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Efficient Semi-Analytical Method for the Analysis
of Large Finite Connected Slot Arrays

Alexander J. van Katwijk , Graduate Student Member, IEEE, Andrea Neto , Fellow, IEEE,

Giovanni Toso , Senior Member, IEEE, and Daniele Cavallo , Senior Member, IEEE

Abstract— We present an efficient method for the analysis of
finite connected slot arrays in the presence of stratified media.
The formulation is based on a spectral method of moments,
where only one basis function is considered for each array
element and one for each slot edge. An expression for the mutual
impedance is derived in terms of a double spectral integral.
Asymptotic extraction techniques are employed to largely reduce
the computation time of one of the spectral integrals. For the
other integral, when a guided wave contribution dominates
the mutual coupling between two array elements, the result
can be approximated as the residue of the spectral polar
singularity, providing a closed-form solution of the coupling for
elements at electrically large distances. The complete method
enables simulations of entire finite arrays with hundreds or
even thousands of elements in minutes. The same structure
would require impractical computation time when analyzed
with general-purpose commercial software. The method allows
estimating the performance of finite connected arrays. This is
particularly relevant because wideband connected arrays are
known to exhibit higher edge effects compared to narrowband
arrays, due to the high interelement mutual coupling.

Index Terms— Antenna arrays, finite array simulations, finite
edge effects, wideband arrays.

I. INTRODUCTION

W IDEBAND wide-scanning phased arrays have become
a favorable solution not only for multifunction

radars [1], [2], but recently also for wireless and satellite
communication applications [3], [4]. When limited space is
available on complex platforms, an ultrawideband antenna
array combining several functions in a shared aperture is often
the desired option. Such an array is typically also required to
scan the beam electronically over a large field of view while
maintaining good matching and radiation performance. The
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Fig. 1. Finite connected slot array with artificial dielectric superstrate.

state-of-the-art solutions for wideband wide-scanning phased
arrays are based on tapered slot arrays [5], [6], [7], tightly cou-
pled dipole arrays [8], [9], [10], and connected slot arrays [11],
[12]. These three families of arrays have been demonstrated
to achieve multioctave bandwidths with conical scan volumes
larger than ±45◦.

Connected slot arrays are particularly advantageous among
the different existing wideband array concepts because of their
low-profile and planar architecture, which can be manufac-
tured on a single multilayer printed circuit board at microwave
frequencies. A connected slot array is an array of long slots fed
at periodic locations to implement a wideband radiating aper-
ture. Several designs based on connected slots are presented
in [11], [12], [13], [14], and [15]. An effective approach to
enhance the performance of the array in the presence of a
backing reflector is proposed in [12] and consists of loading
the array with artificial dielectric layers (ADLs). This array
structure is shown in Fig. 1, which depicts the connected slot
array and an artificial dielectric superstrate. The ADLs are
layers of periodic subwavelength patches that can be designed
such that they implement a wideband transformer to match
the array impedance to free space without supporting surface
waves.

Besides the planarity, another important advantage of con-
nected arrays is that, unlike other ultrawideband arrays, they
can be described with analytical expressions. The active input
impedance of the elements can be written in closed form as a
function of the geometrical parameters, as described in [16],
[17], and [18]. The analytical model enables computation of
the array unit cell main performance parameters within very
little computation time, allowing the design of an array using
a fast optimization procedure. However, the periodic unit cell
approximation does not always represent the performance in
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finite wideband arrays. Edge effects can be significant, and the
active impedance of the individual elements can be consider-
ably different from the infinite array approximation. This is
especially true in connected arrays because the interelement
connection allows guided waves generated at the edges to
propagate along the array surface, affecting the impedance
behavior of large portions of the array [22], [23], [24].

For this reason, numerical methods for the analysis of finite
arrays [19], [20], [21] are needed to evaluate the variation of
the output impedance seen by the transmit/receive modules
connected to the antenna elements. Numerical methods spe-
cific for connected arrays are introduced in [23] and [25], but
they are limited to finite-by-infinite arrays, which are assumed
to be finite only in the H-plane and still periodic in the E-plane.

