: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
thrombocyte count, n=247. The KS-test is invalid due to the presence of ties in the data.

TB value Before 1st Chemo After 1st Chemo Difference
Min 4.3 43.0 -304.0
1st Quartile 224.2 159.0 26.8
Median 270.5 202.5 64.0
Mean 278.6 216.5 62.1
3rd Quartile 325.0 251.2 106.8
Max 709 630 467

Table B.11: Summary statistics of the thrombocyte count in 109/L before and after the first chemotherapy cycle
as well as the difference for a cohort of patients with all missing values removed, n=224.
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Figure B.56: Thrombocytes distribution before the first chemotherapy cycle (109/L) for the entire dataset: (a)
scatterplot of thrombocyte count before the first cycle, (b) histogram with a fitted density curve, (c) boxplot
showing the distribution of thrombocyte count before the first chemotherapy cycle across different final response
categories, including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43),
Stable disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.57: Thrombocytes distribution after the first chemotherapy cycle (109/L) for the entire dataset: (a)
scatterplot of thrombocyte count after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of thrombocyte count after the first cycle across different final response categories, including
Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD,
n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR,
2=PR, 3=PD, 4=SD, 5=Un), total n=247.
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Figure B.58: QQplot of the thrombocyte count before and after the first chemotherapy cycle, with a normal
distribution fitted in red, n=247.

Figure B.59: Thrombocyte count (109/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=224.
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Figure B.60: Thrombocyte count (109/L) before and after the first chemotherapy cycle sorted by final response
with no missing values, n=224. The final response is classified as Complete Response (CR, n=3), Partial response
(PR, n=47), Progressive Disease (PD, n= 40), Stable Disease (SD, n=118), Unknown (Un, n=16). Red = values
before the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.

Figure B.61: Difference in thrombocyte count (109/L between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=224. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=47), Progressive Disease (PD, n= 40), Stable Disease
(SD, n=118), Unknown (Un, n=16).
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B.1.3.3 Leukocytes LK

Leukocytes, also known as white blood cells, are a vital component of the human immune system, as they defend the body
against infections and diseases. Leukocytes are produced in the bone marrow and are distributed throughout the blood
and lymphatic tissues. The three main types of leukocytes include granulocytes (neutrophils, eosinophils, and basophils),
monocytes, and lymphocytes (B- and T-cells). According to medical experts from the Erasmus Medical Centre Rotterdam
an individual’s healthy range of leukocytes is typically between 4 and 10 ×109/L blood.

In this data analysis, to find if there is indeed any link between leukocyte count and response to chemotherapy, first all
the missing values are removed from the dataset. The resultant dataset contains 226 observations of which 125 are male
and 101 are female. The final response has 3 patients with CR, 47 with PR, 40 with PD, 120 with SD and 16 were
unknown. Summary statistics for this dataset are presented in Table B.14, indicating only slight changes in the values when
compared to those in Table B.12. Remarkably, the leukocyte count demonstrated a significant increase after chemotherapy,
as illustrated in Figure B.65. This phenomenon may be attributed to body’s ability to stimulate the bone marrow to produce
more white blood cells as a natural response to the stress of the chemotherapy treatment. Specifically, chemotherapy can
stimulate the bone marrow to produce more white blood cells to help fight infections and support the immune system.

One type of white blood cell that may increase after chemotherapy is the neutrophil (considered in the section below),
which plays a critical role in fighting bacterial infections. However, the increase in white blood cells can also be a side effect
of the drugs used in chemotherapy. Some chemotherapy drugs can stimulate the production of white blood cells directly,
while others can damage the bone marrow, leading to an increase in the release of white blood cells into the bloodstream.
It is important to note that not all chemotherapy drugs cause an increase in leukocytes, and the extent and duration of the
increase can vary depending on the specific drugs and dosage used, as well as the individual’s overall health and response to
treatment. After sorting the patients based on their final outcome, as shown in Figure B.66, no noticeable pattern emerges,
except for the observation that the highest LK values before chemotherapy are found in the stable disease group.

Leukocyte value Before 1st Chemo After 1st Chemo
Min 2.5 1.2
1st Quartile 6.7 6.7
Median 8.0 12.1
Mean 8.2 13.5
3rd Quartile 9.3 18.2
Max 16.6 42.7
NA 6 12

Table B.12: Summary statistics values of the leukocyte count of the entire dataset in 109/L, n=247.

LK value Before 1st Chemo After 1st Chemo
SW-test W 0.959 2.06e-6
SW-test pvalue 0.936 1.34e-8
KS test pvalue Invalid Invalid

Table B.13: Results of the Shapiro-Wilk test and the Kolmogorov Smirnov test for assessing the normality of the
leukocyte count, n=247. The KS-test is invalid due to the presence of ties in the data.

LK value Before 1st Chemo After 1st Chemo Difference
Min 2.5 1.2 -32.4
1st Quartile 6.7 6.6 -9.6
Median 8.0 11.9 -3.7
Mean 8.2 13.3 -5.1
3rd Quartile 9.2 18.2 1.1
Max 16.6 42.7 9.5

Table B.14: Summary statistics of the leukocyte count in 109/L before and after the first chemotherapy cycle as
well as the difference for a cohort of patients with all missing values removed, n=226.

169



B.1. Data Analysis

Figure B.62: Leukocyte distribution before the first chemotherapy cycle (109/L) for the entire dataset: (a) scat-
terplot of leukocyte count before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of leukocyte count before the first chemotherapy cycle across different final response categories,
including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable
disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical ap-
proach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.63: Leukocyte distribution after the first chemotherapy cycle (109/L) for the entire dataset: (a) scat-
terplot of leukocyte count after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the
distribution of leukocyte count after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.
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Figure B.64: QQplot of the leukocyte values before and after the first chemotherapy cycle, with a normal distri-
bution fitted in red, n=247.

Figure B.65: Leukocyte count (109/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=226.
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Figure B.66: Leukocyte count (109/L) before and after the first chemotherapy cycle sorted by final response with
no missing values, n=226. The final response is classified as Complete Response (CR, n=3), Partial response (PR,
n=47), Progressive Disease (PD, n= 40), Stable Disease (SD, n=120), Unknown (Un, n=16). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.

Figure B.67: Difference in leukocyte count (109/L) between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=226. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=47), Progressive Disease (PD, n= 40), Stable Disease
(SD, n=120), Unknown (Un, n=16).
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B.1.3.4 Neutrophils NP

Neutrophils are type of leukocyte, or white blood cell, that assist in the body’s immune response against infections and
injuries. They are classified as a subset of granulocytes, along with eosinophils and basophil cells. Among all types of
leukocytes, neutrophils are the most abundant in the human body. A healthy range of Neutrophils is 1.5-7.5 ×109/L
blood. Studies have shown that neutrophils play a crucial role in the progression and metastasis of PDAC, as they are
recruited to the tumor micro-environment and promote tumor growth and invasion by releasing cytokines, proteases, and
other pro-inflammatory factors. One study by Iwai et al. [83] studying the effect of NLR in unresectable pancreatic cancer
patients, found that elevated neutrophil-to-lymphocyte ratio (NLR) was independently associated with poor prognosis in
patients with PDAC. A high NLR was associated with the metastatic stage and worse performance status. Another study
by Yang et al. [84] also reported that high NLR in the peripheral blood is a poor prognostic factor for patients with
pancreatic cancer as elevated NLR was associated with poor OS in patients with PDAC receiving either mixed treatment or
chemotherapy. Overall, these findings suggest that neutrophil count and function are important factors in the pathogenesis
and clinical outcome of PDAC, and highlight the potential of targeting neutrophils as a novel therapeutic strategy for this
deadly disease. However, to see if this is seen back in the current data, the following analysis is performed.

The summary statistics in Table B.15 indicate that the first to third quartile values of neutrophil levels were within
the healthy range prior to chemotherapy. However, following chemotherapy, all values increased, with the median value
exceeding the healthy range at 8.1 ×109/L (which was previously 7.5 ×109/L). Additionally, the distribution of neutrophil
values before and after chemotherapy, as depicted in Figure B.68 en Figure B.69, respectively, demonstrate non-normality,
which is supported by the results of the two tests outlined in Table B.16. Consider the complete dataset on neutrophils
without missing values. The data consists of 199 observations, with 110 male and 89 female participants. Among these
participants, 3 exhibited complete response (CR), 40 exhibited partial response (PR), 35 exhibited progressive disease
(PD), 110 exhibited stable disease (SD), and 11 exhibited an unknown final response. Analysis of the dataset, as depicted
in Figure B.71 and Figure B.72, reveals a clear and substantial increase in neutrophil count following chemotherapy,
resulting in a shift to unhealthy levels. Prior to chemotherapy, the majority of neutrophil counts fell within the healthy
range. Notably, a significant increase in neutrophil count was observed among patients with stable disease as their final
response, similar to the pattern observed with leukocyte count. These findings suggest that chemotherapy may have a
significant impact on neutrophil count, and that changes in neutrophil count may be associated with treatment response.
However, the increase in neutrophil count may also be caused by medication given to the patients during treatment.

Neutrophils Value Before 1st Chemo After 1st Chemo
Min 1.2 0.1
1st Quartile 4.2 3.6
Median 5.1 8.2
Mean 5.4 9.6
3rd Quartile 6.4 13.4
Max 13.2 36.4
NA 28 24

Table B.15: Summary statistics of the Neutrophil count in 109/L blood in entire data set, n=247.

NP value Before 1st Chemo After 1st Chemo
SW-test W 0.952 0.918
SW-test pvalue 1.25e-6 9e-10
KS test pvalue Invalid Invalid

Table B.16: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
neutrophil values, n=247. The KS-test is invalid due to the presence of ties in the data.

NP value Before 1st Chemo After 1st Chemo Difference
Min 1.2 0.1 -31.1
1st Quartile 4.2 3.5 -7.0
Median 5.1 7.7 -2.3
Mean 5.4 9.1 -3.7
3rd Quartile 6.3 12.3 1.6
Max 13.2 36.1 8.5

Table B.17: Summary statistics of the neutrophil count in 109/L before and after the first chemotherapy cycle as
well as the difference for a cohort of patients with all missing values removed, n=199.
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Figure B.68: Neutrophil distribution before the first chemotherapy cycle (109/L) for the entire dataset: (a)
scatterplot of neutrophil count before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of neutrophil count before the first chemotherapy cycle across different final response categories,
including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable
disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.69: Neutrophil distribution after the first chemotherapy cycle (109/L) for the entire dataset: (a) scat-
terplot of neutrophil count after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the
distribution of neutrophil count after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.
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Figure B.70: QQplot of the neutrophil count before and after the first chemotherapy cycle, with a normal distri-
bution fitted in red, n=247.

Figure B.71: Neutrophil count (109/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=199.
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Figure B.72: Neutrophil count (109/L) before and after the first chemotherapy cycle sorted by final response with
no missing values, n=199. The final response is classified as Complete Response (CR, n=3), Partial response (PR,
n=40), Progressive Disease (PD, n= 35), Stable Disease (SD, n=110), Unknown (Un, n=11). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.

Figure B.73: Difference in Neutrophil count (109/L) between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=199. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=40), Progressive Disease (PD, n= 35), Stable Disease
(SD, n=110), Unknown (Un, n=11).
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B.1.3.5 Lymphocytes LC

Similar to neutrophils, lymphocytes are a crucial type of white blood cell that play an important role in the body’s immune
system’s defense mechanism against infections and diseases. These cells can be broadly categorized into two subtypes: T-
lymphocytes and B-lymphocytes. T-lymphocytes play a vital role in regulating the immune response and directly attacking
and eliminating infected cells and cancerous cells. On the contrary, B-lymphocytes produce antibodies, which are specialized
proteins that identify and target viruses, bacteria, and other foreign antigens. The summary statistics of the lymphocyte
data in 109/L blood for the complete dataset (n=247) including missing values (NA) are presented in Table B.18. The
LC values before and after chemotherapy are illustrated in Figure B.74 and Figure B.75, respectively. The histograms in
these figures indicate a relatively normal distribution of the LC count before and after the initial chemotherapy session,
with significant outliers on the right side. The boxplot and scatter plots show no distinct patterns or trends with respect
to final responses. The QQplots in Figure B.76 and the values in Table B.19 suggest that the LC values are not normally
distributed, primarily due to the outliers causing deviations from normality in the tail of the plots.

The lymphocyte data set is analyzed after removing the missing values. The remaining dataset contains n=122 observations
(64 male, 58 female). Among these, 2 individuals show a complete response (CR), 22 show a partial response (PR), 24
show progressive disease (PD), 66 show stable disease (SD), and 8 observations were categorized as Unknown in terms of
final response. The summary statistics of this dataset are presented in Table B.20, which reveals that the healthy range
of values, between 1 and 4 ×109/L, is achieved between the first and third quartile. Figure B.77 presents a plot of the
lymphocyte values, and Figure B.78 groups them by final outcome. The majority of peaks are observed in the group with
stable disease as the final outcome. Additionally, Figure B.79 displays a plot of the difference between the lymphocyte
count values before and after chemotherapy sorted by their respective final response outcomes.

Lymphocytes Value Before 1st Chemo After 1st Chemo
Min 0.4 0.2
1st Quartile 1.3 1.3
Median 1.6 1.9
Mean 1.8 2.1
3rd Quartile 2.2 2.6
Max 9.2 11.0
NA 75 100

Table B.18: Summary statistics values of the lymphocyte count of the entire dataset in 109/L, n=247.

NP value Before 1st Chemo After 1st Chemo
SW-test W 0.775 0.796
SW-test pvalue 5.706e-15 4.963-13
KS test pvalue Invalid Invalid

Table B.19: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
lymphocyte count, n=247. The KS-test is invalid due to the presence of ties in the data.

Lymphocytes Value Before 1st Chemo After 1st Chemo Difference
Min 0.4 0.2 -3.1
1st Quartile 1.3 1.2 -0.7
Median 1.6 1.9 -0.2
Mean 1.8 2.1 -0.3
3rd Quartile 2.1 2.6 0.2
Max 9.2 11.0 2.1

Table B.20: Summary statistics of the lymphocyte count in 109/L before and after the first chemotherapy cycle
as well as the difference for a cohort of patients with all missing values removed, n=122.
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Figure B.74: Lymphocyte distribution before the first chemotherapy cycle (109/L) for the entire dataset: (a)
scatterplot of lymphocyte count before the first cycle, (b) histogram with a fitted density curve, (c) boxplot
showing the distribution of lymphocyte count before the first chemotherapy cycle across different final response
categories, including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43),
Stable disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.75: Lymphocyte distribution after the first chemotherapy cycle (109/L) for the entire dataset: (a)
scatterplot of lymphocyte values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of lymphocyte values after the first cycle across different final response categories, including
Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD,
n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR,
2=PR, 3=PD, 4=SD, 5=Un), total n=247.

178



B.1. Data Analysis

Figure B.76: QQplot of the lymphocyte count before and after the first chemotherapy cycle, with a normal
distribution fitted in red, n=247.

Figure B.77: Lymphocyte count (109/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=122.
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Figure B.78: Lymphocyte count (109/L) before and after the first chemotherapy cycle sorted by final response
with no missing values, n=122. The final response is classified as Complete Response (CR, n=2), Partial response
(PR, n=22), Progressive Disease (PD, n= 24), Stable Disease (SD, n=66), Unknown (Un, n=8). Red = values
before the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.

Figure B.79: Difference in lymphocyte count (109/L) between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=122. The final response is classified
as Complete Response (CR, n=2), Partial response (PR, n=22), Progressive Disease (PD, n= 24), Stable Disease
(SD, n=66), Unknown (Un, n=8).
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B.1.3.6 Creatinin CR

Creatine is a naturally occurring substance in the body that helps to maintain a continuous supply of energy to working
muscles. During the process of energy production in working muscles, creatinin is produced as a byproduct. Normally,
healthy kidneys filter creatinin out of the blood, and the level of creatinin in the blood can indicate how well the kidneys
are functioning. The healthy range for creatinin levels is between 60-110 µmol/L for males and between 50-100 µmol/L for
females.

The QQplots presented in Figure B.82 indicate that the majority of creatinin values follow a normal distribution, but
exhibit some significant deviations in the tail values. This is consistent with the histograms displayed in Figure B.80 and
Figure B.81, where it can be observed that most values conform to a normal distribution, albeit with a long right tail.
The dataset with missing values comprises of n = 224 subjects (126 male, 98 female). The final responses show that 3
individuals exhibited complete response (CR), 47 partial response (PR), 42 progressive disease (PD), 118 stable disease
(SD), and 14 had an unknown final response. Moreover, the summary statistics provided in Table B.23 indicate that the
majority of values before and after the first chemotherapy session remain similar, except for the maximum value. The
substantial increase in maximum values suggests a considerable decrease in kidney functionality following chemotherapy.
However, this increase is not seen as an overall trend, but only in a couple of patients, who most likely have kidney failure
or any other kidney related health condition.

Creatinin value Before 1st Chemo After 1st Chemo
Min 33.0 32.0
1st Quartile 59.0 59.0
Median 69.0 70.0
Mean 79.8 76.2
3rd Quartile 80.0 81.0
Max 222.0 952.0
NA 6 14

Table B.21: Summary statistics values of the creatinin values of the entire dataset in µmol/L, n=247.

CR value Before 1st Chemo After 1st Chemo
SW-test W 0.864 0.249
SW-test pvalue 8.307e-14 <2.2e-16
KS test pvalue Invalid Invalid

Table B.22: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
creatinin values, n=247. The KS-test is invalid due to the presence of ties in the data.

Creatinin values Before 1st Chemo After 1st Chemo Difference
Min 33.0 32.0 -843.0
1st Quartile 59.0 59.0 -6.0
Median 69.0 69.5 -1.0
Mean 70.6 76.0 -5.3
3rd Quartile 80.0 81.0 3.0
Max 222.0 952.0 61.0

Table B.23: Summary statistics of the creatinin levels in µmol/L before and after the first chemotherapy cycle as
well as the difference for a cohort of patients with all missing values removed, n=224.
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Figure B.80: Creatinin distribution before the first chemotherapy cycle (µmol/L) for the entire dataset: (a)
scatterplot of creatinin values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of creatinin values before the first chemotherapy cycle across different final response categories,
including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable
disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.81: Creatinin distribution after the first chemotherapy cycle (µmol/L) for the entire dataset: (a) scat-
terplot of creatinin values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the
distribution of creatinin values after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.
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Figure B.82: QQplot of the creatinin values before and after the first chemotherapy cycle, with a normal distri-
bution fitted in red, n=247.

Figure B.83: Creatinin values (µmol/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=224.
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Figure B.84: Same plot as Figure B.83 but with the y-axis limited to maximum value of 250 µmol/L.

Figure B.85: Creatinin levels (µmol/L) before and after the first chemotherapy cycle sorted by final response with
no missing values, n=224. The final response is classified as Complete Response (CR, n=3), Partial response (PR,
n=47), Progressive Disease (PD, n= 42), Stable Disease (SD, n=118), Unknown (Un, n=14). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy female range, Blue = Healthy
male range.
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Figure B.86: Creatinin levels in (µmol/L) before and after the first chemotherapy cycle sorted by gender with no
missing values, n=224 (126 male, 98 female). Red = values before the first cycle, Green = values after the first
chemotherapy cycle, Pink = healthy range.

Figure B.87: Difference in creatinin levels (µmol/L) between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=224. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=47), Progressive Disease (PD, n= 42), Stable Disease
(SD, n=118), Unknown (Un, n=14).
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B.1.3.7 Glomerular Filtration Rate (GFR)

The Glomerular Filtration Rate (GFR) is a measure of kidney function that indicates the rate at which the kidneys are
filtering blood. Specifically, it is calculated as the sum of the filtration rates of the functional nephrons in the kidney. GFR
is an important indicator of kidney health, along with other markers such as creatinin. In accordance with the National
Kidney Foundation, a GFR value between 90-120 mL/min is considered healthy [106]. However, it should be noted that
GFR typically decreases with age, resulting in lower values for older individuals. In addition, men tend to have more muscle
mass compared to females, hence, females will also tend to have a lower GFR value compared to men. In the context of the
provided dataset (n=247 (137 male, 110 female)), with an average age of 64 years, most GFR values fall within the healthy
range or slightly below it. Interestingly, the median and 3rd quartile values for GFR remain constant at 90.0 mL/min
before and after chemotherapy, suggesting that the treatment does not have a significant impact on GFR values. The exact
values and other summary statistics can be found in Table B.24. Analysis of the distribution of GFR values before and
after chemotherapy in Figure B.88 and Figure B.89, respectively, using both a normality test (results in Table B.25) and a
QQplot in Figure B.90 indicate that these values are not normally distributed.

Once any missing observations have been eliminated, the remaining dataset comprises of n = 223 subjects, of which 125
were male and 98 were female. Of these subjects, 3 showed a complete response (CR), 27 partial response (PR), 41
progressive disease (PD), 118 stable disease (SD), and 14 values were unknown. In particular, removal of the missing values
did not significantly alter the summary statistics of the dataset provided in Table B.26. Visual inspection of the plots in
Figure B.91 and Figure B.92 reveals that the majority of GFR values in the dataset fall below the healthy range. This can
be explained by the fact that most patients are elderly and thus have lower levels of GFR in general. Moreover, the most
notable discrepancies between GFR values before and after chemotherapy appear to be observed in the PD and SD groups,
as depicted in Figure B.94, Figure B.91 and Figure B.92.

GFR Value Before 1st Chemo After 1st Chemo
Min 27.0 22.0
1st Quartile 81.0 78.0
Median 90.0 90.0
Mean 85.1 84.3
3rd Quartile 90.0 90.0
Max 126.0 125.0
NA 7 14

Table B.24: Summary statistics values of the GFR values of the entire dataset in mL/min, n=247.

GFR value Before 1st Chemo After 1st Chemo
SW-test W 0.891 0.884
SW-test pvalue 3.82e-12 2.12e-12
KS test pvalue Invalid Invalid

Table B.25: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
GFR values, n=247. The KS-test is invalid due to the presence of ties in the data.

GFR Values Before 1st Chemo After 1st Chemo Difference
Min 27.0 22.0 -61.0
1st Quartile 81.0 79.0 -1.0
Median 90.0 90.0 0.0
Mean 85.5 84.7 0.8
3rd Quartile 90.0 90.0 3.0
Max 126.0 125.0 54.0

Table B.26: Summary statistics of the GFR values in mL/min before and after the first chemotherapy cycle as
well as the difference for a cohort of patients with all missing values removed, n=223.
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Figure B.88: GFR distribution before the first chemotherapy cycle (mL/min) for the entire dataset: (a) scatterplot
of GFR values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of GFR values before the first chemotherapy cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

Figure B.89: GFR distribution after the first chemotherapy cycle (mL/min) for the entire dataset: (a) scatterplot
of GFR values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of GFR values after the first cycle across different final response categories, including Complete response (CR,
n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown
(Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD,
5=Un), total n=247.
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Figure B.90: QQplot of the GFR values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.

Figure B.91: GFR values (mL/min) before and after the first chemotherapy cycle. Red = values before the first
cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing values,
n=223.
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Figure B.92: GFR values (mL/min) before and after the first chemotherapy cycle sorted by final response with
no missing values, n=223. The final response is classified as Complete Response (CR, n=3), Partial response (PR,
n=47), Progressive Disease (PD, n= 41), Stable Disease (SD, n=118), Unknown (Un, n=14). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.

Figure B.93: Same plot as Figure B.92 but with GFR values between 0-80mL/min. The two blue lines are set a
level 60 and 30 mL/min as these are two other levels that are critical to consider.
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Figure B.94: Difference in GFR values (mL/min) between the values before and after the first chemotherapy cycle
for all the patients with no missing data, sorted by their final response, n=223. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=47), Progressive Disease (PD, n= 41), Stable Disease
(SD, n=118), Unknown (Un, n=14).

B.1.3.8 Sodium (Na)

Sodium (Na) is a crucial mineral in the human body due to its role in maintaining normal blood pressure, supporting nerve
and muscle function, and regulating fluid balance. A healthy range of sodium concentration is typically considered to be
between 136-145 mmol/L. However, a low level of sodium (hyponatremia), defined as a concentration below 135 mmol/L,
can be hazardous because it can lead to an influx of excess water into cells, causing them to swell. This swelling can be
especially dangerous in the brain.

Based on the values presented in Table B.27, the majority of sodium concentrations fall within the healthy range, as indicated
by the first quartile up to the maximum values. Moreover, the sodium concentrations before and after chemotherapy appear
to be largely unchanged, with similar values observed. However, the histograms depicted in Figure B.95 and Figure B.96,
as well as the QQplot in Figure B.97, suggest that the sodium concentrations are not normally distributed, but more
skewed towards the right. There is no clear trend to be seen between the final response to chemotherapy and the Na
values before or after the first chemotherapy session. Upon discarding any data points with missing values, a total of 160
observations remain, comprising 84 males and 76 females. Among these, no patient exhibited complete response (CR) as a
final response, while 36 displayed partial response (PR), 32 progressive disease (PD), 79 stable disease (SD), and 13 were
classified as Unknown. Visual inspection of the plots presented in Figure B.98 and Figure B.99 indicates that the majority
of sodium concentrations fall within the healthy range, similar to what was seen before removing the missing values. The
difference between the values before and after chemotherapy can be seen in Figure B.100, showing no clear distinction
between the final response outcomes.

Na Value Before 1st Chemo After 1st Chemo
Min 122.0 128.0
1st Quartile 137.0 137.0
Median 139.0 139.0
Mean 138.5 138.8
3rd Quartile 141.0 141.0
Max 145.0 146.0
NA 59 56

Table B.27: Summary statistics values of the sodium values of the entire dataset in mmol/L, n=247.
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Na value Before 1st Chemo After 1st Chemo
SW-test W 0.935 0.954
SW-test pvalue 1.96e-7 7.10e-6
KS test pvalue Invalid Invalid

Table B.28: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
sodium values, n=247. The KS-test is invalid due to the presence of ties in the data.

Figure B.95: Sodium distribution before the first chemotherapy cycle (mmol/L) for the entire dataset: (a) scat-
terplot of sodium values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the
distribution of sodium values before the first chemotherapy cycle across different final response categories, includ-
ing Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease
(SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach
(1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Na Values Before 1st Chemo After 1st Chemo Difference
Min 122 129 -9.0
1st Quartile 137 138 -2.0
Median 139 139 0.0
Mean 139 139 -0.1
3rd Quartile 141 141 2.0
Max 145 146 8.0

Table B.29: Summary statistics of the sodium values in mmol/L before and after the first chemotherapy cycle as
well as the difference for a cohort of patients with all missing values removed, n=160.
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Figure B.96: Sodium distribution after the first chemotherapy cycle (mmol/L) for the entire dataset: (a) scat-
terplot of sodium values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the
distribution of sodium values after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

Figure B.97: QQplot of the sodium values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.

192



B.1. Data Analysis

Figure B.98: Sodium values in (mmol/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=160.

Figure B.99: Sodium levels (mmol/L) before and after the first chemotherapy cycle sorted by final response with
no missing values, n=160. The final response is classified as Complete Response (CR, n=0), Partial response (PR,
n=36), Progressive Disease (PD, n=32), Stable Disease (SD, n=79), Unknown (Un, n=13). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.
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Figure B.100: Difference in sodium values (mmol/L) between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=160. The final response is classified
as Complete Response (CR, n=0), Partial response (PR, n=36), Progressive Disease (PD, n=32), Stable Disease
(SD, n=79), Unknown (Un, n=13).

B.1.3.9 Potassium (K)

Potassium is an essential mineral in the human body that plays a vital role in nerve and muscle function, cellular nutrient
exchange, waste removal, and the maintenance of normal cardiac function. The healthy range for potassium in blood is
between 3.5 and 5.1 mmol/L according to medical experts from the Erasmus Medical Centre Rotterdam. One patient in the
dataset (patient ID 002PP20005) had a recorded potassium value of 402.0 mmol/L, which is dangerously high. However,
it is highly probable that this was a typographical error, and the correct value should have been 4.02 mmol/L. Hence,
the high potassium value has been corrected to this more sensible value. The summary statistics presented in Table B.30
indicate that almost all potassium values fall within the healthy range, with only a few values falling below or above the
minimum and maximum values (after the correction of 402 to 4.02 mmol/L). The histograms in Figures B.101 and B.102
suggest normality, which is confirmed by both the Shapiro-Wilk test and the QQplots. These findings suggest that the
potassium levels in PDAC patients appear to be normally distributed around the mean. Furthermore, there appears no clear
distinguishment between potassium values before or after the first chemotherapy session and the final response outcome.

Consider the dataset after removing missing values. This dataset contains n = 158 observations, with 83 males and 75
females. Final response to chemotherapy includes 36 partial responders (PR), 31 progressive disease (PD), 78 stable disease
(SD), and 13 Unknown cases, with no complete responders (CR). The data visualizations in Figure B.104 and Figure B.105,
the latter of which is sorted based on the final response to chemotherapy, suggest an overall slight decrease in K values
post-chemotherapy. While many values were within the healthy range prior to the first chemotherapy, some have fallen
below the healthy range post-chemotherapy. This may be due to side effects such as chemotherapy-induced vomiting or
diarrhea. However, no clear association can be established between the K values before or after chemotherapy and the final
response to chemotherapy, nor in the difference between K values.

K Value Before 1st Chemo After 1st Chemo
Min 3.1 2.4
1st Quartile 4.0 3.6
Median 4.2 4.0
Mean 4.2 3.9
3rd Quartile 4.5 4.2
Max 5.3 5.4
NA 61 56

Table B.30: Summary statistics values of the potassium values of the entire dataset in mmol/L, n=247.
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K value Before 1st Chemo After 1st Chemo
SW-test W 0.991 0.991
SW-test pvalue 0.27 0.28
KS test pvalue Invalid Invalid

Table B.31: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
potassium values, n=247. The KS-test is invalid due to the presence of ties in the data.

Figure B.101: Potassium distribution before the first chemotherapy cycle (mmol/L) for the entire dataset: (a)
scatterplot of potassium values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of potassium values before the first chemotherapy cycle across different final response categories,
including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable
disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

K Values Before 1st Chemo After 1st Chemo Difference
Min 3.2 2.4 -1.0
1st Quartile 4.0 3.6 -0.1
Median 4.3 4.0 0.3
Mean 4.2 4.0 0.3
3rd Quartile 4.5 4.3 0.5
Max 5.3 5.4 1.8

Table B.32: Summary statistics of the potassium values count in mmol/L before and after the first chemotherapy
cycle as well as the difference for a cohort of patients with all missing values removed, n=158.
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Figure B.102: Potassium distribution after the first chemotherapy cycle (mmol/L) for the entire dataset: (a) scat-
terplot of potassium values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the
distribution of potassium values after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

Figure B.103: QQplot of the potassium values before and after the first chemotherapy cycle, with a normal
distribution fitted in red, n=247.
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Figure B.104: Potassium levels (mmol/L) ) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=158.

Figure B.105: Potassium levels (mmol/L) before and after the first chemotherapy cycle sorted by final response
with no missing values, n=158. The final response is classified as Complete Response (CR, n=0), Partial response
(PR, n=36), Progressive Disease (PD, n= 31), Stable Disease (SD, n=78), Unknown (Un, n=13). Red = values
before the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.
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Figure B.106: Difference in potassium levels (mmol/L) between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=158. The final response is classified
as Complete Response (CR, n=0), Partial response (PR, n=36), Progressive Disease (PD, n= 31), Stable Disease
(SD, n=78), Unknown (Un, n=13).

B.1.3.10 Aspartate Aminotransferase (ASAT)

Aspartate aminotransferase (ASAT) is an enzyme that provides information about liver function. It is present in various
body tissues, particularly in the liver and muscles. The liver has several crucial functions, such as producing bile to aid
digestion, removing toxins from the blood, producing clotting proteins, and processing drugs and alcohol. The ASAT test
is commonly used to diagnose and monitor liver disease, with a healthy range of values typically below 25 U/L according
to medical experts from the Erasmus Medical Centre Rotterdam. In cases of liver damage, ASAT levels in the blood will
increase. With regards to the dataset provided, patient 001PANC0052 had an extremely high reported ASAT value of
1100 U/L before chemotherapy, which is likely a typographical error. The value is expected to be between 100-110 U/L.
Therefore, it has been adjusted to 110 U/L before the analysis is performed.

Based on the histograms and QQplots in Figure B.107, Figure B.108, and Figure B.109, it is evident that the ASAT values
are not normally distributed, mainly due to high values in the right tail. However, since the frequency of these large values is
relatively small, it can be inferred that most values appear to be reasonably normal. This trend can be clearly seen back in
the scatter plot as well as the boxplots, with no significant difference between the final response groups. When disregarding
any values that are missing, the resulting dataset comprises 192 observations, with 102 males and 90 females. The final
response in this dataset includes 3 patients with CR, 41 with PR, 34 with PD, 102 with SD, and 12 unknown values. From
the plot in Figure B.110, it is evident that the ASAT values seem to have decreased after chemotherapy, particularly in
patients with high pre-chemotherapy ASAT values. In particular, the highest spikes in ASAT values occur in the group
of patients with stable disease (SD) as the final response. However, no solid hypothesis can be drawn from Figure B.112.
Many patients’ ASAT values seem not be influenced by chemotherapy, with some patients showing big differences, as seen
in Figure B.113. These patients most likely have liver failure or other liver conditions, causing big spikes.

ASAT Value Before 1st Chemo After 1st Chemo
Min 10.0 9.0
1st Quartile 20.8 22.0
Median 27.0 28.0
Mean 46.5 32.7
3rd Quartile 39.0 35.0
Max 1100.0 222.0
NA 23 41

Table B.33: Summary statistics values of the ASAT values of the entire dataset in U/L, n=247.
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ASAT value Before 1st Chemo After 1st Chemo
SW-test W 0.299 0.531
SW-test pvalue <2.2e-16 <2.2e-16
KS test pvalue Invalid Invalid

Table B.34: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
ASAT values, n=247. The KS-test is invalid due to the presence of ties in the data.

Figure B.107: ASAT distribution before the first chemotherapy cycle (U/L) for the entire dataset: (a) scatterplot
of ASAT values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of ASAT values before the first chemotherapy cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

ASAT Values Before 1st Chemo After 1st Chemo Difference
Min 10.0 9.0 -191.0
1st Quartile 20.0 22.0 -7.0
Median 26.5 27.5 1.0
Mean 44.9 32.8 12.2
3rd Quartile 37.3 34.3 9.0
Max 1100.0 222.0 1079.0

Table B.35: Summary statistics of the ASAT values (U/L) before and after the first chemotherapy cycle as well
as the difference for a cohort of patients with all missing values removed, n=192.
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Figure B.108: ASAT distribution after the first chemotherapy cycle (U/L) for the entire dataset: (a) scatterplot
of ASAT values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of ASAT values after the first cycle across different final response categories, including Complete response (CR,
n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown
(Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD,
5=Un), total n=247.

Figure B.109: QQplot of the ASAT values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.
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Figure B.110: ASAT values(U/L) before and after the first chemotherapy cycle. Red = values before the first
cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing values,
n=192.

Figure B.111: ASAT values (U/L) before and after the first chemotherapy cycle sorted by final response with no
missing values, n=192. The final response is classified as Complete Response (CR, n=3), Partial response (PR,
n=41), Progressive Disease (PD, n= 34), Stable Disease (SD, n=102), Unknown (Un, n=12). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.
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Figure B.112: Same plot as Figure B.112 but with ASAT values restricted from 0 to 60 U/L.

