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Introduction

This document is the thesis document in which the thesis deliverables are combined. For the purpose
of the defense the paper given in Ch. 1 is most relevant. This paper presents the applied methodology
and the most important results of the research. For a more extensive literature study regarding demand
forecasting models the reader is referred to Ch. 2. The original project plan is given in Ch. 3. These
last two parts are already graded and are there just for the interest of the reader.

The different parts of this report are stand-alone documents and should be regarded as such.
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Chapter 1

Paper

In this chapter the paper is presented.
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aircraft maintenance demand forecasts
Bram Slangen

Delft University of Technology

June 23, 2020

Abstract

The long and therefore expensive training of aircraft maintenance technicians underline the need for accurate demand forecasts that allow
for dynamic control of acquisition and training rate of personnel. This control enables human resource management to react swiftly to
increases in workforce demand at times of technician shortages. To help human resource management a novel decision support model based
on tactical demand forecasts in the aircraft maintenance context is proposed in this paper. Additionally, this paper presents a systematic
research towards the optimal models to forecast tactical maintenance demand. The analysis is conducted using aggregated structural repair
data of a fleet of wide-body passenger aircraft in the first ten years of its introduction. The results of this study show the potential of the
proposed model as it is robust for varying amounts of non-constant workforce outflow and different fleet sizes. Furthermore, the model
can be applied efficiently from one year after the acquisition of the first new aircraft. The novelty of this study is the direct integration of
personnel training and acquisition with workforce demand forecasts. Additional research is recommended to validate the use of this model
on other aircraft types, to explore the use of this model in the area of human resource management optimization and to extent this model to
an organizational level.

I. Introduction

Workforce management is vital to aircraft main-
tenance organizations as personnel costs are one
of the highest items of expense (Wahyudin et al.,

2016). Increasing competition among Maintenance Repair
and Overhaul organizations (MROs) forces them to en-
hance their efficiency hence improving workforce capacity
planning (Maintenance Cost Task Force, 2018),(Phillips
et al., 2009). Additionally, Original Equipment Manu-
facturing companies (OEMs) are enlarging their market
share in the aircraft aftermarket. These developments
complicate human resource management and consequently
capacity planning for MROs as they have difficulties
to retain and acquire well trained personnel (Prentice
et al., 2017). Next to the pressing retention issues the
MRO’s relatively old workforce shows a prospect of large
portions of the staff leaving maintenance industry due
to retirement (Bill, 2018),(Constanza et al., 2017). The
aforementioned developments cause a global shortage of
aircraft technicians.

To cope with the shortage of skilled personnel airlines and
MROs heavily invest in the schooling of young people
through their own training facilities or in cooperation with
maintenance schools (Zuehlke, 2014). Aircraft technicians
are bound to strict certification requirements and the
training times are long (EASA, 2015). The long training
duration and the general shortage on personnel makes
it difficult to respond quickly to unexpected increases in
maintenance demand.

These unexpected increases in demand often occur when a
fleet of novel aircraft is acquired by an airline. Recently, the
application of composite materials in the new generation of
passenger aircraft was accompanied with a promise of sig-
nificant reduction in maintenance (Airbus, 2016),(Boeing,
2006). However, after introduction of the aircraft, mainte-
nance was more extensive than anticipated. The suscepti-
bility of composite components for damage by impacts, in-
creased the maintenance demand dramatically (Drew and
Mouawad, 2013),(Cohan, 2015). For an MRO organization
to efficiently cope with this unexpected demand, forecasts
are required that can predict the required resources on a
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tactical level. Tactical in this context refers to a timescale of
two to three years and a fleet level approach. No method
that approached this problem on this tactical level could
be identified in literature by the author. Additionally, in-
quiries of various human resource management academics
also confirm the lack of knowledge in this particular field
of study.

i. Aim of the study

Based on the lack of knowledge and the present need in
aircraft maintenance industry the goal of this study is to
aid human resource management in their decision making
on a tactical level regarding acquisition and training of
personnel. A maintenance demand based approach has
not been tried yet in literature. Consequently, the research
question is as follows:

“How can dynamic, tactical maintenance demand
forecasts aid human resource management regarding per-
sonnel acquisition and training in the aircraft maintenance
context?”

This paper aims to answer this question by proposing and
evaluating a workforce flow model that uses dynamic,
tactical workforce demand forecasts as input to produce
personnel acquisition and training rates. Analysis of
the model characteristics, its sensitivity to different
parameter values and its performance then allow for an
assessment of its value to human resource management.
The tactical workforce demand forecasts are obtained
through temporal aggregation. This is a method that is
developed to model intermittent demand (Nikolopoulos
et al., 2011),(Kourentzes et al., 2014). Subsequently,
Ordinary Least Squares, Weighted Least Squares and
Feasible Generalized Least Squares models are applied to
the aggregated demand in order to forecast it. A forecast
performance based model selection procedure is executed
to find the optimal forecasting model.

The novelty of this study is the direct integration of a
personnel training and acquisition model with workforce
demand forecasts. Furthermore, to the authors knowledge,
the approach of this problem on a tactical level (2 to 3
years timescale and on fleet level) is not yet attempted in
an aircraft maintenance context.

ii. Paper structure

The remainder of the paper is structured as follows. In
Sec. II a summarized literature background study is given,
which is primarily focused on the modeling of maintenance
demand. Sec. III is subdivided into six parts where the
first two describe the design of the personnel flow model.
The last four parts elaborate on the available data and the
selection of the optimal demand forecasting models. In Sec.
IV the results of the demand forecasting model selection
process are presented after which the selected model is
applied in the workforce flow model. The performance of
the latter is also evaluated in this section. In Sec. V and VI
the discussion of the results and the general conclusion are
presented respectively.

II. Background study

To place the proposed model in a literature context, and to
find applicable methods to forecast demand, a background
study is conducted, which is presented in the following
paragraphs.

i. Maintenance capacity planning

Human resource management and workforce demand
forecasting are inherently related to capacity planning. The
literature on capacity planning in a long-term context is
scarce and there are, to the author’s knowledge, no readily
available methods to forecast workforce demand. However,
the importance of maintenance demand predictions is
highlighted often in various studies. According to Heimerl
and Kolish the first step in human resource capacity
planning is the determination of the workforce required
per skill and period (Heimerl and Kolisch, 2010). In
Ben-Daya et al. (2009), Haroun and Duffuaa emphasize
that accurate forecasts for the future maintenance work
are essential for determining the workforce capacity. They
stress that the critical aspects of maintenance capacity
planning are the expected workload size and the required
skills of the workforce. They also note that: ’Making long
run estimations is one of the areas in maintenance capacity
planning that is both critical and not well developed in
practice’.

In most literature regarding long-term workforce pre-
dictions the timescale is often larger than the timescale
intended for in this study. Also, in these studies workforce
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is often forecasted indirectly using economic indicators.
For instance, in Edwards (2010) ten year forecasts for the
demand of PhD students in Australia are made using a
macro-economic model. Another study uses predictions of
sector growth as exogenous variable to compute skilled
personnel demand (Woolard et al., 2006). In Sing et al.
(2016) the authors present a case study of long-term
workforce demand forecasting of building inspectors in
Hong Kong. A labor multiplier approach is applied that
assumes a known amount of work packages and a constant
amount of labor per work package. Additionally, Briscoe
and Wilson propose a multitude of co-integrating regres-
sions to establish the existence of long-run equilibrium
relationships between employment, output and wages in
the context of the engineering industry of Great Britain
(Briscoe and Wilson, 1991). The authors emphasize the
increase of forecast inaccuracy due to the introduction of
these uncertain variables.

The studies above show that for long-term forecasting ex-
ogenous information is often used to forecast workforce
demand. Regularly this exogenous information is a fore-
cast in itself and therefore adds to the uncertainty of the
main model.

ii. Maintenance demand forecasts

Demand forecasting models are described extensively in
literature but mostly in an inventory management context.
Parallels can be drawn between spare part demand
forecasting and workforce demand forecasting which
is why a research into this field is worthwhile for this study.

Aircraft component failure is known for its intermittent
behavior (Ghobbar and Friend, 2003). Croston was the first
to address the intermittent demand problem and Croston’s
method is one of the most used methods for intermittent
demand forecasting in industry (Xu et al., 2012),(Boylan
et al., 2008). Croston found that traditional forecasting
techniques lead to excessive stock of spare parts in the
case of intermittent demand, which is inefficient (Croston,
1972). In Syntetos and Boylan (2001) the authors find that
Croston’s method is biased and introduce an adjustment
to Crostons method called Syntetos Boylan Approximation
(SBA), which outperforms Crostons’s method in terms of
accuracy.

Next to the highly successful SBA method there are other

models that attempt to describe intermittent demand.
In Willemain et al. (2004) the problem of forecasting
intermittent demand is solved by introducing a new
type of time series bootstrap while in Hua and Zhang
(2006) the problem is approached through Support
Vector Machines which allows for the use of explanatory
variables. Other studies in the field of intermittent demand
forecasting explore the use of Neural Networks, which
are promising but are sensitive to overfitting and do not
outperform traditional methods consistently (Gutierrez
et al., 2008),(Amin-Naseri and Rostami Tabar, 2008).

The aforementioned literature shows that intermittent
demand forecasting is still a complex problem and that
the traditional methods are relatively inaccurate. In
Nikolopoulos et al. (2011) the concept of temporal aggrega-
tion was proposed as a solution to intermittent demand
forecasting. Temporal aggregation of demand aims at
transforming intermittent demand into smooth demand
by aggregating demand in lower-frequency bins (Murray
et al., 2018). This smoothing of demand is advantageous
as it allows for other forecasting methods to be used than
the limited selection of methods that are available for
intermittent demand. Aggregating might however result
in an information-loss as a direct result of a decrease
in amount of datapoints (Petropoulos and Kourentzes,
2015). An earlier study emphasizes the opportunities that
a combined temporal aggregation model offers in terms
of improved demand forecasts (Kourentzes et al., 2014).
The main motivation of this study was to mitigate the
issue of model selection, which is tedious in general. The
premise of the study is that at different aggregation levels
different properties or characteristics of the time series
can be identified and can therefore improve the forecast
accuracy.

The effect of the level of aggregation on forecast accuracy
is analyzed empirically in Nikolopoulos et al. (2011). In the
study the Aggregate-Disaggregate Intermittent Demand
Approach (ADIDA) method is developed. This method
aggregates high frequent sampled demand into lower
frequently sampled demand where it is subsequently
modeled. Depending on the intended goal of the research
the forecast can either be used in this latter frequency or
be disaggregated to the original frequency. In this way
information gathered at a lower temporal frequency can
be used at a higher frequency which can be beneficial
in terms of forecast accuracy. Combining this approach
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with a naive forecasting model outperformed traditional
methods such as Croston’s method and SBA.