An attempt to include the finiteness in the E-plane was
reported in [26]. However, this method used a discrete space
Fourier transform to account for the finiteness of the slots,
which assumed the spectral current in each slot to be the
same except for a phase shift. This approximation was accu-
rate enough in [26], because a high permittivity lens was
considered above the array, reducing the mutual coupling
between parallel slots. In more general stratifications, the
current spectra cannot be assumed equal on the slots.

In this work, we introduce a semianalytical method for the
analysis of finite-by-finite connected slot arrays, which does
not rely on the approximation of equal current spectra on the
slots. The method can be used for generic stratified media,
so it can, for example, be combined with the known spectral
Green’s function of artificial dielectrics [27], [28] to simulate
an entire array structure such as the one depicted in Fig. 1.
Different acceleration techniques are implemented to speed up
the computation of the coupling integrals. As a consequence,
large arrays with hundreds or even thousands of elements
can be analyzed with moderate computational resources. The
complete method enables simulations of entire finite arrays
using orders of magnitude less computational resources than
commercial software. The finite array current distribution and
all the relevant parameters, such as active impedances and
radiation patterns, can be estimated using this method for
generic complex excitation of the array elements.

II. ANALYSIS METHOD

We consider an array of connected slots, as depicted in
Fig. 2. The array consists of M parallel x-oriented slots, with
indexes m ∈ {1, . . . , M} and centered at periodic locations
y = m dy. Each slot is fed by delta-gap generators at N loca-
tions spaced by dx and is interrupted by metal terminations.
The method assumes that the metal terminations are of a finite
length such that the spectral solution for infinite slots can be
used as in [25]. The array plane can be embedded within
a general stratified medium along z that can, for instance,
include dielectric substrates or superstrates, a backing reflector,
or ADLs.

A. Space Domain Integral Equation

Following the procedure described in [26], an integral
equation can be set up by imposing the continuity of the

Fig. 2. Finite connected slot array with geometrical parameters and
x-dependent basis functions on the feeding gaps and slot terminations, on each
slot axis.

x-component of the magnetic field across the slots:∫∫
mx(x �, y �)gxx(x − x �, mdy − y �)dx �dy � =− jy,gaps(x, mdy)

(1)

where the left-hand side represents the magnetic field scattered
by all the slots and observed on the axis of the mth slot
(y = m dy). The scattered field is written as a convolution
between the equivalent magnetic current density on the slots
(mx) and the xx-component of the dyadic spectral Green’s
function (gxx ), relating the magnetic field to magnetic currents
and accounting for the stratified medium above and below
the slots. The right-hand side of (1) represents the sum of all
surface electric currents flowing in the feeding gaps and the
metal terminations

jy,gaps(x, mdy) =
N+1∑
n�=0

(in�m − YLvn�m) fn�(x − xn�) (2)

where we assume the currents to be written as basis functions
fn� , defined on the feeds and terminations and centered at xn� ,
multiplied by unknown coefficients. The basis functions are
chosen as constant on the feeding gaps and edge singular on
the metal terminations (see Fig. 2) and they are defined in
closed form as in [25], both in space and spectral domains.
The assumption of a single basis function per feed is accurate
enough under the condition that the delta gaps are small
compared to the wavelength, such that the current and voltage
can be averaged on each gap. This choice of basis functions
is not valid for the general shape of the slots, but specific for
uniform slot width and rectangular delta-gap feeds.

The weights of the basis functions depend on the impressed
currents in�m , the unknown average voltages in the gaps vn�m ,
and the load admittance YL , according to the Norton equivalent
circuit of the feeding ports as in Fig. 3. The impressed currents
in�m are imposed to be 0 for the passive metal terminations,
that is, i0 m = iN+1 m = 0.