Figure B.113: Difference in ASAT values (U/L) between the values before and after the first chemotherapy cycle
for all the patients with no missing data, sorted by their final response, n=192. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=41), Progressive Disease (PD, n= 34), Stable Disease
(SD, n=102), Unknown (Un, n=12).
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B.1.3.11 Alanine Transaminase (ALAT)

The ALAT blood test is an additional blood test that is used to assess liver function. ALAT, or Alanine Transaminase,
is an enzyme primarily found in the liver, just like ASAT. The release of ALAT into the bloodstream is indicative of liver
cell damage, making it a useful marker for identifying liver failure or disease. Experts from the Erasmus Medical Centre
Rotterdam suggest that healthy ALAT values should be below 45 U/L for men and below 35 U/L for women.

Based on the information presented in Table B.36, it can be seen that the mean ALAT values before and after chemotherapy
were 63.4 U/L and 43.7 U/L, respectively. Most of the ALAT values are above the healthy range, with a maximum value
of 1241.0 U/L, which is extremely high considering that a healthy value below 45 U/L is recommended for men and below
35 U/L for women. The histograms in Figure B.114 and Figure B.115 show that the distributions are left-skewed, with a
long right tail, caused by outlier values, similar to the ASAT values. The QQplot in Figure B.116 and the values presented
in Table B.37 reject normality for ALAT values. However, this is most likely the result of the big outlier values caused by
patients with a worsened liver functionality. After filtering out any incomplete data, the dataset contains 218 observations,
with 121 males and 97 females. Out of these, 3 showed CR, 45 PR, 39 PD, 116 SD, and 15 values were unknown. The plots
in Figure B.117, Figure B.118, and Figure B.120 indicate that many of the ALAT values remain above the healthy range
even after chemotherapy, with no clear increasing or decreasing trend. The plots in Figure B.119 and Figure B.121 show a
zoomed-in plot of the ALAT values, restricting the y-values from 5-120 U/L. Finally, the plot in Figure B.122 depicts the
difference between the ALAT values before and after chemotherapy, sorted by the final response to treatment. All together,
these plots show no clear distinction between final response to chemotherapy and the ALAT values.

ALAT Value Before 1st Chemo After 1st Chemo
Min 8.0 9.0
1st Quartile 23.0 25.0
Median 24.0 24.0
Mean 63.4 43.7
3rd Quartile 57.3 49.0
Max 1241.0 264.0
NA 11 15

Table B.36: Summary statistics values of the ALAT values of the entire dataset in U/L, n=247.

ALAT value Before 1st Chemo After 1st Chemo
SW-test W 0.393 0.706
SW-test pvalue <2.2e-16 <2.2 e-16
KS test pvalue Invalid Invalid

Table B.37: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
ALAT values, n=247. The KS-test is invalid due to the presence of ties in the data.

ALAT values Before 1st Chemo After 1st Chemo Difference
Min 8.0 9.0 -221.0
1st Quartile 23.0 25.0 -11.8
Median 34.0 34.0 1.0
Mean 59.2 44.4 14.9
3rd Quartile 54.8 49.0 13.0
Max 1241.0 264.0 1183.0

Table B.38: Summary statistics of the ALAT values in U/L before and after the first chemotherapy cycle as well
as the difference for a cohort of patients with all missing values removed, n=218.

203



B.1. Data Analysis

Figure B.114: ALAT distribution before the first chemotherapy cycle (U/L) for the entire dataset: (a) scatterplot
of ALAT values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of ALAT values before the first chemotherapy cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

Figure B.115: ALAT distribution after the first chemotherapy cycle (U/L) for the entire dataset: (a) scatterplot
of ALAT values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of ALAT values after the first cycle across different final response categories, including Complete response (CR,
n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown
(Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD,
5=Un), total n=247.
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Figure B.116: QQplot of the ALAT values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.

Figure B.117: ALAT levels count (U/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=218.
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Figure B.118: ALAT levels (U/L) before and after the first chemotherapy cycle sorted by final response with no
missing values, n=218. The final response is classified as Complete Response (CR, n=3), Partial response (PR,
n=45), Progressive Disease (PD, n=39), Stable Disease (SD, n=116), Unknown (Un, n=15). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy female range, Blue = healthy
male range.

Figure B.119: Same plot as Figure B.118 but the ALAT levels are limited from 5-120 U/L.
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Figure B.120: ALAT levels (U/L) before and after the first chemotherapy cycle sorted by gender with no missing
values, n=218 (121 male, 97 female). Red = values before the first cycle, Green = values after the first chemother-
apy cycle, Pink = healthy female range, Blue = healthy male range.

Figure B.121: Same plot as Figure B.120 but the y-axis is restricted from 5-120 U/L.
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Figure B.122: Difference in ALAT values (U/L) between the values before and after the first chemotherapy cycle
for all the patients with no missing data, sorted by their final response, n=218. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=45), Progressive Disease (PD, n=39), Stable Disease
(SD, n=116), Unknown (Un, n=15).

B.1.3.12 Alkaline Phosphatase (AF)

Alkaline Phosphatase (AF) is another enzymatic measure that provides insight into liver function, similarly to ASAT and
ALAT. AF is primarily found in the liver, as well as in bones, intestines, and kidneys. High levels of AF may indicate liver
or gallbladder conditions, or other health issues. A healthy AF value is considered to be below 125 U/L.

In a similar manner to the ALAT and ASAT values, elevated AF values are also commonly observed in patients with PDAC,
as evidenced by the plots and tables presented previously. The distribution of AF values before and after chemotherapy is
similarly left-skewed with a long right tail, dominated by high AF values. The QQplot, histograms, and p-values depicted
in Figure B.125, Figure B.123, Figure B.124, and Table B.40 further highlight a clear deviation from normality caused by
the outlier values. After removal of missing values, the resulting dataset includes 214 observations, with 118 males and
96 females. The final response comprises 3 patients with complete response (CR), 45 with partial response (PR), 39 with
progressive disease (PD), 113 with stable disease (SD), and 14 unknown cases. The plot in Figure B.126 clearly shows that
the AF values exceed the healthy range, while the plot in Figure B.127 indicates no apparent correlation between these
values and the final response to chemotherapy. In general, the plot in Figure B.129 shows that AF values tend to decrease
slightly after chemotherapy. However, it varies significantly from patient to patient.

AF Value Before 1st Chemo After 1st Chemo
Min 25.0 25.0
1st Quartile 91.0 111.0
Median 128.0 149.0
Mean 171.5 176.4
3rd Quartile 197.5 200.8
Max 947.0 901.0
NA 9 21

Table B.39: Summary statistics values of the alkaline phosphatase values of the entire dataset in U/L, n=247.

208



B.1. Data Analysis

AF value Before 1st Chemo After 1st Chemo
SW-test W 0.660 0.707
SW-test pvalue <2.2e-16 <2.2 e-16
KS test pvalue Invalid Invalid

Table B.40: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
alkaline phosphatase values, n=247. The KS-test is invalid due to the presence of ties in the data.

Figure B.123: Alkaline Phosphatase distribution before the first chemotherapy cycle (109/L) for the entire dataset:
(a) scatterplot of alkaline phosphatase values before the first cycle, (b) histogram with a fitted density curve, (c)
boxplot showing the distribution of alkaline phosphatase values before the first chemotherapy cycle across different
final response categories, including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease
(PD, n=43), Stable disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a
different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

AF values Before 1st Chemo After 1st Chemo Difference
Min 25.0 25.0 -485.0
1st Quartile 91.0 111.0 -65.0
Median 126.0 148.5 -17.0
Mean 162.4 176.8 -14.4
3rd Quartile 175.8 199.5 22.0
Max 947.0 901.0 362.0

Table B.41: Summary statistics of the alkaline phosphatase levels in U/L before and after the first chemotherapy
cycle as well as the difference for a cohort of patients with all missing values removed, n=214.
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Figure B.124: Alkaline Phosphatase distribution after the first chemotherapy cycle (U/L) for the entire dataset:
(a) scatterplot of alkaline phosphatase values after the first cycle, (b) histogram with a fitted density curve, (c)
boxplot showing the distribution of alkaline phosphatase values after the first cycle across different final response
categories, including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43),
Stable disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.125: QQplot of the alkaline phosphatase values before and after the first chemotherapy cycle, with a
normal distribution fitted in red, n=247.
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Figure B.126: Alkaline Phosphatase levels (U/L) before and after the first chemotherapy cycle. Red = values
before the first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with
no missing values, n=214.

Figure B.127: Alkaline phosphatase levels (U/L) (U/L) before and after the first chemotherapy cycle sorted by
final response with no missing values, n=214. The final response is classified as Complete Response (CR, n=3),
Partial response (PR, n=45), Progressive Disease (PD, n= 39), Stable Disease (SD, n=113), Unknown (Un, n=14).
Red = values before the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.
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Figure B.128: Same plot as Figure B.127 but with AF values restricted between 0 and 200 U/L.

Figure B.129: Difference in alkaline phosphatase values (U/L) between the values before and after the first
chemotherapy cycle for all the patients with no missing data, sorted by their final response, n=214. The final
response is classified as Complete Response (CR, n=3), Partial response (PR, n=45), Progressive Disease (PD,
n= 39), Stable Disease (SD, n=113), Unknown (Un, n=14).
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B.1.3.13 Gamma-Glutamyltransferase (GGT)

In line with the previous liver function tests, namely ALAT, ASAT, and AF, Gamma-glutamyltransferase (GGT) also
provides information on liver function. GGT is a liver enzyme that is involved in the metabolism of glutathione, a molecule
that helps protect cells from damage. It is also responsible for breaking down food, drinks, and waste materials. Elevated
levels of GGT in the blood are a marker of liver dysfunction and can be an indicator of various liver diseases, including
alcoholic liver disease, nonalcoholic fatty liver disease, and viral hepatitis. However, high levels of GGT can also be caused
by other factors such as obesity, diabetes, and certain medications. According to medical experts from the Erasmus Medical
Centre Rotterdam, for males, a healthy value is below 40 U/L, while for females, a healthy value is below 25 U/L. As a side
note, patient 002PP20052 in the dataset had a reported GGT value of 10229.0 U/L, which is likely a typographical error
and should be 1029 U/L. It is highly improbable to observe a value above 10000 U/L. Therefore, this high value has been
adjusted to 1029 U/L before the start of the analysis.

Alcohol consumption is a well-known cause of elevated GGT levels. Chronic alcohol use can lead to alcoholic liver disease,
which is characterized by inflammation and scarring of the liver tissue. GGT levels are commonly used as a marker of
alcohol consumption, and elevated levels can indicate excessive drinking even in the absence of liver damage. However, it
should be noted that other factors, such as obesity and certain medications, can also cause elevated GGT levels, so GGT
alone cannot be used as a definitive marker of alcohol use. In the context of PDAC the relationship between GGT, alcohol
use, and treatment is complex. While chronic alcohol use is a risk factor for the development of PDAC, it is unclear whether
alcohol use has a direct effect on GGT levels in PDAC patients. Additionally, the effects of chemotherapy on GGT levels
in PDAC patients are not well understood, and it is possible that chemotherapy could cause temporary elevations in GGT
levels due to liver damage [107].

Similar to the previous observations of the liver enzymes, most GGT values seem to be scattered within the same range with
a couple of outliers causing a left-skewed histogram and an extreme long tail, as seen in Figure B.130 and Figure B.131.
There seems to be no distinction between GGT values and the final response either. Furthermore, the QQplot as well
as the values reported in Table B.43 reject normality of the GGT-values. When the NA values are removed from the
dataset, a total of 191 observations remain, with 102 male and 89 female patients. Among them, 3 patients have complete
response as the final outcome, 39 have partial response, 34 have progressive disease, 104 have stable disease, and 11 have
unknown values. From the plots given in Figure B.133, Figure B.134 and Figure B.135, it can be inferred that PDAC
patients generally have GGT values above the healthy range for both males and females. In addition, there seems to be
no clear distinguishment across the final response groups. Sorting the GGT-values based on gender, as can be seen in
Figure B.136 and the zoomed plot in Figure B.137, no separation between the two genders can clearly be detected based
on the GGT-values. The difference in GGT-values is also highly dependent on the individual, as seen in Figure B.138.

Given the significant influence of alcohol on GGT levels, it might be insightful to examine the relationship between alcohol
use and GGT levels among PDAC patients. This analysis is presented in Figure B.139 and Figure B.140. However, the
results do not indicate any discernible trend between these variables.

GGT Value Before 1st Chemo After 1st Chemo
Min 13.0 15.0
1st Quartile 37.0 38.8
Median 92.0 74.0
Mean 230.7 127.1
3rd Quartile 206.0 142.5
Max 2856.0 1230.0
NA 26 39

Table B.42: Summary statistics values of the GGT values of the entire dataset in U/L, n=247.

GGT value Before 1st Chemo After 1st Chemo
SW-test W 0.213 0.602
SW-test pvalue <2.2e-16 <2.2 e-16
KS test pvalue Invalid Invalid

Table B.43: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
GGT values, n=247. The KS-test is invalid due to the presence of ties in the data.
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Figure B.130: GGT distribution before the first chemotherapy cycle (U/L) for the entire dataset: (a) scatterplot
of GGT values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of GGT values before the first chemotherapy cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

Figure B.131: GGT distribution after the first chemotherapy cycle (U/L) for the entire dataset: (a) scatterplot of
GGT values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of GGT values after the first cycle across different final response categories, including Complete response (CR,
n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown
(Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD,
5=Un), total n=247.
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Figure B.132: QQplot of the GGT values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.

GGT values Before 1st Chemo After 1st Chemo Difference
Min 13.0 15.0 -463.0
1st Quartile 36.5 38.0 -16.0
Median 88.0 75.0 8.0
Mean 164.9 129.8 35.1
3rd Quartile 187.0 145.0 54.5
Max 1576.0 1230.0 848.0

Table B.44: Summary statistics of the GGT levels in U/L before and after the first chemotherapy cycle as well as
the difference for a cohort of patients with all missing values removed, n=191.

Figure B.133: GGT values (U/L) before and after the first chemotherapy cycle. Red = values before the first
cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing values,
n=191.
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Figure B.134: GGT levels (U/L) before and after the first chemotherapy cycle sorted by final response with no
missing values, n=191. The final response is classified as Complete Response (CR, n=3), Partial response (PR,
n=39), Progressive Disease (PD, n= 34), Stable Disease (SD, n=104), Unknown (Un, n=11). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy female range, Blue = healthy
male range.

Figure B.135: Same plot as Figure B.134 but the y-axis limited from 10-150 U/L.
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Figure B.136: GGT levels (U/L) before and after the first chemotherapy cycle sorted by gender with no missing
values, n=191 (102 male, 89 female). Red = values before the first cycle, Green = values after the first chemother-
apy cycle, Pink = healthy female range, Blue = healthy male range.

Figure B.137: Same plot as Figure B.136 but the y-values restricted from 10-150 U/L.

217



B.1. Data Analysis

Figure B.138: Difference in GGT values (U/L) between the values before and after the first chemotherapy cycle
for all the patients with no missing data, sorted by their final response,n=191. The final response is classified as
Complete Response (CR, n=3), Partial response (PR, n=39), Progressive Disease (PD, n= 34), Stable Disease
(SD, n=104), Unknown (Un, n=11).

Figure B.139: Boxplot of GGT levels (U/L) before the first chemotherapy cycle sorted by alcohol with no missing
values, n=191. The alcohol usage is classified as 0= No (n=63), 1 = Yes (n=83), 2 = Stopped (n=31), 3 =
Unknown (n=14)
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Figure B.140: Boxplot of GGT levels (U/L) after the first chemotherapy cycle sorted by alcohol with no missing
values, n=191. The alcohol usage is classified as 0= No (n=63), 1 = Yes (n=83), 2 = Stopped (n=31), 3 =
Unknown (n=14)

B.1.3.14 Bilirubin (BR)

Bilirubin is a byproduct of the breakdown of red blood cells and is present in bile, which is synthesized by the liver to aid
in digestion. Elevated levels of bilirubin can be indicative of liver or bile duct dysfunction, as a healthy liver is capable
of efficiently removing most bilirubin from the body. Although CA19-9 is a well-studied tumor marker in PDAC patients,
roughly 10% of the population is incapable of producing this marker, making it necessary to also measure bilirubin levels.
When assessing the relationship between CA19-9 and bilirubin levels, a high level of bilirubin alone or in conjunction with a
high level of CA19-9 does not provide significant information about the cancer. Only individuals with normal CA19-9 levels
and elevated bilirubin levels can have conclusions drawn regarding cancer. A bilirubin level under 17 µmol/L is generally
considered healthy for adults according to medical experts from the Erasmus Medical Centre Rotterdam.

The summary statistics presented in Table B.45 show that the bilirubin levels tend to be high before the first chemotherapy
treatment, with an average of 18.0 µ mol/L and an extremely high maximum value of 132.0 µ mol/L. However, after the first
chemotherapy treatment, a significant decrease in the bilirubin values is observed, as evidenced by all statistical measures,
with the maximum value being 30.0 µ mol/L. This indicates that chemotherapy has a significant effect on bilirubin values in
PDAC patients. The scatterplots, histogram, and boxplots presented in Figure B.141 and Figure B.142 illustrate that the
distribution of bilirubin values is left-skewed and non-normal. This finding is further supported by the p-values presented
in Table B.46 and the QQplots provided in Figure B.143. Additionally, the boxplots suggest that partial responders to
chemotherapy tend to have lower bilirubin values in general, although the difference from the other groups is minimal and
conclusive statements cannot be made.

To continue, examine the dataset without missing values, consisting of 219 observations, with 123 male and 96 female
patients. The final response variable is distributed among 3 patients with complete response (CR), 45 with partial response
(PR), 41 with progressive disease (PD), 115 with stable disease (SD), and 15 Unknown values. The visual representations
of the data, given in Figure B.144 and Figure B.145 suggest that the majority of bilirubin (BR) values before chemotherapy
are above healthy levels, whereas after chemotherapy, they significantly decrease towards a more optimal range. Moreover,
the difference in bilirubin values, shown in Figure B.146, seem to be smaller in the partial responders to chemotherapy
compared to the other groups. Nevertheless, clear conclusions cannot be drawn.
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BR Value Before 1st Chemo After 1st Chemo
Min 2.0 2.0
1st Quartile 7.0 5.0
Median 14.0 7.0
Mean 18.0 8.8
3rd Quartile 24.5 11.8
Max 132.0 30.0
NA 8 17

Table B.45: Summary statistics values of the bilirubin values of the entire dataset in µmol/L, n=247.

BR value Before 1st Chemo After 1st Chemo
SW-test W 0.731 0.901
SW-test pvalue <2.2e-16 3.641e-11
KS test pvalue Invalid Invalid

Table B.46: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
bilirubin values, n=247. The KS-test is invalid due to the presence of ties in the data.

Figure B.141: Bilirubin distribution before the first chemotherapy cycle (µmol/L) for the entire dataset: (a)
scatterplot of bilirubin values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of bilirubin values before the first chemotherapy cycle across different final response categories,
including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable
disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

BR values Before 1st Chemo After 1st Chemo Difference
Min 2.0 2.0 -21.0
1st Quartile 7.0 5.0 1.0
Median 14.0 8.0 5.0
Mean 17.7 9.0 8.7
3rd Quartile 24.5 12.0 12.8
Max 132.0 30.0 118.0

Table B.47: Summary statistics of the bilirubin values in µmol/L before and after the first chemotherapy cycle as
well as the difference for a cohort of patients with all missing values removed, n=219.
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Figure B.142: Bilirubin distribution after the first chemotherapy cycle (µmol/L) for the entire dataset: (a)
scatterplot of bilirubin values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of bilirubin values after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

Figure B.143: QQplot of the bilirubin values before and after the first chemotherapy cycle, with a normal distri-
bution fitted in red, n=247.
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Figure B.144: Bilirubin levels (µmol/L) before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=219.

Figure B.145: Bilirubin levels (µmol/L) before and after the first chemotherapy cycle sorted by final response
with no missing values, n=219. The final response is classified as Complete Response (CR, n=3), Partial response
(PR, n=45), Progressive Disease (PD, n= 41), Stable Disease (SD, n=115), Unknown (Un, n=15). Red = values
before the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.

222



B.1. Data Analysis

Figure B.146: Difference in bilirubin values (µmol/L)between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=219. The final response is classified
as Complete Response (CR, n=3), Partial response (PR, n=45), Progressive Disease (PD, n= 41), Stable Disease
(SD, n=115), Unknown (Un, n=15).

B.1.3.15 Albumin Alb

Albumin is a crucial protein synthesized by the liver, with two primary functions. Firstly, it contributes to the colloid
osmotic pressure, which aids in maintaining fluid balance between the blood and tissues. Secondly, albumin is involved
in the transportation, distribution and metabolism of endogenous and exogenous molecules, such as fatty acids, thyroid
hormones, metals, peptides, among others. Inadequate levels of albumin in the blood can lead to fluid leakage from the
blood into the body’s cavities, such as the lungs or abdomen. Low albumin levels can signify health conditions affecting
the liver, kidneys, or other organs, while excessively high levels are often a result of dehydration. The healthy range for
albumin levels is typically between 35 and 55 g/L according to medical experts. The dataset used for analysis included
several entries with an albumin level of 0.0 g/L, which is likely to be missing data. Therefore, all albumin levels with a
value of 0.0 g/L were converted to NA for further analysis.

The tabulated summary statistics presented in Table Table B.48 indicate a slight decrease in albumin values following the
first chemotherapy treatment. The observed decline is approximately 3.0g/L across most statistics, with the exception of
the maximum value, which increased from 49.0 g/L to 64.0 g/L. However, this increase may be attributed to a patient
with pre-existing liver disease or other health conditions. Further insights into the distribution of albumin values before
and after chemotherapy can be obtained from the scatter plots, histograms, and boxplots depicted in Figures B.147 and
B.148. Prior to chemotherapy, albumin values were mostly concentrated within the 25-45 g/L range, while post-treatment,
a wider range of values were observed, including some extremely high and low outliers. Nevertheless, there appears to
be no discernible pattern in the ultimate response to chemotherapy based on albumin levels before or after the initial
session. Additionally, the QQplots displayed in Figure B.149 suggest that albumin levels exhibit some normality, albeit
with deviations from normality in the tails due to the presence of outliers. Particularly, albumin levels following the first
chemotherapy treatment appear to be reasonably normally distributed, with two clear outlier observations. However, the
Shapiro-Wilk test results presented in Table B.49 reject normality due to the aforementioned outliers. KS-test remains
invalid due to the presence of ties in the dataset.

Based on the dataset without missing values, the study includes n= 161 observations (83 male, 78 female). The final
response of the patients is categorized as 2 patients with CR, 36 with PR, 28 with PD, 84 with SD, and 11 unknown cases.
The visualization of the dataset indicates that most of the albumin values lie within the healthy range, but there seems to
be a trend towards the lower end of the healthy range. A distinct trend is observed in the plot depicted in Figure B.150
and Figure B.151, indicating that after chemotherapy, the albumin values tend to shift towards the lower healthier range
as compared to before, with some patients falling below the healthy range and one patient above. The analysis of Albumin
values before and after chemotherapy demonstrates the no clear differences in the final response groups, as illustrated in
Figure B.152.
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Alb Value Before 1st Chemo After 1st Chemo
Min 23.0 8.0
1st Quartile 36.0 33.0
Median 40.0 37.0
Mean 39.0 36.5
3rd Quartile 43.0 40.0
Max 49.0 64.0
NA 49 65

Table B.48: Summary statistics values of the albumin values of the entire dataset in g/L, n=247.

Alb value Before 1st Chemo After 1st Chemo
SW-test W 0.964 0.946
SW-test pvalue 5.36e-5 2.16e-6
KS test pvalue Invalid Invalid

Table B.49: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
albumin values, n=247. The KS-test is invalid due to the presence of ties in the data.

Figure B.147: Albumin distribution before the first chemotherapy cycle (g/L) for the entire dataset: (a) scatterplot
of albumin values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distri-
bution of albumin values before the first chemotherapy cycle across different final response categories, including
Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD,
n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR,
2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Alb values Before 1st Chemo After 1st Chemo Difference
Min 23.0 8.0 -23.0
1st Quartile 37.0 33.0 0.0
Median 40.0 37.0 2.8
Mean 39.3 36.5 3.5
3rd Quartile 43.0 40.0 5.0
Max 49.0 64.0 34.0

Table B.50: Summary statistics of the albumin levels in g/L before and after the first chemotherapy cycle as well
as the difference for a cohort of patients with all missing values removed, n=161.
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Figure B.148: Albumin distribution after the first chemotherapy cycle (g/L) for the entire dataset: (a) scatterplot
of albumin values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of albumin values after the first cycle across different final response categories, including Complete response (CR,
n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown
(Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD,
5=Un), total n=247.

Figure B.149: QQplot of the albumin values before and after the first chemotherapy cycle, with a normal distri-
bution fitted in red, n=247.
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Figure B.150: Albumin levels (g/L) before and after the first chemotherapy cycle. Red = values before the first
cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing values,
n=161.

Figure B.151: Albumin levels (g/L) before and after the first chemotherapy cycle sorted by final response with no
missing values, n=161. The final response is classified as Complete Response (CR, n=2), Partial response (PR,
n=36), Progressive Disease (PD, n=28), Stable Disease (SD, n=84), Unknown (Un, n=11). Red = values before
the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.
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Figure B.152: Difference in albumin values (g/L) between the values before and after the first chemotherapy cycle
for all the patients with no missing data, sorted by their final response, n=161. The final response is classified
as Complete Response (CR, n=2), Partial response (PR, n=36), Progressive Disease (PD, n=28), Stable Disease
(SD, n=84), Unknown (Un, n=11).

B.1.3.16 C-Reactive Protein (CRP)

C-Reactive Protein (CRP) is a hepatic protein that demonstrates an elevation in response to inflammation in the body.
The presence of high levels of CRP is indicative of a significant underlying health condition that triggers inflammation,
which in turn aids the body in safeguarding its tissues and facilitating their recuperation from injuries, infections, and other
illnesses. A desirable CRP value should ideally be less than 1.0 mg/L according to medical experts from the Erasmus Medical
Centre Rotterdam. The present study’s dataset (n=247) revealed that the mean CRP value before the first chemotherapy
treatment was 14.0 mg/L, whereas after the initial chemotherapy treatment, the mean increased to 22.0 mg/L. The statistical
summary presented in Table B.51 demonstrated that all CRP metrics increased after the first chemotherapy session, with the
maximum value exhibiting more than a twofold increment, indicating a substantial surge in inflammation among patients.
The visual aids depicted in Figure B.153 and Figure B.154 corroborated the data by displaying a similar trend in which the
majority of patients demonstrated low CRP values before the first chemotherapy session, followed by an increase afterward.
Moreover, the scatter plot and histogram showed that the outlier values in both the before and after first chemotherapy
CRP values increased. Nonetheless, there was no observable significant difference among the final response groups regarding
the CRP values before or after the first chemotherapy treatment. The QQplots in Figure B.155 as well as the tests results
given in Table B.52 also reject normality of the CRP values.

Omitting the missing values results in a dataset consisting of n= 127 observations, with 66 being male and 61 being female.
The distribution of the final response variable indicates that only one patient achieved a complete response (CR), while 25
and 24 patients demonstrated partial response (PR) and progressive disease (PD), respectively. Additionally, 70 patients
displayed stable disease (SD), while the remaining seven observations had unknown values. Moreover, the CRP statistics
presented in Table B.53 exhibit an increasing trend in all values following the first chemotherapy session, similar to what
has been observed earlier before removing the missing values. The graphs in Figure B.156 and Figure B.157 further support
this trend, as the green curve predominantly lies above the red curve for a considerable number of patients, indicating an
elevation in inflammation after the initial chemotherapy treatment. Moreover, the zoomed-in view of Figure B.158 reveals
that almost all CRP values surpass the healthy threshold, an expected outcome, given that PDAC patients tend to have
already elevated inflammation levels. Nevertheless, there was no definitive demarcation among the final response groups,
consistent with previous observations. The sole observable pattern was that roughly half of the patients with partial response
had lower CRP levels in general. However, no definitive conclusions could be drawn from this. The graph in Figure B.159
demonstrates that the most significant difference in CRP levels occurred in the PD and SD groups, with SD demonstrating
the most prominent spikes.
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CRP Value Before 1st Chemo After 1st Chemo
Min 0.0 0.0
1st Quartile 1.8 2.7
Median 5.0 8.0
Mean 14.0 22.0
3rd Quartile 12.0 24.2
Max 150.0 332.0
NA 78 100

Table B.51: Summary statistics values of the C-Reactive Protein values of the entire dataset in mg/L, n=247.

CRP value Before 1st Chemo After 1st Chemo
SW-test W 0.591 0.506
SW-test pvalue <2.2e-16 <2.2e-16
KS test pvalue Invalid Invalid

Table B.52: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
C-reactive protein values, n=247. The KS-test is invalid due to the presence of ties in the data.

Figure B.153: C-reactive protein distribution before the first chemotherapy cycle (mg/L) for the entire dataset: (a)
scatterplot of CRP values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the
distribution of CRP values before the first chemotherapy cycle across different final response categories, including
Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD,
n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR,
2=PR, 3=PD, 4=SD, 5=Un), total n=247.

CRP values Before 1st Chemo After 1st Chemo Difference
Min 0.0 0.0 -318.0
1st Quartile 1.3 2.7 -12.0
Median 4.7 8.0 -1.3
Mean 13.0 22.3 -9.3
3rd Quartile 10.0 23.0 2.0
Max 150.0 332.0 143.0

Table B.53: Summary statistics of the C-reactive protein levels in mg/L before and after the first chemotherapy
cycle as well as the difference for a cohort of patients with all missing values removed, n=127.
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Figure B.154: C-reactive protein distribution after the first chemotherapy cycle (mg/L) for the entire dataset:
(a) scatterplot of CRP values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of CRP values after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

Figure B.155: QQplot of the thrombocyte values before and after the first chemotherapy cycle, with a normal
distribution fitted in red, n=247.
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Figure B.156: C-reactive protein levels (mg/L) before and after the first chemotherapy cycle. Red = values before
the first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no
missing values, n=127.

Figure B.157: C-reactive protein levels (mg/L) before and after the first chemotherapy cycle sorted by final
response with no missing values, n=127. The final response is classified as Complete Response (CR, n=1), Partial
response (PR, n=25), Progressive Disease (PD, n=24), Stable Disease (SD, n=70), Unknown (Un, n=7). Red =
values before the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.
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Figure B.158: Same plot as Figure B.157 but with the y-values restricted from 0 to 50 mg/L. The pink line
indicates a CRP level of 1.0 mg/L.

Figure B.159: Difference in hemoglobin values (mmol/L) between the values before and after the first chemotherapy
cycle for all the patients with no missing data, sorted by their final response, n=127. The final response is classified
as Complete Response (CR, n=1), Partial response (PR, n=25), Progressive Disease (PD, n=24), Stable Disease
(SD, n=70), Unknown (Un, n=7).
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B.1.3.17 International Normalized Ratio (INR)

The International Normalized Ratio (INR) is a ratio commonly used to evaluate blood coagulation disorders by measuring
the time for blood to clot, also known as Prothrombin time (PT). Prothrombin, a protein synthesized by the liver, is one of
several clotting factors that assist in maintaining the appropriate blood consistency. INR values below 2.0 are considered
healthy, with higher values indicating a worse condition according to medical experts from the Erasmus Medical Centre
Rotterdam. The dataset provided comprises no more than 30 INR value observations, making it inadequate for drawing
robust conclusions. Nevertheless, examining the available data may still be informative. Of particular interest is the high
outlier value of 26.0 found in patient 018PP20003. The statistical analysis presented in Table B.54 indicates that the median
INR value remains unchanged following the initial chemotherapy treatment, while the mean has increased. It should be
noted, however, that the outlier value of 26.0 is likely responsible for this increase, as evidenced by the third quartile value of
1.2 after the first chemotherapy treatment versus 1.1 pre-treatment. Visualization of the data via scatterplots, histograms,
and boxplots, as depicted in Figure B.160 and Figure B.161, indicates that the majority of patients exhibit INR values of
1.0, and all partial responders exhibit INR values of either 0.0 or 1.0 following the first chemotherapy session. Furthermore,
the QQplots depicted in Figure B.162 and test values presented in Table B.55 suggest that the INR values are not normally
distributed.

After filtering out any incomplete data, the dataset comprises only n=19 observations, with 8 male and 11 female patients.
Of these, 2 patients have partial response (PR), 3 have progressive disease (PD), 13 have stable disease (SD), and 1 has an
unknown final response. The statistical measures reported in Table B.56 are quite similar to those before. Specifically, the
median INR value before and after the first chemotherapy session remains 1.0, while the mean value after the first session
has increased somewhat due to the presence of the high outlier INR value of 26.0. The plots provided in Figure B.163 and
Figure B.164 do not reveal any clear trends with respect to the final response groups. Likewise, Figure B.165 does not show
any significant differences between the response groups, as the spike observed in the SD group is caused by a single patient.

INR Value Before 1st Chemo After 1st Chemo
Min 0.0 0.0
1st Quartile 0.99 0.0
Median 1.0 1.0
Mean 0.85 1.7
3rd Quartile 1.1 1.2
Max 2.5 26.0
NA 217 217

Table B.54: Summary statistics values of the INR values of the entire dataset, n=247.

INR value Before 1st Chemo After 1st Chemo
SW-test W 0.717 0.303
SW-test pvalue 2.8e-6 7.4e-11
KS test pvalue 6.6e-10 6.2e-10

Table B.55: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
INR values, n=30.

INR values Before 1st Chemo After 1st Chemo Difference
Min 0.0 0.0 -25.0
1st Quartile 0.0 0.0 -0.1
Median 1.0 1.0 0.0
Mean 0.74 2.1 -1.4
3rd Quartile 1.1 1.2 0.0
Max 2.5 26.0 2.5

Table B.56: Summary statistics of the INR values before and after the first chemotherapy cycle as well as the
difference for a cohort of patients with all missing values removed, n=19.
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Figure B.160: INR distribution before the first chemotherapy cycle for the entire dataset: (a) scatterplot of
INR values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution
of INR values before the first chemotherapy cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.

Figure B.161: INR distribution after the first chemotherapy cycle for the entire dataset: (a) scatterplot of INR
values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution of
INR values after the first cycle across different final response categories, including Complete response (CR, n=3),
Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un,
n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un),
total n=247.
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Figure B.162: QQplot of the INR values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.

Figure B.163: INR levels before and after the first chemotherapy cycle. Red = values before the first cycle, Green
= values after the first chemotherapy cycle. The plot exclusively contains data with no missing values, n=19.
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Figure B.164: INR values before and after the first chemotherapy cycle sorted by final response with no missing
values, n=19. The final response is classified as Complete Response (CR, n=0), Partial response (PR, n=2),
Progressive Disease (PD, n=3), Stable Disease (SD, n=13), Unknown (Un, n=1). Red = values before the first
cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.