Literature shows that there are two approaches on
temporal aggregation (Kourentzes et al., 2017). The first
one is the usage of an optimal aggregation level and the
second one is the usage of multiple aggregation level
to retrieve all relevant features of the time series. The
limitation of the single aggregation level approach is
that a model should be assumed while the multiple
aggregation level approach is robust against model choice.
In conclusion, there is empirical and theoretical evidence
that temporal aggregation is beneficial in terms of demand
forecasting but there is no consensus on how that should
be optimally achieved.

The background study shows that temporal aggregation of
demand and the combination of forecasts at different levels
of aggregation is beneficial in terms of forecasting accuracy.
Therefore, this aggregation approach will be used in this
study.

III. Methods

To answer the research question a model is developed
that integrates demand forecasts with the dynamics of
personnel or workforce within an aircraft maintenance
organization. In this study these workforce dynamics are
described using a workforce flow model which, in this
paper, is also referred to as personnel flow model. The
demand forecasts are obtained through demand forecast
models.

In this methodology section of the paper the proposed
workforce flow model is presented, followed by a descrip-
tion of the demand forecasting model selection procedure.

i. Workforce flow model description

As outlined in the introduction no workforce flow model as
intended in this study could be identified in literature. Con-
sequently, for this research a novel workforce flow model
is proposed. The structure of the model is based on the
EASA Part-66 document (EASA (2015)) but in addition sev-
eral assumptions are made, which are elaborated upon in
the upcoming paragraphs. The proposed model is shown
schematically in Fig. 1.

A-licensed
workforce

B-licensed
workforce

Retirement and
Labour mobility

Recruits

rAB

rRA

XA

XB

rp + rl

A-licensed
demand
forecast

Personnel
flow model

Demand
forecast models

B-licensed
demand
forecast

yB2

yA2

Figure 1: Schematic representation of the proposed personnel flow
model and its relation to the demand forecast models

In this figure the flow of personnel from acquisition
stage to outflow is presented. Recruits are trained into
A-licensed technicians and subsequently into B-licensed
technicians. The amount of personnel put to training at a
certain point in time is given by the variables rRA and rAB.
These training rates are determined by workforce demand
forecasts and the expected outflow of personnel.

This model requires several assumptions to be made.
Firstly, just two types of personnel are assumed, A-licensed
and B-licensed. In general C-licensed personnel has a
managerial function, which is why they are not included
in this model. The privileges and requirements belonging
to these two different licenses and the respective training
duration are described in the EASA Part-66 document.
In short, A-licensed technicians are allowed to perform
minor, temporary, maintenance tasks, often associated
with line maintenance. B-licensed technicians are certified
to perform major, non-temporary, maintenance tasks. Al-
though in reality there are different paths for a technician
to achieve these two licenses it is assumed that the training
duration (including the required gain of experience) is
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two years for both licenses. Secondly, it is assumed that
only B-licensed personnel is susceptible to retirement or
labour mobility as shown in Fig. 1. This is based on the
fact that generally B-licensed personnel is older and more
experienced. The outflow due to retirement is assumed
to be constant. The outflow due to labour mobility (rl)
is dependent on time. It is modeled as being a normally

distributed random variable N
(

rµl , σ2
)

where rµl is the
expected outflow rate due to labour mobility and σ is the
standard deviation. Naturally, a realization of N

(
rµl , σ2

)

cannot be smaller than zero as that would mean a ran-
dom inflow of personnel. Therefore if rl(t) < 0, rl(t) −→ 0.

The workforce sizes and the training rates are based on the
demand for A-licensed and B-licensed workforce. Due to
the long training duration this workforce demand should
be forecasted to be able to match the capacity with demand
in the future. This leads to the following mathematical
model description.

rAB(t) = yB(t)− yB(t− 1) + rpp + rµl (1)

rRA(t) = yA(t)− yA(t− 1) + rAB(t) (2)

Where rAB(t) is the amount of A-licensed personnel put
to training for their B-license at timestamp t, rRA(t) is
the amount of recruits put to training for their A-license.
rpp and rµl are the expected amount of personnel retiring
and leaving due to labor mobility at timestamp t + thor
respectively where thor is the forecast horizon. thor is equal
to the training time in this study. yB(t) is the forecast of
the B-license demand at timestamp t + thor while yB(t− 1)
is forecast of B-license demand at timestamp t− 1 + thor.
The variables used in Eq. 2 are equivalent to those
aforementioned but then for A-license demand. In essence
Eq. 1 and Eq. 2 state that the training rate at timestamp t
is equal to the increase in demand at timestamp t + thor,
taking into account the expected outflow.

Subsequently the workforce size can be determined using
the computed training rates as shown in Eq. 3 and Eq. 4:

XA(t) = XA(0) +
t−thor

∑
−thor

rRA(t)−
t−thor

∑
−thor

rAB(t) (3)

XB(t) = XB(0) +
t−thor

∑
−thor

rAB(t)−
t

∑
0

rp + rl(t) (4)

Where XA(t) is the A-licensed workforce size at timestamp
t, XA(0) is the A-licensed workforce size at timestamp
t = 0. XB(t) and XB(0) are their equivalences but then
for B-license demand. Implicit to this equations are two
assumptions. Firstly, the A-licensed workforce put to
training for their license-B are assumed to stay part of
the A-licensed workforce until their training to B-licensed
technician is fully finished. Secondly, it is assumed that
between t = −thor and t = 0 the training rates rAB(t) and
rRA(t) were equal to the true outflow (rp + rl(t)) between
t = 0 and t = thor. Thirdly, it is assumed that firing of
personnel is not permitted. Fourthly, when the B-licensed
workforce is larger than the expected demand in two years
(XB(t) >= yB(t)) the training rate rAB(t) becomes 0. Lastly,
in order to keep up with the training rate to B-license,
the acquisition rate rRA(t) is always at least equal to rAB(t).

This model is applied within an existing maintenance
organization where there is a workforce present. This is
also the reason why the training rate rAB(t) might exceed
XA(t) as it is assumed that a sufficiently large A-licensed
workforce is present within the organization. However, in
this study one is interested in the change in maintenance
demand which is why XB(0) and XA(0) are both set at 0.

The proposed model is a continuous model, which means
that the training rates and current workforce sizes are com-
puted for every timestamp t. A pseudo code representation
of how the model is implemented in this study is given in
App. A.

ii. Workforce flow model evaluation

To answer the research question, the workforce flow model
is to be evaluated. From a human resource management
perspective one is interested in the following aspects of the
model:

1. Performance of model in terms of matching mainte-
nance demand and workforce availability over time.

2. Model performance at different demand aggregation
levels.

3. Sensitivity of model performance to varying, constant
workforce outflow rates.

4. Sensitivity of model performance to non-constant
workforce outflow rates.
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5. Sensitivity of model performance to start of demand
forecasting.

6. Sensitivity of model performance to different fleet
sizes.

The aspects listed above are used to evaluate the model
and are elaborated upon in the following paragraphs.

The performance of the model is assessed through
evaluating the difference between the actual demand
and the workforce size from a fixed timestamp onward,
regardless of the start of demand forecasting. As error
metric the root mean squared error is used.

The second aspect involves the influence of demand
aggregation level on the performance of the model.
Literature advises to aggregate maintenance demand as
it improves the demand forecast accuracy (Nikolopoulos
et al., 2011),(Kourentzes et al., 2017),(Schneider and
Cassady, 2015). It is chosen to aggregate up to a monthly
and a quarterly level as those are reasonable frequencies
to evaluate the workforce size and training rates at. Also,
at those aggregation levels there are still redundant
data points to apply the demand forecasting model
to. In Kourentzes et al. (2014) combining aggregated
demand forecasts is advocated as each aggregation level
is able to capture certain characteristics of the data.
In Spiliotis et al. (2019) it is noted that an averaging
approach of demand forecasts at different temporal
aggregation levels is often as accurate as more complex
approaches. In following of these studies two different
combinations of forecasts will be used next to the uncom-
bined quarterly and monthly aggregated demand forecasts.

To combine the aggregated demand forecasts the quarterly
demand forecast is disaggregated to a monthly frequency
by distributing the demand evenly over the three months
that make up that quarter. Subsequently this disaggregated
quarterly demand forecast is combined with the monthly
aggregated demand forecast. A trivial combining approach
would be to average the two forecasts by assigning equal
weights to both forecasts. This approach is the first
method, which will be referred to as ’Combined, avg.’
in the remainder of this study. The second combination
approach uses a more complex weighting function for the
quarterly and monthly demand forecasts. The weighting
function is such that at the start of the analysis a weight of
one is assigned to the quarterly demand forecast, which

linearly decreases to zero at the end of the analysis while
the weight assigned to the monthly method increases to
one. The premise of this weighting function is that the
demand is still intermittent in the beginning and that
a higher aggregation level results in a better forecast
performance. In the remainder of the study the second
method will be referred to as ’Combined, dyn.’

The third aspect regards the robustness of the model to a
larger, constant outflow rate. To test this the performance
of the model is assessed across different constant outflow
rates.

In reality outflow due to labour mobility is not constant.
Therefore the fourth aspect assesses the performance
under various degrees of variability in outflow.

The fifth aspect involves the influence of the starting point
of analysis on the model performance. As formulated
in Eq.1 and Eq.2 the training rate is based on workforce
demand forecasts. These forecasts require workforce
demand data, specified per workforce type. Assuming
the first aircraft acquisition to take place at t = 0 the
forecasting of demand can only start after a certain period
(tstart) in order to observe the necessary demand needed
for an accurate forecast. In practice, a low tstart allows for a
quick response to a change in demand but with only a few
data points available an accurate forecast is more difficult
to obtain. A high tstart on the other hand enables a more
accurate forecast but the relatively late response influences
the overall performance of the model. Regardless of tstart
value the model performance is evaluated from the same
timestamp onward.

The sixth aspect regards the performance of the model
for different fleet sizes. Three fleet sizes will be con-
sidered in this study. Due to confidentiality exact fleet
sizes cannot be provided, which is why ratios are provided.

The robustness of the model for above mentioned aspects
is evaluated by comparing the root means squared error
values for each parameter combination related to these
aspects.

iii. Available demand data

The described personnel flow model requires accurate
demand forecasts and therefore it is vital to select the
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best maintenance demand forecasting model in terms
of forecasting performance. In the remaining four parts
of the methodology section this aspect of the study is
described. Before this model selection procedure can be
elaborated upon a description of the available data is given.