To solve the integral equation, we assume that the magnetic
current is a separable-variable function on each slot

mx(x �, y �) =
M∑

m�=1

vm�(x �)mt (y � − m �dy) (3)
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Fig. 3. Norton equivalent circuit of the feeding port of the array with
indexes nm. YA,mn is the active input admittance for the active port with
indexes nm.

where vm� are unknown voltage distributions on the slots, while
mt(y) = 2/(wsπ) × (1 − (2y/ws)

2)−1/2 is an edge singular
transverse distribution. The assumption that the magnetic
current is variable separable and only oriented along x is valid
under the condition that the slot width is uniform and narrow
with respect to the wavelength. By replacing (3) and (2) in (1)
and defining the function

dmm�(x −x �)=
∫ m�dy+ ws

2

m�dy−ws
2

gxx (x −x �, mdy −y �)mt (y �−m �dy)dy �.

(4)

One can simplify the integral equation as follows:
M∑

m�=1

∫ ∞

−∞
dmm�(x − x �)vm�(x �)dx �

=
N+1∑
n�=0

(YLvn�m − in�m) fn�(x − xn�). (5)

The function in (4) can be interpreted as the connected-
array Green’s function, associated with the field radiated by
slot m � onto slot m. The introduction of this function enables
the description of the magnetic current on the slots using
only a limited number of basis functions located on the feeds
and terminations. A more standard spectral domain approach
would require discretization of the entire slot domain resulting
in a large number of basis functions and heavy computation
requirements.

B. Spectral Domain Integral Equation and Solution

Equation (5) can be written in the spectral domain as

M∑
m�=1

Dmm�(kx)Vm�(kx) =
N+1∑
n�=0

(YLvn�m − in�m)Fn�(kx)e
jkx xn�

(6)

where Vm�(kx) is the spectrum of the unknown voltage along
the axis of each slot, kx is the spectral counterpart of the
spatial variable x , and Fn� is the Fourier transform of the basis
function fn� . Dmm� is the spectral version of (4) and is given
by the ky-spectral integral

Dmm�(kx) = 1

2π

∫ ∞

−∞
Gxx (kx, ky)J0

(
wsky

2

)
e− jky (ym−ym� )dky

(7)

where J0 is the zeroth-order Bessel function, representing the
Fourier transform of the edge singular distribution across the

slot, and Gxx is the xx-component of the dyadic spectral
Green’s function. The Green’s function can be found as
Gxx (kx, ky) = (−iT E k2

x + iT M k2
y)/(k

2
x + k2

y), where iT E and
iT M are the current solutions of the equivalent transmission
lines representing the layered medium for TE and TM modes,
respectively. The equivalent transmission lines for the ADL
stratification were derived in [28].

When considering observation on the axes of all slots, (6)
can be compactly written in matrix form as

D(kx)V(kx) =
N+1∑
n�=0

(YLvn� − in�)Fn�(kx)e
jkx xn� (8)

where D(kx) is an M by M matrix consisting of the
elements Dmm�(kx), V(kx) = {V1(kx), . . . , VM(kx)}, in� =
{in�1, . . . , in� M}, and vn� = {vn�1, . . . , vn� M}. Inverting the D
matrix leads to an expression for the voltage spectra as

V(kx) =
N+1∑
n�=0

D−1(kx)(YL vn� − in�)Fn�(kx)e
jkx xn� . (9)

Projecting both LHS and RHS onto the nth test function
(chosen as equal to the basis function, according to the
Galerkin projection method) allows us to define a mutual
impedance

Znn�mm� = − 1

2π

∫ ∞

−∞

(
D−1(kx)

)
mm� Fn�(kx)Fn(−kx)

× e− jkx (xn−xn� )dkx . (10)