Figure B.165: Difference in INR values between the values before and after the first chemotherapy cycle for all the
patients with no missing data, sorted by their final response, n=19. The final response is classified as Complete
Response (CR, n=0), Partial response (PR, n=2), Progressive Disease (PD, n=3), Stable Disease (SD, n=13),
Unknown (Un, n=1).
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B.1.3.18 Systemic Inflammation Index (SII)

The systemic inflammation index (SII) is a metric that characterizes the level of inflammation in the body. It is calculated
using the following formula:

SII =
N × P

L
(B.4)

Here, N refers to the neutrophil count, P refers to the platelet (thrombocytes) count, and L refers to the lymphocyte count.
All these values are measured in 109/L. A SII value below 900 is considered normal or healthy according to medical experts
from the Erasmus Medical Centre Rotterdam. The statistical results in Table B.57 indicate that the average SII values
after the first chemotherapy treatment are higher than before, with both exceeding the healthy threshold of 900. However,
closer examination of the table shows that while the median, mean, and third quartile increased, the minimum SII value
decreased from 57.4 before treatment to 17.1 after, and the maximum value decreased from 7246.8 to 5563.2. This suggests
an overall increase in SII values after the first chemotherapy treatment, but with some patients experiencing a decrease.
The scatterplot, histogram, and boxplots in Figure B.166 and Figure B.167 demonstrate a left-skewed distribution with a
long right tail due to high SII values for a couple of patients. Furthermore, the distribution appears to be more dispersed
after treatment, which can be seen clearly in the scatterplot. However, no clear association between SII values and final
response to chemotherapy can be deduced from the provided boxplots. The non-normality of SII values is confirmed by
both QQplots and values in Table B.58.

Once all missing values have been removed, the SII dataset consists of 118 observations, with 62 male and 56 female patients.
The final response is CR for 2 patients, PR for 21, PD for 24, SD for 63, and 8 were categorized as Unknown. The statistical
analysis presented in Table B.59 shows that the central tendency and dispersion of SII values were similar to those observed
in the full dataset. As depicted in Figure B.169 and Figure B.170, SII values tend to increase after the first chemotherapy
treatment, although some patients displayed a decrease in SII values. The smallest difference between the SII values before
and after treatment is observed in the PR group. Conversely, the largest differences are identified in the SD group of this
dataset.

SII Value Before 1st Chemo After 1st Chemo
Min 57.4 17.1
1st Quartile 545.7 492.0
Median 789.7 852.8
Mean 1013.0 1121.3
3rd Quartile 1176.2 1481.2
Max 7246.8 5563.2
NA 75 106

Table B.57: Summary statistics values of the SII values of the entire dataset, n=247.

SII value Before 1st Chemo After 1st Chemo
SW-test W 0.645 0.833
SW-test pvalue <2.2e-16 2.26e-11
KS test pvalue <2.2e-16 <2.2e-16

Table B.58: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
SII values, n=247.

SII values Before 1st Chemo After 1st Chemo Difference
Min 57.4 17.1 -4357.6
1st Quartile 569.8 503.3 -469.6
Median 778.5 831.0 -46.6
Mean 968.9 1126.0 -157.1
3rd Quartile 1139.3 1349.5 392.3
Max 7246.8 5563.2 6178.6

Table B.59: Summary statistics of the SII values before and after the first chemotherapy cycle as well as the
difference for a cohort of patients with all missing values removed, n=118.
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Figure B.166: SII distribution before the first chemotherapy cycle for the entire dataset: (a) scatterplot of SII values
before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution of SII values
before the first chemotherapy cycle across different final response categories, including Complete response (CR,
n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown
(Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD,
5=Un), total n=247.

Figure B.167: SII distribution after the first chemotherapy cycle for the entire dataset: (a) scatterplot of SII values
after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the distribution of SII values
after the first cycle across different final response categories, including Complete response (CR, n=3), Partial
response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122), and Unknown (Un, n=31),
(d) the same information as (c) using a different graphical approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total
n=247.
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Figure B.168: QQplot of the SII values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.

Figure B.169: SII values before and after the first chemotherapy cycle. Red = values before the first cycle, Green
= values after the first chemotherapy cycle. The plot exclusively contains data with no missing values, n=118.
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Figure B.170: SII values before and after the first chemotherapy cycle sorted by final response with no missing
values, n=118. The final response is classified as Complete Response (CR, n=2), Partial response (PR, n=21),
Progressive Disease (PD, n=24), Stable Disease (SD, n=63), Unknown (Un, n=8). Red = values before the first
cycle, Green = values after the first chemotherapy cycle, Pink = healthy range.

Figure B.171: Difference in SII values between the values before and after the first chemotherapy cycle for all the
patients with no missing data, sorted by their final response, n=118. The final response is classified as Complete
Response (CR, n=2), Partial response (PR, n=21), Progressive Disease (PD, n=24), Stable Disease (SD, n=63),
Unknown (Un, n=8).
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B.1.3.19 Neutrophil to Lymphocyte Ratio (NLR)

The Neutrophil to Lymphocyte Ratio (NLR) and Platelet to Lymphocyte Ratio (PLR) are two ratios that have been
investigated in relation to the response of PDAC patients to chemotherapy. The NLR can be calculated by dividing the
neutrophil count by the lymphocyte count in the blood, as shown in Equation B.5.

NLR =
N

L
(B.5)

where N is the neutrophil count and L the lymphocyte count in the blood. According to the study by Forget et al.
[108] healthy adults have NLR values between 0.78 and 3.53. Based on the statistics presented in B.60, it is evident that
the Neutrophil to Lymphocyte Ratio (NLR) increased on average for all metrics, except for the minimum value, which
decreased from 0.43 to 0.14 after the first chemotherapy treatment. This increase was observed in the maximum value,
which almost doubled from 19.8 to 36.8, suggesting a significant rise in neutrophil count relative to lymphocyte count in the
blood. The scatter plots, histograms, and boxplots depicted in B.172 and B.173 reveal a left-skewed distribution of NLR
values before and after the first chemotherapy treatment with a long right tail attributable to outliers. The boxplots do not
exhibit any clear trend in the final response to chemotherapy concerning NLR values before or after the first chemotherapy
treatment. The QQplots illustrated in B.174 and test results outlined in B.61 confirm non-normality, confirming the
left-skewed distribution and long right tail.

Following the exclusion of missing values, the remaining dataset contains 119 observations, of which 63 are male and 56 are
female. Of these, 2 patients had CR, 21 had PR, 24 had PD, 64 had SD, and 8 had an unknown final response. As previously
observed, the NLR values continue to exhibit an increasing trend in all metrics, except for the minimum value, with the
green graph consistently higher than the red graph. This pattern is evident in the plots and difference plot presented in
Figure B.175, Figure B.177, and Figure B.181, respectively. In particular, the SD group displays the largest spikes in NLR
values, while the smallest differences and NLR values are observed in the PR group. Nevertheless, almost all of NLR values
exceed the healthy reference range, as shown in Figure B.178. Further analysis by gender indicates no discernible difference
in NLR values between male and female patients, seen in Figure B.179 and Figure B.180.

NLR Value Before 1st Chemo After 1st Chemo
Min 0.43 0.14
1st Quartile 2.15 2.59
Median 3.05 4.41
Mean 3.60 5.51
3rd Quartile 4.42 6.77
Max 19.80 36.84
NA 75 105

Table B.60: Summary statistics values of the Neutrophil-to-Lymphocyte ratio values of the entire dataset, n=247.

NLR value Before 1st Chemo After 1st Chemo
SW-test W 0.761 0.695
SW-test pvalue 1.929e-15 8.269e-16
KS test pvalue <2.2e-16 <2.2e-16

Table B.61: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
NLR values, n=247.

NLR values Before 1st Chemo After 1st Chemo Difference
Min 0.43 0.18 -32.96
1st Quartile 2.25 2.76 -3.06
Median 2.96 4.34 -1.21
Mean 3.49 5.62 -2.13
3rd Quartile 4.15 6.73 0.59
Max 19.80 36.84 12.48

Table B.62: Summary statistics of the Neutrophil-to-Lymphocyte ratio before and after the first chemotherapy
cycle as well as the difference for a cohort of patients with all missing values removed, n=119.
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Figure B.172: Neutrophil-to-Lymphocyte Ratio distribution before the first chemotherapy cycle for the entire
dataset: (a) scatterplot of NLR values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot
showing the distribution of NLR values before the first chemotherapy cycle across different final response categories,
including Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable
disease (SD, n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical
approach (1=CR, 2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.173: Neutrophil-to-Lymphocyte distribution after the first chemotherapy cycle for the entire dataset:
(a) scatterplot of NLR values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of NLR values after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.
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Figure B.174: QQplot of the NLR values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.

Figure B.175: Neutrophil-to-Lymphocyte ratio before and after the first chemotherapy cycle. Red = values before
the first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no
missing values, n=119.
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Figure B.176: Same plot as Figure B.175 but with the y-axis restricted from 0-20.

Figure B.177: Neutrophil-to-Lymphocyte ratio before and after the first chemotherapy cycle sorted by final re-
sponse with no missing values, n=119. The final response is classified as Complete Response (CR, n=2), Partial
response (PR, n=21), Progressive Disease (PD, n=24), Stable Disease (SD, n=64), Unknown (Un, n=8). Red =
values before the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy female range, Blue
= healthy male range.
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Figure B.178: Same plot as Figure B.177 but with the y-values restricted between 0 and 20.

Figure B.179: Neutrophil-to-Lymphocyte ratio before and after the first chemotherapy cycle sorted by gender with
no missing values, n=119 (63 male, 56 female). Red = values before the first cycle, Green = values after the first
chemotherapy cycle, Pink = healthy female range, Blue = healthy male range.
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Figure B.180: Same plot as Figure B.179 but with the y-values restricted between 0-20.

Figure B.181: Difference in Neutrophil-to-Lymphocyte ratios between the values before and after the first
chemotherapy cycle for all the patients with no missing data, sorted by their final response, n=119. The fi-
nal response is classified as Complete Response (CR, n=2), Partial response (PR, n=21), Progressive Disease (PD,
n=24), Stable Disease (SD, n=64), Unknown (Un, n=8).
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B.1.3.20 Platelet to Lymphocyte Ratio (PLR)

The platelet to lymphocyte ratio (PLR) is a commonly studied metric, defined as the ratio between the platelet count
and lymphocyte count in the blood, denoted by P and L respectively, and expressed mathematically as in Equation B.6.
Medical experts have identified a healthy range for PLR in males to be within the interval of 36.63–149.13, and in females
to be within 43.36–172.68.

PLR =
P

L
(B.6)

where P is the platelet (thrombocyte) count in the blood and L the lymphocyte count. A healthy range for males is between
36.63–149.13 and for females between 43.36–172.68 according to experts. To proceed, the data presented in Table B.63
indicate that the PLR values have generally decreased, in contrast to the NLR values. The observed decrease in PLR
values after the first chemotherapy treatment can be attributed to either a decrease in platelet count or an increase in
lymphocyte count, or a combination of both, resulting in an overall lower PLR value. The distribution of PLR values can
be visualized through scatter plots, histograms, and box plots shown in Figure B.182 and Figure B.183. The majority of
PLR values are concentrated between 0 and 400 before the first chemotherapy treatment and between 0 and 200 after the
first chemotherapy treatment, with a few outlier values indicating high PLR values in some patients. The histograms also
indicate a left-skewed distribution with a long right tail due to the high outlier values. However, no clear trend is evident in
the final response groups except for the observation that the PD group has the smallest outlier values. The normality of the
PLR values is further confirmed by the QQplots presented in Figure B.184and the values provided in Table B.64, indicating
clear deviations from normal distributions in the tail, while the majority of values are relatively normally distributed.

Having removed any missing data points, the dataset consists of 121 observations, with 63 being male and 58 being female.
The final response distribution is as follows: 2 patients showed complete response (CR), 22 patients showed partial response
(PR), 24 patients showed progressive disease (PD), 65 patients showed stable disease (SD), and 8 patients had unknown
final response. Consistent with the previous analysis, the PLR values exhibit a clear decrease after the first chemotherapy
treatment, as evident from Table B.65. Further visualization through scatter plots and line graphs in Figure B.185 and
Figure B.186 show that the green line (representing PLR values after chemotherapy) was generally below the red line
(representing PLR values before chemotherapy), indicating a decrease in PLR values. However, a few exceptions were
observed, where some patients had higher PLR values after chemotherapy. The majority of PLR values fall above the
healthy range, as evident from Figure B.187. Nonetheless, after the first chemotherapy treatment, many values fall within
the healthy range represented by the blue and pink lines. Further analysis by gender, as presented in Figure B.188 and
Figure B.189, reveal that males tend to have higher PLR values compared to females. Lastly, Figure B.190 confirms that
no clear differences were observed between the final response groups.

PLR Value Before 1st Chemo After 1st Chemo
Min 14.4 8.7
1st Quartile 117.0 73.0
Median 163.2 110.4
Mean 185.4 133.1
3rd Quartile 220.3 153.0
Max 915.0 725.0
NA 75 101

Table B.63: Summary statistics values of the Platelet-to-Lymphocyte ratio values of the entire dataset, n=247.

PLR value Before 1st Chemo After 1st Chemo
SW-test W 0.768 0.766
SW-test pvalue 3.144e-15 5.425e-14
KS test pvalue <2.2e-16 <2.2e-16

Table B.64: Results of the Shapiro-Wilk test and the Kolmogorov-Smirnov test for assessing the normality of the
latelet-to-lymphocyte ratio values, n=247.
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Figure B.182: Platelet-to-Lymphocyte ratio distribution before the first chemotherapy cycle for the entire dataset:
(a) scatterplot of PLR values before the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing the
distribution of PLR values before the first chemotherapy cycle across different final response categories, including
Complete response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD,
n=122), and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR,
2=PR, 3=PD, 4=SD, 5=Un), total n=247.

Figure B.183: Platelet-to-Lymphocyte ratio distribution after the first chemotherapy cycle for the entire dataset:
(a) scatterplot of PLR values after the first cycle, (b) histogram with a fitted density curve, (c) boxplot showing
the distribution of PLR values after the first cycle across different final response categories, including Complete
response (CR, n=3), Partial response (PR, n=48), Progressive disease (PD, n=43), Stable disease (SD, n=122),
and Unknown (Un, n=31), (d) the same information as (c) using a different graphical approach (1=CR, 2=PR,
3=PD, 4=SD, 5=Un), total n=247.
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B.1. Data Analysis

Figure B.184: QQplot of the PLR values before and after the first chemotherapy cycle, with a normal distribution
fitted in red, n=247.

PLR values Before 1st Chemo After 1st Chemo Difference
Min 14.4 8.7 -585.9
1st Quartile 117.0 72.6 5.6
Median 159.1 100.3 37.7
Mean 185.0 132.6 52.3
3rd Quartile 223.0 153.1 94.6
Max 915.0 725.0 671.7

Table B.65: Summary statistics of the Platelet-to-Lymphocyte ratio values before and after the first chemotherapy
cycle as well as the difference for a cohort of patients with all missing values removed, n=121.

Figure B.185: Platelet-to-Lymphocyte ratio before and after the first chemotherapy cycle. Red = values before the
first cycle, Green = values after the first chemotherapy cycle. The plot exclusively contains data with no missing
values, n=121.
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B.1. Data Analysis

Figure B.186: Platelet-to-Lymphocyte ratio before and after the first chemotherapy cycle sorted by final response
with no missing values, n=121. The final response is classified as Complete Response (CR, n=2), Partial response
(PR, n=22), Progressive Disease (PD, n=24), Stable Disease (SD, n=65), Unknown (Un, n=8). Red = values
before the first cycle, Green = values after the first chemotherapy cycle, Pink = healthy female range, Blue =
healthy male range.

Figure B.187: Same plot as Figure B.186, but with the y-values restricted between 0 and 250.
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B.1. Data Analysis

Figure B.188: Platelet-to-Lymphocyte ratio before and after the first chemotherapy cycle sorted by gender with
no missing values, n=121 (63 male, 58 female). Red = values before the first cycle, Green = values after the first
chemotherapy cycle, Pink = healthy female range, Blue = healthy male range.

Figure B.189: Same plot as Figure B.188 but with the y-values restricted between 0-250.
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B.2. Outlier Analysis (full)

Figure B.190: Difference in Platelet-to-Lymphocyte ratios between the values before and after the first chemother-
apy cycle for all the patients with no missing data, sorted by their final response, n=121. The final response is
classified as Complete Response (CR, n=2), Partial response (PR, n=22), Progressive Disease (PD, n=24), Stable
Disease (SD, n=65), Unknown (Un, n=8).

B.2. Outlier Analysis (full)

The section contains the full outlier analysis performed on the provided dataset.

B.2.1 Tumor Markers: CA19-9 and CEA Outlier analysis

This subsection contains the outlier analysis of the measured tumor markers CA19-9 and CEA at diagnosis, before and
after the first chemotherapy cycle.

251



B.2. Outlier Analysis (full)

B.2.1.1 CA19-9

CA19-9 at diagnosis CA19-9 before CA19-9 after
Patient ID Value (kU/L) Patient ID Value (kU/L) Patient ID Value (kU/L)
001PANC0002 6430 001PANC0002 10448 001PANC0002 9746
001PANC0035 5815 001PANC0035 26459 001PANC0035 35717
001PANC0009 4803 001PANC0009 6416 001PANC0009 5694
001PANC0025 15121 001PANC0025 20427 001PANC0025 15594
001PANC0037 5146 001PANC0037 11050 001PANC0037 5190
001PANC0004 5456 001PANC0004 10316 001PANC0004 6646
001PANC0019 84341 001PANC0019 83313 001PANC0019 85225
001PP20022 4146 001PANC0011 5265 001PP20022 12401
151PP20011 2790 001PP20022 8332 151PP20011 4643
165PP20010 3800 151PP20011 4562 165PP20010 95696

165PP20010 45305

Table B.66: Overview of the outlier values determined using the IQR-method for the CA19-9 (kU/L) tumor marker
measured at diagnosis, before and after the first chemotherapy cycle.

Figure B.191: Boxplot of the CA19-9 (kU/L) data (a) at diagnosis, (b) before the first chemotherapy cycle and
(c) after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=62), 1 = Progressive
disease (n=21), total n=83)
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B.2. Outlier Analysis (full)

Figure B.192: Histogram of the CA19-9 (kU/L) data (a) at diagnosis, (b) before the first chemotherapy cycle and
(c) after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 =
Disease control (n=62), 1 = Progressive disease (n=21), total n=83)

Figure B.193: Boxplot of the CA19-9 (kU/L) data (a) at diagnosis, (b) before the first chemotherapy cycle and
(c) after the first chemotherapy cycle. Plots are categorised by final response after removal of outliers based on
the IQR-method. (0 = Disease control (n=56), 1 = Progressive Disease (n=15), total n=71)
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B.2. Outlier Analysis (full)

Figure B.194: Histogram of the CA19-9 (kU/L) data (a) at diagnosis, (b) before the first chemotherapy cycle
and (c) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method with a fitted density estimate in red. (0 = Disease control (n=56), 1 = Progressive Disease (n=15),
total n=71).

B.2.1.2 CEA

CEA at diagnosis CEA before CEA after
Patient ID Value (µg/L) Patient ID Value (µg/L) Patient ID Value (µg/L)
001PANC0002 31.0 001PANC0002 41.5 001PANC0002 40.1
001PANC0035 29.0 001PANC0035 93.2 001PANC0035 98.8
001PANC0016 23.1 001PANC0016 20.3 001PANC0016 21.4
001PANC0019 255.0 001PANC0032 79.6 001PANC0032 67.0
001PP20022 35.0 001PANC0004 22.9 001PANC0004 20.1
001PP20017 16.9 001PANC0033 45.8 001PANC0033 36.4
078PANC0001 112.7 001PANC0019 226.0 001PANC0019 241.0
078PP20028 17.3 001PP20022 46.4 001PP20022 56.2
001PP20045 21.0 001PP20017 20.4 001PP20017 21.6

078PANC0001 104.8 001PP20045 139.0
001PP20045 119.0

Table B.67: Overview of the outlier values determined using the IQR-method for the CEA (µg/L) tumor marker
measured at diagnosis, before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.195: Boxplot of the CEA (µg/L) data (a) at diagnosis, (b) before the first chemotherapy cycle and (c)
after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=76), 1 = Progressive
Disease (n=20), total n=96).

Figure B.196: Histogram of the CEA (µg/L) data (a) at diagnosis, (b) before the first chemotherapy cycle and (c)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=76), 1 = Progressive Disease (n=20), total n=96)
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B.2. Outlier Analysis (full)

Figure B.197: Boxplot of the CEA (µg/L) data (a) at diagnosis, (b) before the first chemotherapy cycle and (c)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method.
(0 = Disease control (n=69), 1 = Progressive Disease (n=15), total n=84).

Figure B.198: Histogram of the CEA (µg/L) data (a) at diagnosis, (b) before the first chemotherapy cycle and (c)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density estimate in red. (0 = Disease control (n=69), 1 = Progressive Disease (n=15), total n=84).
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B.2. Outlier Analysis (full)

B.2.2 Blood Markers

This sub-section contains the outlier analysis of the measured blood markers before and after the first chemotherapy cycle as
well as the added inflammation indices: Systemic Inflammation Index (SII), Neutrophils-to-Lymphocyte Ratio (NLR) and
Platelet-to-Lymphocyte Ratio (PLR). Note that the International Normalized Ratio (INR) is not taken into consideration
due to the lack of data.
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B.2. Outlier Analysis (full)

B.2.2.1 Hemoglobin

HB before HB after
Patient ID Value (mmol/L) Patient ID Value (mmol/L)
078PP20007 10.7 078PP20028 9.8

Table B.68: Overview of the outlier values determined using the IQR-method for the Hemoglobin values (mmol/L)
measured before and after the first chemotherapy cycle.

Figure B.199: Boxplot of the Hemoglobin (HB) (mmol/L) data (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=167), 1 = Progressive
Disease (n=40), total n=207).

Figure B.200: Histogram of the Hemoglobin (HB) (mmol/L) data (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density in red. (0 = Disease control
(n=167), 1 = Progressive Disease (n=40), total n=207)
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B.2. Outlier Analysis (full)

Figure B.201: Boxplot of the Hemoglobin (HB) (mmol/L) data (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method.
(0 = Disease control (n=165), 1 = Progressive Disease (n=40), total n=205).

Figure B.202: Histogram of the Hemoglobin (HB) (mmol/L) data (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=165), 1 = Progressive Disease (n=40) , total n=205)
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B.2. Outlier Analysis (full)

B.2.2.2 Thrombocytes

TB before TB after
Patient ID Value (109/L) Patient ID Value (109/L)
002PP20011 508 001PANC0004 397
002PP20005 511 002PP20008 630
065PP20005 43 018PP20004 455
001PANC0051 593 059PP20001 480
001PP20036 488 078PANC0002 439
133PP20007 709 001PP20036 482
151PP20017 521 151PP20018 417

165PP20006 629
165PP20014 394
165PP20018 527

Table B.69: Overview of the outlier values determined using the IQR-method for the Thrombocyte count (109/L)
measured before and after the first chemotherapy cycle.

Figure B.203: Boxplot of the Thrombocytes (TB) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=168), 1 = Progressive
Disease (n=40), total n=208).
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B.2. Outlier Analysis (full)

Figure B.204: Histogram of the Thrombocytes (TB) (109/L) count (a) before the first chemotherapy cycle and
(b) after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 =
Disease control (n=168), 1 = Progressive Disease (n=40), total n=208)

Figure B.205: Boxplot of the Thrombocytes (TB) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method.
(0 = Disease control (n=157), 1 = Progressive Disease (n=35), total n=192)
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B.2. Outlier Analysis (full)

Figure B.206: Histogram of the Thrombocytes (TB) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density in red. (0 = Disease control (n=157), 1 = Progressive Disease (n=35), total n=192)

B.2.2.3 Leukocytes

LK before LK after
Patient ID Value (109/L) Patient ID Value (109/L)
001PANC0018 16.60 001PANC0014 41.00
078PP20007 14.22 001PP20017 41.00
001PANC0052 2.50 078PP20004 39.16
001PANC0039 14.90
001PP20036 14.30
148PANC0003 13.80
148PP20013 13.20
148PP20019 14.00
001PANC0061 14.40

Table B.70: Overview of the outlier values determined using the IQR-method for the Leukocyte count (109/L)
measured before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.207: Boxplot of the Leukocytes (LK) (109/L) count (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response. (0 = Disease control (n=170), 1 = Progressive Disease
(n=40), total n=210)

Figure B.208: Histogram of the Leukocytes (LK) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=170), 1 = Progressive Disease (n=40), total n=210)
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B.2. Outlier Analysis (full)

Figure B.209: Boxplot of the Leukocytes (LK) (109/L) count (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0
= Disease control (n=161), 1 = Progressive Disease (n=37), total n=198)

Figure B.210: Histogram of the Leukocytes (LK) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density estimate in red. (0 = Disease control (n=161), 1 = Progressive Disease (n=37), total n=198)
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B.2. Outlier Analysis (full)

B.2.2.4 Neutrophils

NP before NP after
Patient ID Value (109/L) Patient ID Value (109/L)
001PANC0018 13.20 001PANC0014 29.00
001PANC0039 9.92 001PP20017 28.00
001PP20036 10.78 078PP20004 36.14
133PP20005 9.60 148PANC0004 30.61
148PP20019 9.42 078PP20039 27.66
001PANC0061 11.30

Table B.71: Overview of the outlier values determined using the IQR-method for the Neutrophil count (109/L)
measured before and after the first chemotherapy cycle.

Figure B.211: Boxplot of the Neutrophils (NP) (109/L) count (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response. (0 = Disease control (n=153), 1 = Progressive Disease
(n=35), total n=188)
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B.2. Outlier Analysis (full)

Figure B.212: Histogram of the Neutrophils (NP) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=153), 1 = Progressive Disease (n=35), total n=188)

Figure B.213: Boxplot of the Neutrophils (NP) (109/L) count (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0
= Disease control (n=146), 1 = Progressive Disease (n=31), total n=177)
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B.2. Outlier Analysis (full)

Figure B.214: Histogram of the Neutrophils (NP) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density estimate in red. (0 = Disease control (n=146), 1 = Progressive Disease (n=31), total n=177)

B.2.2.5 Lymphocytes

LC before LC after
Patient ID Value (109/L) Patient ID Value (109/L)
001PP20017 3.73 001PANC0014 4.74
001PANC0047 3.68 001PP20017 5.27
148PANC0003 9.20 148PANC0003 11.00
148PP20019 3.70 148PP20019 6.80
001PP20045 4.43
151PP20034 5.90

Table B.72: Overview of the outlier values determined using the IQR-method for the Lymphocyte count (109/L)
measured before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.215: Boxplot of the Lymphocytes (LC) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=90), 1 = Progressive
Disease (n=24), total n=114)

Figure B.216: Histogram of the Lymphocytes (LC) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=90), 1 = Progressive Disease (n=24), total n=114)
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B.2. Outlier Analysis (full)

Figure B.217: Boxplot of the Lymphocytes (LC) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method.
(0 = Disease control (n=85), 1 = Progressive Disease (n=22), total n=107)

Figure B.218: Histogram of the Lymphocytes (LC) (109/L) count (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density estimate in red. (0 = Disease control (n=85), 1 = Progressive Disease (n=22), total n=107)
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B.2. Outlier Analysis (full)

B.2.2.6 Creatinin

CR before CR after
Patient ID Value (µmol/L) Patient ID Value (µmol/L)
002PANC0007 119 001PP20008 172
001PANC0058 149 002PANC0007 127
151PP20013 124 001PANC0058 131
002PP20069 117 078PP20026 178

001PP20040 952

Table B.73: Overview of the outlier values determined using the IQR-method for the Creatinin values (µmol/L)
measured before and after the first chemotherapy cycle.

Figure B.219: Boxplot of the Creatinin (CR) (µmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=168), 1 = Progressive
Disease (n=42), total n=210)
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B.2. Outlier Analysis (full)

Figure B.220: Histogram of the Creatinin (CR) (µmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=168), 1 = Progressive Disease (n=42), total n=210)

Figure B.221: Boxplot of the Creatinin (CR) (µmol/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0
= Disease control (n=162), 1 = Progressive Disease (n=41), total n=203)
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B.2. Outlier Analysis (full)

Figure B.222: Histogram of the Creatinin (CR) (µmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density estimate in red. (0 = Disease control (n=162), 1 = Progressive Disease (n=41), total n=203)

B.2.2.7 Glomular Filtration Rate

GFR before GFR after
Patient ID Value (mL/min) Patient ID Value (mL/min)
001PANC0002 106 001PANC0015 62
001PANC0023 62 001PANC0023 64
001PANC0010 115 001PANC0010 106
001PANC0013 105 001PANC0003 112
001PANC0003 111 001PANC0011 116
001PANC0011 55 001PP20022 124
001PP20013 105 001PP20008 35
001PP20022 126 002PANC0007 50
002PANC0007 54 065PP20003 58
002PP20007 65 001PANC0058 45
065PP20003 52 001PANC0042 58
151PP20009 109 001PANC0052 125
001PANC0058 39 001PANC0051 106
001PANC0042 54 001PANC0043 114
001PANC0052 124 001PP20029 57
001PANC0047 66 002PP20048 59
001PANC0051 106 002PP20063 60
001PANC0038 65 078PP20026 32
001PANC0043 122 078PP20028 58
001PP20029 53 133PP20006 60
078PP20029 66 151PP20013 64
151PP20013 54 001PP20046 45
151PP20021 58 002PP20069 57
001PP20046 51 005PP20021 61
001PP20040 58 151PP20034 50
002PP20069 54

Table B.74: Overview of the outlier values determined using the IQR-method for the Glomular Filtration Rate
values (mL/min) measured before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.223: Boxplot of the Glomular Filtration Rate (GFR) (mL/min) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=168), 1 =
Progressive Disease (n=41), total n=209)

Figure B.224: Histogram of the Glomular Filtration Rate (GFR) (mL/min) values (a) before the first chemother-
apy cycle and (b) after the first chemotherapy cycle categorised by final response with a fitted density estimate in
red. (0 = Disease control (n=168), 1 = Progressive Disease (n=41), total n=209)
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B.2. Outlier Analysis (full)

Figure B.225: Boxplot of the Glomular Filtration Rate (GFR) (mL/min) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on
the IQR-method. (0 = Disease control (n=142), 1 = Progressive Disease (n=32), total n=174)

Figure B.226: Histogram of the Glomular Filtration Rate (GFR) (mL/min) values (a) before the first chemother-
apy cycle and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based
on the IQR-method with a fitted density estimate in red. (0 = Disease control (n=142), 1 = Progressive Disease
(n=32), total n=174)
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B.2. Outlier Analysis (full)

B.2.2.8 Sodium

Na before Na after
Patient ID Value (mmol/L) Patient ID Value (mmol/L)
001PANC0002 129 001PANC0029 146

001PANC0011 131
001PANC0047 133
001PANC0050 132
020PP20006 132
165PP20006 131
165PP20018 131

Table B.75: Overview of the outlier values determined using the IQR-method for the Sodium (mmol/L) measured
before and after the first chemotherapy cycle.

Figure B.227: Boxplot of the Sodium (Na) (mmol/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response. (0 = Disease control (n=115), 1 = Progressive Disease
(n=32), total n=147)
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B.2. Outlier Analysis (full)

Figure B.228: Histogram of the Sodium (Na) (mmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=115), 1 = Progressive Disease (n=32), total n=147)

Figure B.229: Boxplot of the Sodium (Na) (mmol/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0
= Disease control (n=110), 1 = Progressive Disease (n=29), total n=139)
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B.2. Outlier Analysis (full)

Figure B.230: Histogram of the Sodium (Na) (mmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density estimate in red. (0 = Disease control (n=110), 1 = Progressive Disease (n=29), total n=139)

B.2.2.9 Potassium

K before K after
Patient ID Value (mmol/L) Patient ID Value (mmol/L)

001PANC0015 2.4

Table B.76: Overview of the outlier values determined using the IQR-method for the Potassium (mmol/L) mea-
sured before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.231: Boxplot of the Potassium (K) (mmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=114), 1 = Progressive
Disease (n=31), total n=145)

Figure B.232: Histogram of the Potassium (K) (mmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=114), 1 = Progressive Disease (n=31), total n=145)
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B.2. Outlier Analysis (full)

Figure B.233: Boxplot of the Potassium (K) (mmol/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0
= Disease control (n=113), 1 = Progressive Disease (n=31), total n=144)

Figure B.234: Histogram of the Potassium (K) (mmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density estimate in red. (0 = Disease control (n=113), 1 = Progressive Disease (n=31), total n=144)
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B.2. Outlier Analysis (full)

B.2.2.10 ASAT

ASAT before ASAT after
Patient ID Value (U/L) Patient ID Value (U/L)
001PANC0001 104 001PANC0029 68
001PANC0025 178 001PANC0032 222
001PANC0013 285 001PANC0004 196
151PP20009 87 001PANC0019 67
001PANC0052 1100 001PP20007 69
001PP20032 207 018PP20003 153
002PANC0013 135 148PP20006 58
002PP20051 231 001PP20031 69
078PP20016 77 002PANC0013 56
133PP20001 300 002PP20063 56
133PP20006 66 133PP20001 57
133PP20005 305 148PANC0008 75
148PANC0004 73 148PANC0003 54
148PP20013 69 148PP20019 61
148PP20027 77 005PP20016 69
151PP20017 106 078PP20040 69
005PP20016 79
148PANC0009 150
151PP20028 98

Table B.77: Overview of the outlier values determined using the IQR-method for the ASAT (U/L) measured
before and after the first chemotherapy cycle.

Figure B.235: Boxplot of the ASAT (U/L) values (a) before the first chemotherapy cycle and (b) after the first
chemotherapy cycle categorised by final response. (0 = Disease control (n=146), 1 = Progressive Disease (n=34),
total n=180)
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B.2. Outlier Analysis (full)

Figure B.236: Histogram of the ASAT (U/L) values (a) before the first chemotherapy cycle and (b) after the
first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease control
(n=146), 1 = Progressive Disease (n=34), total n=180)

Figure B.237: Boxplot of the ASAT (U/L) values (a) before the first chemotherapy cycle and (b) after the first
chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0 = Disease
control (n=121), 1 = Progressive Disease (n=27), total n=148)
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B.2. Outlier Analysis (full)

Figure B.238: Histogram of the ASAT (U/L) values (a) before the first chemotherapy cycle and (b) after the first
chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with a fitted
density estimate in red. (0 = Disease control (n=121), 1 = Progressive Disease (n=27), total n=148)

B.2.2.11 ALAT

ALAT before ALAT after
Patient ID Value (U/L) Patient ID Value (U/L)
001PANC0001 128 001PANC0029 155
001PANC0025 400 001PANC0032 264
001PANC0013 636 001PANC0004 175
001PP20002 125 001PP20007 96
002PANC0005 122 148PP20002 176
002PP20024 143 001PP20031 154
002PP20005 114 002PANC0013 151
148PP20009 126 002PP20055 116
151PP20009 153 002PP20063 90
001PANC0052 1241 078PP20029 114
001PP20032 200 133PP20007 183
002PANC0013 279 133PP20005 124
002PP20047 107 148PANC0004 150
002PP20063 105 148PP20019 106
078PP20016 143 165PP20006 103
133PP20001 133 078PP20040 90
133PP20007 172
133PP20005 389
148PP20013 122
148PP20027 125
151PP20017 194
148PANC0009 347
151PP20028 178

Table B.78: Overview of the outlier values determined using the IQR-method for the ALAT (U/L) measured
before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.239: Boxplot of the ALAT (U/L) values (a) before the first chemotherapy cycle and (b) after the first
chemotherapy cycle categorised by final response. (0 = Disease control (n=164), 1 = Progressive Disease (n=39),
total n=203)

Figure B.240: Histogram of the ALAT (U/L) values (a) before the first chemotherapy cycle and (b) after the
first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease control
(n=164), 1 = Progressive Disease (n=39), total n=203)
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B.2. Outlier Analysis (full)

Figure B.241: Boxplot of the ALAT (U/L) values (a) before the first chemotherapy cycle and (b) after the first
chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0 = Disease
control (n=134), 1 = Progressive Disease (n=34), total n=168)

Figure B.242: Histogram of the ALAT (U/L) values (a) before the first chemotherapy cycle and (b) after the first
chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with a fitted
density estimate in red. (0 = Disease control (n=134), 1 = Progressive Disease (n=34), total n=168)
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B.2. Outlier Analysis (full)

B.2.2.12 Alkaline Phosphatase

AF before AF after
Patient ID Value (U/L) Patient ID Value (U/L)
001PANC0028 596 001PANC0028 454
001PANC0016 402 001PANC0014 345
001PANC0018 385 001PANC0016 456
001PANC0033 892 001PANC0032 336
001PANC0011 562 001PANC0004 588
148PP20006 706 001PANC0033 735
151PP20004 431 001PANC0011 493
002PP20047 367 148PP20006 533
078PP20016 509 078PP20016 334
133PP20007 717 133PP20007 418
133PP20005 750 133PP20005 515
148PP20013 397 078PP20040 787
078PP20040 36
148PANC0009 564

Table B.79: Overview of the outlier values determined using the IQR-method for the Alkaline Phosphatase (U/L)
measured before and after the first chemotherapy cycle.