Optimally workforce demand data in terms of man-hours
would be available for this study. Nowadays however,
maintenance is planned using task packages and clustering
of maintenance tasks is applied to ensure efficient resource
capacity planning. Namely, by clustering tasks set-up
times can be shared across them (Van Dijkhuizen and Van
Harten, 1997). This clustering means that the workforce
demand per maintenance task is hard to determine. An
inquiry of MRO engineers also showed that information
on workforce demand per maintenance task is not readily
available within the organization. The second best option
is to use other data and to convert this information into
workforce demand.

The data available for this study consists of ten years of
structural repair data of a relatively large fleet of widebody
passenger aircraft of the same type. Over these considered
ten years aircraft are added to the fleet on an irregular
basis, representing a realistic scenario of a growing fleet
in its early years. In this study the amount of repairs is
used as the dependent variable. For confidentiality reasons
the exact amount of repairs and the fleet size cannot be
provided to the reader.
The conversion to workforce demand requires assumptions
to be made. Firstly, it is assumed that the growth of
workforce demand is directly proportional to the increase
in amount of repairs for both licenses. Secondly, it is
assumed that category A and category B repairs are taken
together and assumed to be executed by the B-licensed
workforce. Repairs belonging to these categories are
so called permanent repairs which makes this a valid
assumption according to the description of B-licensed
personnel in EASA (2015). Category C repairs are
temporary repairs, which correspond to the privileges
of A-licensed technicians. Thirdly, multiple repairs on a
specific component as defined by its ATA, SUB-ATA, SUB-
SUB-ATA number and its three digit zone identification
of a single aircraft on a single day are considered as one
failure. This reduces the impact of clustering as it makes
every repair action more equivalent to each other in terms
of workforce demand.

Besides the temporal aspect, demand forecasting on this
scale also requires a fleet-wide approach due to the shared
use of resources (Schneider and Cassady, 2015). Therefore
all repairs are aggregated over all aircraft and categorized
per license type. This results in a maintenance demand
development over time as shown in Fig. 2 and Fig.3.

Figure 2: Monthly aggregated amount of repairs over time for both
B-licensed and A-licensed personnel.

Figure 3: Quarterly aggregated amount of repairs over time for both
B-licensed and A-licensed personnel.

iv. Demand influencing factors

The application of forecasting models that can explain
repair demand on a fleet level requires variables. Variables

7



or factors that influence maintenance demand on a fleet
level are not researched extensively in literature. To
the authors knowledge only one study applies factors
as predictive variables to forecast maintenance demand
(Pogačnik et al., 2017). In this study factors that influence
fleet maintenance are used to predict fault probability
on individual aircraft. Aircraft parameters such as
operator, aircraft type, aircraft age, flight hours, flight
cycles, engine type and operation location, are taken into
consideration. Besides factors that impact maintenance
directly there are also factors that influence maintenance
costs which can be used as indicators for maintenance
demand. According to Wu et al. (2004) factors that impact
direct maintenance costs are fleet size, commonality,
fleet age, fleet utilization and frequency of check inter-
vals. On single aircraft level, age is used as key factor
to describe maintenance costs and forecasting mainte-
nance demand (Saltoglu et al., 2016),(Weckman et al., 2006).

Current airline fleet maintenance is organized around a
inspection based maintenance policy (Dupuy et al., 2011).
The inspection work packages prescribed by A,B,C and
D checks are well known in advance. This scheduled
maintenance almost always induces unscheduled mainte-
nance as well (Wagner and Fricke, 2006). Consequently,
the A-Check, C-Check and D-Check schedules are not
only a good predictor for scheduled maintenance but
also an indicator for unscheduled maintenance and repairs.

Exploration of the data shows that just six of the aforemen-
tioned potential variables can be used in this study. The
variables are retrieved from external data sources and are
listed below:

• Fleet size
• Average fleet age
• Median fleet age
• Third quartile fleet age
• Expected demand due to A-Check
• Expected demand due to C-Check

Fleet size, average fleet age and median fleet age are
straightforward. Third quartile fleet age is an age of which
75 percent of the fleet is younger. The values of these
variables are all well known in advance and are fixed. This
is because aircraft have long delivery times. Also, due
to the inspection based maintenance policy that airlines
apply nowadays, A-Check and C-Check schedules can be
determined for years to come (at least in indicative form).

In order to use the schedules of A-Check and C-Check as
explanatory variables a continuous model should be made
of them that uses these schedules as input. According
to the maintenance manuals and expert interviews the
A-check interval for the widebody used in this study is 105
days and the check takes 2 days on average. The C-Check
interval is 750 days and is assumed to take up 10 days on
average. Furthermore, it is assumed that both checks take
place at 90 percent of the prescribed interval.

This information leads to a simple model for each check.
Both the A-Check and C-Check variable then consist of the
aggregated A-Check and C-Check models respectively. Tab.
1 visually explains the build-up of the A-Check variable
which is analogous to the C-Check one.

Time (days) 0 1 2 3 . . . 94 95 96 97
AC1
(intr. day 0)

0 0 0 0 . . . 0 1 1 0

AC2
(intr. day 1)

n.a. 0 0 0 . . . 0 0 1 1

AC3
(intr. day 2)

n.a. n.a. 0 0 . . . 0 0 0 1

Variable 0 0 0 0 . . . 0 1 2 2

Table 1: Example of the A-Check variable formation

The variables turn out to be heavily collinear, especially the
age related variables. This multicollinearity among the vari-
ables makes a model selection based on t-tests of regression
coefficients not feasible. Therefore the optimal forecasting
model is determined by comparing the respective forecast
performance. However, the type of model is identified
by an insample analysis of the data presented in Fig.
2 and 3. This process is elaborated upon in the next section.

v. Method selection

In this section the type of model is identified which will be
referred to as method in the upcoming paragraphs. The
data described in the previous section form the basis of
this method identification. The graphs given in Fig. 2
and 3 show that a linear model is a potential model and
therefore the use of linear regression is the starting point
of this selection procedure.

The following procedure is applied. First ordinary least
squares regression (OLS) is applied using the variables
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’Average fleet age’, Fleet size’, ’A-Check schedule’ and ’C-
Check schedule’. This is shown for the monthly aggregated
B-licensed repairs in Fig. 4.

Figure 4: OLS fit on monthly aggregated B-license repair data using
variables ’Average fleet age’, Fleet size’, ’A-Check schedule’
and ’C-Check schedule’.

The residuals are subsequently analyzed to check for vio-
lations of the OLS assumptions and to find out if there is
serial correlation:

1. Linearity check using Component-Component plus
residual plot

2. Periodicity check

3. Autocorrelation check

4. Homoscedasticity check

5. Normality check

The linearity check showed that all variables are linearly
related to the repair data which validates the use of a linear
model. The periodicity check and the autocorrelation
check showed that there is no seasonality in the data and
that there is no statistically significant autocorrelation.
This means that there is no serial correlation among the
data points. The homoscedasticity check shows that the
residuals are heteroscedastic which is a violation of an
OLS assumption. The normality check shows that the
residuals are normally distributed. Applying these tests
on the other repair categories and quarterly sampled data
lead to the same conclusion.

OLS is robust for heteroscedasticity up to a certain extent
and is therefore not excluded from the model selection.
Weighted Least Square regression (WLS) and its generaliza-
tion Feasible Generalized Least Squares regression (FGLS)
do not assume homoscedastic errors and are therefore po-
tential methods. In matrix notation the Generalized Least
Squares (GLS) estimator for the coefficient vector β is given
in the following equation (Fox, 2016):

bGLS = (X′Σ−1
εε X)−1X′Σ−1

εε y (5)

Where X is the design matrix, b is the estimator for the
coefficient vector, Σεε is the error covariance matrix and
y is the vector of the response values. In case of an OLS
model it is assumed that Σεε = I. In the case of WLS and
FGLS the diagonal values in Σεε are not equal to one but
are weighted. For the estimator to be BLUE (Best Linear
Unbiased Estimator) the weight of observation i should
be the reciprocal of the variance for that observation i
according to the Gauss-Markov theorem (Springer, 2008).
The variance of each observation is not readily available
which is why in this study the weights for the WLS model
are assumed to be the reciprocal of the residual of the OLS
model at the same observation.

FGLS assumes that there is an underlying explanation for
the heteroscedasticity and consequently a model can be
used to determine the weights. Intuitively one recognizes
that the increase in variance is due to the increase in fleet
size and the aging of the fleet. An OLS model with the
variables ’Fleet size’ and ’Median fleet age’ is used to
obtain the weights. FGLS is not BLUE. It is biased but
consistent and it is more efficient than OLS when the
number of observations go to infinity.

For above mentioned reasons OLS,WLS and FGLS are used
in the demand forecast model selection procedure.

vi. Optimal demand forecast model selection

The optimal demand forecasting model is identified
through a forecast performance comparison of all potential
models. The procedure corresponding to this performance
analysis is best explained using the example in Fig. 5.
The data between t = 0 and teval are used to train
the model. Subsequently the model is applied to the
out-of-sample data and the performance of the model is
evaluated between teval and teval + thor where thor is the
forecast horizon. The performance metric used is the root
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Figure 5: Example of forecasting procedure using fictitious data. teval
is the timestamp at which the forecast starts. thor is the
forecast horizon.

mean squared error which is normalized by the difference
between the maximum value and minimum value of
the response variable between teval and teval + thor. The
normalized root mean squared error is in the remainder of
this study referred to as NRMSE.

This procedure is applied over varying parameters and in
different contexts for both license types and both aggrega-
tion frequencies. The parameters and contexts are given
below:

• 3 fleet sizes:

1. Small sized fleet

2. Medium sized fleet

3. Large sized fleet

• 20 random fleet compositions per fleet scenario to
remove the possible bias induced by specific aircraft.

• 3 methods:

1. OLS

2. WLS

3. FGLS

• 13 variable combinations:

1. Average age

2. Average age, Fleet size

3. Average age, Fleet size, A-Check

4. Average age, Fleet size, A-Check, C-Check

5. Median age

6. Median age, Fleet size

7. Median age, Fleet size, A-Check

8. Median age, Fleet size, A-Check, C-Check

9. Third quartile fleet age

10. Third quartile fleet age, Fleet size

11. Third quartile fleet age, Fleet size, A-Check

12. Third quartile fleet age, Fleet size, A-Check, C-
Check

13. Fleet size

• 17 evaluation points (teval). Starting at one year after
first repair, at a half year frequency.

The forecast horizon thor is set at two years which
corresponds to the training duration for both the A-license
and B-license. For each of the parameter combinations a
forecast as presented in Fig. 5 is executed which results
in a total of 159,120 NRMSE values. These NRMSE
values are subsequently used to find the optimal model
by comparing the means of the NRMSE distributions of
each method and variable combination. This is done for
each fleet size, each sample frequency and each license
type. The model with a NRMSE mean that is significantly
lower compared to the other models is the optimal
model. There is a possibility that multiple models are
optimal if there is not a significant difference between them.