The mutual impedances in (10) fill the impedance matrix
Z, with which the unknown voltage vector can be found as

v = (ZL + Z)−1ZLZi (11)

where v and i are (N +2) × M-element vectors describing the
unknown voltages and the impressed currents at all basis func-
tions. ZL is a diagonal matrix containing the load impedance
at each basis function, equal to 1/YL for the active feeds and
0 for the metal terminations. The currents flowing into each
port are then given by iA = Z−1v and the active impedance at
each of the feeds can be found as

Z A,nm = vnm

i A,nm
. (12)

III. ANALYSIS OF THE SPECTRAL INTEGRALS

The numerical method introduced in the previous section
requires the computation of the spectral integrals in ky and kx ,
given by (7) and (10), respectively. These spectral integrals can
be further studied to reduce computation time and highlight
the different contributions.

A. Acceleration by Extraction of Asymptotic Part

For large values of ky, the spectral Green’s function is
dominated by the reactive field surrounding the slot. For
complex stratification such as the ADL in Fig. 4(a), the
Green’s function tends asymptotically to the Green’s function
G∞

xx associated with a set of two homogeneous semiinfinite
half-spaces as in Fig. 4(b). The media in these half-spaces
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Fig. 4. (a) Initial stratification with ADL and backing reflector to define the
stratified media Green’s function for the problems above and below the slots.
(b) Semiinfinite media to define the asymptotic Green’s function for the upper
and lower problems.

are taken as the closest media above and below the slot, with
wavenumbers k1 and k2, respectively.

By subtracting and adding the homogeneous semiinfinite
Green’s function, (7) can be written as the sum of two integrals

Dmm� (kx) = 1

2π

∫ ∞

−∞

(
Imm� (kx, ky) − I ∞

mm� (kx, ky)
)
dky

+ 1

2π

∫ ∞

−∞
I ∞
mm� (kx, ky))dky

= Ddiff
mm� (kx) + D∞

mm� (kx) (13)

with

Imm� (kx, ky) = Gxx (kx , ky)J0

(
wsky

2

)
e− jky(ym−ym� ) (14)

I ∞
mm� (kx, ky) = G∞

xx (kx, ky)J0

(
wsky

2

)
e− jky(ym−ym� ). (15)

The first integral in (13) (Ddiff
mm� ) converges faster than the

original integral (Dmm� ) and can be evaluated over a reduced
integration domain. The second integral (D∞

mm� ) represents the
spectral Green’s function of slot pairs located at the interface
between two semi-infinite homogeneous half-spaces and can
be evaluated in closed form as [16]

D∞
mm� (kx) ≈ −1

2k0ζ0

2∑
i=1

κ2
i

×
⎧⎨
⎩

J0

(ws

4
κi

)
H (2)

0

(ws

4
κi

)
, for m = m �

H (2)
0 ((ym� − ym)κi), for m �= m �

(16)

where κi = (k2
i −k2

x)
1/2, the subscripts i = {1, 2} represent the

upper and lower half-spaces, respectively, H (2)
0 is the Hankel

function of zeroth order and the second kind, and k0 and ζ0 are
the free-space wavenumber and impedance.

An example is shown for the five-layer ADL shown in
Fig. 5. The metal patches of the ADL are assumed to be in
free space, and the media above and below the slot are also
free space (k1 = k2 = k0). The integrand as a function of
the spectral variable ky is shown in Fig. 6 for both the real
stratification and the semi-infinite media. It can be seen that the
difference between the two integrands becomes very small for
ky > 10k0. This is confirmed by the relative error in Fig. 6(c)
and (d), defined as |Imm� − I ∞

mm� |/|Imm� |, which is below 1%
for ky > 10k0.

Fig. 5. (a) Side view and (b) top view of the ADL geometry considered,
with two slots (dy = 0.19λ, ws = 0.06λ, where λ is the wavelength at the
calculation frequency) and five-layer ADL (p = 0.173λ, w1 = w2 = w3 =
0.013λ, w4 = w5 = 0.022λ, d1 = 0.009λ, d2 = d3 = 0.017λ, d4 = 0.035λ,
d5 = 0.052λ, s = 0.5p).