Figure B.243: Boxplot of the Alkaline Phosphatase (AF) (U/L) values (a) before the first chemotherapy cycle and
(b) after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=161), 1 = Progressive
Disease (n=39), total n=200)
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B.2. Outlier Analysis (full)

Figure B.244: Histogram of the Alkaline Phosphatase (AF) (U/L) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 =
Disease control (n=161), 1 = Progressive Disease (n=39), total n=200)

Figure B.245: Boxplot of the Alkaline Phosphatase (AF) (U/L) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method. (0 = Disease control (n=151), 1 = Progressive Disease (n=32), total n=183)
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B.2. Outlier Analysis (full)

Figure B.246: Histogram of the Alkaline Phosphatase (AF) (U/L) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method with a fitted density estimate in red. (0 = Disease control (n=151), 1 = Progressive Disease (n=32),
total n=183)

B.2.2.13 γ-Glutamyl Transferase

GGT before GGT after
Patient ID Value (U/L) Patient ID Value (U/L)
001PANC0001 509 001PANC0001 395
001PANC0028 790 001PANC0028 777
001PANC0025 924 001PANC0009 402
001PANC0010 405 001PANC0032 634
001PANC0018 551 001PANC0004 488
001PANC0013 515 001PANC0010 348
001PANC0033 895 001PANC0018 377
148PP20006 792 001PANC0033 718
151PP20004 1110 001PP20013 306
001PANC0052 693 148PP20006 552
001PP20032 719 001PANC0039 379
002PP20047 494 001PP20031 314
005PP20004 405 005PP20004 432
020PP20006 443 133PP20005 827
078PP20016 417 148PP20019 606
133PP20005 1576 001PANC0061 451
001PANC0061 398 078PP20040 942
078PP20040 676

Table B.80: Overview of the outlier values determined using the IQR-method for the γ-Glutamyl Transferase
(U/L) measured before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.247: Boxplot of the γ-Glutamyl Transferase (GGT) (U/L) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=146), 1 =
Progressive Disease (n=34), total n=180)

Figure B.248: Histogram of the γ-Glutamyl Transferase (GGT) (U/L) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response with a fitted density estimate in red.
(0 = Disease control (n=146), 1 = Progressive Disease (n=34), total n=180)
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B.2. Outlier Analysis (full)

Figure B.249: Boxplot of the γ-Glutamyl Transferase (GGT) (U/L) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method. (0 = Disease control (n=130), 1 = Progressive Disease (n=25), total n=155)

Figure B.250: Histogram of the γ-Glutamyl Transferase (GGT) (U/L) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method with a fitted density estimate in red.(0 = Disease control (n=130), 1 = Progressive Disease (n=25),
total n=155)
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B.2. Outlier Analysis (full)

B.2.2.14 Bilirubin

BR before BR after
Patient ID Value (µmol/L) Patient ID Value (µmol/L)
001PANC0025 132 001PANC0011 24
001PANC0013 83 002PP20002 23
133PP20001 55 078PP20026 27
148PP20013 84 165PP20012 30
151PP20028 60 133PP20009 27

Table B.81: Overview of the outlier values determined using the IQR-method for the Bilirubin values (µmol/L)
measured before and after the first chemotherapy cycle.

Figure B.251: Boxplot of the Bilirubin (BR) (µmol/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response. (0 = Disease control (n=163), 1 = Progressive Disease
(n=41), total n=204)
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B.2. Outlier Analysis (full)

Figure B.252: Histogram of the Bilirubin (BR) (µmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=163), 1 = Progressive Disease (n=41), total n=204)

Figure B.253: Boxplot of the Bilirubin (BR) (µmol/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0
= Disease control (n=155), 1 = Progressive Disease (n=39), total n=194)
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B.2. Outlier Analysis (full)

Figure B.254: Histogram of the Bilirubin (BR) (µmol/L) values (a) before the first chemotherapy cycle and (b)
after the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method
with a fitted density estimate in red. (0 = Disease control (n=155), 1 = Progressive Disease (n=39), total n=194)

B.2.2.15 Albumin

Alb before Alb after
Patient ID Value (g/L) Patient ID Value (g/L)
001PANC0043 23 001PANC0039 22
166PP20006 25 002PP20037 64

165PP20012 8

Table B.82: Overview of the outlier values determined using the IQR-method for the Albumin values (g/L)
measured before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.255: Boxplot of the Albumin (Alb) (g/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response. (0 = Disease control (n=122), 1 = Progressive Disease
(n=28), total n=150)

Figure B.256: Histogram of the Albumin (Alb) (g/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response with a fitted density estimate in red.(0 = Disease control
(n=122), 1 = Progressive Disease (n=28), total n=150)
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B.2. Outlier Analysis (full)

Figure B.257: Boxplot of the Albumin (Alb) (g/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0
= Disease control (n=118), 1 = Progressive Disease (n=27), total n=145)

Figure B.258: Histogram of the Albumin (Alb) (g/L) values (a) before the first chemotherapy cycle and (b) after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with
a fitted density estimate in red. (0 = Disease control (n=118), 1 = Progressive Disease (n=27), total n=145)
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B.2. Outlier Analysis (full)

B.2.2.16 C-Reactive Protein

CRP before CRP after
Patient ID Value (mg/L) Patient ID Value (mg/L)
001PANC0028 44.0 001PANC0036 96.0
001PANC0002 56.0 001PANC0016 81.0
001PANC0036 91.0 001PANC0011 87.0
001PANC0016 91.0 065PP20005 77.0
001PANC0004 38.0 078PANC0002 86.9
001PANC0033 47.0 001PANC0050 70.0
001PANC0011 27.0 001PP20032 70.0
001PP20013 38.0 078PP20026 270.3
001PP20015 26.0 148PP20013 78.0
001PP20012 57.0 148PP20015 90.0
151PP20004 150.0 001PANC0061 104.0
001PANC0039 88.0 001PP20048 75.0
001PP20032 49.0
148PP20015 27.0
001PANC0061 73.0
001PP20048 66.0
005PP20020 71.0

Table B.83: Overview of the outlier values determined using the IQR-method for the C-Reactive Protein values
(mg/L) measured before and after the first chemotherapy cycle.

Figure B.259: Boxplot of the C-Reactive Protein (CRP) (mg/L) values (a) before the first chemotherapy cycle and
(b) after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=96), 1 = Progressive
Disease (n=24), total n=120)
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B.2. Outlier Analysis (full)

Figure B.260: Histogram of the C-Reactive Protein (CRP) (mg/L) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 =
Disease control (n=96), 1 = Progressive Disease (n=24), total n=120)

Figure B.261: Boxplot of the C-Reactive Protein (CRP) (mg/L) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method. (0 = Disease control (n=80), 1 = Progressive Disease (n=18), total n=98)
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B.2. Outlier Analysis (full)

Figure B.262: Histogram of the C-Reactive Protein (CRP) (mg/L) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method with a fitted density estimate in red. (0 = Disease control (n=80), 1 = Progressive Disease (n=18),
total n=98)

B.2.2.17 Systemic Inflammation Index

SII before SII after
Patient ID Value Patient ID Value
001PANC0036 7246.800 001PANC0015 5563.158
002PP20011 2112.892 001PANC0023 3188.976
078PANC0002 2469.190 001PANC0004 2706.022
001PANC0043 2388.971 001PANC0008 2851.294
002PP20046 2278.044 001PP20009 2865.977
001PANC0061 2879.677 078PANC0002 3067.107

151PP20004 5220.000
151PP20013 4091.769

Table B.84: Overview of the outlier values determined using the IQR-method for the Systemic Inflammation Index
measured before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.263: Boxplot of the System Inflammation Index (SII) values (a) before the first chemotherapy cycle and
(b) after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=86), 1 = Progressive
Disease (n=24), total n=110)

Figure B.264: Histogram of the System Inflammation Index (SII) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 =
Disease control (n=86), 1 = Progressive Disease (n=24), total n=110)
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B.2. Outlier Analysis (full)

Figure B.265: Boxplot of the System Inflammation Index (SII) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method. (0 = Disease control (n=75), 1 = Progressive Disease (n=22), total n=97)

Figure B.266: Histogram of the System Inflammation Index (SII) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method with a fitted density estimate in red. (0 = Disease control (n=75), 1 = Progressive Disease (n=22),
total n=97)
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B.2. Outlier Analysis (full)

B.2.2.18 Neutrophil-to-Lymphocyte Ratio

NLR before NLR after
Patient ID Value Patient ID Value
001PANC0036 19.80 001PANC0015 36.84
001PANC0043 8.38 001PANC0035 19.49
001PP20032 8.84 001PANC0023 19.69
148PP20022 7.82 001PANC0024 13.79
001PANC0061 9.11 001PANC0017 12.22

001PANC0026 13.04
001PANC0011 15.79
001PP20007 13.01
151PP20004 36.00

Table B.85: Overview of the outlier values determined using the IQR-method for the Neutrophil-to-Lymphocyte
Ratio measured before and after the first chemotherapy cycle.

Figure B.267: Boxplot of the Neutrophil-to-Lymphocyte Ratio (NLR) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=87), 1 =
Progressive Disease (n=24), total n=111)
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B.2. Outlier Analysis (full)

Figure B.268: Histogram of the Neutrophil-to-Lymphocyte Ratio (NLR) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response with a fitted density estimate in red.
(0 = Disease control (n=87), 1 = Progressive Disease (n=24), total n=111)

Figure B.269: Boxplot of the Neutrophil-to-Lymphocyte Ratio (NLR) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on
the IQR-method. (0 = Disease control (n=74), 1 = Progressive Disease (n=23), total n=97)
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B.2. Outlier Analysis (full)

Figure B.270: Histogram of the Neutrophil-to-Lymphocyte Ratio (NLR) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method with a fitted density estimate in red. (0 = Disease control (n=74), 1 = Progressive Disease (n=23),
total n=97)

B.2.2.19 Platelet-to-Lymphocyte Ratio

PLR before PLR after
Patient ID Value Patient ID Value
001PANC0002 412.79 001PANC0004 291.91
001PANC0036 915.00 078PANC0002 294.63
001PANC0005 587.32 151PP20002 330.00
001PANC0051 395.33 151PP20004 725.00
001PANC0043 419.12 151PP20017 330.00
001PP20032 465.91 151PP20013 274.62

151PP20011 323.33
165PP20008 273.79
005PP20010 287.78
151PP20029 296.25

Table B.86: Overview of the outlier values determined using the IQR-method for the Platelet-to-Lymphocyte
Ratio measured before and after the first chemotherapy cycle.

B.2.3 Difference before and after first cycle outlier analysis

The difference between a variable before and after the first chemotherapy cycle might also be indicative for the final response
to chemotherapy. Therefore, the outlier analysis is also performed on these variables by grouping them together based on
their properties (e.g. tumor marker, blood cells).
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B.2. Outlier Analysis (full)

Figure B.271: Boxplot of the Platelet-to-Lymphocyte Ratio (PLR) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=89), 1 =
Progressive Disease (n=24), total n=113)

Figure B.272: Histogram of the Platelet-to-Lymphocyte Ratio (PLR) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response with a fitted density estimate in red.
(0 = Disease control (n=89), 1 = Progressive Disease (n=24), total n=113)
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B.2. Outlier Analysis (full)

Figure B.273: Boxplot of the Platelet-to-Lymphocyte Ratio (PLR) values (a) before the first chemotherapy cycle
and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method. (0 = Disease control (n=78), 1 = Progressive Disease (n=19), total n=97)

Figure B.274: Histogram of the Platelet-to-Lymphocyte Ratio (PLR) values (a) before the first chemotherapy
cycle and (b) after the first chemotherapy cycle categorised by final response after removal of outliers based on the
IQR-method with a fitted density estimate in red. (0 = Disease control (n=78), 1 = Progressive Disease (n=19),
total n=97)
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B.2. Outlier Analysis (full)

B.2.3.1 Tumor markers CA19-9 and CEA difference

CA19-9
difference

CEA
difference

Patient ID Value
(kU/L) Patient ID Value

(µg/L)
001PANC0015 722 001PANC0015 3.89
001PANC0002 702 001PANC0035 -5.60
001PANC0035 -9258 001PANC0009 5.30
001PANC0012 542 001PANC0025 5.90
001PANC0009 722 001PANC0023 8.63
001PANC0025 4833 001PANC0032 12.60
001PANC0037 5860 001PANC0013 -3.94
001PANC0004 3670 001PANC0033 9.40
001PANC0010 -483 001PANC0019 -15.00
001PANC0033 -507 001PANC0011 5.20
001PANC0019 -1912 001PP20022 -9.80
001PANC0011 1393 002PP20011 20.30
001PP20007 -649 065PP20005 -59.60
001PP20022 -4069 078PANC0001 97.60
078PP20007 -511 078PP20005 3.70
165PP20003 398 078PP20008 5.10
001PANC0038 321 001PANC0058 -5.15
001PANC0050 291 001PANC0050 4.86
005PP20004 -932 078PP20028 8.90
020PP20006 -300 001PP20045 -20.00
065PP20014 -373 078PP20038 3.80
151PP20011 360
001PANC0062 -918
001PP20045 -887
001PP20048 -752
005PP20020 377
005PP20010 -778

Table B.87: Overview of the outlier values determined using the IQR-method for the CA19-9 (kU/L) and CEA
(µg/L) difference values before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.275: Boxplot of the tumor markers (a) CA19-9 and (b) CEA difference values before and after the first
chemotherapy cycle categorised by final response. (0 = Disease control (n=90), 1 = Progressive Disease (n=25),
total n=115)

Figure B.276: Histogram of the tumor markers (a) CA19-9 and (b) CEA difference values before and after the
first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease control
(n=90), 1 = Progressive Disease (n=25), total n=115)
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B.2. Outlier Analysis (full)

Figure B.277: Boxplot of the tumor markers (a) CA19-9 and (b) CEA difference values before and after the first
chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0 = Disease
control (n=66), 1 = Progressive Disease (n=11), total n=77)

Figure B.278: Histogram of the tumor markers (a) CA19-9 and (b) CEA difference values before and after the
first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with a
fitted density estimate in red. (0 = Disease control (n=66), 1 = Progressive Disease (n=11), total n=77)
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B.2. Outlier Analysis (full)

B.2.3.2 Blood variables: Hemoglobin, Thrombocytes, Leukocytes, Neutrophils, Lymphocytes

HB
difference

TB
difference

Patient ID Value
(mmol/L) Patient ID Value

(109/L)
001PP20036 -1.4 001PANC0004 -228
078PP20028 -1.7 002PP20008 -250
133PP20008 -1.7 002PP20005 291
165PP20018 -1.4 059PP20001 -230

065PP20005 -132
001PANC0051 370
001PANC0038 -105
005PP20004 247
078PP20016 -113
133PP20007 398
148PP20025 247
151PP20018 -192
151PP20013 -158
165PP20006 -304
065PP20017 -192
165PP20014 -168
165PP20018 -155

Table B.88: Overview of the outlier values determined using the IQR-method for the Hemoglobin (mmol/L) and
Thrombocyte (109/L) difference values before and after the first chemotherapy cycle.

Figure B.279: Boxplot of the (a) Hemoglobin values and (b) Thrombocyte count difference before and after the
first chemotherapy cycle categorised by final response. (0 = Disease control (n=166), 1 = Progressive Disease
(n=40), total n=206)
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B.2. Outlier Analysis (full)

Figure B.280: Histogram of the (a) Hemoglobin values and (b) Thrombocyte count difference before and after the
first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease control
(n=166), 1 = Progressive Disease (n=40), total n=206)

Figure B.281: Boxplot of the (a) Hemoglobin values and (b) Thrombocyte count difference before and after the
first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0 =
Disease control (n=153), 1 = Progressive Disease (n=33), total n=186)
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B.2. Outlier Analysis (full)

Figure B.282: Histogram of the (a) Hemoglobin values and (b) Thrombocyte count difference before and after the
first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with a
fitted density estimate in red. (0 = Disease control (n=153), 1 = Progressive Disease (n=33), total n=186)

LK
difference

NP
difference

LC
difference

Patient ID Value
(109/L) Patient ID Value

(109/L) Patient ID Value
(109/L)

001PANC0035 -22.2 001PANC0014 -22.6 001PANC0029 -2.5
001PANC0014 -30.9 001PANC0023 -21.4 001PANC0014 -2.8
001PANC0023 -26.6 001PP20017 -21.2 148PP20019 -3.1
001PP20017 -29.1 148PP20006 -18.2 151PP20034 2.1
148PP20006 -22.5

Table B.89: Overview of the outlier values determined using the IQR-method for the Leukocytes, Neutrophils and
Lymphocyte count (109/L) difference before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.283: Boxplot of the (a) Leukocytes, (b) Neutrophils and (c) Lymphocytes count difference before after
the first chemotherapy cycle categorised by final response. (0 = Disease control (n=87), 1 = Progressive Disease
(n=24), total n=111)

Figure B.284: Histogram of the (a) Leukocytes, (b) Neutrophils and (c) Lymphocytes count difference before after
the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=87), 1 = Progressive Disease (n=24), total n=111)
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B.2. Outlier Analysis (full)

Figure B.285: Boxplot of the (a) Leukocytes, (b) Neutrophils and (c) Lymphocytes count difference before after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0
= Disease control (n=80), 1 = Progressive Disease (n=23), total n=103)

Figure B.286: Histogram of the (a) Leukocytes, (b) Neutrophils and (c) Lymphocytes count difference before after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with
a fitted density estimate in red. (0 = Disease control (n=80), 1 = Progressive Disease (n=23), total n=103)
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B.2. Outlier Analysis (full)

B.2.3.3 Kidney function: Creatinin and Glomular Filtration Rate

CR
difference

GFR
difference

Patient ID Value
(µmol/L) Patient ID Value

(mL/min)
001PANC0015 -23 001PANC0028 12
001PANC0011 61 001PANC0015 23
001PP20008 -82 001PANC0024 12
078PP20007 22 001PANC0017 12
151PP20009 -20 001PANC0011 -61
001PANC0058 18 001PP20007 -13
001PANC0039 20 001PP20008 42
001PANC0050 26 002PANC0002 10
001PP20032 -23 002PP20011 11
078PP20026 -104 002PP20008 13
078PP20028 -20 059PP20001 -16
148PP20013 22 078PP20007 -19
001PP20045 22 078PP20006 -10
001PP20040 -843 151PP20004 13
151PP20034 -25 151PP20009 15

001PANC0053 14
001PANC0039 -13
001PANC0041 20
001PANC0038 -13
001PANC0050 -22
001PP20031 -12
001PP20032 23
001PP20030 11
002PP20037 -12
002PP20063 10
065PP20015 12
078PP20026 54
078PP20028 21
133PP20006 13
151PP20017 -16
151PP20013 -10
151PP20021 -14
001PP20040 -13
065PP20017 -8
078PP20038 16
151PP20025 -9
151PP20034 20

Table B.90: Overview of the outlier values determined using the IQR-method for the Creatinin (µmol/L) and
Glomular Filtration Rate (mL/min) difference values before and after the first chemotherapy cycle.
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B.2. Outlier Analysis (full)

Figure B.287: Boxplot of the (a) Creatinin and (b) Glomular Filtration rate difference values before and after
the first chemotherapy cycle categorised by final response. (0 = Disease control (n=168), 1 = Progressive Disease
(n=41), total n=209)

Figure B.288: Histogram of the (a) Creatinin and (b) Glomular Filtration rate difference values before and after
the first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease
control (n=168), 1 = Progressive Disease (n=41), total n=209)
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B.2. Outlier Analysis (full)

Figure B.289: Boxplot of the (a) Creatinin and (b) Glomular Filtration rate difference values before and after the
first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0 =
Disease control (n=131), 1 = Progressive Disease (n=38), total n=169)

Figure B.290: Histogram of the (a) Creatinin and (b) Glomular Filtration rate difference values before and after
the first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with
a fitted density estimate in red. (0 = Disease control (n=131), 1 = Progressive Disease (n=38), total n=169)
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B.2. Outlier Analysis (full)

B.2.3.4 Nutrition status: Sodium, Potassium and Albumin

Na
difference

K
difference

Alb
difference

Patient ID Value
(mmol/L) Patient ID Value

(mmol/L) Patient ID Value
(g/L)

001PANC0015 1.3 001PANC0043 -6
001PANC0037 1.8 001PANC0050 14
001PANC0011 1.5 165PP20012 34
001PANC0051 -0.8
001PANC0061 -1.0
001PP20045 1.4

Table B.91: Overview of the outlier values determined using the IQR-method for the Sodium (mmol/L), Potassium
(mmol/L) and Albumin (g/L) difference before and after the first chemotherapy cycle.

Figure B.291: Boxplot of the (a) Sodium, (b) Potassium and (c) Albumin difference values before and after the
first chemotherapy cycle categorised by final response. (0 = Disease control (n=80), 1 = Progressive Disease
(n=22), total n=102)
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B.2. Outlier Analysis (full)

Figure B.292: Histogram of the (a) Sodium, (b) Potassium and (c) Albumin difference values before and after the
first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease control
(n=80), 1 = Progressive Disease (n=22), total n=102)

Figure B.293: Boxplot of the (a) Sodium, (b) Potassium and (c) Albumin difference values before and after the
first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0 =
Disease control (n=73), 1 = Progressive Disease (n=20), total n=93)
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B.2. Outlier Analysis (full)

Figure B.294: Histogram of the (a) Sodium, (b) Potassium and (c) Albumin difference values before and after the
first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with a
fitted density estimate in red. (0 = Disease control (n=73), 1 = Progressive Disease (n=20), total n=93)
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B.2. Outlier Analysis (full)

B.2.3.5 Liver function: ASAT, ALAT, Alkaline Phosphatase, γ-Glutamyl Transferase and Bilirubin

ASAT
difference

ALAT
difference

Patient ID Value
(U/L) Patient ID Value

(U/L)
001PANC0001 83 001PANC0001 94
001PANC0029 -48 001PANC0029 -125
001PANC0025 148 001PANC0025 345
001PANC0032 -191 001PANC0032 -221
001PANC0004 -177 001PANC0004 -159
001PANC0013 261 001PANC0013 609
001PP20007 -43 001PP20002 84
018PP20003 -137 148PP20002 -125
151PP20009 50 148PP20009 93
001PANC0052 1079 151PP20009 92
001PP20031 -43 001PANC0052 1183
001PP20032 185 001PANC0045 68
002PANC0013 79 001PP20031 -114
002PP20051 200 001PP20032 161
078PP20016 50 002PANC0013 128
133PP20001 243 002PP20046 51
133PP20005 275 002PP20047 75
148PANC0004 40 020PP20006 76
148PANC0008 -53 065PP20015 61
148PP20013 38 078PANC0003 -68
148PP20019 -36 078PP20029 -85
151PP20017 78 078PP20016 116
148PANC0009 103 133PP20001 97
151PP20028 81 133PP20005 265

148PANC0004 -114
148PP20013 99
148PP20027 61
148PP20019 -75
151PP20017 147
165PP20006 -65
078PP20038 -64
148PANC0009 312
151PP20028 157

Table B.92: Overview of the outlier values determined using the IQR-method for the ASAT (U/L) and ALAT
(U/L) difference values before and after the first chemotherapy cycle.

319



B.2. Outlier Analysis (full)

Figure B.295: Boxplot of the (a) ASAT and (b) ALAT difference values before and after the first chemotherapy
cycle categorised by final response. (0 = Disease control (n=144), 1 = Progressive Disease (n=33), total n=177)

Figure B.296: Histogram of the (a) ASAT and (b) ALAT difference values before and after the first chemotherapy
cycle categorised by final response with a fitted density estimate in red. (0 = Disease control (n=144), 1 =
Progressive Disease (n=33), total n=177)
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B.2. Outlier Analysis (full)

Figure B.297: Boxplot of the (a) ASAT and (b) ALAT difference values before and after the first chemotherapy
cycle categorised by final response after removal of outliers based on the IQR-method. (0 = Disease control
(n=112), 1 = Progressive Disease (n=28), total n=140)

Figure B.298: Histogram of the (a) ASAT and (b) ALAT difference values before and after the first chemotherapy
cycle categorised by final response after removal of outliers based on the IQR-method with a fitted density estimate
in red. (0 = Disease control (n=112), 1 = Progressive Disease (n=28), total n=140)

321



B.2. Outlier Analysis (full)

AF
difference

GGT
difference

BR
difference

Patient ID Value
(U/L) Patient ID Value

(U/L) Patient ID Value
(µmol/L)

001PANC0014 -217 001PANC0015 244 001PANC0025 118
001PANC0004 -485 001PANC0035 -166 001PANC0013 77
001PANC0018 162 001PANC0009 -161 001PANC0052 35
001PANC0033 157 001PANC0025 625 133PP20001 39
148PP20006 173 001PANC0032 -463 133PP20006 39
151PP20004 291 001PANC0004 -275 133PP20005 33
001PP20032 159 001PANC0018 174 148PP20013 68
078PP20016 175 001PANC0013 458 165PP20012 -21
133PP20006 147 001PANC0033 177 165PP20005 32
133PP20005 235 001PP20002 182 151PP20028 43
078PP20040 -351 001PP20012 154

002PP20005 170
078PP20007 -117
148PP20006 240
151PP20002 256
151PP20004 848
001PANC0055 -115
001PANC0052 499
001PANC0039 -217
001PP20031 -123
001PP20032 591
002PP20047 317
020PP20006 332
078PP20016 257
133PP20005 749
148PP20015 208
148PP20019 -220
078PP20040 -266
151PP20034 213

Table B.93: Overview of the outlier values determined using the IQR-method for the Alkaline Phosphatase (U/L),
γ-Glutamyl Transferase (U/L) and Bilirubin (µmol/L) difference values before and after the first chemotherapy
cycle.
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B.2. Outlier Analysis (full)

Figure B.299: Boxplot of the (a) Alkaline Phosphatase, (b) γ-Glutamyl Transferase and (c) Bilirubin difference
values before and after the first chemotherapy cycle categorised by final response. (0 = Disease control (n=142),
1 = Progressive Disease (n=32), total n=174)

Figure B.300: Histogram of the (a) Alkaline Phosphatase, (b) γ-Glutamyl Transferase and (c) Bilirubin difference
values before and after the first chemotherapy cycle categorised by final response with a fitted density estimate in
red. (0 = Disease control (n=142), 1 = Progressive Disease (n=32), total n=174)
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B.2. Outlier Analysis (full)

Figure B.301: Boxplot of the (a) Alkaline Phosphatase, (b) γ-Glutamyl Transferase and (c) Bilirubin difference
values before and after the first chemotherapy cycle categorised by final response after removal of outliers based
on the IQR-method. (0 = Disease control (n=114), 1 = Progressive Disease (n=24), total n=138)

Figure B.302: Histogram of the (a) Alkaline Phosphatase, (b) γ-Glutamyl Transferase and (c) Bilirubin difference
values before and after the first chemotherapy cycle categorised by final response after removal of outliers based
on the IQR-method with a fitted density estimate in red. (0 = Disease control (n=114), 1 = Progressive Disease
(n=24), total n=138)

324



B.2. Outlier Analysis (full)

B.2.3.6 Inflammation: C-Reactive Protein, Leukocytes, Systemic Inflammation Index, Neutrophil-
to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio

CRP
difference

SII
difference

Patient ID Value
(mg/L) Patient ID Value

001PANC0028 30.0 001PANC0015 4301.6
001PANC0026 -41.0 001PANC0035 -1738.6
001PANC0011 -60.0 001PANC0036 6178.6
001PP20012 47.6 001PANC0023 2511.2
065PP20005 -76.0 001PANC0004 -1688.5
078PANC0002 -86.9 001PANC0011 -1798.5
151PP20004 143.0 001PANC0008 -1675.9
001PANC0039 56.0 001PP20015 -1747.6
001PANC0050 -64.8 151PP20004 -4357.6
005PP20004 -36.0 002PP20046 1805.6
078PP20026 -270.3 151PP20013 -3013.9
148PP20013 -68.0
148PP20015 -63.0
001PANC0061 -31.0
005PP20020 58.0
078PP20038 -34.8

Table B.94: Overview of the outlier values determined using the IQR-method for the C-Reactive Protein (mg/L)
and Systemic Inflammation Index difference values before and after the first chemotherapy cycle.

Figure B.303: Boxplot of the (a) Leukocytes and (b) C-Reactive Protein difference values before and after the first
chemotherapy cycle categorised by final response. (0 = Disease control (n=96), 1 = Progressive Disease (n=23),
total n=119)
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B.2. Outlier Analysis (full)

Figure B.304: Histogram of the (a) Leukocytes and (b) C-Reactive Protein difference values before and after the
first chemotherapy cycle categorised by final response with a fitted density estimate in red. (0 = Disease control
(n=96), 1 = Progressive Disease (n=23), total n=119)

Figure B.305: Boxplot of the (a) Leukocytes and (b) C-Reactive Protein difference values before and after the
first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method. (0 =
Disease control (n=81), 1 = Progressive Disease (n=18), total n=99)
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B.2. Outlier Analysis (full)

NLR
difference

PLR
difference

Patient ID Value Patient ID Value
001PANC0015 -33.0 001PANC0036 671.7
001PANC0035 -15.1 151PP20002 -127.1
001PANC0036 12.5 151PP20004 -585.9
001PANC0023 -16.9 001PANC0051 242.6
001PANC0024 -9.6 001PP20032 330.3
001PANC0026 -8.6 133PP20007 2280
001PANC0011 -14.2 151PP20029 -137.2
001PP20007 -10.6
151PP20004 -30.4
001PP20032 6.6

Table B.95: Overview of the outlier values determined using the IQR-method for the Neutrophil-to-Lymphocyte
Ratio and Platelet-to-Lymphocyte Ratio difference values before and after the first chemotherapy cycle.