Using an ANOVA model as given in Eq. 6 in combination
with a post-hoc analysis, multiple means can be compared.

yij = µ + βi + εij, i = 1, . . . , q, j = 1, . . . , ni (6)

Where yij denotes the jth observation in group i, µ is the
overall average, βi denotes the main effect in group i and
εij are random errors (Herberich et al., 2010). A post-hoc
Tukey test takes into account the family wise error but com-
pares all possible pairs. In the context of model assessment
one is not interested in the simultaneous comparison of all
models but only in the performance of models with respect
to the apparent best model. This leads to Dunnett’s test
which tests the difference in group effects using the follow-
ing partial null hypotheses and corresponding alternative
hypotheses:

H0
ik : βi − βk ≤ 0 ∀i 6= k, i = 1, . . . , q (7)

H1
ik : βi − βk > 0 ∀i 6= k, i = 1, . . . , q (8)
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Where k 6= i and k is the group with the lowest mean.
When the null hypothesis is not rejected in favor of the
alternative hypothesis it means it cannot be stated that
the mean of i is significantly higher than the mean of
distribution k. Hence, it cannot be concluded that the
model belonging to distribution k is significantly better
compared to i. Therefore, if the partial null hypotheses
belonging to group i cannot be rejected the corresponding
model is one of the optimal models. A family-wise
confidence level of 0.95 is used in this study.

Dunnett’s test assumes that the distributions are normally
distributed and that the variance is the same for each dis-
tribution. It is expected that the first assumption will hold.
The second assumption however is less likely to be valid
due to the fact that some models will tend to overfit which
means that their forecast performance will vary substan-
tially compared to other models. Therefore a variation
of Dunnett’s model is applied that does not assume ho-
moscedasticity of the errors εij . The in Herberich et al.
(2010) proposed procedure for comparing multiple means
under heteroscedasticity is used in this study. In contrast to
regular ANOVA it does not assume a constant variance of
εij.To obtain estimations for β a heteroscedastic consistent
covariance matrix estimation technique is applied. In Her-
berich et al. (2010) it is suggested to use the HC3 method
introduced in MacKinnon and White (1985) for this and is
therefore used in this study as well.

IV. Results

The results of the workforce model and the outcome of the
forecast model selection procedure are presented in this
section.

i. Forecasting model selection results

The NRMSE distributions resulting from the forecasting
procedure are positively skewed which is why a log trans-
formation is applied. As an example the NRMSE distribu-
tions for the monthly sampled A-license repair data of a
Small Fleet are presented in Fig. 6.
Each boxenplot in Fig. 6 consists of 340 NRMSE values.
On the y-axis the abbreviated model names are given. For
example, OLS: MA-FS stands for Ordinary Least Squares
model with the variables ’Median Age’ and ’Fleet Size’.

Figure 6: NRMSE distributions per model for monthly sampled
License-A repairs of a Small Fleet

The results of the subsequent ANOVA modeling and the
Dunnett post-hoc test are presented in Fig. 7 and 8. The
lower the NRMSE value the better the performance of the
respective model.

In these figures the optimal models for a ’Small’, ’Medium’
and ’Large fleet’ and for both monthly and quarterly
aggregated demand are highlighted in blue. The ’Small
fleet’ consists of three-fifths of the amount of aircraft of
the ’Large fleet’. The ’Medium fleet’ consists of four-fifths
of the amount of aircraft of the ’Large fleet’. A general
conclusion that can be drawn from Fig. 7 and 8 is that
simple models consisting of only one or two variables
outperform more extensive models. This can be explained
by the strong multicollinearity of the variables which make
the extensive models prone to overfitting and thus reduces
their forecast performance.

Of the optimal models the model with lowest variance
in NRMSE values is selected to be the one used in the
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Figure 7: Optimal forecast models and selected forecast model for A-
license repair demand based on lowest mean NRMSE

personnel flow model. For both the A-licensed and B-
licensed workforce the selected model is highlighted by
white diagonal stripes in Fig. 7 and 8. The A-license
demand is best modeled by an Ordinary Least Squares
model using ’Fleet size’ as variable. A-license demand has
more homoscedastic errors compared to B-license demand
which explains the choice for OLS. B-license demand on the
other hand is best modeled by a Feasible Generalized Least
Squares model using ’Median age’ as variable. For both
the A-License and B-License demand the selected model is
the same for each fleet size and demand aggregation level.

ii. Personnel model results, constant outflow

The selected demand forecast models are used in the per-
sonnel flow model. The repair data is obtained from an
unseen fleet variant, which means that it is not used in the
demand forecast model selection procedure. In Fig. 9 an
example of the 2 years, monthly demand forecast is given
for a Large fleet and an outflow rate of 0.02 per month.

Figure 8: Optimal forecast models and selected forecast model for B-
license repair demand based on lowest mean NRMSE

Figure 9: Demand forecast for both A-licensed and B-licensed workforce.
Start of forecast: 1.5 year, Monthly aggregation level forecast,
Outflow rate: 0.02 per month, Large fleet.

The forecasts are subsequently used as input for the
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personnel flow model and the resulting workforce sizes for
this example are shown in Fig. 10.

Figure 10: A-licensed and B-licensed workforce size. Start of forecast:
1.5 year, Monthly aggregation level forecast, Outflow rate:
0.02 per month, Large fleet.

To assess the performance of the personnel model and its
sensitivity to outflow rate, fleet size and forecast start, the
error between the true demand and the workforce size is
computed and expressed in the root mean squared error.
Independent from the forecast start the performance is
evaluated between two and a half years after t = 0 and the
last timestamp. To be able to compare the different RMSE
values they are normalized. The results of the personnel
model for both the A-license repairs and B-license repairs
are presented in Fig. 11 and 12 respectively.

In these figures the results of the personnel model are
given for the three considered fleet sizes, four different
forecast starts, four demand forecast models and different
but constant outflow-rates. The outflow rates are expressed
in ratios of the average demand growth per month of
the B-license repairs, which is found to be 0.004. Eleven
different rates are considered ranging from zero to
hundred percent of the average growth per month. The
performance of the model is evaluated from 2.5 years
onward, regardless of the forecast start. The lower the
NRMSE value the better the performance of model. The
results are discussed in the following paragraphs.

The impact of the outflow-rate on the model performance

Figure 11: Personnel model performance for A-licensed workforce un-
der varied but constant outflow.

is small, which is why it is expressed in the length
of a hundred percent confidence interval bar and not
given a distinct dimension in the plot. These confidence
interval bars can be seen in the B-licensed workforce
results presented in Fig. 12. The small impact on the
performance is caused by the fact that the model is not
able to reduce the workforce size actively due to the
assumption that personnel cannot be fired. A positive
outflow rate allows for the reduction of personnel, which
is why the workforce size differs over time compared
to the zero outflow rate case. The A-licensed person-
nel model performance is not impacted by the outflow-rate.

From the plots in Fig. 11 and 12 it can be concluded that
the B-license workforce model performance is not sensitive
for forecast start or fleet size. This is not the case for the
A-license workforce model performance as it generally
decreases with increasing fleet size and increasing forecast
start. An optimum is found at a forecast start of one year.
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Figure 12: Personnel model performance for B-license repairs under
varied but constant outflow.

The choice of demand forecast model impacts the person-
nel model performance. What can clearly be noticed is
that the models that are acting on a monthly frequency
(Monthly, Combined, avg. and Combined, dyn.) perform
similarly, especially at higher forecast starts. The demand
model based on a Quarterly sampling performs worst in
the A-license workforce model but best in the B-license
workforce model. An explanation for the latter is that the
Quarterly model is better able to capture the trend of per-
sonnel demand due to its higher demand aggregation level.

iii. Personnel model results, non-constant out-
flow

The personnel outflow for the monthly sampled models
due to labor mobility is modeled as a random variable

with a N
(

rµl , σ2
)

distribution. The quarterly sampled

model uses N
(

3 · rµl , (3 · σ)2
)

as random variable. The
results presented in Fig. 11 and 12 are obtained by models
that assume a constant outflow of personnel (σ = 0).
To assess the impact of a non-constant outflow on the
personnel model the NRMSE value is computed for
different standard deviations. It should be noted that if
the realization of the random variable is smaller than zero
it is set at zero.

For this analysis rµl is fixed at 0.001 per month and the
forecast start is set at one year. To still be able to compare
the quarterly and monthly sampled models directly the
standard deviation is normalized by the total mean outflow
per timestamp of the model. In Fig. 13, 14 and 15 the
results of the analysis are given for a Small fleet, Medium
fleet and Large fleet respectively. Just like with the non-
constant outflow only the B-licensed workforce is impacted
by the outflow. Therefore only the results corresponding
to that license are presented in the aforementioned figures.

Figure 13: Performance of personnel model for Small Fleet under non-
constant outflow

These figures show that for the monthly sampled person-
nel models the NRMSE increases up to values between
0.6 and 0.8. On the other hand, the performance of the
quarterly sampled model stays the same. It must be stated
however, that the range of standard deviations as shown
in the figures is extreme. To give an example, a standard
deviation/total outflow of two means for the models that
extreme values of 12 times rµl fall within the 99.8% interval.
Up till a standard deviation over total outflow value of two
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Figure 14: Performance of personnel model for Medium Fleet under
non-constant outflow

Figure 15: Performance of personnel model for Large Fleet under non-
constant outflow

the performance of the models stays constant.

V. Discussion

The personnel flow model proposed in this study is based
on assumptions and has its limitations. In the following
paragraphs these will be discussed. Furthermore, potential
improvements and recommendations for further research
are provided. Lastly, unexpected results are discussed in
this section as well.

i. Personnel flow model

The proposed personnel flow model should be evaluated
as being supplementary to other workforce demand
forecasting methods as it does not directly offer an
organization wide or strategic solution to human resource
management. Also, it does not cover the demand for
inspection related maintenance tasks. As proposed in
this paper the model is limited to be used during the
introduction of a new aircraft fleet to an existing MRO
organization or airline.

The assumption that the growth of workforce demand
is directly proportional to the increase in amount of
repairs is critical in this study. It is not possible to
validate this assumption explicitly but, as stated in
the methodology section of this paper, it is likely that
information on required workforce demand per repair
task is not available within MRO organizations. When
true workforce demand data per repair task is available
it is strongly recommended to study the effectiveness of
the proposed personnel flow model using that informa-
tion, or to validate the assumption of direct proportionality.