Fig. 6. Integrand as a function of ky for kx = 5k0. Comparison between
total integrand and semi-infinite dielectric case for (a) m = m� = 1 and
(b) m = 1 �= m� = 2. Relative error between total integrand and semi-
infinite dielectric case for (c) m = m� = 1 and (d) m = 1 �= m� = 2.

TABLE I

TIME RELATED TO THE CALCULATION OF D−1(kx ) IN (10) WITHOUT AND

WITH USE OF THE ASYMPTOTIC EXTRACTION DESCRIBED IN (13)

Extraction of the asymptotic part can be used to accelerate
the integral in (7). The calculation time related to the matrix
D−1(kx) is shown in Table I to be significantly reduced for
arrays of 5 or 20 slots under the ADL in Fig. 5.

B. Residue Contribution

The integrand of the kx-integral in (10) is characterized by a
number of polar and branch singularities that represent guided
and radiated waves, respectively. The nature and the number of
poles are related to the specific dielectric stratification above
and below the slot array. When the polar singularities are
located on the real axis in the kx -complex plane, they rep-
resent guided waves with no attenuation and are the dominant
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Fig. 7. Integrand of (10) in the kx -complex plane for the stratification shown
in Fig. 5. (a) Amplitude in dB and (b) phase of (D−1(kx ))12.

Fig. 8. Comparison between the complete integral and the residual contri-
butions of the two poles is shown as a function of the distance between the
two basis functions in the (a) same slot and (b) different slots.

contribution to the mutual impedance between basis functions
at electrically large distances. As such, the mutual impedance
between such elements can be approximated using the poles’
residual contributions. This analytical approximation replaces
the numerical computation of the integral, thus greatly simpli-
fying the evaluation of the mutual impedances.

Assuming that the function Dmm� has L poles indicated as
kxp1, kxp2, . . . , kxpL , the residue contribution of the integral
in (10) can be written as

Znn�mm� ≈
L∑

l=1

j Fn�(kxpl)Fn(−kxpl)e− jkx pl(xn−xn� )

d(D−1(kx ))mm�
dkx

∣∣∣
kx =kx pl

. (17)

As an example, a 2 × 2 array is considered under the
stratification shown in Fig. 5, and the function (D−1(kx))12

is shown in the kx -complex plane in Fig. 7. The polar and
branch singularities are highlighted in the figure. A comparison
between the complete integral and the residual contributions of
the two poles is shown in Fig. 8 as a function of the distance
between the two basis functions on the slot. The comparison
is shown for basis functions in [Fig. 8(a)] the same slot and
[Fig. 8(b)] different slots. For both cases, it can be seen that
the mutual impedance is well approximated by the residue
contribution for distances above a quarter wavelength.

C. Physical Meaning of Poles

A physical interpretation can be given to the polar sin-
gularities. Each pole can be associated with a guided mode

Fig. 9. Voltage distribution along a set of two slots, considering only (a) first
polar contribution and (b) second polar contribution.

Fig. 10. Amplitude of (D−1(kx ))11 in the kx -complex plane: location of the
polar singularities for (a) three and (b) four slots under the ADL structure as
in Fig. 5. Each pole represents a quasi-TEM mode supported by the ensemble
of the slots.

supported by the combination of the various slots. To highlight
this aspect, the voltage distribution along the slots is calculated
on a set of two slots when only one feed is present on each
slot. The voltage is calculated as the inverse Fourier transform
of (9) and is equal to

vm(x) = 1

2π

∫ ∞

−∞
Vm(kx)e

− jkx xdkx . (18)

The total voltage is computed using the residue theorem
and the contribution from each of the two poles is plotted
separately in Fig. 9. The voltage distributions on the two slots
due to each pole are either equal or opposite, so the two poles
correspond to the common and differential modes supported
by the pair of slots.