Figure B.306: Histogram of the (a) Leukocytes and (b) C-Reactive Protein difference values before and after the
first chemotherapy cycle categorised by final response after removal of outliers based on the IQR-method with a
fitted density estimate in red. (0 = Disease control (n=81), 1 = Progressive Disease (n=18), total n=99)
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B.2. Outlier Analysis (full)

Figure B.307: Boxplot of the (a) Systemic inflammation index, (b) Neutrophil-to-Lymphocyte Ratio and (c)
Platelet-to-Lymphocyte Ratio difference values before and after the first chemotherapy cycle categorised by final
response. (0 = Disease control (n=86), 1 = Progressive Disease (n=24), total n=110)

Figure B.308: Histogram of the (a) Systemic inflammation index, (b) Neutrophil-to-Lymphocyte Ratio and (c)
Platelet-to-Lymphocyte Ratio difference values before and after the first chemotherapy cycle categorised by final
response with a fitted density estimate in red. (0 = Disease control (n=86), 1 = Progressive Disease (n=24), total
n=110)
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B.2. Outlier Analysis (full)

Figure B.309: Boxplot of the (a) Systemic inflammation index, (b) Neutrophil-to-Lymphocyte Ratio and (c)
Platelet-to-Lymphocyte Ratio difference values before and after the first chemotherapy cycle categorised by final
response after removal of outliers based on the IQR-method. (0 = Disease control (n=70), 1 = Progressive Disease
(n=21), total n=91)

Figure B.310: Histogram of the (a) Systemic inflammation index, (b) Neutrophil-to-Lymphocyte Ratio and (c)
Platelet-to-Lymphocyte Ratio difference values before and after the first chemotherapy cycle categorised by final
response after removal of outliers based on the IQR-method with a fitted density estimate in red. (0 = Disease
control (n=70), 1 = Progressive Disease (n=21), total n=91)
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B.2. Outlier Analysis (full)

B.2.4 Overview of number of outliers per patient

Patient ID Number
of Outliers Outlier Variables

001PANC0004 20

CA199diag, CA199before, CA199after, CA199diff,
CEAbefore, CEAafter, TBafter, TBdiff, ASATafter,
ASATdiff, ALATafter, ALATdiff, AFafter, AFdiff,
GGTafter, GGTdiff, CRPbefore, SIIafter, SIIdiff, PLRafter

001PANC0011 18

CA199before, CA199diff, CEAdiff, CRdiff,
GFRbefore, GFRafter, GFRdiff, Naafter,
Kdiff, AFbefore, AFafter, BRafter, CRPbefore,
CRPafter, CRPdiff, SIIdiff, NLRafter, NLRdiff

001PP20032 15

CRdiff, GFRdiff, ASATbefore, ASATdiff,
ALATbefore, ALATdiff, AFdiff, GGTbefore,
GGTdiff, CRPbefore, CRPafter, NLRbefore,
NLRdiff, PLRbefore, PLRdiff

001PANC0025 13
CA199diag, CA199before, CA199after, CA199diff,
CEAdiff, ASATbefore, ASATdiff, ALATbefore,
ALATdiff, GGTbefore, GGTdiff, BRbefore, BRdiff

151PP20004 13
GFRdiff, AFbefore, AFdiff, GGTbefore,
GGTdiff, CRPbefore, CRPdiff, SIIafter,
SIIdiff, NLRafter, NLRdiff, PLRafter, PLRdiff

133PP20005 13
NPbefore, ASATbefore, ASATdiff, ALATbefore,
ALATafter, ALATdiff, AFbefore, AFafter, AFdiff,
GGTbefore, GGTafter, GGTdiff, BRdiff

001PANC0015 12
CA199diff, CEAdiff, CRdiff, GFRafter,
GFRdiff, Kafter, Kdiff, GGTdiff, SIIafter,
SIIdiff, NLRafter, NLRdiff

001PANC0035 12
CA199diag, CA199before, CA199after,
CA199diff, CEAdiag, CEAbefore, CEAafter,
CEAdiff, GGTdiff, SIIdiff, NLRafter, NLRdiff

001PANC0002 11
CA199diag, CA199before, CA199after,
CA199diff, CEAdiag, CEAbefore, CEAafter,
GFRbefore, Nabefore, CRPbefore, PLRbefore

001PANC0033 11
CA199diff, CEAbefore, CEAafter, CEAdiff,
AFbefore, AFafter, AFdiff, GGTbefore,
GGTafter, GGTdiff, CRPbefore

148PP20013 11
LKbefore, CRdiff, ASATbefore, ASATdiff,
ALATbefore, ALATdiff, AFbefore, BRbefore,
BRdiff, CRPafter, CRPdiff

148PP20019 11
LKbefore, NPbefore, LCbefore, LCafter,
LCdiff, ASATafter, ASATdiff, ALATafter,
ALATdiff, GGTafter, GGTdiff

001PANC0032 10
CEAbefore, CEAafter, CEAdiff, ASATafter,
ASATdiff, ALATafter, ALATdiff, AFafter,
GGTafter, GGTdiff

001PANC0013 10
CEAdiff, GFRbefore, ASATbefore, ASATdiff,
ALATbefore, ALATdiff, GGTbefore, GGTdiff,
BRbefore, BRdiff
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B.2. Outlier Analysis (full)

Patient ID Number
of Outliers Outlier Variables

001PP20022 10
CA199diag, CA199before, CA199after,
CA199diff, CEAdiag, CEAbefore, CEAafter, CEAdiff,
GFRbefore, GFRafter

001PANC0052 10
LKbefore, GFRbefore, GFRafter, ASATbefore,
ASATdiff, ALATbefore, ALATdiff, GGTbefore,
GGTdiff, BRdiff

078PP20016 10
TBdiff, ASATbefore, ASATdiff, ALATbefore,
ALATdiff, AFbefore, AFafter, AFdiff,
GGTbefore, GGTdiff

001PANC0061 10
LKbefore, NPbefore, Kdiff, GGTbefore,
GGTafter, CRPbefore, CRPafter, CRPdiff,
SIIbefore, NLRbefore

078PP20040 10
CA199before, CA199after, ASATafter,
ALATafter, AFbefore, AFafter, AFdiff,
GGTbefore, GGTafter, GGTdiff

001PANC0023 9 CEAdiff, LKdiff, NPdiff, GFRbefore,
GFRafter, SIIafter, SIIdiff, NLRafter, NLRdiff

001PANC0019 9
CA199diag, CA199before, CA199after,
CA199diff, CEAdiag, CEAbefore,
CEAafter, CEAdiff, ASATafter

001PP20017 9 CEAdiag, CEAbefore, CEAafter, LKafter,
LKdiff, NPafter, NPdiff, LCbefore, LCafter

001PANC0039 9 LKbefore, NPbefore, CRdiff, GFRdiff,
GGTafter, GGTdiff, Albafter, CRPbefore, CRPdiff

001PANC0036 8 CRPbefore, CRPafter, SIIbefore, SIIdiff,
NLRbefore, NLRdiff, PLRbefore, PLRdiff

001PANC0014 8 LKafter, LKdiff, NPafter, NPdiff, LCafter,
LCdiff, AFafter, AFdiff

148PP20006 8 NPdiff, ASATafter, AFbefore, AFafter,
AFdiff, GGTbefore, GGTafter, GGTdiff

001PANC0050 8 CA199diff, CEAdiff, CRdiff, GFRdiff,
Naafter, Albdiff, CRPafter, CRPdiff

151PP20013 8 TBdiff, CRbefore, GFRbefore, GFRafter,
GFRdiff, SIIafter, SIIdiff, PLRafter

001PP20045 8 CA199diff, CEAdiag, CEAbefore, CEAafter,
CEAdiff, LCbefore, CRdiff, Kdiff

001PANC0028 7 GFRdiff, AFbefore, AFafter, GGTbefore,
GGTafter, CRPbefore, CRPdiff

001PANC0009 7 CA199diag, CA199before, CA199after,
CA199diff, CEAdiff, GGTafter, GGTdiff
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B.2. Outlier Analysis (full)

Patient ID Number
of Outliers Outlier Variables

001PANC0016 7 CEAdiag, CEAbefore, CEAafter, AFbefore,
AFafter, CRPbefore, CRPafter

001PANC0018 7 LKbefore, NPbefore, AFbefore, AFdiff,
GGTbefore, GGTafter, GGTdiff

001PP20007 7 CA199diff, GFRdiff, ASATafter, ASATdiff,
ALATafter, NLRafter, NLRdiff

151PP20009 7 CRdiff, GFRbefore, GFRdiff, ASATbefore,
ASATdiff, ALATbefore, ALATdiff

001PANC0051 7 TBbefore, TBdiff, GFRbefore, GFRafter,
Kdiff, PLRbefore, PLRdiff

001PANC0043 7 GFRbefore, GFRafter, Albbefore, Albdiff,
SIIbefore, NLRbefore, PLRbefore

001PP20031 7 GFRdiff, ASATafter, ASATdiff, ALATafter,
ALATdiff, GGTafter, GGTdiff

078PP20026 7 CRafter, CRdiff, GFRafter, GFRdiff,
BRafter, CRPafter, CRPdiff

078PP20028 7 CEAdiag, CEAdiff, HBafter, HBdiff, CRdiff,
GFRafter, GFRdiff

133PP20001 6 ASATbefore, ASATafter, ASATdiff, ALATbefore,
ALATdiff, BRbefore, BRdiff

133PP20007 6 TBbefore, TBdiff, ALATbefore, ALATafter,
AFbefore, AFafter, PLRdiff

151PP20017 6 TBbefore, GFRdiff, ASATbefore, ASATdiff,
ALATbefore, ALATdiff, PLRafter

001PANC0001 6 ASATbefore, ASATdiff, ALATbefore, ALATdiff,
GGTbefore, GGTafter

001PANC0029 6 LCdiff, Naafter, ASATafter, ASATdiff, ALATafter,
ALATdiff

078PANC0002 6 TBafter, CRPafter, CRPdiff, SIIbefore, SIIafter,
PLRafter

078PP20007 6 CA199diff, HBbefore, LKbefore, CRdiff,
GFRdiff, GGTdiff

001PANC0058 6 CEAdiff, CRbefore, CRafter, CRdiff, GFRbefore,
GFRafter

002PANC0013 6 ASATbefore, ASATafter, ASATdiff, ALATbefore,
ALATafter, ALATdiff

151PP20034 6 LCbefore, LCdiff, CRdiff, GFRafter, GFRdiff,
GGTdiff

151PP20028 6 ASATbefore, ASATdiff, ALATbefore, ALATdiff,
BRbefore, BRdiff
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B.2. Outlier Analysis (full)

Patient ID Number of
Outliers Outlier Variables

002PANC0013 6 ASATbefore, ASATafter, ASATdiff, ALATbefore,
ALATafter, ALATdiff

151PP20034 6 LCbefore, LCdiff, CRdiff, GFRafter, GFRdiff, GGTdiff

151PP20028 6 ASATbefore, ASATdiff, ALATbefore, ALATdiff,
BRbefore, BRdiff

001PANC0037 5 CA199diag, CA199before, CA199after, CA199diff, Kdiff
001PANC0010 5 CA199diff, GFRbefore, GFRafter, GGTbefore, GGTafter
065PP20005 5 CEAdiff, TBbefore, TBdiff, CRPafter, CRPdiff
001PP20036 5 HBdiff, TBbefore, TBafter, LKbefore, NPbefore
002PP20047 5 ALATbefore, ALATdiff, AFbefore, GGTbefore, GGTdiff
002PP20063 5 GFRafter, GFRdiff, ASATafter, ALATbefore, ALATafter
005PP20004 5 CA199diff, TBdiff, GGTbefore, GGTafter, CRPdiff
020PP20006 5 CA199diff, Naafter, ALATdiff, GGTbefore, GGTdiff
133PP20006 5 GFRafter, GFRdiff, ASATbefore, AFdiff, BRdiff
148PANC0004 5 NPafter, ASATbefore, ASATdiff, ALATafter, ALATdiff
165PP20006 5 TBafter, TBdiff, Naafter, ALATafter, ALATdiff

148PANC0009 5 ASATbefore, ASATdiff, ALATbefore,
ALATdiff, AFbefore

001PP20008 4 CRafter, CRdiff, GFRafter, GFRdiff
002PANC0007 4 CRbefore, CRafter, GFRbefore, GFRafter
002PP20011 4 CEAdiff, TBbefore, GFRdiff, SIIbefore
002PP20005 4 TBbefore, TBdiff, ALATbefore, GGTdiff
001PANC0038 4 CA199diff, TBdiff, GFRbefore, GFRdiff
148PANC0003 4 LKbefore, LCbefore, LCafter, ASATafter
148PP20015 4 GGTdiff, CRPbefore, CRPafter, CRPdiff
165PP20012 4 BRafter, BRdiff, Albafter, Albdiff
001PP20040 4 CRafter, CRdiff, GFRbefore, GFRdiff

Patient ID Number of
Outliers Outlier Variables

078PP20038 4 CEAdiff, GFRdiff, ALATdiff, CRPdiff
165PP20018 4 HBdiff, TBafter, TBdiff, Naafter
001PANC0024 3 GFRdiff, NLRafter, NLRdiff
001PANC0026 3 CRPdiff, NLRafter, NLRdiff
001PP20002 3 ALATbefore, ALATdiff, GGTdiff
001PP20013 3 GFRbefore, GGTafter, CRPbefore
001PP20012 3 GGTdiff, CRPbefore, CRPdiff
002PP20008 3 TBafter, TBdiff, GFRdiff
059PP20001 3 TBafter, TBdiff, GFRdiff
078PANC0001 3 CEAdiag, CEAbefore, CEAdiff
078PP20004 3 LKafter, LKdiff, NPafter
151PP20002 3 GGTdiff, PLRafter, PLRdiff
001PANC0047 3 LCbefore, GFRbefore, Naafter
002PP20046 3 ALATdiff, SIIbefore, SIIdiff
078PP20029 3 GFRbefore, ALATafter, ALATdiff
148PP20027 3 ASATbefore, ALATbefore, ALATdiff
151PP20011 3 CA199diag, CA199diff, PLRafter
165PP20010 3 CA199diag, CA199before, CA199after
001PP20048 3 CA199diff, CRPbefore, CRPafter
002PP20069 3 CRbefore, GFRbefore, GFRafter
005PP20020 3 CA199diff, CRPbefore, CRPdiff
001PANC0017 2 GFRdiff, NLRafter
001PANC0003 2 GFRbefore, GFRafter
001PANC0008 2 SIIafter, SIIdiff
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B.2. Outlier Analysis (full)

Patient ID Number of
Outliers Outlier Variables

001PP20015 2 CRPbefore, SIIdiff
018PP20003 2 ASATafter, ASATdiff
065PP20003 2 GFRbefore, GFRafter
148PP20002 2 ALATafter, ALATdiff
148PP20009 2 ALATbefore, ALATdiff
001PANC0042 2 GFRbefore, GFRafter
001PP20029 2 GFRbefore, GFRafter
002PP20051 2 ASATbefore, ASATdiff
002PP20037 2 GFRdiff, Albafter
065PP20015 2 GFRdiff, ALATdiff
148PANC0008 2 ASATafter, ASATdiff
151PP20018 2 TBafter, TBdiff
151PP20021 2 GFRbefore, GFRdiff
001PP20046 2 GFRbefore, GFRafter
005PP20016 2 ASATbefore, ASATafter
005PP20010 2 CA199diff, PLRafter
065PP20017 2 TBdiff, GFRdiff
151PP20029 2 PLRafter, PLRdiff
165PP20014 2 TBafter, TBdiff
001PANC0012 1 CA199diff
001PANC0005 1 PLRbefore
001PP20009 1 SIIafter
002PANC0002 1 GFRdiff
002PANC0005 1 ALATbefore
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B.2. Outlier Analysis (full)

Patient ID Number of
Outliers Outlier Variables

002PP20024 1 ALATbefore
002PP20007 1 GFRbefore
002PP20002 1 BRafter
018PP20004 1 TBafter
078PP20005 1 CEAdiff
078PP20008 1 CEAdiff
078PP20006 1 GFRdiff
165PP20003 1 CA199diff
001PANC0053 1 GFRdiff
001PANC0055 1 GGTdiff
001PANC0045 1 ALATdiff
001PANC0041 1 GFRdiff
001PP20030 1 GFRdiff
002PP20048 1 GFRafter
002PP20055 1 ALATafter
065PP20014 1 CA199diff
078PANC0003 1 ALATdiff
148PP20025 1 TBdiff
148PP20022 1 NLRbefore
165PP20008 1 PLRafter
165PP20005 1 BRdiff
001PANC0062 1 CA199diff
005PP20021 1 GFRafter
078PP20039 1 NPafter
133PP20008 1 HBdiff
133PP20009 1 BRafter
151PP20025 1 GFRdiff
166PP20006 1 Albbefore

Table B.96: Number of outliers per patients with their corresponding outlier variables sorted from the most outliers
to the least.
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B.3. PCA (background further)

B.3. PCA (background further)

In order to understand some more mathematical concepts and the interpretation of the plots in more detail, some more
explanation on the generated plots is provided in this section.

B.3.1 Correlation vs Covariance

Prior to applying PCA, it is important to have an understanding of the concepts of correlation and covariance. These
measures both relate to the linear relationship between two variables, but differ in how they normalize the data and the
range of their values.

B.3.1.1 Covariance

Covariance quantifies the joint variability of two random variables and indicates the extend to which they ‘co-vary’. Co-
variance can take on positive or negative values depending on the direction of the relationship. However, its magnitude is
not standardized and is influenced by the scales of the variables. A positive covariance implies that both variables tend to
exhibit similar high or low values simultaneously, while a negative covariance suggests an inverse relationship, wherein one
variable tends to be high while the other tends to be low. Mathematically, covariance is defined as the expected value of
the product of the deviations of the two variables from their respective means. It represents the average of the product of
the differences between each value and its mean:

Cov(X,Y ) = E
(
(X − E(X))(Y − E(Y ))

)
. (B.7)

B.3.1.2 Correlation

Correlation is a standardized measure that assesses the linear relationship between two variables, essentially the normalized
version of the covariance. It quantifies the strength and direction of the linear relationship between two variables and ranges
between -1 and 1. A value of -1 indicates a perfect negative correlation, 0 signifies no correlation, and 1 denotes a perfect
positive correlation. Correlation can be calculated as given in Equation (B.8), dividing the covariance by the product of
the standard deviations of the two variables.

ρ(X,Y ) =
Cov(X,Y )

σ(X)σ(Y )
, (B.8)

where ρ(X,Y ) is the correlation between X and Y , Cov(X,Y ) is the covariance between X and Y as given in Equation (B.7),
σ(X) is the standard deviation of X and σ(Y ) is the standard deviation of Y . When using PCA, the correlation matrix is
used instead of the covariance matrix when the variables are measured on different scales. The use of the correlation matrix
ensures that the PCs are uncorrelated and have equal variances. However, if all the variables are measured on the same
scale, then the covariance matrix is sufficient. In the following subsections both the correlation as well as the covariance
matrix are used in the PCA analysis to show the difference in the outcome.

B.3.2 Loadings and Scores in PCA

Two other important concepts that will be discussed in the PCA analysis are loadings and scores.

B.3.2.1 Loadings

Loadings are the coefficients or weights (ϕij) that represent the relationship (correlation) between the original variables and
the PCs. Each PC has a corresponding set of loadings, and they jointly make up the principal component loading vector.
Loadings are calculated by taking the dot product of the standardized data matrix and the eigenvectors of the covariance
matrix. Often loadings are represented as a matrix or a table, with rows corresponding to the original variables and
columns corresponding to the PCs. The loadings provide information about which variables give the largest contribution
to the components and range from -1 to +1. A high absolute value shows that the variable strongly influences the principal
component and a value close to 0 indicate that the variable has a small influence on the principal component. The sign of the
loading (+ or -) indicate whether a variable and a principal component are positively or negatively correlated. Furthermore,
the eigenvectors of the covariance matrix represent the direction of the PCs in the original data space. Each eigenvector

336



B.3. PCA (background further)

corresponds to one principal component, and the order of the eigenvectors is determined by the corresponding eigenvalues,
which represent the amount of variance explained by each principal component

loading = eigenvector ×
√

eigenvalue (B.9)

The purpose of this calculation is to incorporate the concept of “load", which provides information about the amount of
variance. By multiplying the eigenvalue with the eigenvector, which represents the variance of the PCs, each coefficient
becomes “loaded" by the amount of variance. Consequently, these coefficients provide information about the co-variability
among variables.

In plots, loadings are often depicted as arrows with specific angles and lengths relative to the axes. The angle of the arrow
with respect to the principal axis signifies the contribution of a particular variable to the direction of the PCs in which it is
influential. The length of the arrow reflects the strength of the contribution of that variable to the corresponding direction.
For example, in a 2D plot with PC1 on the x-axis and PC2 on the y-axis, a horizontal arrow represents the variable that
contributes predominantly to PC1, while a vertical arrow represents a feature that primarily contributes to PC2. The
length of the arrow indicates the magnitude of its contribution. Thus, a longer arrow indicates a better representation of
that particular variable in the new principal component space. Additionally, the angles between the loading arrows provide
insights into the correlation between variables or features. A small angle indicates a positive correlation, a large angle
(between 90 and 180 degrees) indicates a negative correlation, and an angle of 90 degrees denotes no correlation. However,
as will be explained later, depending on how well the variables have been projected from the original high dimensional space
to this lower dimensional space, this correlation is indeed present or not.

B.3.2.2 Scores

Scores, in the context of PCA, are the projections of the original dataset onto the principal component space. Each
observation is associated with a set of scores, which are obtained by multiplying the standardized data matrix by the
matrix of loadings. Typically, scores are presented in the form of a matrix or a table, where the rows correspond to the
observations and the columns correspond to the PCs. Mathematically, the scores of the PCs represent the coordinates of
each observation relative to the axes defined by the PCs. By calculating the dot product of the standardized data matrix
and the loading matrix, the coordinates of each observation in the principal component space are determined. These scores
provide a representation of how each observation contributes to the PCs and how they are positioned in relation to each
other within the new coordinate system.

B.3.3 PCA plots

Before the analysis on the data is given, first a brief explanation on the various plots and measures used is given in this
subsection.

B.3.3.1 Screeplot

The screeplot is a graphical representation that illustrates the proportion of variance explained by each PC in order to aid
in determining the number of PCs to retain for further analysis. The plot consists of a line or bar chart, where the x-axis
represents the PCs in ascending order of magnitude, and the y-axis represents the proportion of variance explained by each
PC. The bars or points in the screeplot indicate the amount of variance explained by each PC, with the PC1 on the left side
(explaining the highest amount of variation) and the subsequent components following in order. The eigenvalues associated
with the PCs are typically used to measure the amount of variation captured by each component. Larger eigenvalues
correspond to PCs that explain a higher proportion of the total variance in the dataset. In practice, a screeplot is used
to visually identify the “elbow point" or the point in the plot where the curve starts to level off. This point serves as a
criterion for determining the number of PCs to retain. Additionally, a predetermined cutoff value (e.g., 70%, 80%, or 90%
cumulative variance) may be used to determine this. By examining the screeplot, informed decisions can be made about
the number of PCs to include in subsequent analyses, balancing the amount of variance explained with the desired level of
dimensionality reduction.

B.3.3.2 Scatter plot

A scatter plot in the principal component space represents the original observations from the dataset based on their scores
along the PCs. Each observation is plotted according to its scores, which are the coordinates of the observation in the
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principal component space. To obtain the scores, the original data matrix is multiplied by the loading matrix. In a 2D
scatter plot, the location of each observation is determined by its scores along the PC1 and PC2. In this thesis. observations
that are well-represented by the PCs are highlighted in colors such as red or yellow. On the other hand, poorly represented
observations, which do not align well with the PCs, are represented in shades of blue. Altogether, a scatter plot provides
insights into the grouping, patterns, and relationships among observations in the principal component space, helping to
identify clusters or patterns that may not be apparent in the original data space. It serves as a visual tool to explore and
interpret the data from a dimensionality-reduced perspective.

B.3.3.3 Loading Plot

A loading plot is a graph that displays the correlation between the original variables and the PCs and helps to understand
relationships between the original variables and the PCs. The variables are displayed as arrows or vectors. The direction and
the length of these arrows represent the contribution and relative importance of the variable in determining the direction of
the PC. Each PC is represented by an axis. In the 2D case, the x-axis will be represented by PC1 and the y-axis by PC2.
Variables that are close to the axis of a PC have a high contribution to that PC while variables that are far away have
lower contributions. Note that in this case the original variables are projected from a high dimensional feature space onto
this 2D space. In order to understand the magnitude of the information preserved a correlation circle can be used. This
circle reflects 100% of the variance captured. The closer an arrow is to the circle, the more information is captured and the
shorter the arrow, the more information is lost. This is indicated in color as well, the more red the colour, the better the
representation of that variable in the principal component space and the more blue the arrow, the smaller the contribution.
Note that only for the well-projected variables (the variables pointing close to the correlation circle) the cosine of the angle
can be interpreted as the correlation coefficient. On the contrary, when variables are not well-projected the angle might be
small in the projected principal component space (e.g. 2D), while the angle in the original space (e.g. 15D) can be very
large. Therefore, the cosine of the angle in the original space is nowhere near the cosine of the angle in the projected space.
Positively correlated variables are grouped together while negatively correlated variables are positioned on opposite sides
of the plot. A more clear explanation with illustration will be provided in detail during the analysis of the data.

B.3.3.4 Biplot

A biplot shows the scores as well as the loadings all in one plot. Just like in the other plots the axes are the PCs and each
point represents the transformed observation to the principal component space. The arrows or vectors are the loadings,
just as in the loading plot. The interpretation is similar as previously explained.

B.3.3.5 Quality of Representation

Another way to visualize the quality of representation of the original variables as well as the correlation between the original
variables and the PCs is by plotting them against each other. The quality of representation is determined using the cos2,
where a high value indicates a good representation of the variable on the PC. Consequently, this variable is positioned close
to the circumference of the correlation circle in the loading plot. Conversely, a low cos2 value indicates a poorly represented
variable, which can be seen as having a small arrow in loading plot. The better represented variables are the most important
in interpreting the PCs. This is because the variables that are correlated with PC1 and PC2 are the most important in
explaining the variability in the dataset as PC1 and PC2 capture the most information. Variables that barely correlate with
any PC or correlate in the last dimensions have low contribution and might be removed to simplify the overall analysis.

To be more specific, in PCA, the cos2 plot provides insights into the contribution of each variable to the PCs. It represents
the squared cosines of the variables, indicating the proportion of variance in each variable that is captured by a particular
principal component. Interpreting the cos2 plot involves examining the values associated with each variable in the PCs.
Higher cos2 values indicate that the variable is well-represented by the corresponding principal component, meaning it
contributes significantly to that component’s variation. Conversely, lower cos2 values suggest that the variable has less
influence on the specific principal component. Some important key points to consider when interpreting a cos2 plot are:

• Variable Importance: Variables with higher cos2 values (close to 1) are more important in determining the specific
principal component. They contribute more to the overall variability explained by that component.

• Dimension Representation: By examining the cos2 values across different PCs, one can determine which variables
have a stronger association with specific dimensions. Variables with high cos2 values in multiple PCs may exhibit
multidimensional or have shared relationships with different components.

• Total Variance: The sum of cos2 values for each variable across all PCs provides an indication of the overall contri-
bution of that variable to the total variance explained by the PCA. Variables with higher cumulative cos2 values are
more influential in explaining the overall dataset variation.
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It is important to note that the interpretation of the cos2 plot should be done in conjunction with other PCA diagnostic
tools, such as scree plots, loading plots, and biplots, to gain a comprehensive understanding of the relationship between
variables and PCs. Additionally, to highlight the most contributing variables in each dimension a contribution plot is made
too, in which a bigger darker coloured dot represents a higher contribution to that principal component dimension. To go
into more detail, a contribution plot in PCA provides information about the relative contribution of each observation (data
point) to the PCs. It helps identify which observations have the most influence on the formation of the PCs and can reveal
outliers or influential cases. When interpreting a contribution plot, consider the following important details:

• Observation Importance: The higher the contribution value of an observation, the more it contributes to the formation
of the PCs. Observations with larger contributions have a stronger impact on the overall variability explained by the
PCs.

• Outlier Detection: Outliers or influential cases that deviate significantly from the majority of observations will have
high contribution values. These observations can be identified as they stand out from the rest in the contribution
plot.

• Dimension Representation: By examining the contribution values across different PCs, one can understand which
dimensions are primarily influenced by specific observations. Observations with high contributions in multiple PCs
may have a more substantial influence on the overall dataset representation.

The contribution plot provides insights into the individual data points’ impact on the PCs, allowing for the identification of
influential cases and the assessment of their influence on the overall analysis. It complements the cos2 plot, which focuses
on the variables’ contribution to the PCs, providing a holistic understanding of the relationships between observations and
variables in PCA. Together, the cos2 plot and contribution plot offer a comprehensive view of the PCA results, allowing
for the identification of key variables and influential observations in the dataset.

B.3.3.6 PCA plot with prediction ellipses

Another informative plot is the PCA plot with 95% confidence prediction ellipses. In this PCA plot the x-axis and y-axis
correspond to PC1 and PC2 respectively. In contrast to the previous scatter plots, the scores are now visualized using dots
and triangles coloured in blue and red, respectively, to indicate the two final responses (DC and PD). The coloured ellipses
represent the prediction regions around the mean scores for each group. These ellipses can be interpreted as follows: with
95% confidence, the predicted average value of an observation categorized by final response will fall within the shaded area
of the ellipse for that specific category.

To determine the 95% prediction ellipses, various distributions can be taken. In this case the student-t distribution is used.
The t-distribution is often used when the sample size is small (in this case a sample size of 100-250 is regarded as small in
statistics) and the standard deviation is unknown. It is a probability distribution that is similar to the normal distribution
but has heavier tails, which means that it assigns more probability to extreme values. This often happens in the case
outliers or rare events, which in turn can heavily influence the analysis and assigning more probability to extreme values
means that these are more likely to occur. To interpret the ellipse plots it is necessary to look at the overlap of the ellipses.
When the ellipses in the PCA plot overlap, it indicates that the groups represented (in this case the final dichotomized
response) have a similar variance-covariance structure. This means that the PCs do not provide much discrimination power
to separate those groups and there may not be much difference between them in terms of original variables.

On the other hand, when one ellipse is entirely inside another, it indicates that the group represented by the smaller ellipse
has a lower variance-covariance structure than the group represented by the larger ellipse. Thus, the PCs are able to
discriminate well between these groups and that there is indeed a significant difference between them in terms of original
variables. Additionally, the variance-covariance structure refers to the pattern of variances and covariances among the
variables in a dataset. In PCA, the goal is to summarise this structure using a smaller number of variables (PCs), which
are linear combinations of the original variables. It determines how much variance each PC captures in the data. Finally,
since in many cases it is seen that the first two PCs were not able to make a clear distinguishment between the two final
response groups, a scatter matrix plot of the first four PCs is provided. In this plot each PC is plotted against each other
and the final response is coloured.

B.3.3.7 3D plots

In addition to the 2D plots, where the variables are only projected onto the first two PCs, a 3D plot is made. In this case
the variables are projected onto 3 PCs. These 3D scatter plots represent the scores of the first three PCs. Each point in the
scatter plot corresponds to a sample and the coordinates of each point in the three-dimensional space are determined by the
values of the first three PCs. In this paper, the colour of each point in the scatter plot represent the final response of the
patient to chemotherapy, which is classified as either disease control or progressive disease. Interpreting these plots involves
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analyzing the relationships between the variables and the scores on the first three PCs. For example, points that cluster
together in the scatter plot may indicate groups of patients with similar responses to treatment and the biplot (which is
only plotted in the interactive 3D plot) can be used to identify which variables are most strongly associated with these
groupings. Additionally, the biplot can be used to identify variables that have similar relationships with the first three PCs.

B.4. PCA (full analysis)

This section provides the full PCA analysis conducted on the provided dataset as explained in section 3.3. It contains a
detailed principle component analysis of the various groups described before. These were:

1. Blood: HB, TB, LK, NP, LC

2. White Blood Cells: LK, NP, LC

3. Kidney: Na, K, CR, GFR

4. Liver: ASAT, ALAT, AF, GGT, BR and INR (INR is not taken into account due to lack of data)

5. Nutrition: Alb, Na, K

6. Inflammation: CRP, LK, SII, NLR, PLR

7. Patient Characteristics: Height, Weight, BMI, Age

8. All measured variables: HB, TB, LK, NP, LC, Na, K, CR, GFR, ASAT, ALAT, AF, GGT, BR, Alb, CRP, LK, SII,
NLR, PLR

9. All measured variables and Age and BMI added as well as the difference of the measured variable before and after
the first chemotherapy treatment

10. Age, BMI and the differences between the variables measured before and after the first chemotherapy treatment

The final response analyzed is the dichotomized final response, where 0 = Disease Control (CR, PR, SD) and 1 = Progressive
Disease (PD).

B.4.1 White Blood Cells

The white blood cell group contains the data before and after the first chemotherapy treatment of the leukocytes (LK),
Neutrophils (NP) and lymphocytes (LC) as well as their respective differences before and after the first chemotherapy
treatment. It contains a total of 111 observations of 9 explanatory variables. The correlation matrix in Figure B.311 shows
that almost all before and after values of the variables show some positive correlation. The LC before and after are very
strongly correlated while the NP and LK show milder correlation. However, the differences between the LK and NP are
very strongly correlated (correlation of 0.989), indicating that the difference in LK might be almost entirely determined by
the difference in NP as NP is a type of LK, this was already observed earlier in the section B.1 in plots Figure 3.2 and
Figure 3.3. Other interesting observations are that the differences of the variables show either negative or no correlation
with the before and after values of the corresponding variables. For instance NP after is very negatively correlated with
LKdiff and NPdiff as well as LKafter and NPafter. PCA is performed on the white blood cell group and the corresponding
scree plot can be found in Figure B.312. This plot clearly shows that a bit more than half of the variation in the data is
captured by PC1 and the ‘elbow’ point can be set at either PC3 or PC4. As the first three PCs explain a total of 90.5% of
the total variation and if PC4 is included this will rise to 99.7% as given in Table B.97. The scatter plot of the scores of
the white blood cell variables show that the well-represented observations tend to lie away from the origin and closer to the
principal components (either PC1 or PC2) while the poorly represented observations tend to lie around the origin. Since
PC1 explains a bit than half of the total variation, many observations seem to be correlated with PC2. However, there is
no clear structure to be found.

The loading plot in Figure B.314 shows that almost all variables are either below the horizontal axis defined by PC1 or just
above it. It also shows that NPafter and LKafter seem to be very positively correlated with PC1 and very well represented
too. LKdiff and NPdiff show a strong negative correlation with PC1 and are represented almost entirely as well. This can
be seen by the vectors pointing almost to the edge of the circumference of the correlation circle drawn. LKbefore is another
well-explained variable and shows a stronger negative correlation with PC2. From this plot it can also be seen that as was
seen in the correlation matrix Figure B.311 that NPafter, LKafter are strongly positively correlated and LKdiff and NPdiff
as well. Furthermore it looks like all the before values (NPbefore, LCbefore and LKbefore) also show a positive correlation.
However, since NPbefore and LCbefore are not so well-represented, the argument about the projection angle from a high
dimensional space (in this case 9-dimensional) to the lower dimensional space (in this case 2-dimensional) is valid and clear
conclusions cannot be drawn. This is seen back in the correlation matrix as the NPbefore and LKbefore values are strongly
positively correlated while LCbefore only shows a slight positive correlation. Recall that the cosine of the angle between
two variables is equal to the correlation coefficient between the variables if and only if the variables are well-represented.
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The biplot illustrated in Figure B.315 shows that many observations tend to be correlated with PC1 and thus with the
vectors: LKdiff, LCdiff, NPdiff, NPafter and LKafter. Nevertheless, no clear patterns are evident. The loading matrix
displayed in Figure B.316 confirms that LKafter, NPafter, LKdiff, and NPdiff (in absolute values) are the most significant
contributors to PC1, while LKbefore, NPbefore, LCbefore, and LCafter (all negative loading scores) mainly determine PC2.
Moreover, the correlation plot in Figure B.317 and the cos2 plot in Figure B.318 reveal similar trends, suggesting that the
white blood cell group is mainly determined by the LK and NP differences and after the first chemotherapy treatment
values. The contribution plot in Figure B.319 confirms this observation and additionally indicates that PC2 is mainly
determined by LKbefore, PC3 by NPbefore, and PC4 by PCdiff. Finally, the PCA plot with 95% prediction ellipses in
Figure B.320 reveals significant overlap in the two dichotomized final response groups, suggesting that considering only the
white blood cells is insufficient for grouping patients based on their final response in the first two dimensions. The 3D plots
in Figures B.322 and B.323 provide a comprehensive visualization of the scores in the first three dimensions.

Finally, the fact that LK and NP differences and after chemotherapy values show the highest correlation in absolute values
with PC1 suggests that these variables are the most important in explaining the variance in the white blood cell group.
In other words, these variables contribute the most to the variability observed in the data set. This is supported by the
fact that PC1 explains a significant portion of the total variance in the data, and that the loading matrix and contribution
plot also indicate that these variables are the most significant contributors to PC1. However, it is important to note that
there are no clear patterns evident in the biplot or correlation plot, which suggests that the relationships between these
variables may be complex and nonlinear. Therefore, it may be necessary to use more advanced analytical techniques to
further explore the relationships between these variables and identify any underlying patterns or trends, especially since it
is evident that considering the white blood cells solely is insufficient for grouping patients based on their final response.

Figure B.311: Correlation Matrix of the various variables in the white blood cell group, n=111 (Disease control
(n=87), Progressive disase (n=24)). Red = Positive correlation, Blue = negative correlation, White = No corre-
lation.

WBC PC1 PC2 PC3 PC4 PC5
Standard
Deviation 2.144 1.531 1.098 0.913 0.122

Proportion
of Variance
Explained

0.511 0.260 0.134 0.093 0.002

Cumulative
Proportion 0.511 0.771 0.905 0.997 0.999

Table B.97: PCA summary values of the white blood cell group, n=111 (Disease control (n=87), Progressive disase
(n=24)). It shows the standard deviation, proportion of variance explained and cumulative proportion of the first
five principal components.
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Figure B.312: Scree plot of the white blood cell variables, n=111 (Disease control (n=87), Progressive disase
(n=24)).

Figure B.313: Scatter plot of the white blood cell variables, n=111 (Disease control (n=87), Progressive disase
(n=24)).
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Figure B.314: Loading plot of the white blood cell variables, n=111 (Disease control (n=87), Progressive disase
(n=24)). The circle reflects how well the variables are described. The longer the loading vector (so closer to the
circle), the more the information is captured of that variable. The length of the arrow is proportional to how well
the variable is explained.

Figure B.315: Biplot plot of the white blood cell variables, n=111 (Disease control (n=87), Progressive disase
(n=24)).
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Figure B.316: Loading matrix of the white blood cell variables of the first 5 principal components, n=111 (Disease
control (n=87), Progressive disase (n=24)).

Figure B.317: Correlation of the original white blood cell variables with the principal components, n=111 (Disease
control (n=87), Progressive disase (n=24)).
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Figure B.318: Cos2 bar chart of the original white blood cell variables, n=111 (Disease control (n=87), Progressive
disase (n=24)).