The inability of the model to fire personnel causes it to
be positively biased. For this reason it is important to
limit the use of this model to the case of a growing fleet
which implies an increasing workforce demand over time.
When assuming non-constant outflow the model becomes
negatively biased due to the fact that the outflow cannot
become smaller than zero. This bias causes the models
poor performance at high standard deviation values. This
bias impacts the quarterly sampled model less than the
monthly sampled ones. This is explained by the fact
that due to its lower frequency the quarterly sampled
model experiences this extreme value less often over the
considered time frame, which results in a smaller decrease
in workforce size and performance.
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The computation of rAB(t) and rRA(t) does not use the
workforce sizes XA(t) and XB(t) but is solely based on the
difference between the forecasted demand at t− 1 + thorr
and t + thor. This means that the model cannot cope with
large, unexpected decreases in workforce size. This issue
is only problematic when the variability of the amount of
personnel leaving due to labor mobility is high. Namely,
only with high variability many negative values of rl(t)
are forced to zero which skew the distribution of rl(t).

ii. Demand forecasting

Critical remarks can be made regarding the used repair
data itself. The observed amount of repairs is prone to
large variation, especially on a monthly aggregation level,
as can be seen in Fig. 2. Consequently the residuals of
the demand forecast models are large as well. Potentially
these residuals can be explained by additional explanatory
variables, which can be constructed from information on
the usage of the considered aircraft. However, extensive
analysis of the data shows that part of the variability in
amount of repairs is caused by random events such as
bird strikes, which are unpredictable by nature. Another
explanation for the high variability is the fact that this data
is acquired from a large MRO which provides maintenance
service to multiple aircraft types and fleets of various air-
lines. Hence, the planning of repairs of the fleet used in
this study might be impacted by the organization wide
maintenance planning. However, it is important to realize
that from a human resource management perspective the
trend and the average workforce demand over time is of
primary interest. Eventually, allocation of workforce to
specific maintenance tasks at specific moments in time is
part of capacity planning and maintenance scheduling.

iii. Recommendations for further research

Apart from investigating the effectiveness of the proposed
personnel flow model using true workforce demand data,
other recommendations for further research can be made.
The first would be the application of this model on a fleet
of a different aircraft type to see if the same results are
achieved. Also, it would be interesting to investigate the
usage of a variation of this model on an organizational or
multi-fleet level. An extension of the model that incorpo-
rates the current size of the workforce to determine the
training rate could reduce the models sensitivity to sudden

decreases in workforce size. Furthermore, the model as-
sumes that B-licensed personnel cannot perform A-license
repairs which is not realistic. An extension of the model is
recommended to let the model balance the two workforces
in an optimal way and cope with the repair demand more
effectively. Lastly, in practice MROs also make use of a
flexible workforce and independent technicians that are
hired temporarily. The proposed model can be applied as
input to studies that aim to optimize a combination of the
different types of workforce.

VI. Conclusion

This study aims to answer the question of how dynamic,
tactical maintenance demand forecasts can aid human
resource management in the aircraft maintenance industry
regarding personnel acquisition and training. To answer
this question a personnel flow model is proposed of
which its performance and robustness for varying degrees
of outflow of personnel, different fleet sizes, different
forecast aggregation levels and starting points of analysis
are assessed. The novelty of this study lies in the direct
integration of repair demand with personnel acquisition
and training. Furthermore, this study contains a systematic
assessment of repair demand forecast models, which, on
this tactical level, is also novel.

Analysis of the personnel flow model shows that its
performance is not affected by an increase in constant
outflow. Also, the model is robust for non-constant outflow
of personnel if the standard deviation does not become
larger than four times the average total monthly outflow.
In general the model performs best at an early starting
point, with an optimum at one year after the acquisition
of the first aircraft. A-Licensed personnel acquisition and
training rates are best evaluated at a monthly frequency
while for B-licensed personnel a quarterly frequency is
preferred.

The demand forecasting model selection procedure showed
that the repair demand is best forecasted using linear
regression models that are robust for heteroscedasticity
of the errors. Furthermore, simple models that use one
or two variables are found to outperform more extensive
models. For A-license repairs an Ordinary Least Squares
model using ’Fleet size’ as variable is found to be optimal
while for B-license repairs a Feasible Generalized Least
Squares regression model using ’Median age’ as variable
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is best.

This study shows that the proposed personnel flow model
is useful to human resource management due its favorable
characteristics and the fact that it can be used in various,
realistic contexts. The results presented in this study en-
courage further research into quantitative methods that can
help the decision making regarding training of personnel
within the aircraft maintenance industry.
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A. Personnel flow model pseudo code

Algorithm 1: ForecastFunc()
Input:
t = timestamp
DataB = maintenance demand data for license B
uptil time t
DataA = maintenance demand data for license A
uptil time t
yA(t) = two years ahead A-license demand forecast
at time t
yB(t) = two years ahead B-license demand forecast
at time t
modelA = regression model for A-license demand
modelB = regression model for B-license demand
rpp = predicted rate of B-licensed workforce flowing
out due to retirement (constant)
rµl = predicted mean rate of B-licensed workforce
flowing out due to labour mobility (constant)
XB(t) = B-licensed workforce size at time t
XA(t) = A-licensed workforce size at time t
Output:
rAB(t) = rate of workforce put to training for license
B at time t
rRA(t) = rate of workforce put to training for license
A at time t
yB(t) = two years ahead B-license demand forecast
at time t
yA(t) = two years ahead A-license demand forecast
at time t

yB(t)←− regression(DataB, modelB)
yA(t)←− regression(DataA, modelA)
rAB(t)←− yB(t)− yB(t− 1) + rpp + rµl

if rAB(t)<0 then
rAB(t) = 0

if XB(t− 1) >= yB(t) then
rAB(t) = 0

rRA(t)←− yA(t)− yA(t− 1) + rAB(t)
if rRA(t)<rAB(t) then

rRA(t) = rAB(t)
if XA(t− 1) >= yA(t) then

rRA(t) = rAB(t)

Algorithm 2: Personnel model
Input:
tstart = time of start forecast
thor = forecast horizon
XB(0) = B-licensed workforce size at time t0
XA(0) = A-licensed workforce size at time t0
rp = rate of B-licensed workforce flowing out due to
retirement (constant)
rl(t) = rate of B-licensed workforce flowing out due
to labour mobility at time t
Output:
rAB(t) = rate of workforce put to training for license
B at time t
rRA(t) = rate of workforce put to training for license
A at time t
XB(t) = B-licensed workforce size at time t
XA(t) = A-licensed workforce size at time t

while t<=t f inal do
else if t<tstart then

rAB(t)←− rp + rl
rRA(t)←− rp + rl
XA(t)←− XA(0)
XB(t)←− XB(0)

else if t>=tstart and t < (tstart + thor) then
rAB(t), rRA(t)←− ForecastFunc()
XA(t)←− XA(0)
XB(t)←− XB(0)

else if t>=(tstart + thor) and t <= (t f inal − thor)
then

rAB(t), rRA(t)←− ForecastFunc()

XA(t)←− XA(0) +
t−thor

∑
0

rRA(t)−
t−thor

∑
0

rAB(t)

XB(t)←−
XB(0) +

t−thor
∑
0

rAB(t)−
t−1
∑

thor−1
rp + rl(t)

rl(t)←− N
(

rµl , σ2
)

if rl(t) < 0 then
rl(t)←− 0

else

XA(t)←− XA(0) +
t−thor

∑
0

rRA(t)−
t−thor

∑
0

rAB(t)

XB(t)←−
XB(0) +

t−thor
∑
0

rAB(t)−
t−1
∑

thor−1
rp + rl(t)

rl(t)←− N
(

rµl , σ2
)

if rl(t) < 0 then
rl(t)←− 020



B. Software use

For this research various software is used. Primarily
Python 3.6 is used to perform the data analysis. Its library
Statsmodels is used for the OLS, WLS and FGLS models.
The figures are made using Matplotlib and Seaborn. The
Dunnett’s test is performed via R. To be specific, its library
Multcomp is used as described in Herberich et al. (2010).
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Chapter 2

Literature study

In this chapter the literature study is presented. This study focuses on literature regarding maintenance
demand forecasting and also provides a description of the methodology for the optimal predictive model
selection. This thesis deliverable is already graded.

GRADED
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Executive summary

The aim of this literature study is to provide the necessary theoretical background for the MSc. Aerospace
Engineering thesis. This implies building a strong foundation for the addressed need, assessing the state of
the art literature regarding the subject, finding the gap in scientific knowledge and exploring the available
methods of analysis.

Due to the increasing competition in aircraft maintenance industry, cost reduction is of high priority for Main-
tenance Repair and Overhaul organizations (Maintenance Cost Task Force, 2018),(Phillips et al., 2009). This
cost reduction can be achieved by optimizing the strategic capacity planning. This is especially true for the
planning of technical specialists as their costs are high and their education extensive (Wahyudin et al., 2016).

Study of literature shows clearly that there is a need for accurate demand forecasting to aid this strategic
workforce capacity planning. However, what fleet characteristics should be used to efficiently forecast this
maintenance demand is not known. In an attempt to address this lack of knowledge the research aims to
answer the following research question:

How can fleet properties efficiently aid maintenance demand forecasting in order to improve
strategic skill-based workforce planning?

To help answering of this research question three sub-questions are developed:

1. How can strategic aircraft maintenance workforce planning be improved?

2. What fleet properties influence strategic maintenance demand forecasting?

3. How can the impact of the fleet properties on maintenance demand forecasting be assessed efficiently?

This report aims to either fully or partly answer these research questions by assessing the relevant literature
and presenting the proposed methodology which will be used for the quantitative analysis.

Capacity planning for aircraft maintenance

The first step of workforce capacity planning is the determination of the workforce required per skill and
period (Heimerl and Kolisch, 2010). The second step is the scheduling of personnel or the actual assignment
of tasks to people. In contrast to the workforce capacity planning this latter step is researched extensively
in literature (Firat and Hurkens, 2012), (Li and Womer, 2009),(Dinis et al., 2019a),(Wahyudin et al., 2016).
Although these papers focus on the scheduling part of capacity planning all authors emphasize the need for
workforce demand forecasting, especially regarding specialized personnel.

Literature on workforce demand forecasting in aircraft maintenance industry is scarce and, to the authors
knowledge, even non-existent in the case of strategic demand forecasting . Strategic capacity demand fore-
casting is applied in other industries but here again the amount of literature is limited. The available lit-
erature suggests the usage of external information or exogenous variables to augment the demand forecasts
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(Lee et al., 1998),(Spetz, 2017),(Briscoe and Wilson, 1991), (Edwards, 2010),(Woolard et al., 2006),(Sing
et al., 2016).

Before strategic demand forecasting can be assessed the temporal requirements have to be defined. Accord-
ing to literature and experts a forecast horizon of 1-3 years should be adhered to with a temporal resolution
of a month to a quarter (Duffuaa and Alfares, 2009). Besides the temporal aspect strategic maintenance
demand forecasting also requires a fleet-wide approach due to the shared use of resources (Schneider and
Cassady, 2015). This suggests the aggregation of all relevant components up to fleet level.