While the closed-form solution of the integral as in (17)
avoids the numerical computation of the coupling integrals,
it must be noted that the number of poles is proportional
to the number of slots composing the array. This aspect is
illustrated in Fig. 10 where the position of the poles is shown
in the complex plane for three and four slots. Each pole
represents a quasi-transverse electromagnetic (TEM) mode
supported by the slots. This is in line with the expectation
that Nc − 1 TEM modes are supported by a transmission line
with Nc conductors. Therefore, for large arrays, the search
of the poles can become more complex than the original
numerical integration and may thus no longer be convenient.
Moreover, when a large number of poles occur in the range
k0 < kx < 1.3 k0, it can become difficult to distinguish them
and isolate the individual contributions.
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Fig. 11. Comparison between CST and MoM of the active input impedance
of each element of a 3 × 3 array in free space, with dx = dy = 0.45λ,
ws = 0.05λ, δ = 0.05λ, dedge = 0.25λ, and ZL = 100 �, where λ is the
wavelength at 31 GHz.

IV. VALIDATION

A. Impedance

The method is validated using the commercial solver CST
Studio Suite. First, a 3 × 3 array is considered in free-space,
with dx = dy = 0.45λ, ws = 0.05λ, δ = 0.05λ, dedge = 0.25λ,
and Z L = 100 �. The active input impedance of the elements
for broadside scanning is presented in Fig. 11, showing a
very good agreement between our model and CST. Only four
elements of the array are shown, since all the others are
included by symmetry.

A 5 × 5 finite array with a backing reflector and loaded by
a 5-layer artificial dielectric is simulated in CST and using our
method. Vertical walls are considered between parallel slots as
in [12]. Fig. 12 shows a good agreement between the results
given by CST and those generated by our method. For this
example, the computation time was 2 min for seven frequency
points with our method, versus 2 h in CST.

B. Radiation Patterns

The radiation patterns can also be computed from the
voltage spectrum in (9) by using the stationary phase point
method. The generic component of the radiated magnetic field
can be expressed as

H{x,y,z}(θo, φo, r) ≈ jkzoG{x,y,z}x(kxo, kyo)M(kxo, kyo)
e− jk0r

2πr
(19)

where (θo, φo, r) refer to an observation point in the far-
field and kxo = k0 sin θo cos φo, kyo = k0 sin θo sin φo, and

Fig. 12. Comparison between CST and MoM of the active input impedance
of each element of a 5 × 5 array with a backing reflector and a five-layer ADL
superstrate. Vertical walls are included below the slot plane. The geometrical
parameters are dx = dy = 4.35 mm, ws = 1.4 mm, δ = 2 mm, dedge =
2.4 mm, distance from backing reflector h = 1.9 mm, relative permittivity
of the substrate εr = 2.2. The ADL is in free-space with p = dx /2, w1 =
0.64 mm, w2 = w3 = 0.32 mm, w4 = w5 = 0.5 mm, d1 = 0.23 mm,
d2 = d3 = 0.45 mm, d4 = 0.83 mm, d5 = 1.2 mm, and s = 0.5p.

Fig. 13. 3 × 3 connected slot array in free space. H-plane embedded patterns
of (a) corner (1, 1) and (b) central (2, 2) elements, with and without windowing
of the aperture field. (c) Finite length metal terminations at the slot edges
with fictitious waves propagating in the slots outside the array. A rectangular
window (dashed rectangle) is used to exclude these waves from the results.

kzo = k0 cos θo. The 2-D magnetic current spectrum on the
array aperture is

M(kx , ky) =
M∑

m=1

Vm(kx)J0(kyw/2)e jky m dy . (20)

For example, for the 3 × 3 array in free space considered
in the previous section, the H-plane embedded patterns of the
corner and central elements are shown as red dotted curves
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Fig. 14. Radiation patterns for the 5 × 5 array with ADL as the one
considered in Fig. 12. (a) H-plane φ = 0◦ . (b) E-plane φ = 90◦ .