Figure B.319: Contribution of the original white blood cell variables to the principal components, n=111 (Disease
control (n=87), Progressive disase (n=24)).
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Figure B.320: PCA plot of the white blood cell group with 95% prediction ellipses, n=111 (Disease control (n=87),
Progressive disase (n=24)). The final dichotomized response is coloured, Blue = 0 (Disease control) and Red = 1
(Progressive disease).

Figure B.321: Scatter matrix plot of the first four principal components, n=111 (Disease control (n=87), Progres-
sive disase (n=24)). The subplots between PC1, PC2, PC3 and PC4 are provided of the dataset containing the
white blood cell variables with The final dichotomized response is coloured, Blue = 0 (Disease control) and Red
= 1 (Progressive disease).
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Figure B.322: 3D plot of the white blood cell blood variables projected onto the first three principal components,
n=111 (Disease control (n=87), Progressive disase (n=24)).

Figure B.323: 3D plot of the white blood cell variables with the final dichotomized response coloured and shaped,
Blue circle = 0 (Disease control) and Red Triangle = 1 (Progressive disease)„ n=111 (Disease control (n=87),
Progressive disase (n=24)).

347



B.4. PCA (full analysis)

B.4.2 Kidney Function

The kidney function group is composed of four variables, namely Sodium (Na), Potassium (K), Creatinin (CR), and
Glomular Filtration Rate (GFR). The kidney dataset in consideration consists of 145 observations and 12 explanatory
variables. After rescaling the variables, the correlation matrix displayed in Figure B.324 demonstrates that most variables
exhibit no positive correlation, except for the before and after values of each variable respectively (especially the Na, CR and
GFR show this). The differences between Na, K, CR, and GFR are clearly uncorrelated. Based on the screeplot presented
in Figure B.325 and the values given in Table B.98, it is apparent that the first two principal components together do not
account for the majority of the variation in the data. Even with the first five principal components, only 80.5% of the
variance in the data can be explained. Given the limited number of explanatory variables, namely 12, this implies that
the data may have a complex underlying structure that cannot be easily explained by a small number of variables. Such
complexity could stem from various factors, including high dimensionality, non-linear relationships among variables, or the
presence of noise in the data. Since it takes at least five principal components to explain a significant proportion of the
variance, interpreting the results of the figures in this section, which only consider PC1 and PC2, or using the reduced
set of variables for further analysis may prove challenging. Thus, it becomes necessary to explore alternative methods of
dimensionality reduction or group the variables differently to simplify the underlying structure.

Despite the limited explanatory power of the first two principal components (PCs) in the kidney function dataset, exploring
the 2D plots can reveal potential patterns and trends. The scatterplot in Figure B.326 shows that many observations are
poorly represented in the principal component space defined by PC1 and PC2, suggesting weak correlation with either PC1
or PC2. However, the variables that are further away from the center of the observations tend to be better represented
and more correlated with either PC1 or PC2. The loading plot in Figure B.327 indicates that the variables in the kidney
function dataset point in different directions. In particular, PC1 is shows negative correlation with GFRafter. However,
the projection of GFRafter onto PC1 is not well-represented, as indicated by the orange color and arrow being distant
from the circumference of the correlation circle. Additionally, GFRbefore and CRbefore are important variables in the
first dimension, implying that the crucial variables in the “kidney" group are GFR and CR. Additionally, the differences
of all the variables, namely GFRdiff, Nadiff, Kdiff and CRdiff, in this group are poorly represented and do not contribute
to the first two dimensions. The biplot in Figure B.328 summarizes the two plots described earlier, revealing no clear
relationships between the observations and the variables. The loading matrix in Figure B.329, as well as the correlation,
cos2, and contribution of the original variables to the PCs in Figure B.330, Figure B.331, and Figure B.332, respectively,
confirm that the first dimension is primarily determined by CRbefore, CRafter, GFRbefore, and GFRafter. These variables
exhibit the highest correlation with PC1 and thus contribute the most. The second dimension, PC2, is mainly determined
by Nabefore, Naafter, and Kbefore, while the third dimension is mainly defined by Kafter and Kdiff. These findings suggest
that potassium values after chemotherapy and the difference are unrelated to the sodium values before and after, defining
two different PCs.

Finally, the response plotted in circles and triangles in Figure B.333 indicates that the overall mean is near the origin for
both final response groups, and the majority of the ellipses overlap. However, the ellipse for the disease control patients is
slightly smaller than the one for the progressive disease. To illustrate the observations in the alternate principal component
space, a scatter matrix plot is displayed in Figure B.334. This plot exhibits the observations mapped onto the first four
principal components. However, the scatter matrix merely indicates that the progressive disease group is concentrated
within the disease control group when projected onto the different principal components. When the principal components
are unable to separate the two different groups in any of the dimensions, it suggests that there is a considerable overlap
between the two groups in terms of their underlying variables. This means that the variables that define the two groups
have a similar pattern of variation, making it difficult to differentiate the groups based on those variables alone. In the
context of the analysis, this could mean that the underlying kidney variables that define the disease control group and the
progressive disease group are either not significant enough to separate the groups or have a similar pattern of variation. It
could also mean that other factors, beyond the measured kidney variables, are contributing to the separation between the
two groups. Unfortunately, the 3D plots in Figure B.335 and Figure B.336 do not provide more additional insights in the
three dimensional space either.

Kidney PC1 PC2 PC3 PC4 PC5
Standard
Deviation 1.714 1.375 1.364 1.233 1.205

Proportion
of Variance
Explained

0.245 0.158 0.155 0.127 0.121

Cumulative
Proportion 0.245 0.403 0.558 0.684 0.805

Table B.98: PCA summary values of the kidney group, n=145 (Disease control (n=114), Progressive disease
(n=31)). It shows the standard deviation, proportion of variance explained and cumulative proportion of the first
five principal components.
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Figure B.324: Correlation Matrix of the various variables in the Kidney group, n=145 (Disease control (n=114),
Progressive disease (n=31)). Red = Positive correlation, Blue = negative correlation, White = No correlation.

Figure B.325: Scree plot of the kidney variables, n=145 (Disease control (n=114), Progressive disease (n=31)).

349



B.4. PCA (full analysis)

Figure B.326: Scatter plot of the kidney variables, n=145 (Disease control (n=114), Progressive disease (n=31)).

Figure B.327: Loading plot of the kidney variables, n=145 (Disease control (n=114), Progressive disease (n=31)).
The circle reflects how well the variables are described. The longer the loading vector (so closer to the circle), the
more the information is captured of that variable. The length of the arrow is proportional to how well the variable
is explained.
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Figure B.328: Biplot plot of the kidney variables, n=145 (Disease control (n=114), Progressive disease (n=31)).

Figure B.329: Loading matrix of the kidney variables of the first 5 principal components, n=145 (Disease control
(n=114), Progressive disease (n=31)).
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Figure B.330: Correlation of the original kidney variables with the principal components, n=145 (Disease control
(n=114), Progressive disease (n=31)).

Figure B.331: Cos2 bar chart of the original kidney variables, n=145 (Disease control (n=114), Progressive disease
(n=31)).
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Figure B.332: Contribution of the original kidney variables to the principal components, n=145 (Disease control
(n=114), Progressive disease (n=31)).

Figure B.333: PCA plot of the kidney group with 95% prediction ellipses, n=145 (Disease control (n=114),
Progressive disease (n=31)). The final dichotomized response is coloured, Blue = 0 (Disease control) and Red =
1 (Progressive disease).
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Figure B.334: Scatter matrix plot of the first four principal components. The subplots between PC1, PC2, PC3
and PC4 are provided of the dataset containing the kidney variables with The final dichotomized response is
coloured, Blue = 0 (Disease control) and Red = 1 (Progressive disease).

Figure B.335: 3D plot of the kidney variables projected onto the first three principal components.
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Figure B.336: 3D plot of the kidney variables with the final dichotomized response coloured and shaped, Blue
circle = 0 (Disease control) and Red Triangle = 1 (Progressive disease),.

B.4.3 Liver Function

The assessment of liver function is evaluated using the variables Aspartate Aminotransferase (ASAT), Alanine Aminotrans-
ferase (ALAT), Alkaline Phosphatase (AF), Gamma-Glutamyl Transferase (GGT), Bilirubin (BR), and the International
Normalized Ratio (INR). These will be grouped together to represent the liver group. However, due to the limited data
available for INR, it will not be used in the PCA conducted in this study. The liver dataset comprises of 166 observations
of 15 explanatory variables. After the rescaling the variables, the correlation matrix presented in Figure B.337 is obtained.
The correlation matrix indicates that ASAT values before and after the first chemotherapy treatment appear to be un-
correlated, while the ALAT and ASAT value before chemotherapy is almost entirely positively correlated as well as their
differences. Moreover, large positive correlations are observed between AF and GGT, both before and after the treatment.
From a medical standpoint, this result is expected, given that ASAT and ALAT are highly correlated as both enzymes
play a critical role in the metabolism of amino acids, and their levels tend to increase or decrease together in response to
liver damage or disease. Similarly, AF and GGT may also be highly correlated with each other, as they are both liver
enzymes and are associated with liver function. However, the relationship between these variables may be influenced by
other factors such as the underlying cause of liver dysfunction or disease, as well as other medical conditions. Furthermore,
the BR variable demonstrates little correlation with any of the liver enzymes, although the before and after values exhibit
a robust correlation. Interestingly, BRbefore shows a strong correlation with BRdiff (correlation of 0.954). The complete
correlation matrix is presented in Figure B.338.

The screeplot in Figure B.339 indicates that the first principal component (PC1) explains approximately 39% of the total
variation, while the second (PC2) explains 21% and the third (PC3) explains 12%. Together, the first three PCs account
for only 72% of the total variation. To achieve a cut-off value of at least 80%, PC4 is necessary, as it explains 10% of the
total variation on its own, and together with the first three PCs, it accounts for 82% of the total variation (further details
can be found in Table B.99). This implies that a significant amount of the variability in the data remains unexplained by
the first two identified PCs. The reasons for this unexplained variation could stem from various factors, such as noise in
the data, non-linear relationships among the variables, or other sources of variation that are not accounted for by the linear
combinations of the original variables. Nonetheless, it is still worthwhile to investigate the other PC plots to identify possible
patterns in the first two dimensions defined by PC1 and PC2. The scatter plot of the scores shown in Figure B.340 reveals
that many observations are concentrated around the origin and have a blue/green value, indicating that these observations
are poorly represented in this principal component space. However, the cluster in the lower right corner appears to be
better represented compared to the others. Furthermore, the outlier observations are well captured by the first two PCs.
This suggests that the outlier observations may be driving a significant amount of the variability in the data, and they may
be crucial to consider in further analysis and exploration, or may be eliminated to explore general trends better.

The loading plot depicted in Figure B.341 illustrates that the majority of loading vectors are pointing towards the left
semi-circle, and mainly towards the first quadrant in the plane. Specifically, the variables ALAT and ASAT before values
exhibit strong correlations with PC1, as well as ALAT and ASATdiff, while the variables ASAT and ALAT after values
show correlation with PC2. Additionally, the vectors of the variables GGT and AF are close together in the loading plot,
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indicating a strong positive correlation between these variables. Although BRbefore and BRdiff are close together and close
to PC1, they are only moderately represented in the loading plot, while BRafter is poorly represented, suggesting that
PC1 and PC2 are not good at explaining any variation in this variable. In addition, due to the moderate representation in
the first two dimensions, no conclusions about these variables can be drawn. Figure B.344 and Figure B.345 demonstrate
that PC1 is primarily correlated with ASAT, ALAT before and diff values, and to a lesser extent, AFbefore, GGTbefore,
BRbefore, AFdiff, GGTdiff, and BRdiff. This can mainly be explained by the fact that these variables exhibit positive
correlation as well with each other, which was seen earlier in Figure B.337. On the other hand, the second dimension is
mostly associated with AFafter and GGTafter, with smaller correlations to ASATafter and ALATafter. The third dimension
does not exhibit any clear correlations, with the biggest one seeming to originate from AFdiff, while the fourth dimension
(PC4) is primarily correlated with BRbefore, BRafter, and BRdiff. Thus, PC1 and PC2 are mainly related to liver enzymes,
while PC4 is related to bilirubin.

Recall that the contribution of each original variable to each PC is determined by the loading values, which represent the
correlation between the original variables and the PCs. They indicate the strength and direction of the relationship between
each variable and each PC, with larger loading values indicating stronger correlations. However, it is possible for a variable
to have a high correlation with a particular PC, but still have a relatively small contribution to that PC, if it is also highly
correlated with other variables that have even stronger correlations with that PC. This is the case if the variables are
highly correlated with each other, resulting in redundancy in the information they provide. In this case, the contribution of
each variable to a particular PC may be diluted by the contributions of other highly correlated variables. For example in
the liver data, PC1 is strongly correlated with several variables, including ASAT, ALAT before and diff values, as well as
AFBefore, GGTbefore and a few others. However, the contribution plot in Figure B.346 shows that the contributions of the
original variables to PC1 are relatively evenly distributed, with no single variable dominating. The reason may be because
the variables are highly correlated with each other and together they capture a broad range of variability in the data that
is not easily assigned to one single variable. In other words, when two or more variables are highly correlated, they are
capturing similar information about the data. When we are performing PCA, we are trying to find a new set of variables
(PCs) that capture as much of the variability in the data as possible. If two variables are highly correlated, then they are
likely to both contribute to the same principal component and it may be difficult to attribute the variability captured by
that component to one variable in particular. So, the variables may be redundant in the sense that they are capturing the
same information, so it may be difficult to disentangle their individual contributions to the principal components. This is
exactly seen back here: correlations between the variables and the principal components is high, but the contribution of
each individual variable to those components is relatively low.

Furthermore, the biplot in Figure B.342 shows a summary of the scatter and loading plot provided earlier with the loadings
mainly in the first and third quadrant while many observations are clustered around the origin with a large proportion in
the fourth quadrant. The final response plotted in colour with the corresponding 95% prediction ellipses in Figure B.347
do not show a clear distinguishment between the final response outcomes. However, the only thing that is apparent is
that the disease control group ellipse is smaller and more elongated along PC1, while the progressive disease group is more
elongated along PC2. When the two ellipses overlap, it means that there is some degree of similarity between the two
categories in terms of their distribution in the PCA space. However, the fact that one ellipse is more elongated and the
other more circular suggests that there may be some differences in the variability or direction of the data long certain
principal components. When an ellipse is more elongated, it means that the variance of the observations is larger in one
direction compared to the other. This indicates that there is more variability along that principal component. On the
other hand, when an ellipse is more circular, it means that the variance is similar in all directions, indicating less variability
along each principal components. It is to be noted that the groups may be better separated on higher-order PCs. The
plot in Figure B.348 shows the scores of the values plotted in the first four dimensions defined by the first four principal
components. Nonetheless, no clear separation between the two final responses can be seen. Neither do the 3D-plots in
Figure B.349 and Figure B.350 provide a more insights into the scores projected onto the first 3 principal components.

Liver Function PC1 PC2 PC3 PC4 PC5
Standard
Deviation 2.416 1.784 1.346 1.242 0.977

Proportion
of Variance
Explained

0.389 0.212 0.121 0.103 0.064

Cumulative
Proportion 0.389 0.601 0.722 0.825 0.888

Table B.99: PCA summary values of the liver group. It shows the standard deviation, proportion of variance
explained and cumulative proportion of the first five principal components.
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Figure B.337: Correlation Matrix of the various variables in the Liver group. Red = Positive correlation, Blue =
negative correlation, White = No correlation.

Figure B.338: Correlation Matrix of the various variables in the Liver group with numerical values.

Figure B.339: Scree plot of the liver variables.
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Figure B.340: Scatter plot of the liver variables.

Figure B.341: Loading plot of the liver variables. The circle reflects how well the variables are described. The
longer the loading vector (so closer to the circle), the more the information is captured of that variable. The length
of the arrow is proportional to how well the variable is explained.
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Figure B.342: Biplot plot of the liver variables.

Figure B.343: Loading matrix of the liver variables of the first 5 principal components.
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Figure B.344: Correlation of the original liver variables with the principal components.

Figure B.345: Cos2 bar chart of the original liver variables.
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Figure B.346: Contribution of the original liver variables to the principal components.

Figure B.347: PCA plot of the liver group with 95% prediction ellipses. The final dichotomized response is
coloured, Blue = 0 (Disease control) and Red = 1 (Progressive disease).
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Figure B.348: Scatter matrix plot of the first four principal components, n=145 (Disease control (n=114), Pro-
gressive disease (n=31)). The subplots between PC1, PC2, PC3 and PC4 are provided of the dataset containing
the liver variables with The final dichotomized response is coloured, Blue = 0 (Disease control) and Red = 1
(Progressive disease).

Figure B.349: 3D plot of the liver variables projected onto the first three principal components, n=145 (Disease
control (n=114), Progressive disease (n=31)).
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Figure B.350: 3D plot of the liver variables with the final dichotomized response coloured and shaped, Blue circle
= 0 (Disease control) and Red Triangle = 1 (Progressive disease), n=145 (Disease control (n=114), Progressive
disease (n=31)).

B.4.4 Nutrition status

The Nutrition Status will be analyzed using the variables: Albumin (Alb), Sodium (Na) and Potassium (K) before and after
the first chemotherapy treatment. The dataset comprises a total of 102 observations with 9 explanatory variables. After
rescaling the variables, the correlation matrix presented in Figure B.351 indicates a strong positive correlation between the
before and after values of all variables. An interesting observation is that the Sodium and Potassium levels seem to be
negatively correlated. In general, changes in sodium levels can lead to changes in potassium levels or vice versa, but they
do not have to be negatively correlated. For example, in the cases of dehydration, both sodium and potassium levels may
decrease due to fluid loss. However, the relationship can be influenced by many different factors. Furthermore, Albumin
levels seem not to be strongly correlated to neither sodium nor potassium. PCA applied to the nutrition group reveals that
the first three principal components explain a relatively low proportion of the variability in the data. Only by including the
fifth PC, the cumulative proportion of variance explained surpasses 80% and even reaches 90%. These findings suggest that
the data may have more complex structure, requiring additional variables to fully capture the range of variability. Given
that the data comprises only 9 explanatory variables consisting of essentially 3 parameters (Alb, Na, and K), it may be
preferable to consider the original variables rather than the PCs.

The scatter plot displayed in Figure B.354 indicates that the majority of the scores are poorly represented by only the
first two dimensions, which is not surprising given that these dimensions capture less than half of the variance in the
data. The loading plot depicted in Figure B.355 shows that only the variables “Na-after" and “K-after" are reasonably
well-represented in the first two dimensions, with “Na-after" highly correlated with PC1 and “K-after" highly correlated
with PC2. Conversely, the remaining variables are poorly projected in the first two dimensions, precluding any meaningful
conclusions about them. The biplot in Figure B.356 and the prediction ellipse plot in Figure B.361 are also inconclusive
and fail to reveal any discernible patterns, aside from the observation that the disease control ellipse appears circular while
the progressive disease ellipse is elongated. Projecting the observations onto the first four principal components, as depicted
in Figure B.362 does not show any potential separation between the two final response groups either. Nevertheless, the
correlation plot in Figure B.358 indicates several intriguing observations. Specifically, PC1 is primarily correlated to the
after first chemotherapy albumin and sodium values, while PC2 is mainly correlated by the before first chemotherapy sodium
values and after first chemotherapy potassium values. PC3, on the other hand, is correlated to the difference in potassium
levels, while PC4 is correlated to the before first chemotherapy albumin levels and PC5 is associated with the differences in
albumin and sodium levels. Despite these notable correlations, the strength of these associations is not particularly strong
(ranging from 0 to 0.68), as reflected in the low quality of representation in dimensions 1 and 2, illustrated in Figure B.359.
Similarly, Figure B.360 demonstrates that the variables correlated with a particular dimension have high contributions,
indicating that each dimension is mainly influenced by one or two original variables. Nevertheless, further exploration is
necessary to determine whether working with the original variables rather than the principal components would be more
advantageous in light of the fact that the variables are not highly correlated with each other. Consequently, reducing the
dimensionality of the data would not be advantageous in this instance. Finally, Figure B.363 and Figure B.364 present the
scores of the observations projected onto the first three principal components in 3D plots.
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Figure B.351: Correlation Matrix of the various variables in the Nutrition group, n=102 (Disease control (n=80),
Progressive disease (n=22)). Red = Positive correlation, Blue = negative correlation, White = No correlation.

Figure B.352: Correlation Matrix of the various variables in the Nutrition group, n=102 (Disease control (n=80),
Progressive disease (n=22)).
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Nutrition PC1 PC2 PC3 PC4 PC5
Standard
Deviation 1.516 1.355 1.303 1.128 1.032

Proportion
of Variance
Explained

0.256 0.204 0.189 0.141 0.118

Cumulative
Proportion 0.256 0.459 0.648 0.789 0.908

Table B.100: PCA summary values of the nutrition group, n=102 (Disease control (n=80), Progressive disease
(n=22)). It shows the standard deviation, proportion of variance explained and cumulative proportion of the first
five principal components.

Figure B.353: Scree plot of the nutrition variables, n=102 (Disease control (n=80), Progressive disease (n=22)).

Figure B.354: Scatter plot of the nutrition variables, n=102 (Disease control (n=80), Progressive disease (n=22)).
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Figure B.355: Loading plot of the nutrition variables, n=102 (Disease control (n=80), Progressive disease (n=22)).
The circle reflects how well the variables are described. The longer the loading vector (so closer to the circle), the
more the information is captured of that variable. The length of the arrow is proportional to how well the variable
is explained.

Figure B.356: Biplot plot of the nutrition variables, n=102 (Disease control (n=80), Progressive disease (n=22)).
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Figure B.357: Loading matrix of the nutrition variables of the first 5 principal components, n=102 (Disease control
(n=80), Progressive disease (n=22)).

Figure B.358: Correlation of the original liver variables with the principal components, n=102 (Disease control
(n=80), Progressive disease (n=22)).
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Figure B.359: Cos2 bar chart of the original nutrition variables, n=102 (Disease control (n=80), Progressive disease
(n=22)).

Figure B.360: Contribution of the original nutrition variables to the principal components, n=102 (Disease control
(n=80), Progressive disease (n=22)).
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Figure B.361: PCA plot of the nutrition group with 95% prediction ellipses, n=102 (Disease control (n=80),
Progressive disease (n=22)). The final dichotomized response is coloured, Blue = 0 (Disease control) and Red =
1 (Progressive disease).

Figure B.362: Scatter matrix plot of the first four principal components, n=102 (Disease control (n=80), Pro-
gressive disease (n=22)). The subplots between PC1, PC2, PC3 and PC4 are provided of the dataset containing
the nutrition variables with The final dichotomized response is coloured, Blue = 0 (Disease control) and Red = 1
(Progressive disease).
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Figure B.363: 3D plot of the nutrition variables projected onto the first three principal components, n=102 (Disease
control (n=80), Progressive disease (n=22)).

Figure B.364: 3D plot of the nutrition variables with the final dichotomized response coloured and shaped, Blue
circle = 0 (Disease control) and Red Triangle = 1 (Progressive disease), n=102 (Disease control (n=80), Progressive
disease (n=22)).
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B.4.5 Inflammation

Inflammation will be assessed using the variables: C-reactive protein (CRP), Leukocytes (LK), Systemic Inflammation Index
(SII), Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR). The dataset contains a total of 90
observations with 15 explanatory variables, which have been standardized for the PCA analysis. The correlation matrix, as
illustrated in Figure B.365, indicates that there exists positive correlation between the before and after first chemotherapy
treatment values of most variables. Interestingly, the PLR values before chemotherapy display no correlation with the NLR
values after chemotherapy, and the PLR values are negatively correlated with the LK values before and after chemotherapy.
Furthermore, the LK values after chemotherapy exhibit no correlation with the CRP values after chemotherapy. The exact
correlation coefficients can be found in Figure B.366.

PCA on the inflammation dataset yields weak explanatory principal components. The first PC explains only 32.6% of the
total variation of the data, and at least 4 PCs are required to explain over 80% of the total variation. This suggests that
there may be redundancy present due to highly correlated variables or non-linear relationships, similar to the case of liver,
kidney, and nutrition groups analyzed earlier. The scatter plot in Figure B.368 shows that most observations are centered
around the origin, and many are poorly represented by only using the first two PCs. On the other hand, the loading plot in
Figure B.369 shows that several variables are well represented in the first two dimensions, specifically NLRbefore, SIIbefore,
PLRbefore, SIIafter, NLRafter, SIIdiff, and NLRdiff, as their vectors are close to the correlation circle and have a red colour.
In particular, the before values of NLR, PLR, and SII are highly correlated, as are the SII and NLR after values, and the
SIIdiff and NLRdiff. This is expected since SII is calculated using both neutrophils and platelets as shown in Equation (B.4).
Additionally, most vectors are in the first two quadrants showing positive correlation with PC2 mainly, and either negative
or positive correlation with PC1. Moreover, the biplot in Figure B.370 offers a summary of the aforementioned findings by
illustrating how the observations are related to each other and to the variables. The distance between observations in the
biplot indicates the degree of similarity or dissimilarity in terms of their variable values. Additionally, the position of an
observation relative to the arrows reflects the proportion of each variable present in the observation and how much of each
principal component it represents. However, no clear trends or groupings can be observed.

The correlation between the original inflammation variables and the principal components can be observed in Figure B.372.
The results support previous observations that PC1 is significantly correlated with SIIdiff, NLRdiff, and PLRdiff, which is
logical since these three variables are also strongly correlated with each other. Furthermore, PC2 is strongly correlated with
the SII, NLR, and PLR before and after the initial chemotherapy treatment values, which aligns with the same reasoning as
before. As illustrated in Figure B.373, PC3 is primarily determined by LKafter and LKdiff, while PC4 is mainly influenced
by LKbefore values. Additionally, due to the high correlation present, the contribution of each variable is limited in the first
few dimensions, as shown in Figure B.374. In other words, there are redundant variables in this group that are capturing
the same information, causing high correlations between the variables and the PCs, but low contributions of each individual
variable to those components. Finally, the plot in Figure B.375 shows no clear separation in the final response group using
only PC1 and PC2. Projecting the scores onto the first four principal components does not yield a clear separation between
the two groups either. Neither do the scores in the first three dimensions, using PC1, PC2, and PC3, which are visualized
in Figure B.377 and Figure B.378.

Figure B.365: Correlation Matrix of the various variables in the Inflammation group, n=90 (Disease control (n=71),
Progressive disease (n=19)). Red = Positive correlation, Blue = negative correlation, White = No correlation.
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Figure B.366: Correlation Matrix of the various variables in the Inflammation group, n=90 (Disease control
(n=71), Progressive disease (n=19)).

Inflammation PC1 PC2 PC3 PC4 PC5
Standard
Deviation 2.213 1.936 1.494 1.259 1.123

Proportion
of Variance
Explained

0.326 0.250 0.149 0.106 0.084

Cumulative
Proportion 0.326 0.576 0.725 0.831 0.915

Table B.101: PCA summary values of the inflammation group, n=90 (Disease control (n=71), Progressive disease
(n=19)). It shows the standard deviation, proportion of variance explained and cumulative proportion of the first
five principal components.

Figure B.367: Scree plot of the inflammation variables, n=90 (Disease control (n=71), Progressive disease (n=19)).

B.4.6 Patient Characteristics

Inclusion of patient characteristics, such as weight, height, age and BMI, can provide valuable information in a dataset.
Hence, these four variables are included into the patient characteristics group. It should be noted that PCA is only applicable
to continuous variables, thus categorical variables such as gender and smoking status are not included in the analysis. The
patient characteristics dataset comprises 189 observations of 4 explanatory variables. The correlation plot depicted in
Figure B.379 suggests a positive correlation between height and weight, which is biologically plausible as taller individuals
tend to weigh more. Similarly, weight and BMI exhibit a positive correlation, which can be explained by the relationship
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Figure B.368: Scatter plot of the inflammation variables, n=90 (Disease control (n=71), Progressive disease
(n=19)).

Figure B.369: Loading plot of the inflammation variables, n=90 (Disease control (n=71), Progressive disease
(n=19)). The circle reflects how well the variables are described. The longer the loading vector (so closer to the
circle), the more the information is captured of that variable. The length of the arrow is proportional to how well
the variable is explained.
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Figure B.370: Biplot plot of the inflammation variables, n=90 (Disease control (n=71), Progressive disease (n=19)).

Figure B.371: Loading matrix of the inflammation variables of the first 5 principal components, n=90 (Disease
control (n=71), Progressive disease (n=19)).
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Figure B.372: Correlation of the original inflammation variables with the principal components, n=90 (Disease
control (n=71), Progressive disease (n=19)).

Figure B.373: Cos2 bar chart of the original inflammation variables, n=90 (Disease control (n=71), Progressive
disease (n=19)).

375



B.4. PCA (full analysis)

Figure B.374: Contribution of the original inflammation variables to the principal components, n=90 (Disease
control (n=71), Progressive disease (n=19)).

Figure B.375: PCA plot of the inflammation group with 95% prediction ellipses, n=90 (Disease control (n=71),
Progressive disease (n=19)). The final dichotomized response is coloured, Blue = 0 (Disease control) and Red =
1 (Progressive disease).
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Figure B.376: Scatter matrix plot of the first four principal components, n=90 (Disease control (n=71), Progressive
disease (n=19)). The subplots between PC1, PC2, PC3 and PC4 are provided of the dataset containing the
inflammation variables with The final dichotomized response is coloured, Blue = 0 (Disease control) and Red = 1
(Progressive disease).

Figure B.377: 3D plot of the inflammation variables projected onto the first three principal components, n=90
(Disease control (n=71), Progressive disease (n=19)).
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Figure B.378: 3D plot of the inflammation variables with the final dichotomized response coloured and shaped,
Blue circle = 0 (Disease control) and Red Triangle = 1 (Progressive disease), n=90 (Disease control (n=71),
Progressive disease (n=19)).

given in equation (B.2). Interestingly, age does not show a significant correlation with any other variable and displays a
slightly negative correlation with height and weight. The exact correlation coefficients are provided in Figure B.380.

PCA is then applied to this small dataset, and the standard deviation, proportion of variance explained, as well as cumulative
proportion are presented in Table B.102. Using 3 PCs, almost all the variation in the data can be accounted for. This
observation is not surprising since height and weight are used to compute BMI and there are only four variables. Therefore,
it would suffice to only consider BMI and age as variables. The screeplot shown in Figure B.381 clearly indicates that PC1
explains over half of the total variation, while PC2 and PC3 account for the other half. The correlation matrix between the
original variables and PCs, illustrated in Figure B.386, indicates that PC1 is extremely positively correlated with weight
and relatively strongly correlated with BMI. On the contrary, PC2 displays no significant correlations, whereas PC3 exhibits
a strong correlation with age, which is consistent with Figure B.387. Finally, the contributions of each original variable to
each principal component, displayed in Figure B.388, reveal that PC1 is mainly influenced by weight, PC2 has contributions
from height, age and BMI, PC3 is mostly influenced by age, and PC4 is defined by weight.

To further analyze the patient characteristics dataset, several visualizations were created. The scatter plot in Figure B.382
displays the scores of the observations, but does not reveal clear groupings or trends. Additionally, observations close
to the origin are poorly represented in the first two dimensions, similar to previous scatter plots. The loading plot in
Figure B.383 illustrates that BMI, weight, and height are well-represented by the first two principal components, whereas
age is poorly represented. This is not surprising, as earlier results showed that age contributed most to PC3, resulting in
loss of information when projected onto PC1 and PC2. Moreover, the biplot in Figure B.384 shows no strong correlations
between the observations (black dots) and the original variables. The scores appear scattered in a cloud around the origin.
The loading matrix in Figure B.385 confirms the earlier findings. Finally, the plot in Figure B.389 shows no clear deviation
in the two groups based on the final response. Neither does projecting the data onto the first four dimensions provide any
valuable insights. Nor do the 3D-plots in Figure B.391 and Figure B.392 provide any more visual insights of the scores
projected on the space defined by the first three principal components.
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Figure B.379: Correlation Matrix of the various variables in the Patient Characteristics, n=189 (Disease control
(n=151), Progressive disease (n=38)). Red = Positive correlation, Blue = negative correlation, White = No
correlation.

Figure B.380: Correlation Matrix of the various variables in the Patient Characteristics, n=189 (Disease control
(n=151), Progressive disease (n=38)).

379



B.4. PCA (full analysis)

Patient
Characteristics PC1 PC2 PC3 PC4

Standard
Deviation 1.415 1.035 0.961 0.066

Proportion
of Variance
Explained

0.501 0.268 0.231 0.001

Cumulative
Proportion 0.501 0.768 0.999 1.000

Table B.102: PCA summary values of the patient characteristics, n=189 (Disease control (n=151), Progressive
disease (n=38)). It shows the standard deviation, proportion of variance explained and cumulative proportion of
the first four principal components. Note that there are only 4 PCs as the data only has 4 variables.

Figure B.381: Scree plot of the Patient Characteristics, n=189 (Disease control (n=151), Progressive disease
(n=38)).

B.4.7 Tumor Markers CEA and CA19-9

The tumor markers CEA and CA19-9 are essential in assessing the status and treatment of PDAC. Consequently, it is of
interest to examine which values of these tumor markers are most critical in determining the final response to chemotherapy.
The values of CEA and CA19-9 at diagnosis, before chemotherapy, after chemotherapy, and the difference between the
values before and after the first chemotherapy treatment are the variables under consideration and together form the tumor
markers dataset. The dataset consists of 96 observations with 8 explanatory variables. The correlation matrix presented
in Figure B.393 shows that all the values at diagnosis, before and after are strongly positively correlated for each of the
individual tumor markers. However, the difference of each tumor marker seems to exhibit no correlation or a slightly negative
correlation with any of the diagnosis/before/after values. Detailed correlation coefficients are available in Figure B.394.
After conducting PCA on the variables, it is observed that the first two principal components explain roughly 83% of the
total variation in the data. Adding a third dimension raises the total to almost 95%, as depicted in Table B.103 and
Figure B.395. This implies that the tumor marker data is organized in a way that can be efficiently represented using
only a few dimensions, with the first two components capturing most of the variation. The correlation matrix between
the original tumor marker variables and principal components, as presented in Figure B.400, demonstrates that the first
dimension (PC1) is highly correlated with the CEA and CA19-9 values at diagnosis, before, and after the first chemotherapy
treatment. The second dimension is highly correlated with CEAdiff, and the third dimension is correlated with CA19-9 diff.
Nonetheless, due to the high correlation between variables, it is difficult to disentangle their individual contributions to the
principal components. This results in the correlations between the original variables and principal components being high,
while the contribution of each individual variable to those components is relatively low. It is evident from Figure B.402
that PC2 is mainly determined by the CEAdiff, and PC3 is mostly influenced by the CA19-9 diff.

380



B.4. PCA (full analysis)

Figure B.382: Scatter plot of the Patient characteristics, n=189 (Disease control (n=151), Progressive disease
(n=38)).

Figure B.383: Loading plot of the patient characteristics, n=189 (Disease control (n=151), Progressive disease
(n=38)). The circle reflects how well the variables are described. The longer the loading vector (so closer to the
circle), the more the information is captured of that variable. The length of the arrow is proportional to how well
the variable is explained.
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B.4. PCA (full analysis)

Figure B.384: Biplot plot of the patient characteristics, n=189 (Disease control (n=151), Progressive disease
(n=38)).