Industry and literature show a clear need for a fleet-wide and long-term approach to skill-based workforce
demand forecasting by making use of exogenous variables. This will be the base for the remainder of this
study.

Fleet maintenance demand

Literature on fleet properties that might influence strategic maintenance demand is scarce. The predic-
tive maintenance policy adhered to by MRO organizations suggests including maintenance check schedules
in the analysis. A study into fault probability prediction of individual aircraft uses the parameters age,
type, operator, flight hours, flight cycles, engine type and operation location to determine this probability
(Pogačnik et al., 2017). A study on the cost of maintenance on fleet level argues that factors fleet size, fleet
commonality, fleet age, fleet utilization and frequency of check intervals influence the direct maintenance
costs (Wu et al., 2004). Besides these factors it is also expected that fleet composition and fleet acquisition
can influence the demand forecasting performance. The selection of factors that will be assessed to answer
the research question is dependent on the availability of data and is therefore discussed in the methodology
section of this summary.

Demand forecasting

The need for demand forecasting is found and the potential factors that influence this demand or the forecast
performance are identified. To analyze the effects of these factors quantitatively models that forecast the
maintenance demand have to be found.

Maintenance demand forecasting is a challenging issue due to intermittent failure characteristics of aircraft
components (Ghobbar and Friend, 2003). Modeling of intermittent demand is generally done through ap-
plying variations of the Single Exponential Smoothing method. Well used variations are Croston’s method
and the Syntetos and Boylan Approximation (SBA) but their forecasting performance is poor (Syntetos and
Boylan, 2005),(Croston, 1972). Novel methods consisting of neural networks and support vector machines
are promising but they are also relatively inaccurate (Gutierrez et al., 2008),(Amin-Naseri and Rostami
Tabar, 2008),(Carmo and Rodrigues, 2004).

An approach that aims to solve the issue of inaccurate intermittent demand forecasting applies temporal
aggregation. As defined by Nikolopoulos et al.: ’Temporal aggregation refers to aggregation in which a low
frequency time series is derived from a high frequency time series’ (Nikolopoulos et al., 2011). Temporal
aggregation changes the demand category from intermittent to smooth which can generally be forecasted
more accurately. Studies show that temporal aggregated methods outperform Croston’s method and SBA in
terms of intermittent demand forecasting (Nikolopoulos et al., 2011),(Babai et al., 2012),,(Kourentzes et al.,
2014),(Petropoulos and Kourentzes, 2015). Among experts there is still debate about whether or not a single,
optimal temporal aggregation level or a combined, multiple aggregation level model is better (Kourentzes
et al., 2014).
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As argued in the previous section strategic maintenance demand forecasting forces the aggregation of differ-
ent components up to fleet level. Analogous to temporal aggregation this cross-sectional aggregation reduces
intermittent behavior which improves demand forecasting. Although it seems logical from a practical strate-
gic demand forecasting point of view to assume this level of aggregation, it might be that clustering of
components with similar characteristics offers an improved forecasting performance as studies from other
fields suggest (Kalchschmidt et al., 2006),(Misiti et al., 2010),(Zotteri and Verganti, 2001). In these studies
demand generators are clustered based on their similarity of properties. Next to individual properties, time
series patterns can be used to cluster components however this requires distinguishable patterns which are
often not found when intermittency is present (Mart́ınez-Álvarez et al., 2011),(Jin et al., 2014),(Bokde et al.,
2018),, (Dastidar, 2017), (Viswanathan et al., 2008).

Methodology

The literature presented in the past sections provides the theoretical foundation which now can be used
to formulate the methodology. Besides this theoretical background the methodology is also driven by the
availability of data. Therefore a preliminary data analysis is performed.

Data

The data available is Boeing 777 maintenance log data. This data contains information on failure times
of parts per aircraft. No information on the required man hours for the related maintenance task is given.
Consequently, a conversion from the amount of failures to the actual workforce demand cannot be made.
Therefore, the demand that will be forecasted is the amount of failures of a selection of components for
the entire fleet. The selection of components is based on the need for skill based planning. Composite
components generally require specialized personnel which is why for the component selection all components
consisting fully or partly of composite material are chosen.

Variables

Based on the availability of data and their feasibility the following four predictor variables are used for
further analysis:

• Fleet size

• Average fleet age

• Expected demand due to A-Check

• Expected demand due to C-Check

Next to these variables there are factors that might influence demand characteristics or the forecasting
performance. These are aircraft type, airline, aircraft usage and acquisition policy. The influence of these
factors is controlled for through the methodology.

Data pre-processing

No individual properties are known and no patterns in the demand behavior of the individual components
could be found. This means that clustering is not a valid option and the aggregation will be on a fleet
level. From a temporal perspective the aggregation will be on a monthly and quarterly basis. As combined
forecasts of multiple temporal aggregation levels might be more accurate this option will be analyzed as well.
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Figure 1: Methodology overview

Model assessment and forecasting

To evaluate the influence of fleet size, fleet age, A-Check schedule and C-Check on strategic maintenance
demand forecasting a regression model approach is chosen. The methodology includes a model selection
phase where properties of the data such as serial dependence, seasonality and heteroskedasticity determine
which variation of regression is most suitable. It is expected that multiple models result from that selec-
tion phase and all of these are then used in the forecasting phase where the performance of each model is
assessed. Each model is applied in different fleet settings, using multiple variable combinations, using multi-
ple groups of aircraft (to ensure cross-validation) and by using multiple split-up points and forecast horizons.

The RMSE values resulting from the forecasting phase are then analyzed using an ANOVA analysis. This
analysis can assess the significance of the difference between means of RMSE groups. A summarized flowchart
representing the methodology is shown in Fig. 1. More detailed flowcharts are given in Fig. 5.1, 5.2 and 5.3.
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Chapter 1

Introduction

The aim of this literature study is to provide the necessary theoretical background for the MSc. Aerospace
Engineering thesis research. This implies building a strong foundation for the addressed need, assessing the
state of the art literature regarding the subject, finding the gap in scientific knowledge and exploring the
available methods of analysis. The goal of these literature study objectives is to fully or partly answer the
research questions at hand.

During the last decades the aviation market has become a competitive one which forces airlines to reduce
costs wherever they can. Next to the airlines evident interest in maintenance cost reduction, Maintenance
Repair and Overhaul organizations (MROs) on their turn are interested in more efficient maintenance oper-
ations as the competition in the MRO market has increased tremendously as well (Phillips et al., 2009).

Part of the maintenance costs are due to the use of resources. In the aviation industry the main resources
are spare parts, hangar space/equipment and personnel. To make optimal use of these resources a strategic
perspective on capacity planning is required. Strategic capacity planning is a form of capacity planning that
determines the appropriate level of maintenance resources on a strategic level (Duffuaa and Alfares, 2009).
The resource that is of particular interest from a strategic perspective is personnel. Nowadays skilled per-
sonnel is namely scarce in aerospace industry due to technicians leaving airlines and MRO organizations for
various reasons. Next to this, the training of technicians is time consuming and expensive due to strict avia-
tion regulations (Johnson, 2018). This means that strategic information on the expected required workforce
is vital for an optimized capacity planning. Accurate strategic maintenance demand forecasts are therefore
critical but are challenging to obtain due to the stochastic nature of maintenance.

Based on the aforementioned needs and on a preliminary literature study the following research questions
are formulated. During the formulation process of the research questions and the literature study itself the
data set, that is available for the research, is also used to provide direction. The main research question is
as follows:

How can fleet properties efficiently aid maintenance demand forecasting in order to improve
strategic skill-based workforce planning?

To assist in answering the main research question, multiple sub-questions are formulated:

1. How can strategic aircraft maintenance workforce planning be improved?

(a) What is the current need in the MRO industry regarding workforce demand forecasting?

(b) What is the temporal aggregation level at which maintenance demand should be evaluated from
a strategic perspective?

(c) What is the time-horizon which should be applied while forecasting?
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(d) What is the level of component aggregation at which maintenance demand should be evaluated
from a strategic workforce demand forecasting perspective?

(e) What is the current state of literature of workforce demand forecasting in general and which
methods are often used?

2. What fleet properties influence strategic maintenance demand forecasting?

(a) What are the influential factors present in current fleet maintenance practice?

(b) What are fleet properties that influence fleet maintenance demand and demand forecasting?

(c) What aspects of fleet planning are of influence on fleet maintenance demand forecasting?

3. How can the impact of the fleet properties on maintenance demand forecasting be assessed efficiently?

(a) What is the optimal temporal aggregation level from a model efficiency of view?

(b) What is the optimal component aggregation level from a model efficiency point of view?

(c) Given the fleet porperties what are potentially efficient models to forecast maintenance demand?

(d) How can the performance of the predictive models be assessed?

As stated before, these questions are used as guidelines for the upcoming literature study. Each chapter in
this literature study is related to a sub question. After the literature study most of these questions can be
answered either fully or partly.

In Ch. 2 the definition of capacity planning in an aviation context is provided. Thereafter the state of
the art literature regarding strategic capacity planning is presented after which an assessment of workforce
management in general is given. This chapter is followed by Ch. 3 where the fleet properties that influence
demand or demand forecasting are identified. The bulk of this literature study is given in Ch. 4 where first
demand classification is analyzed after which the literature on intermittent demand modeling and prediction
is studied. Consequently the information obtained from the literature is translated into a methodology which
is elaborated upon in Ch. 5. In the conclusion in Ch. 6 the results of the literature study are summarized.
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Chapter 2

Capacity planning of aircraft
maintenance

As argued in the introduction, improved capacity planning can drastically reduce costs. To find out how
this can be achieved an extensive literature study is presented in this chapter.

In this study the definition of maintenance planning by Duffuaa and Alfares will be used: ’The determin-
ing of the appropriate level and workload assignment of different maintenance resources in each planning
period’ (Duffuaa and Alfares, 2009). Capacity planning can be subdivided into maintenance planning and
maintenance scheduling. There is no clear agreement on these two definitions but to stay consistent in this
research the definitions according to Duffuaa and Al-Sultan are used (Duffuaa and Al-Sultan, 1997). They
state that maintenance planning consists of:

1. Identification of work to be planned.

2. Determination of work complexity and composition.

3. Estimation of manpower requirements.

4. Identification of spare parts and material requirements and their availability.

5. Identification of special tools required.

Maintenance scheduling on the other hand is the process of making schedules of the workforce and related
tasks. This study focuses on strategic capacity planning which inherently directs the research towards
maintenance planning. However, literature on maintenance scheduling often gives interesting insights in
the needs and practices of capacity planning in general and is therefore not explicitly excluded from the
discussion in the upcoming paragraphs.