in Fig. 13(a) and (b). It can be seen that a discrepancy with
CST occurs at large angles close to 90◦. This discrepancy
arises due to the assumption of finite length metal terminations
at the slot edges, which is used to simplify the procedure
by exploiting the spectral solutions of the infinite slot. The
extension of the slots after this finite termination enables
the propagation of fictitious residual waves along the infinite
slots outside the array [see Fig. 13(c)]. This effect can be
removed from the results by replacing the total spectrum Vm

with a truncated version Vm,trunc that includes only the array
aperture [dashed rectangle in Fig. 13(c)] and cuts out the
aperture field in the passive slots outside the array. This can be
obtained mathematically by applying the inverse Fourier trans-
form (F−1{·}) of (9), multiplying by a rectangular window
rectarray(x) including only the finite slot region and re-applying
the Fourier transform (F{·})

Vm,trunc(kx) = F{F−1{Vm(kx)}rectarray(x)}. (21)

The patterns after truncation are also shown in
Fig. 13(a) and (b), and they are closer to the CST solutions.

The patterns in the presence of the ADL can also be
calculated since the spectral Green’s function of ADLs is
known. For the same 5 × 5 array with ADL considered in
Fig. 12, the patterns on the two main planes are shown in
Fig. 14.

V. LARGE ARRAY PERFORMANCE

A. Impedance Matching

To show the capabilities of the method, a large array is
simulated containing 32 × 32 elements. The array is based on
the same unit cell as in Fig. 12. Our method is used to analyze
the effects of the finiteness on such an array. The resulting
active VSWR of each element is shown in Fig. 15(a)–(c)
for various scanning conditions. It is seen that, while most
elements are close to the infinite array approximation, some
deviate from it quite significantly. This information is relevant
in array design to estimate the amount of power that is
reflected in the output of the power amplifiers feeding the
individual elements. On the other hand, the total matching
efficiency of the array, determined from the total input and
reflected power as (Pin − Preflected)/Pin, is shown in Fig. 15(d)
to be within a few percent of the infinite array.

To determine the position of the elements that exhibit a
higher VSWR, colormaps of the VSWR for each element

Fig. 15. Active VSWR for each element in a 32 × 32 connected slot array
when scanning to (a) broadside, (b) 60◦ on the H-plane, and (c) 60◦ on the
E-plane. (d) Resulting in matching efficiency.

Fig. 16. Maps of the active VSWR of the elements across the array for
scanning to 60◦ at 31 GHz in the (a) H-plane and (b) E-plane.

Fig. 17. Radiation patterns at 30 GHz of a 32 × 32 finite array based on
the unit cell shown in 12 scanning to 60◦ on (a) H-plane and (b) E-plane.
The patterns are normalized to the maximum at the broadside.

(n, m) are shown in Fig. 16 for different frequencies and
scanning conditions. It is seen that the greatest mismatch is
seen at the edges of the array and that the majority of elements
have a VSWR lower than 3.
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B. Radiation Patterns

The proposed spectral method also provides the radiation
patterns of the finite array. The standard approach for estimat-
ing the pattern of finite arrays is the windowing technique [29],
[30], which simply multiplies the unit cell active element
pattern by the array factor. However, this technique does not
account for the variations of the impedance across the array.
The radiation patterns of the finite array for scanning to 60◦
in the two main planes are shown in Fig. 17, where they are
compared to the windowing approximation. It is evident that
for large arrays, the two methods provide a similar estimation
of the patterns with differences primarily in the sidelobes.

VI. CONCLUSION

We presented a numerical method to analyze planar-
connected arrays with ADLs. The method is based on a
spectral domain approach with a limited number of basis
functions, equal to (N + 2) × M , for an array of N × M
elements. The mutual impedance is efficiently evaluated by
extraction of asymptotic parts and residue contributions of the
polar singularities.

The method was validated using CST and enables finite
array simulations with large numbers of elements to estimate
the effects of the finiteness on the active impedance and the
radiation patterns.
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