Figure B.385: Loading matrix of the patient characteristic variables of the first 4 principal components, n=189
(Disease control (n=151), Progressive disease (n=38)).

Figure B.386: Correlation of the original patient characteristic variables with the principal components, n=189
(Disease control (n=151), Progressive disease (n=38)).
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B.4. PCA (full analysis)

Figure B.387: Cos2 bar chart of the original patient characteristics, n=189 (Disease control (n=151), Progressive
disease (n=38)).

Figure B.388: Contribution of the original patient characteristics to the principal components, n=189 (Disease
control (n=151), Progressive disease (n=38)).
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B.4. PCA (full analysis)

Figure B.389: PCA plot of the patient characteristics with 95% prediction ellipses, n=189 (Disease control (n=151),
Progressive disease (n=38)). The final dichotomized response is coloured, Blue = 0 (Disease control) and Red =
1 (Progressive disease).

Figure B.390: Scatter matrix plot of the first four principal components, n=189 (Disease control (n=151), Pro-
gressive disease (n=38)). The subplots between PC1, PC2, PC3 and PC4 are provided of the dataset containing
the patient characteristics with The final dichotomized response is coloured, Blue = 0 (Disease control) and Red
= 1 (Progressive disease).
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B.4. PCA (full analysis)

Figure B.391: 3D plot of the patient characteristics projected onto the first three principal components, n=189
(Disease control (n=151), Progressive disease (n=38)).

Figure B.392: 3D plot of the patient characteristics with the final dichotomized response coloured and shaped,
Blue circle = 0 (Disease control) and Red Triangle = 1 (Progressive disease), n=189 (Disease control (n=151),
Progressive disease (n=38)).
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B.4. PCA (full analysis)

To continue, the scatter plot in Figure B.396 exhibits a concentration of scores around the origin with the scores located
more towards the left being better represented in the plot. The presence of outliers is responsible for the large scale of
the plot. As observed in the loading plot in Figure B.397, the PC1 dimension displays a highly positive correlation with
the tumor marker values at diagnosis, before and after, while PC2 is negatively correlated with CEAdiff. As CA19-9 is
primarily captured by PC3, it is poorly represented in the plot. The biplot in Figure B.398 fails to reveal any clear patterns
between the loading vectors of the original variables and the scores of the observations. The 95% prediction ellipse plots
in Figure B.403 and Figure B.404 show that many of the disease control patients are captured by a negative PC1 value
and elongated along PC2. The ellipse of the disease control group is comparatively smaller and confounded within the
ellipse of the progressive disease group. Since both ellipses display greater elongation along PC2, it indicates that the
variance is significantly greater in the PC2 dimension than in the others. Nevertheless, a clear division between the two
groups is absent. Likewise, the scores in a 2D plot in the first four principal components, as shown in Figure B.390 does
not provide any more insights into a separation between the final response groups. Lastly, the three-dimensional plots in
Figure B.406 and Figure B.407 provide a visual representation of the scores in the first three principal components with no
clear distinguishment either.

Figure B.393: Correlation Matrix of the tumor markers CEA and CA19-9, n=96 (Disease control (n=76), Pro-
gressive disease (n=20)). Red = Positive correlation, Blue = negative correlation, White = No correlation.

Figure B.394: Correlation Matrix of the tumor markers CEA and CA19-9, n=96 (Disease control (n=76), Pro-
gressive disease (n=20)).
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B.4. PCA (full analysis)

Tumor
Markers PC1 PC2 PC3 PC4 PC5

Standard
Deviation 2.324 1.105 0.982 0.563 0.289

Proportion
of Variance
Explained

0.675 0.153 0.121 0.040 0.010

Cumulative
Proportion 0.675 0.828 0.948 0.988 0.998

Table B.103: PCA summary values of the tumor markers CEA and CA19-9, n=96 (Disease control (n=76),
Progressive disease (n=20)). It shows the standard deviation, proportion of variance explained and cumulative
proportion of the first five principal components. .

Figure B.395: Scree plot of the tumor markers CEA and CA19-9, n=96 (Disease control (n=76), Progressive
disease (n=20)).

B.4.8 All blood and tumor markers

Given that the grouping of blood markers has been based on expert opinion, it may be valuable to evaluate all blood and
tumor markers together using PCA. This would allow us to identify which variables are selected by PCA, determine the
significance of the original variables, and establish the number of principal components necessary to capture a substantial
portion of the total variation in the data. The considered dataset comprises 59 observations and 34 explanatory variables,
with missing variables removed. The correlation matrix of all variables and tumor markers is presented in Figure B.408.
Interestingly, few variables demonstrate positive correlations (aside from before and after values of the same variables),
with a clear negative correlation observed between the before values of GFR and CR as well. After performing PCA on all
before and after values of blood variables, along with CEA and CA19-9 tumor markers, we observe from the loading matrix
in Figure B.413 that the proportion of variance explained by the first 10 principal components accounts for nearly 80% of
the total variation in the data. This suggests that reducing the data from a 34-dimensional space to a 10 or 11-dimensional
space is adequate for retaining about 80% of the total variation. The screeplot in Figure B.409 indicates that the first
two dimensions explain a small portion of the total variation, which can be attributed to the presence of noise or outliers,
complex underlying relationships between variables, and high variable correlations.

Therefore, the scatterplot, loading plot, biplot, and prediction ellipse plot in Figure B.410, Figure B.411, Figure B.412,
Figure B.417, respectively, are intended to provide a visual representation of the first two principal component spaces and
should be viewed primarily as a means of facilitating intuition. It should be noted that these plots are limited in their
ability to convey meaningful information, as the first two principal components only explain 27.5% of the total variation.
In addition, the correlation between each original variable and the principal components is illustrated in Figure B.414,
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B.4. PCA (full analysis)

Figure B.396: Scatter plot of the tumor markers CEA and CA19-9, n=96 (Disease control (n=76), Progressive
disease (n=20)).

Figure B.397: Loading plot of the tumor markers CEA and CA19-9, n=96 (Disease control (n=76), Progressive
disease (n=20)). The circle reflects how well the variables are described. The longer the loading vector (so closer
to the circle), the more the information is captured of that variable. The length of the arrow is proportional to
how well the variable is explained.
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B.4. PCA (full analysis)

Figure B.398: Biplot plot of the tumor markers CEA and CA19-9, n=96 (Disease control (n=76), Progressive
disease (n=20)).

Figure B.399: Loading matrix of the tumor variables of the first 5 principal components, n=96 (Disease control
(n=76), Progressive disease (n=20)).
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B.4. PCA (full analysis)

Figure B.400: Correlation of the original tumor marker variables with the principal components, n=96 (Disease
control (n=76), Progressive disease (n=20)).

Figure B.401: Cos2 bar chart of the original tumor marker variables, n=96 (Disease control (n=76), Progressive
disease (n=20)).
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B.4. PCA (full analysis)

Figure B.402: Contribution of the original tumor marker variables to the principal components, n=96 (Disease
control (n=76), Progressive disease (n=20)).

Figure B.403: PCA plot of the tumor markers CEA and CA19-9 with 95% prediction ellipses, n=96 (Disease
control (n=76), Progressive disease (n=20)). The final dichotomized response is coloured, Blue = 0 (Disease
control) and Red = 1 (Progressive disease).
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B.4. PCA (full analysis)

Figure B.404: PCA plot of the tumor markers CEA and CA19-9 with 95% prediction ellipses zoomed in, n=96
(Disease control (n=76), Progressive disease (n=20)).

Figure B.405: Scatter matrix plot of the first four principal components. The subplots between PC1, PC2, PC3 and
PC4 are provided of the dataset containing the tumor markers with The final dichotomized response is coloured,
Blue = 0 (Disease control) and Red = 1 (Progressive disease), n=96 (Disease control (n=76), Progressive disease
(n=20)).
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B.4. PCA (full analysis)

Figure B.406: 3D plot of the tumor marker variables projected onto the first three principal components, n=96
(Disease control (n=76), Progressive disease (n=20)).

Figure B.407: 3D plot of the tumor marker variables with the final dichotomized response coloured and shaped,
Blue circle = 0 (Disease control) and Red Triangle = 1 (Progressive disease), n=96 (Disease control (n=76),
Progressive disease (n=20)).
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B.4. PCA (full analysis)

while the variables that are best represented in PC1 and PC2 are displayed in Figure B.415. Additionally, Figure B.416
depicts the contributions of each original variable to the principal components. Analysis of Figure B.415 indicates that
CEA, GGT, AF, ALAT, ASAT, GFR, and CA19-9 are the variables that are best represented and contribute the most to
PC1 and PC2. Finally, the Figure B.417 shows that the disease control group has a smaller prediction region compared
to the progressive disease group. However, as this is only a projection onto PC1 and PC2, definitive conclusions cannot
be drawn. Neither does plotting the scores in the first four principal dimensions as visualized in Figure B.418 provide any
clear differences between the two groups. Lastly, the 3D-plots in Figure B.419 and Figure B.420 offer a visualization of the
first three dimensions.

Figure B.408: Correlation Matrix of all the blood and tumor markers, n=59 (Disease control (n=44), Progressive
disease (n=15)).

Figure B.409: Scree plot of all the blood and the tumor markers CEA and CA19-9, n=59 (Disease control (n=44),
Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.410: Scatter plot of all the blood and the tumor markers CEA and CA19-9, n=59 (Disease control
(n=44), Progressive disease (n=15)).

Figure B.411: Loading plot of all the blood and the tumor markers CEA and CA19-9, n=59 (Disease control
(n=44), Progressive disease (n=15)). The circle reflects how well the variables are described. The longer the
loading vector (so closer to the circle), the more the information is captured of that variable. The length of the
arrow is proportional to how well the variable is explained.
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B.4. PCA (full analysis)

Figure B.412: Biplot plot of all the blood and the tumor markers CEA and CA19-9, n=59 (Disease control (n=44),
Progressive disease (n=15)).

Figure B.413: Table of PCA summary values all the blood and the tumor variables of the first 11 principal
components, n=59 (Disease control (n=44), Progressive disease (n=15)).

Figure B.414: Correlation plot of the original blood and tumor marker variables with the principal components,
n=59 (Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.415: Cos2 bar chart of the original blood and tumor marker variables, n=59 (Disease control (n=44),
Progressive disease (n=15)).

Figure B.416: Contribution of the original blood and tumor marker variables to the principal components, n=59
(Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.417: PCA plot of all the blood markers and the tumor markers CEA and CA19-9 with 95% prediction
ellipses. The final dichotomized response is coloured, Blue = 0 (Disease control) and Red = 1 (Progressive disease),
n=59 (Disease control (n=44), Progressive disease (n=15)).

Figure B.418: Scatter matrix plot of the first four principal components. The subplots between PC1, PC2, PC3
and PC4 are provided of the dataset containing all the measured variables with The final dichotomized response is
coloured, Blue = 0 (Disease control) and Red = 1 (Progressive disease), n=59 (Disease control (n=44), Progressive
disease (n=15)).
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B.4. PCA (full analysis)

Figure B.419: 3D plot of the all the variables projected onto the first three principal components, n=59 (Disease
control (n=44), Progressive disease (n=15)).

Figure B.420: 3D plot of all the variables with the final dichotomized response coloured and shaped, Blue circle =
0 (Disease control) and Red Triangle = 1 (Progressive disease), n=59 (Disease control (n=44), Progressive disease
(n=15)).
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B.4. PCA (full analysis)

B.4.9 All blood and tumor markers, Age, BMI and differences

In order to fully assess the efficacy of PCA in reducing dimensionality and transforming original variables, the entire
dataset, including the two most significant patient characteristics, Age and BMI, were included in this PCA. Furthermore,
the differences between variable measured before and after the first chemotherapy treatment were added to determine
which directions of maximum variation would be identified in this case. The dataset comprises of 59 observations of 53
explanatory variables, and the correlation matrix can be found in Figure B.421. As with the previous subsection, the plots
in Figure B.422, Figure B.424. Figure B.425 and Figure B.430 should be used primarily for intuition since they involve
projections from a 53-dimensional space to a 2-dimensional space. Analysis of Figure B.428 reveals that the highest degree
of variation in this case is found in the variables: ALAT, ASAT, GGT, LK, NP, BR, and AF. This finding is distinct from
the previous subsection, where differences between measures were not taken into account, suggesting that consideration of
differences in values before and after the first chemotherapy treatment may be preferable to simply examining individual
values alone. Nevertheless, the ellipses in Figure B.430 fail to provide a clear differentiation between the two final response
groups. Neither does the projection onto the first four principal components in 2D, visualized in Figure B.431 provide
any more clear separations. Nor is the projection of the scores onto the first three principal components, as presented in
Figure B.432 and Figure B.433, of more information.

Figure B.421: Correlation Matrix of all the blood and tumor markers, Age, BMI and differences before and after
the first chemotherapy treatment, n=59 (Disease control (n=44), Progressive disease (n=15)).

B.4.10 Age, BMI and Differences

Finally, the effect of chemotherapy on blood variables and tumor variables is taken into account by considering only the
differences between the before and after treatment values. Additionally, age and BMI are included in the analysis to make
it more complete. The dataset in consideration consists of 59 observations of 19 explanatory variables. The correlation
matrix in Figure B.434 indicate that most differences are uncorrelated or weakly positively/negatively correlated, with
the exception of ASAT/ALAT, AF/GGT, GGT/BR, and LK/NP differences which exhibit strong positive correlation.
However, this was seen in earlier analyses as well. PCA is performed, and the screeplot as well as the table in Table B.104
demonstrate that the first few principal components account for a relatively small portion of the total variance in the data,
indicating that the data does not possess a clear dominant structure that can be captured by a few principal components.
Due to the lack of linear relationships between almost all variables, each variable contributes independently to the overall
variance of the data, making it difficult to identify a small number of principal components that capture the majority of
the variance.
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B.4. PCA (full analysis)

Figure B.422: Scree plot of all the blood and the tumor markers CEA and CA19-9, Age, BMI and differences
before and after the first chemotherapy treatment, n=59 (Disease control (n=44), Progressive disease (n=15)).

Figure B.423: Scatter plot of all the blood and the tumor markers CEA and CA19-9, Age, BMI and differences
before and after the first chemotherapy treatment, n=59 (Disease control (n=44), Progressive disease (n=15)).

401



B.4. PCA (full analysis)

Figure B.424: Loading plot of all the blood and the tumor markers CEA and CA19-9, Age, BMI and differences
before and after the first chemotherapy treatment, n=59 (Disease control (n=44), Progressive disease (n=15)).
The circle reflects how well the variables are described. The longer the loading vector (so closer to the circle), the
more the information is captured of that variable. The length of the arrow is proportional to how well the variable
is explained.

Figure B.425: Biplot plot of all the blood and the tumor markers CEA and CA19-9, Age, BMI and differences
before and after the first chemotherapy treatment, n=59 (Disease control (n=44), Progressive disease (n=15)).

Figure B.426: PCA summary values of all the blood and the tumor variables, Age, BMI and differences before
and after the first chemotherapy treatment of the first 13 principal components, n=59 (Disease control (n=44),
Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.427: Correlation plot of the original blood and tumor marker variables, Age, BMI and differences
before and after the first chemotherapy treatment with the principal components, n=59 (Disease control (n=44),
Progressive disease (n=15)).

Figure B.428: Cos2 bar chart of the original blood and tumor marker variables, Age, BMI and differences before
and after the first chemotherapy treatment, n=59 (Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.429: Contribution of the original blood and tumor marker, Age, BMI and differences before and after the
first chemotherapy treatment variables to the principal components, n=59 (Disease control (n=44), Progressive
disease (n=15)).

Figure B.430: PCA plot of all the blood markers and the tumor markers CEA and CA19-9, Age, BMI and
differences before and after the first chemotherapy treatment with 95% prediction ellipses, n=59 (Disease control
(n=44), Progressive disease (n=15)). The final dichotomized response is coloured, Blue = 0 (Disease control) and
Red = 1 (Progressive disease).
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B.4. PCA (full analysis)

Figure B.431: Scatter matrix plot of the first four principal components. The subplots between PC1, PC2, PC3 and
PC4 are provided of the dataset containing all the measured variables and tumor marker, Age, BMI and differences
before/after chemotherapy of the variables with The final dichotomized response is coloured, n=59 (Disease control
(n=44), Progressive disease (n=15)), Blue = 0 (Disease control) and Red = 1 (Progressive disease).

Figure B.432: 3D plot of all the variables, age, BMI and differences projected onto the first three principal
components, n=59 (Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.433: 3D plot of all the variables, age, BMI and differences with the final dichotomized response coloured
and shaped, Blue circle = 0 (Disease control) and Red Triangle = 1 (Progressive disease), n=59 (Disease control
(n=44), Progressive disease (n=15)).

Nonetheless, the plots in Figure B.437, Figure B.438, Figure B.440, Figure B.441, and Figure B.442 may still provide
valuable insights. The loading vectors in Figure B.437 and Figure B.438 show that the first two dimensions are primarily
determined by LKdiff, NPdiff, GGTdiff, and ALATdiff, which are the best represented variables. LKdiff/NPdiff are strongly
correlated with PC2, and GGTdiff/ALATdiff are strongly correlated with PC1. Figure B.440 make evident that the first
dimension captures liver measurements (ASAT, ALAT, AF, GGT, BR), the second dimension represents white blood cells
(LK, NP, LC), the third dimension is mostly Alb, and the fourth is GFR. Finally, the PCA ellipse plot in Figure B.443
shows that the ellipse of the disease control group is more elongated than that of the progressive disease group, indicating
that the observations of the disease group are more diverse than those of the progressive disease group. However, the disease
control group ellipse lies within the progressive disease group ellipse, and the plot is only two-dimensional, with PC1 and
PC2 accounting for a relatively small portion of the total variation in the data. Hence, any clear conclusions cannot be
drawn. Projecting the scores onto the first four principal components does not portray any clear distinctions between the
two final response groups. Ultimately, the 3D plots in Figure B.445 and Figure B.446 offer a view of the projection of the
scores onto the first three principal components, with no clear patterns either.

Age, BMI and Differences
variables PC1 PC2 PC3 PC4 PC5

Standard
Deviation 1.906 1.622 1.366 1.270 1.217

Proportion
of Variance
Explained

0.191 0.139 0.098 0.085 0.078

Cumulative
Proportion 0.191 0.330 0.428 0.513 0.591

Table B.104: PCA summary values of the Age, BMI and differences before and after the first chemotherapy
treatment of the first 5 PCs. It shows the standard deviation, proportion of variance explained and cumulative
proportion of the first five principal components. From the total summary it is seen that using 9 PCs 82% of the
total variation is explained and with 10 PCs 86% and only with 12 PCs we have 93% of the total variation, n=59
(Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.434: Correlation Matrix of Age, BMI and differences before and after the first chemotherapy treatment,
n=59 (Disease control (n=44), Progressive disease (n=15)).

Figure B.435: Scree plot of Age, BMI and differences before and after the first chemotherapy treatment, n=59
(Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.436: Scatter plot of Age, BMI and differences before and after the first chemotherapy treatment, n=59
(Disease control (n=44), Progressive disease (n=15)).

Figure B.437: Loading plot of Age, BMI and differences before and after the first chemotherapy treatment, n=59
(Disease control (n=44), Progressive disease (n=15)). The circle reflects how well the variables are described. The
longer the loading vector (so closer to the circle), the more the information is captured of that variable. The length
of the arrow is proportional to how well the variable is explained.
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B.4. PCA (full analysis)

Figure B.438: Biplot plot of Age, BMI and differences before and after the first chemotherapy treatment, n=59
(Disease control (n=44), Progressive disease (n=15)).

Figure B.439: Loadings of Age, BMI and differences before and after the first chemotherapy treatment of the first
5 principal components, n=59 (Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.440: Correlation plot of the original Age, BMI and differences before and after the first chemotherapy
treatment with the principal components, n=59 (Disease control (n=44), Progressive disease (n=15)).

Figure B.441: Cos2 bar chart of the original Age, BMI and differences before and after the first chemotherapy
treatment, n=59 (Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.442: Contribution of the original Age, BMI and differences before and after the first chemotherapy
treatment variables to the principal components, n=59 (Disease control (n=44), Progressive disease (n=15)).

Figure B.443: PCA plot of Age, BMI and differences before and after the first chemotherapy treatment with 95%
prediction ellipses, n=59 (Disease control (n=44), Progressive disease (n=15)). The final dichotomized response
is coloured, Blue = 0 (Disease control) and Red = 1 (Progressive disease).
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B.4. PCA (full analysis)

Figure B.444: Scatter matrix plot of the first four principal components. The subplots between PC1, PC2, PC3 and
PC4 are provided of the dataset containing Age, BMI and the differences before and after the first chemotherapy
cycle of the variables with The final dichotomized response is coloured, Blue = 0 (Disease control) and Red = 1
(Progressive disease), n=59 (Disease control (n=44), Progressive disease (n=15)).

Figure B.445: 3D plot of Age, BMI and the differences before and after the first chemotherapy cycle of the variables
projected onto the first three principal components, n=59 (Disease control (n=44), Progressive disease (n=15)).
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B.4. PCA (full analysis)

Figure B.446: 3D plot of Age, BMI and the differences before and after the first chemotherapy cycle of the variables
with the final dichotomized response coloured and shaped, Blue circle = 0 (Disease control) and Red Triangle =
1 (Progressive disease), n=59 (Disease control (n=44), Progressive disease (n=15)).

B.4.11 Choice of PCA method in R

R has two built-in functions to perform Principal Component Analysis. There are generally two methods:

• Eigen/Spectral decomposition which princomp() uses

• Singular Value decomposition which prcomp() uses

According to R software, SVD has a slightly better numerical accuracy and therefore, the function prcomp() is preferred
compared to princomp().

The prcomp() function returns an object of class ‘prcomp’, which contains the following components:

• sdev: vector of standard deviations =
√
eigenvalues, determines how much variance is explained by each component

• rotation: matrix of loadings of the principal components, can be used to interpret the direction and strength of he
relationships between the variables and principal components

• center: the centered values used for the data

• scale: the scaling values used for the data

• x: the centered and/or scaled data matrix

• y: the scores of the principal components (projections of the original data onto the principal component)
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B.5. PCA using covariance matrix

B.5. PCA using covariance matrix

In this section, we will briefly discuss the findings of the same analysis done as in B.3 but using the covariance matrix
instead of the correlation matrix. The values in the covariance matrix are centered by their respective means. For each data
set, the scree plots were used to determine the number of principal components required to capture a significant amount of
the total variation in the data ≥ 90%.

B.5.1 Blood

To begin, PCA without scaling is performed on the blood data set. The screeplot in Figure B.447 depicts that using solely
the first two principal components is already sufficient to capture 99% of the total variation in the data. Notably, PCA
displays a strong correlation with TBbefore and TBdiff, whereas PC2 exhibits a high correlation with TBafter. These
findings suggest that thrombocytes (TB) represent the most significant contributor to variability in the blood data set.
However, it should be noted that the prediction ellipses remain overlapping, indicating a need for further investigation.

Figure B.447: Screeplot of the blood variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.448: Loading plot of the blood variables with PCA performed using the covariance matrix

Figure B.449: Contribution plot of the original blood variables with each principal component using PCA per-
formed with the covariance matrix

B.5.2 White Blood Cells

After performing PCA on the centered covariance matrix of the White blood cell data set, the analysis reveals that PC1,
PC2 and PC3 account for 92.3% 5.6%, and 1.3% of the total variation in the data, respectively. The cumulative proportion
of variance explained of the first two dimensions accounts for 98% of the total variation in the data. The first principal
component exhibits a strong correlation with the variables: LKafter, LKdiff, NPafter and NPdiff, indicating that the most
variability is observed in the Leukocytes and Neutrophils. It is noteworthy that Neutrophils are a type of Leukocyte,
suggesting that the variation in Leukocytes is likely dominated by changes in Neutrophils in most patients. Despite this
finding, the prediction ellipses exhibit a high degree of overlap.
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B.5. PCA using covariance matrix

Figure B.450: Screeplot of the white blood cell variables with PCA performed using the covariance matrix

Figure B.451: Loading plot of the white blood cell variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.452: Contribution plot of the original white blood cell variables with each principal component using
PCA performed with the covariance matrix

B.5.3 Kidney

Upon analyzing the kidney group using PCA, it is observed that similar to the white blood cell data set, PC1 captures a
significant portion of the total variation in the data. That is, PC1 captures 92.4% of the total variation in the data, followed
by PC2 and PC3 capturing 5.2% and 1.5%, respectively. Therefore, PC1 alone would be sufficient in most cases, and the
cumulative proportion of variance explained of PC1 and PC2 accounts for 98% of the total variation in the data. The
results show that PC1 is highly correlated with CRafter and CRdiff values, while PC2 has the most significant contribution
from CRbefore and PC3 from GFRafter and GFRdiff. These findings suggest that creatinine is the most variable value in
the kidney data set. The prediction ellipses exhibit an elongated shape along PC2 and significant overlap.

Figure B.453: Screeplot of the kidney variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.454: Loading plot of the kidney variables with PCA performed using the covariance matrix

Figure B.455: Contribution plot of the original kidney variables with each principal component using PCA per-
formed with the covariance matrix

B.5.4 Liver

Additionally, in the liver data set, PCA analysis performed on the unscaled variables revealed that PC1 captures 56% of
the total variation, PC2 captures 24%, PC3 captures 11% and PC4 captures 4%. PC1 is highly correlated with GGTbefore,
indicating that γ-GT is the most variable value in the liver data group, followed by AF and ALAT values. The prediction
ellipses still exhibit complete overlap of the disese control group within the progressive disease group ellipse.
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B.5. PCA using covariance matrix

Figure B.456: Screeplot of the liver variables with PCA performed using the covariance matrix

Figure B.457: Loading plot of the liver variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.458: Contribution plot of the original liver variables with each principal component using PCA performed
with the covariance matrix

B.5.5 Nutrition

In the case of the nutrition data set, PCA analysis did not yield a significant improvement using the correlation approach.
However, ommitting scaling reveals that PC1 captures 50% of the total variation, followed by PC2 capturing 29.5%, PC3
capturing 11.5% and PC4 capturing 8.4%. Together, using the first three PCs the cumulative proportion is 91% and if PC4
is added it comes to 99% approximately. The results show that PC1 is highly correlated with Albafter, with a smaller but
still significant contribution of Albbefore, while PC2 is mainly dominated by Albbefore. This suggests that albumin values
exhibit the most significant variation in the nutrition data. The biggest contributors to dimensions 3 and 4 are Nabefore,
Naafter for PC3 and Nadiff for PC4, respectively, indicating that sodium values differ second most. The prediction ellipses
show almost complete overlap and are of approximately the same size.

Figure B.459: Screeplot of the nutrition variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.460: Loading plot of the nutrition variables with PCA performed using the covariance matrix

Figure B.461: Contribution plot of the original nutrition variables with each principal component using PCA
performed with the covariance matrix

B.5.6 Inflammation

For the inflammation dataset, two principal components were sufficient to capture 99% of the total variation in the data.
The scree plot in Figure B.462 shows that PC1 is able to capture 69.7% of the total variation and PC2 29.7%, with the
first dimension highly correlated to SIIafter and SIIdiff, and the second dimension highly correlated to SIIbefore. This
indicates that inflammation is mainly dictated by the SII values, is a commonly used inflammation index and uses (B.4)
values of platelets, neutrophils and lymphocytes. The biggest contributor to PC1 is SII diff, to PC2 is SIIbefore and to
PC3 is PLRafter and PLRdiff. The prediction ellipses still show overlap, with the progressive disease ellipse more circular
in both directions compared to the disease control group.
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B.5. PCA using covariance matrix

Figure B.462: Screeplot of the inflammation variables with PCA performed using the covariance matrix

Figure B.463: Loading plot of the inflammation variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.464: Contribution plot of the original inflammation variables with each principal component using PCA
performed with the covariance matrix

B.5.7 Patient Characteristics

The patient characteristic data set only has four variables and exhibits a similar trend as the inflammation dataset after PCA
is performed without scaling. The screeplot in Figure B.465 shows that PC1 is able to capture 67.3% of the total variation,
PC2 17.2% and PC3 15.4%. Together these three PCs can explain 99.96% of the total variation, rounded off it would be
100%. Interestingly, the first dimension is extremely correlated to the Weight variable, while the second dimension has the
biggest contribution of Age and the third dimension from height. The prediction ellipses also overlap with the progressive
disease ellipse almost circular and the disease control ellipse more elongated along the x-axis. This means that disease
control has more variation in PC1, which is mostly dominated by Weight.

Figure B.465: Screeplot of the patient characteristics variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.466: Loading plot of the patient characteristics variables with PCA performed using the covariance
matrix

Figure B.467: Contribution plot of the original patient characteristics variables with each principal component
using PCA performed with the covariance matrix

B.5.8 Tumor Markers

For the tumor markers dataset, only one principal component was sufficient to capture 97.1% of the total variation in the
data, with CA19-9 values after exhibiting the highest correlation. This aligns with previous research and literature findings
that CA19-9 is an important marker for pancreatic cancer. In more detail, the screeplot in Figure B.468 shows that PC1
is able to capture 97.1% of the total variation in the data, with PC2 following with a mere 2.4%. PC1 is highly correlated
to CA19-9 values after, followed by CA19-9 values before and then CA19-9 values at diagnosis. However, it is important
to keep in mind that 10% of the population is unable to produce this marker and these patients have been excluded from
this analysis. The contribution to the second dimension is also still from CA19-9 diagnosis, and the third dimension from
CA19-9 difference. CEA before chemotherapy is the most variable dimension is CA19-9 is not taken into account. The
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B.5. PCA using covariance matrix

prediction ellipses do show that the disease control group has a much smaller ellipse compared to the progressive disease
group.

Figure B.468: Screeplot of the tumor marker variables with PCA performed using the covariance matrix

Figure B.469: Loading plot of the tumor marker variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.470: Contribution plot of the original tumor marker variables with each principal component using PCA
performed with the covariance matrix

B.5.9 All markers

Next, consider the all markers data set, which includes all the blood and tumor variables. This data set exhibits a similar
trend as the tumor markers dataset, with PC1 capturing 96.9% of the total variation in the data (recall that the data
has 34 variables) and PC2 following with 2.7%. The most important variables are CA19-9 after, CA19-9before which are
extremely correlated to PC1. Other variables that follow are GGTbefore, GGTafter, AFafter, ALATbefore and TBbefore.
Similar to before, the prediction ellipse of the disease control group is completely captured within the prediction ellipse of
the progressive disease group.

Figure B.471: Screeplot of the all the measured variables with PCA performed using the covariance matrix

426



B.5. PCA using covariance matrix

Figure B.472: Loading plot of all the measured variables with PCA performed using the covariance matrix

Figure B.473: Contribution plot of the original measured variables with each principal component using PCA
performed with the covariance matrix

B.5.10 All markers + Age + BMI + differences

Furthermore, when age, BMI, and the differences before and after chemotherapy were added to the dataset as separate
variables, PC1 remained the most important component and could explain 91.8% of the total variation in the data. The
most important variables were still CA19-9after, CA19-9before, and CA19-9diff, followed by γ-GT, AF, ALAT, and TB.
That is, PC1 is able to capture 91.8% of the total variation in the data, PC2 follows with 7.7% and PC3 0.3%. So PC1
would be sufficient and with PC1 and PC2 together we would explain 99% of the total variation in the data. The prediction
ellipses are similar to the ones from the all markers data set. As a side note, is CA19-9 is not taken into the data set,
CEAafter and ALbdiff seem to be the most important variables.
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B.5. PCA using covariance matrix

Figure B.474: Screeplot of all the measured variables + Age + BMI + differences between measurements before
and after chemotherapy with PCA performed using the covariance matrix

Figure B.475: Loading plot of all the measured variables + Age + BMI + differences between measurements before
and after chemotherapy with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.476: Cos2 plot of all the original measured variables + Age + BMI + differences between measurements
before and after chemotherapy with each principal component using PCA performed with the covariance matrix

B.5.11 Age + BMI + differences

Finally, we consider the data with only the age, BMI and differences before and after chemotherapy as variables. Similar
to the previous two analyses, we see that PC1 is able to capture most of the variability in the data, namely 96.3% with
PC2 following with 2.5%. Unsurprisingly, the dominant variable is CA19-9diff, followed by the ALATdiff, ASATdiff and
GGTdiff. The prediction ellipses show again that the disease control ellipse is centered within the progressive disease ellipse.

Figure B.477: Screeplot of Age + BMI + differences between measurements before and after chemotherapy
variables with PCA performed using the covariance matrix
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B.5. PCA using covariance matrix

Figure B.478: Loading plot of the Age + BMI + differences between measurements before and after chemotherapy
variables with PCA performed using the covariance matrix

Figure B.479: Contribution plot of the original Age + BMI + differences between measurements before and after
chemotherapy variables with each principal component using PCA performed with the covariance matrix
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B.6. PCA after removal of outliers (figures)

B.6. PCA after removal of outliers (figures)

In this section the plots that have changed after removal of outliers based on GFR and BR values are presented with the
interpretation and discussion presented in section 3.3.

Figure B.480: Loading plot of the kidney variables after removal of outliers based on BR> 50mol/L and GFR<
30mL/min values prior to chemotherapy, n=139 (Disease control (n=110), Progressive disease (n=29)).

Figure B.481: 95% prediction ellipse of the kidney variables after removal of outliers based on BR> 50mol/L and
GFR< 30mL/min values prior to chemotherapy, n=139 (Disease control (n=110), Progressive disease (n=29)).
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B.6. PCA after removal of outliers (figures)

Figure B.482: Loading plot of the nutrition variables after removal of outliers based on BR> 50mol/L and
GFR< 30mL/min values prior to chemotherapy, n=99 (Disease control (n=78), Progressive disease (n=21)).

Figure B.483: 95% prediction ellipse of the kidney variables after removal of outliers based on BR> 50mol/L and
GFR< 30mL/min values prior to chemotherapy, n=99 (Disease control (n=78), Progressive disease (n=21)).
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B.6. PCA after removal of outliers (figures)

Figure B.484: Scree plot of the patient characteristics after removal of outliers based on BR> 50mol/L and
GFR< 30mL/min values prior to chemotherapy, n=179 (Disease control (n=143), Progressive disease (n=36)).

Figure B.485: Loading plot of all the blood and tumor markers after removal of outliers based on BR> 50mol/L
and GFR< 30mL/min values prior to chemotherapy, n=57 (Disease control (n=43), Progressive disease (n=14)).
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B.6. PCA after removal of outliers (figures)

Figure B.486: 95% prediction ellipse of the kidney variables after removal of outliers based on BR> 50mol/L and
GFR< 30mL/min values prior to chemotherapy, n=57 (Disease control (n=43), Progressive disease (n=14)).

Figure B.487: Loading plot of all the blood and tumor markers including age, BMI and the differences before and
after the first chemotherapy cycle after removal of outliers based on BR> 50mol/L and GFR< 30mL/min values
prior to chemotherapy, n=57 (Disease control (n=43), Progressive disease (n=14)).
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B.6. PCA after removal of outliers (figures)

Figure B.488: 95% prediction ellipse of all the blood and tumor markers including age, BMI and the differences be-
fore and after the first chemotherapy cycle after removal of outliers based on BR> 50mol/L and GFR< 30mL/min
values prior to chemotherapy, n=57 (Disease control (n=43), Progressive disease (n=14)).