2.1 Strategic capacity planning

Schneider and Cassady stress that capacity planning should be performed at fleet level as the units within
the fleet have to share the available resources (Schneider and Cassady, 2015). The most important resources
related to strategic capacity planning are spare parts, personnel and hangar space. Besides a fleet wide
approach strategic capacity planning also relates to long-term planning (2-3 years) as stated by (Duffuaa
and Alfares, 2009). Especially personnel or workforce management benefits from long-term planning as
personnel training often takes years and personnel is difficult to come by in general. Next to this it is shown
in Sec. 2.2 that there is hardly any literature on this subject and no known application in the aerospace
sector, indicating the gap of knowledge in this field. Due to these reasons this research will focus on the
strategic capacity planning of personnel.
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2.2 Workforce management

In the aviation industry, literature regarding workforce capacity planning is mostly focused on the scheduling
of personnel and the optimization of the schedule. Literature on resource planning is scarce but found to
become more and more relevant, especially in the area of skill based workforce planning.

2.2.1 Workforce planning in aircraft maintenance industry

According to Heimerl and Kolish the first step in human resource capacity planning is the determination
of the workforce required per skill and period (Heimerl and Kolisch, 2010). The second step is the actual
assignment of people to work-packages.

Although the literature on the first step is scarce there are studies that describe the need of good workforce
planning. Haroun and Duffuaa emphasize in their contribution to the Handbook of Maintenance that
accurate forecasts for the future maintenance work are essential for determining the workforce capacity (Ben-
Daya et al., 2009). They especially stress that the critical aspects of maintenance capacity are the expected
workload size and the required skills of the workforce. Haroun and Duffuaa also note that: ’Making long run
estimations is one of the areas in maintenance capacity planning that is both critical and not well developed
in practice’. The observations of Haroun and Duffuaa are confirmed by Marquez as he argues that there are
three main problems regarding workforce planning (Màrquez, 2007):

1. Determination of the workload, classified by skills

2. Determination of the ideal number of maintenance workers

3. Determination of the maintenance schedule

Marquez also states that an increasing amount of maintenance tasks in maintenance organizations require
highly qualified and highly specialized personnel

The importance of accurate, skill based workforce planning is stressed by literature regarding the second
step; the assignment of people to workpackages. Firat and Hurkens propose a method to schedule tasks
which includes an inhomogeneous set of skilled personnel (Firat and Hurkens, 2012). They emphasize the
importance of including skill management and state: ’Especially when activities require skills from several
specialization fields at different levels, skill management becomes more challenging’. Other papers that de-
scribe this issue of multi skilled personnel scheduling in the maintenance context are Li and Womer (2009)
and Dinis et al. (2019b). Wahyudin et al. propose an integrated Mixed Integer Linear Model model that
involves not only the workforce but also the material use and tool use (Wahyudin et al., 2016). The authors
stress the importance of skill based personnel planning as the costs of each of these specialists differ, suggest-
ing that improvement of skill based workforce planning reduces costs significantly. In (Firat and Hurkens,
2012), (Li and Womer, 2009), (Dinis et al., 2019b), (Wahyudin et al., 2016) a known workforce demand is
assumed but this demand should be forecasted during the planning phase.

The literature mentioned above signals a clear need for strategic workforce demand forecasts of specialized
personnel. The literature on this subject is limited and therefore academic papers of other fields of study
are consulted.

2.2.2 Workforce demand forecasting

Most literature regarding long-term workforce predictions revolves around macro economic problems and
approach it using macro economic or demographic models that augment the main model.
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Often workforce is forecasted indirectly by forecasting some indicator and then transforming it into demand
afterwards. In (Edwards, 2010) forecasts for the demand of PhD students in Australia using an economic
model is developed for policy makers to assess the ability of a country to build or maintain an innovation
driven economy. The model uses external data sources such as economic outlooks, expected tourist numbers
and forecasts of changes in technology. Another study uses predictions of sector growth as exogenous variable
to compute skilled personnel demand (Woolard et al., 2006). In Sing et al. (2016) the authors present a case
study of long-term workforce demand forecasting of building inspectors in Hong Kong. A labor multiplier
approach is applied that assumes a known amount of work packages and a constant amount of labor per
work package.

On the other hand, direct forecasts are also present in literature (Lee et al., 1998),(Spetz, 2017). Next
to this Briscoe and Wilson propose a multitude of co-integrating regressions to establish the existence of
long-run equilibrium relationships between employment, output and wages in the context of the engineering
industry of Great Britain (Briscoe and Wilson, 1991). Forecasts of factor prices and interest rates are used
as predictive variables. The authors emphasize the increase of forecast inaccuracy due to the introduction
of these uncertain variables.

The studies above show that for long-term forecasting exogenous information is often used to forecast work-
force demand. Regularly this exogenous information is a forecast in itself and therefore adds to the uncer-
tainty of the main model.
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Chapter 3

Fleet maintenance demand

As stated in the previous chapter the workforce demand should be assessed from a fleet wide perspective.
Consequently, the factors that influence fleet maintenance should be looked for at this level.The literature
analyzed in Ch. 2 showed that the use of exogenous predictors is a good method to eventually forecast
maintenance demand. Therefore the aim of this chapter is to find the predictors that can aid in forecasting
strategic maintenance workforce demand. Besides, it is expected that not all factors that influence strategic
maintenance demand can be used as a predictor from a modeling perspective due to model or data restric-
tions. In this case these factors should be controlled for during the analysis.

Current airline fleet maintenance is organized around a predictive maintenance policy (Dupuy et al., 2011).
In practice this means that inspections or so called checks are scheduled during which a set of pre-determined
work packages are executed in order to inspect the integrity of the aircraft. Next to line maintenance the
most commonly used checks nowadays are the A, C and D check as the B check tends to be combined with
A checks (Qantas, 2016). Depending on the type of aircraft different inspection intervals are used. To give
an indication the A, C and D check intervals of the B-747 are respectively 600-1000 flight hours, 7500-10000
flight hours and six years of service (Eggink and Bateman, 2010). The inspection work packages prescribed
by the checks are well known in advance. This scheduled maintenance almost always induces unscheduled
maintenance as well (Wagner and Fricke, 2006). Consequently, the A-Check, C-Check and D-Check schedules
are not only a good predictor for scheduled maintenance but also an indicator for unscheduled maintenance.

The maintenance check schedules are implicit predictors as they do not describe the cause of maintenance
demand. Factors that influence maintenance demand explicitly are not researched extensively in literature.
To the authors knowledge only one paper applies factors as predictive variables to forecast maintenance
demand. In Pogačnik et al. (2017) factors that influence fleet maintenance are used to predict fault proba-
bility on individual aircraft. Aircraft parameters such as operator, aircraft type, aircraft age, flight hours,
flight cycles, engine type and operation location, are taken into consideration. Factors that impact direct
maintenance costs are fleet size, commonality, fleet age, fleet utilization and frequency of check intervals (Wu
et al., 2004). On single aircraft level, age is used as key factor to describe maintenance costs and forecasting
maintenance demand (Saltoglu et al., 2016),(Weckman et al., 2006).

In short, not much is known about the factors influencing maintenance demand on a strategic level. Above
mentioned studies suggest that the factors fleet age, check frequency, aircraft type, operator and fleet size
are important fleet characteristics that should be taken into account when forecasting maintenance on fleet
level.
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Chapter 4

Demand forecasting

The previous chapters clearly identified the need for strategic workforce demand prediction and the poten-
tial factors that are of influence on this demand. This chapter aims to provide potential methodologies that
are able to forecast maintenance demand. In Ch. 2 the preferred aggregation levels from a organizational
perspective are found. However, from a forecasting point of view these aggregation levels might not be
optimal. Therefore, a systematic analysis of aircraft maintenance demand modeling is presented, starting at
the lowest level of aggregation which is the single component level.

At the basis of maintenance personnel demand is the failure and inspection of individual aircraft components
and systems. Ghobbar and Friend state that demand forecasting at component level is one of the most
challenging issues in the airline industry (Ghobbar and Friend, 2003). This is due to the intermittent
demand characteristics of these assets. The dual source of variation, namely both the inter-demand intervals
and demand sizes, is stochastic in nature and therefore difficult to forecast (Wang and Syntetos, 2011). The
literature on intermittent demand forecasting is ample but before the techniques of intermittent demand
forecasting can be assessed, demand classification should be treated as demand aggregation is strongly
related to it.

4.1 Demand classification

According to Boylan et al. (2008) literature on demand classification is minimal. To the authors knowledge
demand classification was first mentioned in literature by Williams (Williams, 1984). Williams reacted on
the to that point standard approach of demand classification:

High sporadicity One demand at least ten times the average weekly demand.

Low sporadicity Average demand during a lead time less than 10.

No sporadicity Neither of the above.

Williams identified a number of problems with this classification method:

• No dimensionless conditions

• The definitions do not suggest what approach to use

• Sensitive to outliers

• Slow moving products are often forced into the highly sporadic category

12



To solve this issue Williams suggested a variance partition method that is able to cluster demand in one of
four categories using two metrics. In reaction on this system an improvement was presented in (Syntetos
and Boylan, 2005) which is based on the findings presented in (Johnston and Boylan, 1996). This new
classification system is given in Fig. 4.1.

Figure 4.1: Demand categorization according to Syntetos and Boylan (2005) (SBC categorization). Figure
from (Kostenko and Hyndman, 2006)

v is the coefficient of variation of demand sizes and p is the mean inter-demand interval. The abbreviations
CRO and SBA are Croston’s method and Syntetos Boylan Approximation method respectively, both of
which are explained in Sec. 4.2. In a note on (Syntetos and Boylan, 2005) It should be noted that all the
classification schemes mentioned in this section are based on empirical studies.

In this study the categorization scheme as presented in Fig. 4.1 is used.

4.2 Intermittent demand modeling

As stated in the introduction of this chapter aircraft component failure is known for its intermittent behavior
(Ghobbar and Friend, 2003). According to the categorization scheme given in Fig. 4.1 intermittent demand
has a relatively high mean inter-demand interval length but a small coefficient of variation. Especially the
high mean inter-demand interval complicates the forecasting procedure.

Croston’s method is one of the most used methods for intermittent demand forecasting in industry and
Croston was the first to address the intermittent demand problem (Xu et al., 2012),(Boylan et al., 2008). He
found that traditional forecasting techniques lead to excessive stock of spare parts in the case of intermittent
demand which is inefficient (Croston, 1972).