Figure B.489: Loading plot of all age, BMI and the differences before and after the first chemotherapy cycle after
removal of outliers based on BR> 50mol/L and GFR< 30mL/min values prior to chemotherapy, n=57 (Disease
control (n=43), Progressive disease (n=14)).
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B.6. PCA after removal of outliers (figures)

Figure B.490: 95% prediction ellipse of age, BMI and the differences before and after the first chemotherapy cycle
after removal of outliers based on BR> 50mol/L and GFR< 30mL/min values prior to chemotherapy, n=57
(Disease control (n=43), Progressive disease (n=14)).
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C | Random Forest

C.1. Decision Trees

This Appendix contains examples of decisions trees created using the different training datasets considered in section 5.

C.1.1 Decision Trees (full dataset)

Figure C.1: Decision tree created using the original training dataset, n=194, 0=Disease Control (n=120), 1=Pro-
gressive disease (n=74).

Figure C.2: Decision tree created using the oversampled training dataset, n=240, 0=Disease Control (n=120),
1=Progressive disease (n=120).
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C.1. Decision Trees

Figure C.3: Decision tree created using the undersampled training dataset, n=148, 0=Disease Control (n=74),
1=Progressive disease (n=74).

Figure C.4: Decision tree created using both under- and oversampled training dataset, n=194, 0=Disease Control
(n=100), 1=Progressive disease (n=94).

Figure C.5: Decision tree created using the ROSE training dataset, n=500, 0=Disease Control (n=265), 1=Pro-
gressive disease n=235.
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C.1. Decision Trees

C.1.2 Decision Trees (no outliers)

Figure C.6: Decision tree created using the original training dataset after removal of outliers based on GFR
(< 30mL/min) and BR (> 50µmol/L) values, n=182, 0=Disease Control (n=115), 1=Progressive disease (n=67).

Figure C.7: Decision tree created using the oversampled training dataset after removal of outliers based on GFR
(< 30mL/min) and BR (> 50µmol/L) values, n=230, 0=Disease Control (n=115), 1=Progressive disease (n=115).

Figure C.8: Decision tree created using the undersampled training dataset after removal of outliers based on GFR
(< 30mL/min) and BR (> 50µmol/L) values, n=134, 0=Disease Control (n=67), 1=Progressive disease (n=67).
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C.1. Decision Trees

Figure C.9: Decision tree created using both under- and oversampled training dataset after removal of outliers
based on GFR (< 30mL/min) and BR (> 50µmol/L) values, n=182, 0=Disease Control (n=95), 1=Progressive
disease (n=87).

Figure C.10: Decision tree created using the ROSE training dataset after removal of outliers based on GFR
(< 30mL/min) and BR (> 50µmol/L) values, n=500, 0=Disease Control (n=265), 1=Progressive disease (n=235).
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C.2. Random Forest Plots

C.2. Random Forest Plots

C.2.1 Random Forest (full dataset)

Figure C.11: Out-Of-Bag Error and Training error of the random forest created using the original training dataset,
n=194, Disease Control (n=120), Progressive disease (n=74).

Figure C.12: Top 15 variable importance plot of the random forest created using the original training dataset,
n=194, Disease Control (n=120), Progressive disease (n=74).
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C.2. Random Forest Plots

Figure C.13: Out-Of-Bag Error and Training error of the random forest created using the oversampled training
dataset, n=240, Disease Control (n=120), Progressive disease (n=120).

Figure C.14: Top 15 variable importance plot of the random forest created using the oversampled training dataset,
n=240, Disease Control (n=120), Progressive disease (n=120).

Figure C.15: Out-Of-Bag Error and Training error of the random forest created using the undersampled training
dataset, n=148, Disease Control (n=74), Progressive disease (n=74).
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C.2. Random Forest Plots

Figure C.16: Top 15 variable importance plot of the random forest created using the undersampled training
dataset, n=200, Disease Control (n=90), Progressive disease (110).

Figure C.17: Out-Of-Bag Error and Training error of the random forest created using both over- and undersampled
training dataset, n=200, Disease Control (n=90), Progressive disease (110).

Figure C.18: Top 15 variable importance plot of the random forest created using the original training dataset,
n=194, Disease Control (n=120), Progressive disease (n=74).

443



C.2. Random Forest Plots

Figure C.19: Out-Of-Bag Error and Training error of the random forest created using the ROSE training dataset,
n=204, Disease Control (n=97), Progressive disease (n=97).

Figure C.20: Top 15 variable importance plot of the random forest created using the ROSE training dataset,
n=204, Disease Control (n=97), Progressive disease (n=97).
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C.2. Random Forest Plots

C.2.2 Random Forest (full dataset) confusion matrices

Figure C.21: Confusion matrix and evaluation metrics of the random forest created using the original training
dataset (n=194, Disease Control (n=120), Progressive disease (n=74)) and ROSE training dataset (n=500, Disease
Control (n=265), Progressive disease (n=235)).

Figure C.22: Confusion matrix and evaluation metrics of the random forest created using the oversampled training
dataset (n=240, Disease Control (n=120), Progressive disease (n=120)) undersampled training dataset (n=148,
Disease Control (n=74), Progressive disease (n=74)) and both over- and undersampled training dataset (n=194,
Disease Control (n=100), Progressive disease (n=94)).

Note the ‘Positive’ Class: 0 refers to the fact that the class labeled as ‘0’ (DC) is referred to as the positive class in the
model. It is not a numeric value.
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C.2. Random Forest Plots

C.2.3 Random Forest (no outliers) confusion matrices

Figure C.23: Confusion matrix and evaluation metrics of the random forest created using the original training
dataset after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values (n=182, Disease
Control (n=115), Progressive disease (n=67)) and ROSE training dataset (n=500, Disease Control (n=265),
Progressive disease (n=235)). Confusion matrix and evaluation metrics of the random forest created using the
oversampled training dataset after removal of outliers based on GFR (< 30mL/min) and BR (> 50µmol/L) values
(n=230, Disease Control (n=115), Progressive disease (n=115)) undersampled training dataset (n=134, Disease
Control (n=67), Progressive disease (n=67)) and both over- and undersampled training dataset (n=182, Disease
Control (n=95), Progressive disease (n=87)).
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C.2. Random Forest Plots

C.2.4 Random forest (no outliers) top 15 variables

1 Variable Count 2 Variable Count 3 Variable Count
CA199before 98 CA199after 42 CA199diff 32
CA199diff 2 CA199diff 33 CA199after 29

HBdiff 10 TBdiff 13
TBdiff 8 HBdiff 11
GGTbefore 3 GGTbefore 9
GGTafter 2 BRafter 3
AFafter 1 GGTafter 2
CA199before 1 AFafter 1

4 Variable Count 5 Variable Count 6 Variable Count
TBdiff 19 HBdiff 21 TBdiff 17
HBdiff 19 TBdiff 21 GGTbefore 15
CA199diff 17 GGTbefore 18 GGTafter 14
CA199after 16 CA199diff 8 HBdiff 14
GGTbefore 15 BRafter 8 BRafter 12
AFafter 5 GGTafter 8 AFafter 10
BRafter 4 CA199after 7 Kbefore 6
GGTafter 2 AFafter 4 CA199diff 4
HBbefore 1 Kbefore 2 HBbefore 2
Kbefore 1 PLRdiff 2 CA199after 2
CA199before 1 CRdiff 1 NPbefore 2

NLRafter 1
PLRdiff 1

7 Variable Count 8 Variable Count 9 Variable Count
BRafter 14 GGTbefore 17 GGTafter 18
HBdiff 14 AFafter 15 Kbefore 12
AFafter 13 BRafter 14 AFafter 12
GGTbefore 12 GGTafter 11 CRdiff 10
TBdiff 11 Kbefore 8 NLRafter 9
Kbefore 9 HBdiff 7 HBbefore 9
GGTafter 5 PLRdiff 6 NPbefore 9
PLRdiff 4 HBbefore 5 PLRdiff 7
NLRafter 4 TBdiff 4 BRafter 5
NPbefore 4 CRdiff 2 BMI 2
HBbefore 3 BMI 2 Age 1
BMI 2 NPbefore 2 SIIbefore 1
CRdiff 2 NLRafter 2 SIIdiff 1
CA199after 2 CA199after 1 TBdiff 1
CA199diff 1 CA199diff 1 HBdiff 1

Age 1 AFdiff 1
SIIdiff 1 CA199diff 1
AFdiff 1
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C.2. Random Forest Plots

10 Variable Count 11 Variable Count 12 Variable Count
HBbefore 13 Kbefore 15 BRafter 13
GGTafter 13 AFafter 12 PLRdiff 11
Kbefore 10 NLRafter 10 NPbefore 10
BRafter 10 HBbefore 10 HBbefore 9
NPbefore 10 PLRdiff 9 BMI 9
PLRdiff 8 NPbefore 7 NLRafter 8
CRdiff 7 BMI 7 Kbefore 7
NLRafter 5 GGTafter 6 CRdiff 7
AFafter 5 GGTbefore 5 AFafter 5
Age 5 TBdiff 4 GGTafter 4
BMI 4 BRafter 4 AFdiff 3
GGTbefore 4 CRdiff 3 Age 2
SIIdiff 1 TBbefore 2 AFbefore 2
AFdiff 1 AFbefore 2 CEAafter 2
HBdiff 1 Age 1 SIIbefore 2
CA199after 1 CA199diff 1 ALATbefore 1
ALATbefore 1 HBdiff 1 HBdiff 1
GGTdiff 1 AFdiff 1 TBdiff 1

SIIdiff 1
TBbefore 1
GGTbefore 1

13 Variable Count 14 Variable Count 15 Variable Count
NLRafter 18 PLRdiff 13 CRdiff 13
PLRdiff 12 CRdiff 12 NPbefore 12
NPbefore 10 NPbefore 11 AFdiff 8
HBbefore 8 HBbefore 11 Kbefore 8
GGTafter 7 BMI 10 PLRdiff 7
BMI 7 NLRafter 7 BMI 7
Kbefore 7 Kbefore 6 HBbefore 7
CRdiff 6 Age 5 NLRafter 6
TBbefore 5 AFafter 4 CEAbefore 5
Age 4 SIIbefore 4 Age 4
AFbefore 3 CEAafter 4 TBbefore 3
AFafter 3 AFdiff 3 BRafter 3
SIIdiff 3 BRafter 2 TBafter 2
GFRafter 2 GGTafter 2 CEAafter 2
BRafter 2 GGTdiff 1 SIIbefore 2
PLRafter 1 AFbefore 1 AFbefore 2
SIIbefore 1 TBbefore 1 AFafter 1
ASATbefore 1 TBafter 1 NaBefore 1

SIIafter 1 Kdiff 1
CEAbefore 1 HBafter 1

TBdiff 1
GGTafter 1
GGTbefore 1
GFRafter 1
SIIdiff 1

Table C.1: Top 15 most important variables and their respective count on that ‘rank’ measured using the mean
decrease in Gini in each of the optimal random forest (ntree = 300) tuned to their respective optimal mtry value
across 100 runs trained on the original training dataset after removal of outliers based on GFR (< 30mL/min)
and BR (> 50µmol/L) values, n=182, Disease Control (n=115), Progressive disease (n=67).
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D | PDP and ALE

D.1. Quantiles and Finite Difference in 1D

D.1.1 Quantiles:

Quantiles are a statistical concept used to divide a dataset or probability distribution into equally sized groups, providing
insights into the distribution of values and facilitating the assessment of the relative position of specific values within the
dataset. To calculate quantiles, the dataset or distribution is first sorted in ascending order, arranging the values from
smallest to largest. A quantile represents a threshold value below which a certain percentage of the data falls. For example,
the median is a common quantile that divides the data into two equal parts, with 50% of the values falling above it and 50%
of the values below it. In the case of dividing each data point into its own group, we assign a quantile to each individual
observation. The first data point corresponds to the 0th quantile, indicating that no values in the dataset are below it. The
second data point represents the 1

n

th quantile, where n is the total number of observations. Similarly, the third observation
corresponds to the 2

n

th quantile, and so on. Each observation is thus assigned its specific quantile value based on its position
in the sorted dataset.

D.1.2 Finite difference in 1D

In the case of the first-order ALE method using the forward difference formula, finite differences is used to approximate
the partial derivative. Finite differences refer to the differences between the values of a function at specific points. In
the context of one-dimensional functions, finite differences provide an approximation of the derivative of a function at
different grid points. Consider a function f(z) defined on a set of points z0, z1, z2, . . . , zn in a one-dimensional space, where
h = zi − zi−1 represents the grid spacing. The finite difference at a particular point zi is computed by subtracting the
value of the function at that point from the value of the function at a neighboring point. Specifically, the forward difference
formula is used in this case. The general formula for the forward difference is as follows:

f ′(z) ≈ f(z + h)− f(x)

h
=

f(zi+1 − f(zi)

h
. (D.1)

This is exactly what is used in the the ALE method as can be seen in Equation (4.52).
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D.2. PDP ALE plots (top 10 important variables)

D.2. PDP ALE plots (top 10 important variables)

Based on the top 10 variables identified in section 5 the PDP and ALE plots that have not been presented in section 5.2
are presented in this Appendix.

Figure D.1: Partial Dependence Plot and Accumulated Local Effect Plots of the γ-Glutamyl Transferase before
and after the first chemotherapy cycle (U/L) values based on the random forest trained on the original training
dataset after removal of outliers based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182, Disease Control
(n=115), Progressive disease (n=67)): (a) PDP plot with 95% confidence interval of GGT before (U/L)for the
Disease Control as response group (b) PDP plot with 95% confidence interval of GGT after (U/L) for the Disease
Control as response group (c) ALE plot of GGT before (U/L) for the Disease Control as response group (grid size
= 30) (d) ALE plot of GGT after (U/L)) for the Disease Control as response group (grid size = 30).
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D.2. PDP ALE plots (top 10 important variables)

Figure D.2: Partial Dependence Plot and Accumulated Local Effect Plots of the Bilirubin and Alkaline Phosphatase
after the first chemotherapy cycle values based on the random forest trained on the original training dataset
after removal of outliers based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182, Disease Control (n=115),
Progressive disease (n=67)): (a) PDP plot with 95% confidence interval of BR after (µmol/L) for the Disease
Control as response group (b) PDP plot with 95% confidence interval of AF after (U/L) for the Disease Control
as response group (c) ALE plot of BR after (µmol/L) for the Disease Control as response group (grid size = 30)
(d) ALE plot of AF after (U/L) for the Disease Control as response group (grid size = 30).

Figure D.3: Partial Dependence Plot and Accumulated Local Effect Plots of the potassium and neutrophils before
chemotherapy values based on the random forest trained on the original training dataset after removal of outliers
based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182, Disease Control (n=115), Progressive disease (n=67)):
(a) PDP plot with 95% confidence interval of K before (mmol/L) for the Disease Control as response group (b)
PDP plot with 95% confidence interval of NP before (109/L) for the Disease Control as response group (c) ALE
plot of K before (mmol/L) for the Disease Control as response group (grid size = 30) (d) ALE plot of NP before
(109/L) for the Disease Control as response group (grid size = 30).
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D.2. PDP ALE plots (top 10 important variables)

Figure D.4: Partial Dependence Plot and Accumulated Local Effect Plots of the Hemoglobin and Thrombocyte
before chemotherapy values based on the random forest trained on the original training dataset after removal of
outliers based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182, Disease Control (n=115), Progressive disease
(n=67)): (a) PDP plot with 95% confidence interval of HB before (mmol/L) for the Disease Control as response
group (b) PDP plot with 95% confidence interval of TB before (109/L) for the Disease Control as response group
(c) ALE plot of HB before (mmol/L) for the Disease Control as response group (grid size = 30) (d) ALE plot of
TB before (109/L) for the Disease Control as response group (grid size = 30).

Figure D.5: Partial Dependence Plot and Accumulated Local Effect Plots of the Age and BMI values based on the
random forest trained on the original training dataset after removal of outliers based on GFR (< 30mL/min), BR
(> 50µmol/L) (n=182, Disease Control (n=115), Progressive disease (n=67)): (a) PDP plot with 95% confidence
interval of Age (years) for the Disease Control as response group (b) PDP plot with 95% confidence interval of
BMI for the Disease Control as response group (c) ALE plot of Age (years) for the Disease Control as response
group (grid size = 30) (d) ALE plot of BMI for the Disease Control as response group (grid size = 30).
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D.2. PDP ALE plots (top 10 important variables)

Figure D.6: Partial Dependence Plot and Accumulated Local Effect Plots of the Alkaline Phosphatase and CEA
values before chemotherapy based on the random forest trained on the original training dataset after removal of
outliers based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182, Disease Control (n=115), Progressive disease
(n=67)): (a) PDP plot with 95% confidence interval of AF before (U/L) for the Disease Control as response group
(b) PDP plot with 95% confidence interval of CEA before (µg/L) for the Disease Control as response group (c)
ALE plot of AF before (U/L) for the Disease Control as response group (grid size = 30) (d) ALE plot of CEA
before (µg/L) for the Disease Control as response group (grid size = 30).

Figure D.7: Partial Dependence Plot and Accumulated Local Effect Plots of the Creatinin and Neutrophil-to-
Lymphocyte Ratio differences based on the random forest trained on the original training dataset after removal of
outliers based on GFR (< 30mL/min), BR (> 50µmol/L) (n=182, Disease Control (n=115), Progressive disease
(n=67)): (a) PDP plot with 95% confidence interval of CR difference (µmol/L) for the Disease Control as response
group (b) PDP plot with 95% confidence interval of NLR difference for the Disease Control as response group (c)
ALE plot of CR difference (µmol/L) for the Disease Control as response group (grid size = 30) (d) ALE plot of
NLR difference for the Disease Control as response group (grid size = 30).
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E | Additional Background Information

E.1. Additional background information

E.1.1 Diagnostic, predictive and prognostic

The terms “diagnostic," “prognostic," and “predictive" are frequently used in medical literature, particularly in the context
of biomarkers. When applied to biomarkers, these terms can be defined as follows:

• Diagnostic: a diagnostic biomarker determines the presence and type of cancer

• Prognostic: a prognostic biomarker gives information about which outcomes are likely or unlikely with or without
(standard) treatment

• Predictive: a predictive biomarker gives information about the treatment benefit and helps to identify which
treatment the patient is most likely to respond to or benefit from.

To further clarify, a prognostic biomarker provides information about the overall cancer prognosis for patients, regardless
of the therapy given. On the other hand, a predictive biomarker specifically informs about the impact of a therapeutic
intervention. It can serve as a target for therapy. This thesis primarily focuses on predictive biomarkers. [109]

E.1.2 Clinical trial (phases)

Clinical trials are typically categorized into different phases, which represent specific stages in the research process. Each
phase of a clinical trial is designed with distinct objectives and criteria that need to be met before a potential new treatment
or medical device can progress to the next phase.

• Phase I trials are the initial stage of testing in humans and primarily focus on evaluating the safety and dosage levels
of the intervention. These trials involve a small number of participants and aim to determine how the treatment or
device is metabolized and tolerated by the body.

• Phase II trials involve a larger group of participants and are conducted to further assess the treatment’s safety and
effectiveness. These trials may also investigate optimal dosages and potential side effects. The primary goal of phase
II trials is to gather preliminary data on the treatment’s efficacy in treating the targeted condition or disease.

• Phase III trials involve a larger population and are conducted to confirm the treatment’s effectiveness, monitor side
effects, and compare it to standard treatments or a placebo. These trials provide crucial evidence to support the
approval of a new treatment or device and are often randomized and controlled.

• Phase IV trials, also known as post-marketing surveillance trials, occur after the treatment or device has received
regulatory approval. These trials aim to gather additional information on the treatment’s long-term risks, benefits,
and optimal use in larger and more diverse populations.

By following this phased approach, clinical trials ensure that new treatments and medical devices undergo rigorous evaluation
to determine their safety, efficacy, and overall impact on human health before they are made widely available [110].

E.1.3 ECOG Performance Status Scale

In order to ensure consistent conduct of clinical trials for cancer treatment across multiple healthcare institutions, including
hospitals, cancer centers, and clinics, it is necessary to employ standardized criteria for assessing the impact of the disease
on a patient’s daily functioning. This evaluation, commonly referred to as a patient’s performance status, is crucial for
physicians and researchers. The ECOG Performance Status Scale represents one such standardized measurement. This
scale provides a comprehensive assessment of a patient’s functional capacity, encompassing their ability to perform self-care,
engage in daily activities, and carry out physical tasks such as walking or working.
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Figure E.1: Four phases of clinical trials [110].

Figure E.2: ECOG Performance Status Scale [15].
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E.1.4 White Blood Cells in detail

In section 2.1 a brief overview of the different types of leukocytes (white blood cells) is given. In this subsection a more in
depth explanation of each cell type is provided.

E.1.4.1 Granulocytes

Granulocytes, the most prevalent type of white blood cells, play a crucial role in the immune system’s response to infections,
allergic reactions, and asthma episodes. These cells are derived from stem cells located in the bone marrow and exhibit a
relatively short lifespan of only a few days. Granulocytes are characterized by the presence of small granules within their
cytoplasm, which contain enzymes. When the body encounters an infection or inflammation, granulocytes swiftly migrate
to the affected area and release their granules to combat the invading pathogens. The three distinct types of granulocytes
are neutrophils, eosinophils, and basophils [111].

Function of Granulocytes
Granulocytes collaborate synergistically to eliminate infections and allergens from the body. Each type of granulocyte
possesses a unique combination of chemicals and enzymes within their granules, resulting in distinct functional roles:

• Neutrophils: are the most abundant type of granulocytes that play a central role in combating bacterial infections.
They have the ability to phagocytize and neutralize bacteria. Neutrophils make up 40%-60% of the total granulocyte
population and serve as a crucial component of the immune system. They are responsible for defending against
infections and aiding in the healing process. The absolute neutrophil count is used as an indicator of neutrophil levels
in the body. In the immune system, neutrophils act as the first line of defense against invading pathogens, employing
various strategies to capture and destroy them. They also facilitate tissue repair [112].

• Eosinophils: actively participate in various immune responses, particularly in the context of allergic reactions.
Additionally, eosinophils are involved in combating parasitic infections.

• Basophils: primarily contribute to the modulation of allergic reactions. They release histamine, which facilitates
the expulsion of allergens from the body, and heparin, a blood-thinning agent that inhibits clot formation.

E.1.4.2 Lymphocytes

Lymphocytes are essential components of the immune system and play a vital role in defending against diseases and
infections. There are two main types of lymphocytes: T-cells and B-cells. T-cells are immune cells involved in eliminating
infected cells and regulating the immune response. They differentiate into various subtypes, including cytotoxic T-cells
that destroy abnormal cells, helper T-cells that assist other immune cells, and regulatory T-cells that help control the
immune response. B cells play a crucial role in the immune response by producing specific antibodies that target antigens
to ‘neutralize’ foreign invaders. They respond to antigens through a primary immune response, where they differentiate into
memory cells and plasma cells, and a secondary immune response, where memory cells quickly multiply and produce the
appropriate antibody upon encountering the same antigen again. This memory response is the basis for the effectiveness of
vaccinations and the prevention of recurring infections [113].

E.1.4.3 Monocytes

Monocytes are a subset of leukocytes. They circulate in the blood and reside in various tissues, actively seeking out
and eliminating germs such as viruses, bacteria, fungi, and protozoa. Additionally, monocytes play a role in coordinating
immune responses to injuries and preventing infections. When an invading germ or bacteria enters the body, monocytes
can transform into macrophages or dendritic cells. These specialized cells have the ability to either destroy the invader
themselves or signal other blood cells to assist in its elimination, thus preventing infection. Dendritic cells capture antigens
and release cytokines to coordinate the immune response against infections, primarily in superficial tissues. Contrastingly,
macrophages are frontline defenders that engulf and neutralize a wide range of pathogens, contributing to tissue clearance
and immune defense [114].

E.1.5 Cytokines

Cytokines are small proteins that play a crucial role in controlling the growth and activity of immune system cells and
blood cells. They act as signaling molecules, instructing the immune system to perform its functions. Cytokines have a
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broad impact on the growth and development of various blood cells and other cells involved in the body’s immune and
inflammatory responses. They are involved in processes such as tissue repair, cancer development and progression, regulation
of cell replication and apoptosis, and modulation of immune reactions and sensitization. One specific type of cytokine is
called a chemokine, which is responsible for guiding immune cells toward specific targets. Chemokines encompass various
subclasses, including interleukins, interferons, tumor necrosis factors, and growth factors.

Interleukins
Interleukins are a group of cytokines that act as chemical signals between white blood cells. They facilitate communication
and coordination among immune cells. One notable interleukin is interleukin-2 (IL-2), which promotes the growth and
division of immune system cells. A synthetic version of IL-2 has been approved for the treatment of advanced kidney cancer
and metastatic melanoma. IL-2 can be used as a standalone treatment for these cancers or combined with chemotherapy or
other cytokines like interferon-alfa. Other interleukins, such as IL-7, IL-12, and IL-21, are still under investigation for their
potential use against cancer. They are being studied both as adjuvants, which enhance the effects of other treatments, and
as standalone agents.

Interferons
Interferons represent a group of chemical substances that facilitate the body’s defense against viral infections and cancers.
The three primary types of interferon, denoted by the first three letters of the Greek alphabet, are: Interferon-alfa (IFN-
alfa), Interferon-beta (IFN-beta) and Interferon-gamma (IFN-gamma). Among these, IFN-alfa is the sole interferon used
in cancer treatment. It enhances the capability of specific immune cells to target and eliminate cancer cells. Additionally,
it may directly impede the proliferation of cancer cells, as well as curtail the formation of blood vessels crucial for tumor
growth.

E.1.6 Other important terms

Overall Response Rate (ORR)
The overall response rate (ORR) is a metric used to evaluate the efficacy of a treatment in a study or treatment group.
It represents the percentage of individuals who exhibit either a partial or complete response to the treatment within a
specified timeframe. A partial response refers to a reduction in tumor size or cancer burden, while a complete response
indicates the complete disappearance of all cancer manifestations in the body. Assessing the overall response rate is an
important approach in clinical trials to gauge the effectiveness of a novel treatment. It serves as a measure of treatment
success, indicating the proportion of patients who experience a positive response to the therapy.

Overall Survival Rate (OS)
The overall survival rate refers to the percentage of individuals who remain alive at a specified time point after their cancer
diagnosis. It represents the cumulative probability of survival for the entire population affected by a particular cancer type.
The overall survival rate includes all individuals with the specific cancer type, regardless of other factors or treatments they
may have received. Survival rates can be calculated for different durations of time, but researchers commonly report the
5-year relative survival rate in cancer statistics. This rate provides an estimate of the proportion of individuals who survive
at least 5 years following their diagnosis, taking into account the expected survival of individuals in the general population.

Progression-Free Survival (PFS)
Progression-free survival (PFS) is a measure that assesses the length of time a patient lives with a disease, such as cancer,
without experiencing disease progression. In the field of oncology, PFS typically applies to situations where there is evidence
of a tumor, as determined through laboratory tests, radiological imaging, or clinical evaluation. Alternatively, “disease-free
survival" refers to the duration after treatment when patients have no detectable signs of the disease. PFS is specifically
defined as the period from randomization until objective tumor progression or death. The precise criteria for determining
tumor progression are of utmost importance and are thoroughly outlined in the study protocol. Furthermore, PFS1 evaluates
the progression-free survival for first-line therapy, while PFS2 focuses on second-line therapy.

Disease Control Rate (DCR) and Clinical Benefit Rate (CBR)
Disease Control Rate (DCR) and Clinical Benefit Rate (CBR) are metrics used to assess the effectiveness of therapeutic
interventions in clinical trials involving patients with advanced or metastatic cancer. These rates represent the percentage
of patients who demonstrate a favorable response to the treatment, which includes achieving complete response, partial
response, or stable disease. DCR and CBR provide valuable information on the overall disease control and clinical benefits
experienced by patients receiving anticancer agents in the context of clinical trials.

Disease-free survival (DFS)
Disease-Free Survival (DFS) is a measure of the length of time between the initiation of treatment and the occurrence of
disease relapse. This endpoint is typically used in the context of treatments such as surgery, chemotherapy, or targeted
therapy, where patients show no detectable signs of disease following treatment. DFS provides valuable information on the
duration of disease remission or absence of disease progression after the completion of treatment. It is commonly used as
an important outcome measure in clinical trials to assess the efficacy of interventions in maintaining disease-free status in
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patients.

Duration of Response (DoR)
Duration of Response (DoR) is defined as the period from the initial documentation of tumor response, either complete
response or partial response, to the subsequent occurrence of disease progression. A complete response refers to the complete
disappearance of the cancer, while a partial response indicates a significant reduction in tumor size by at least one-third.
Stable disease is characterized by the absence of tumor growth or shrinkage. Relapse or recurrence refers to the reappearance
of cancer after a period of remission, while progression signifies the resumption of tumor growth in a previously responsive
cancer. The duration of response corresponds to the time interval between the initial response and the occurrence of relapse
or progression. It provides insights into the sustainability and durability of the treatment response achieved in patients
with cancer.

Palliative Chemotherapy
Palliative chemotherapy in PDAC refers to the use of chemotherapy when curative treatments are not possible due to
advanced disease. Its primary goals are symptom alleviation, improved quality of life, and potentially extended overall
survival. PDAC is often diagnosed at an advanced stage, making palliative chemotherapy the main treatment approach.
Palliative chemotherapy regimens target tumor cells, inhibiting their growth and spread, leading to tumor shrinkage,
symptom reduction, pain relief, and improved well-being. While not curative, palliative chemotherapy plays a crucial role
in managing PDAC, improving patient outcomes, and enhancing their quality of life.

(Neo)adjuvant treatment
Neoadjuvant therapy involves administering treatment before the primary treatment, typically surgery, to shrink the tumor
or eliminate cancer cells. It is used when the tumor is initially inoperable or to improve surgical outcomes. Neoadjuvant
therapy can include chemotherapy, radiation therapy, or hormone therapy. The choice of treatment depends on factors
such as tumor characteristics, disease stage, and patient’s health. Neoadjuvant therapy aims to downsize the tumor for
easier surgical removal, especially for complex or challenging tumors. Adjuvant therapy, on the other hand, is given after
the primary treatment to eliminate any remaining cancer cells and reduce the risk of recurrence. It can involve additional
chemotherapy, radiation therapy, or targeted therapies. The goal of adjuvant therapy is to target residual cancer cells
and improve long-term outcomes. The selection and sequencing of these therapies depend on cancer type, stage, and
individual patient factors. Together, neoadjuvant and adjuvant therapies form a comprehensive treatment strategy to
optimize outcomes and achieve long-term disease control in cancer patients.

(Tumor) Angiogenesis
Angiogenesis is a natural process involved in the formation of new blood vessels from pre-existing ones. It plays a crucial role
in various physiological processes, such as wound healing and embryonic development. Tumor angiogenesis is the process by
which a tumor develops a network of blood vessels to support its growth and progression. It involves the formation of new
blood vessels from existing ones, driven by specific signaling molecules released by tumor cells. This process ensures the
supply of nutrients and oxygen to the growing tumor. Dysregulated angiogenesis can contribute to cancer development and
spread. Angiogenic factors play a critical role in stimulating the growth of blood vessels and promoting tumor angiogenesis
[115].

Apoptosis and Necrosis
Cell death can occur through two main processes: apoptosis and necrosis. Apoptosis is a programmed and regulated form of
cell self-destruction that does not elicit an inflammatory response. It is a normal physiological process that serves protective
functions in the body. In contrast, necrosis is an accidental and uncontrolled form of cell death caused by external factors
or disease. It leads to the release of inflammatory cellular contents and is considered an abnormal cell death process. While
apoptosis is a well-studied and beneficial process, necrosis is typically associated with pathological conditions.

Hemoglobin and Glycated Hemoglobin
Hemoglobin is a protein molecule in red blood cells that transports oxygen throughout the body. Glycated hemoglobin
(HbA1c) is a form of hemoglobin with glucose attached to it. It reflects average blood glucose levels over a period of time
and is used to diagnose and monitor diabetes. HbA1c provides information about long-term glycemic control and helps
assess the effectiveness of diabetes management [116] [68].

458


	Introduction
	Literature Review
	Background information
	Pancreatic Ductal Adenocarcinoma
	Biomarkers
	Tumor Markers
	Blood Markers


	Exploratory Data Analysis
	Data Analysis
	Overview of significant observations in the dataset
	Overview tables data analysis

	Outlier Analysis
	Outlier analysis using Inter-Quartile Range (IQR)
	Overview of the most important findings

	Principal Component Analysis
	Principal Component Analysis Background Information
	PCA on the various groups
	Overview of significant PCA findings
	PCA with covariance matrix overview
	PCA after removal of outliers overview


	Methodology
	Random Forest background information
	Decision Trees
	Random Forest
	Imbalanced Data
	Evaluation Metrics
	Variable Importance

	Partial Dependence and Accumulated Local Effects
	Partial dependence plots (PDP)
	Marginal effect plots (M-plots)
	Accumulated Local Effects (ALE)
	Summary PDP, M-plots and ALE plots
	Interpretation of PDP and ALE plots


	Results
	Model building using Random Forest
	Model building process
	Datasets used in the random forest
	Decision trees (full dataset)
	Random Forest (full dataset)
	Decision Trees (after removal of outliers based on GFR and BR)
	Random Forest Model (after removal of outlier values based on GFR and BR)
	Random Forest (optimal model with only top 10 variables)
	Random forest (only pre-chemotherapy values)
	Overview of the top 10 most important variables

	PDP and ALE plots optimal random forest model without outliers
	Interpretation of the findings for top 10 variables
	Clinical Implications

	Discussion
	Conclusion
	P-values
	P-values
	Chi-squared Test
	Fisher's Exact Test
	Wilcoxon Rank Sum Test / Mann-Whitney U test


	Exploratory Data Analysis (full)
	Data Analysis
	Analysis of (baseline) Patient characteristics
	Tumor markers
	Blood markers

	Outlier Analysis (full)
	Tumor Markers: CA19-9 and CEA Outlier analysis
	Blood Markers
	Difference before and after first cycle outlier analysis
	Overview of number of outliers per patient

	PCA (background further)
	Correlation vs Covariance
	Loadings and Scores in PCA
	PCA plots

	PCA (full analysis)
	White Blood Cells
	Kidney Function
	Liver Function
	Nutrition status
	Inflammation
	Patient Characteristics
	Tumor Markers CEA and CA19-9
	All blood and tumor markers
	All blood and tumor markers, Age, BMI and differences
	Age, BMI and Differences
	Choice of PCA method in R

	PCA using covariance matrix
	Blood
	White Blood Cells
	Kidney
	Liver
	Nutrition
	Inflammation
	Patient Characteristics
	Tumor Markers
	All markers
	All markers + Age + BMI + differences
	Age + BMI + differences

	PCA after removal of outliers (figures)

	Random Forest
	Decision Trees
	Decision Trees (full dataset)
	Decision Trees (no outliers)

	Random Forest Plots
	Random Forest (full dataset)
	Random Forest (full dataset) confusion matrices
	Random Forest (no outliers) confusion matrices
	Random forest (no outliers) top 15 variables


	PDP and ALE
	Quantiles and Finite Difference in 1D
	Quantiles: 
	Finite difference in 1D

	PDP ALE plots (top 10 important variables)

	Additional Background Information
	Additional background information
	Diagnostic, predictive and prognostic
	Clinical trial (phases)
	ECOG Performance Status Scale
	White Blood Cells in detail
	Cytokines
	Other important terms