It is useful to compare Croston’s method with the Single Exponential Smoothing method as given in Eq.
4.1.

s0 = x0
st = αxt + (1− α)st−1, t > 0

(4.1)
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Where st is the forecast for the next period, xt is the demand at time t, α is the smoothing factor and st−1
is the forecast for time t. α should be chosen to be between 0 and 1.

The Croston method applies two Single Exponential Smoothing forecasts models (SES) on both the size of
the demand and the time period between demands (Croston, 1972). Another difference with SES is that
Croston’s method only updates when demand is found. The decomposition of the original series into two
series of non-zero demand and inter-demand intervals is shown in Fig. 4.2. The mathematical description is
given in Eq. 4.2.

Figure 4.2: Croston’s decomposition (Petropoulos et al., 2016)

ẑt = ẑt−1 + αz (zt−1 − ẑt−1)

p̂t = p̂t−1 + αp (pt−1 − p̂t−1)
(4.2)

Where ẑ is the estimate of the demand volume and p̂ is the estimate of the intervals between demand. zt−1 is
the last non-zero demand value, pt−1 is the last inter-demand interval. αz and αp are the smoothing factors
for the non-zero demand and non-zero demand intervals respectively.

To get the original demand the two estimates are divided:

ŷt =
ẑt
p̂t

(4.3)

Despite Croston’s success there are some known issues regarding the method. Croston stated that the
following assumptions are valid for his method:

1. The distribution of non-zero demand sizes is normally identically and independently distributed (i.i.d.)

2. The distribution of the inter-arrival times is also iid but then geometrically distributed

3. The demand size and the inter-arrival times are mutually independent
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However the first two assumptions are not true (Shenstone and Hyndman, 2005). Shenstone and Hyndman
propose a non-stationary variation of the Croston’s method after comparing four versions of the model. Also
it has tractable expressions for the forecast mean and variance. Due to the non-stationarity all four models
forecasts tend to diverge at long forecast horizons which causes inefficient forecasts

In Syntetos and Boylan (2001) the authors find that Croston’s method is biased. A follow-up study compares
Simple Moving Average, Single Exponential Smoothing, Crostons Method and a method introduced by the
authors called the Syntetos Boylan Approximation (SBA) (Syntetos and Boylan, 2005). The latter method
mitigates the bias by adjusting the estimate given in Eq. 4.3 which results in:

ŷt =
(

1− α

2

) ẑt
p̂t

(4.4)

Next to the highly successful SBA method there are other models that attempt to describe intermittent
demand. In (Schultz, 1987) a very similar model to the Croston’s model that splits up the forecasting pro-
cedure into a forecast for the demand size and a forecast for the period between demands is presented. It
is extended upon by adding an estimate for the replenishment rate based on the forecast which includes
a safety margin. In Willemain et al. (2004) the problem of forecasting intermittent demand is solved by
introducing a new type of time series bootstrap. Another comparing study by Hua and Zhang compares
this method with exponential smoothing, integrated forecasting technique and Logistic Regression Support
Vector Machines (Hua and Zhang, 2006). The latter method allows for the introduction of explanatory
variables which, according to the author, improves the forecasting accuracy significantly, outperforming the
other methods.

A relatively new study regarding the modeling of lumpy demand is presented in Gutierrez et al. (2008). In
this study a comparison of SBA single exponential smoothing, Croston’s method and Neural Network models
(NN models) is performed. Using a three layer perceptron with three nodes they were able to predict the
demand with a superior accuracy compared to the other three models. The authors note however that the
NN forecasts perform significantly worse than the traditional time series methods in the case of a decrease
in average of nonzero demand sizes between the training set and the test set. Another paper applies the
same methodology as presented in Gutierrez et al. (2008) but includes a Recurrent Neural Network (RNN)
(Amin-Naseri and Rostami Tabar, 2008). The latter turns out to be most accurate for 21 of the 30 time-series
that were considered. A study from 2004 compares different variations of Neural Networks with Croston’s
method.: The Radial Basis Function Neural Network (RBF), the Elliptical Basis Function Neural Network
(EBF) and the Normalized Radial Basis Function Neural Network (NRBF) by (Carmo and Rodrigues, 2004).
It turns out that the RBF models were adequate models for short-term forecasts of irregularly spaced time
series, due to its ability to take into account non-linear correlations in the data. Carmo and Rodrigues
recommend that the RBF model should be assessed using other performance indicators such as longer pre-
diction horizons, or for time series with low-frequency periodicities.

Aforementioned literature shows that intermittent demand forecasting is still a complicated problem. Cros-
ton’s method and its variations are mainly used in practice nowadays and neural networks are a promising
alternative but are not proven to be adequate for long-term forecasts and are relatively difficult to apply.
Due to the poor performance of intermittent demand forecasting techniques, other methodologies are tried
in academia as presented in the upcoming section.

4.3 Temporal aggregation, cross-sectional aggregation and clus-
tering

As stated in the previous chapters aircraft components generally exhibit this intermittent failure behav-
ior. A fleet wide or strategic perspective on resource demand points towards the aggregation of demand in
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some way. In literature two forms of demand aggregation are mentioned: temporal aggregation and cross-
sectional aggregation. Temporal demand aggregation is defined as follows: ’Temporal aggregation refers
to aggregation in which a low frequency time series (e.g. quarterly) is derived from a high frequency time
series (e.g. monthly) and is used for forecasting purposes’ (Nikolopoulos et al., 2011). It is appealing to
aggregate intermittent demand in lower-frequency bins as it causes a reduction in zero-values, forcing the
demand characteristics towards a more smooth demand. In other words, it changes the demand category as
presented in Fig. 4.1 (Murray et al., 2018).

The other form of aggregation is cross-sectional aggregation. This type of aggregation is related to the issue
of heterogeneous demand which means that multiple sources of demand that have different behavior might
be aggregated. A good example is an aircraft system which consists of multiple components. All components
have different demand characteristics and the total system demand is therefore not homogeneous. Clustering
or disaggregation into smaller clusters with similar failure behavior might be beneficial in terms of forecasting
performance.

4.3.1 Temporal aggregation

As stated in the introduction of this section temporal aggregation might transform intermittent demand into
smooth demand. This is advantageous as it allows for other forecasting methods than the limited selection
of methods that are available for intermittent demand. Aggregating might however result in an information-
loss as a direct result of a decrease in amount of datapoints (Petropoulos and Kourentzes, 2015). The effect
of the level of aggregation on forecast accuracy is analyzed empirically in Nikolopoulos et al. (2011). In the
study the ADIDA (Aggregate-Disaggregate Intermittent Demand Approach) method is developed which is
well summarized in Fig. 4.3. The original data is aggregated in a lower frequency and a forecast is performed

Figure 4.3: ADIDA method. A: Original data, B: Aggregated data, C: Forecast using aggregated data, D:
Disaggregation of forecast using equal weights. (Nikolopoulos et al., 2011)

using the aggregated data. The disaggregation step from C to D is optional. In the study the ADIDA method
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was applied on the component demand data and compared with Crostons method and the SBA method for
different aggregation levels. Thereafter an optimal aggregation level per part was determined and surpris-
ingly for almost all parts the ADIDA method in combination with the naive estimator outperformed the SBA
method, especially for relatively low aggregation levels. The optimal aggregation level was not the same for
each part. However, a series wide optimal aggregation level of 9 could be identified. As a recommendation
(Nikolopoulos et al., 2011) states that the issue of trend and seasonality should be assessed. Namely, these
demand characteristics can potentially drop out when demand is aggregated to a lower frequency.

Nowadays there is a debate within academia about whether a single, optimal temporal aggregation level is
preferred over the use of multiple combined aggregation levels. Namely, research showed that using single
methods on multiple aggregation levels perform as well as the ADIDA method (Petropoulos and Kourentzes,
2015). An earlier study emphasizes the opportunities that a combined temporal aggregation model offers in
terms of improved demand forecasts (Kourentzes et al., 2014). The main motivation of this study was to
mitigate the issue of model selection which is tedious in general. The premise of the study is that at different
aggregation levels different properties or characteristics of the time series can be identified and can therefore
improve the forecast accuracy. The study also stresses the need for a theoretical background for the case of
an optimal aggregation level which is not present in Nikolopoulos et al. (2011).

In Athanasopoulos et al. (2017) the multi temporal aggregation level approach is formalized, calling it
reconciled forecasting. The following benefits of this approach are stated in this study:

1. Alignment of forecasts of different planning horizons (operational, tactical and strategic)

2. Increased forecast accuracy

3. Mitigating modeling risks

However, in Spiliotis et al. (2019a) limitations of the temporal hierarchies approaches introduced by Athana-
sopoulos et al. (2017) and Kourentzes et al. (2014) are identified and three strategies to mitigate these are
proposed:

1. Combining methods for each base forecast

2. Adjusting base forecasts to mitigate bias

3. Avoid shrinking seasonality in combined forecast (induced by averaging of base forecasts)

In Spiliotis et al. (2019a) the authors suggest based on a literature study that a simple averaging approach of
forecasting methods produces the most accurate forecast. Also from a practical consideration (computation
time) a simple approach is more advantageous.

The studies presented above show that there are two approaches on temporal aggregation (Kourentzes et al.,
2017). The first one is the usage of an optimal aggregation level and the second one is the usage of multiple
aggregation level to retrieve all relevant features of the time series. The limitation of the single aggregation
level approach is that a model should be assumed while the multiple aggregation level approach is robust
against model choice. There is empirical and theoretical evidence that temporal aggregation is beneficial in
terms of demand forecasting but there is no consensus on how that should be optimally achieved (Kourentzes
et al., 2017).

4.3.2 Cross-sectional aggregation and clustering

Cross-sectional aggregation improves forecast accuracy analogous to temporal aggregation (Babai et al.,
2012). The aggregation of components allows intermittent demand to become more smooth and therefore
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easier to model. From a strategic workforce capacity planning point of view, one would say that the main-
tenance demand generating components and aircraft should be aggregated up to fleet level. This means the
summing of all parts of all aircraft in the fleet. However, it might be that from a modeling perspective other
aggregation levels are more optimal. Clustering of components allows for shifting of heterogeneous demand
generators into multiple homogeneous clusters. The premise is that these homogeneous clusters can be more
accurately modeled than the fully aggregated demand.

In Kalchschmidt et al. (2006) aggregation is used to cluster heterogeneous customer groups into homoge-
neous groups which are less complex to model. In Misiti et al. (2010) a method to optimize clusters for
dis-aggregated electricity load forecasting is proposed. The main idea behind both studies is to disaggregate
the global demand into smaller clusters based on individual customer characteristics in such a way that the
sum of the clusters improves the prediction of the whole global signal. Another study that uses the common-
alities among individual demand generators to aggregate demand also concludes that aggregation of demand
improves forecast accuracy (Zotteri and Verganti, 2001). In Dastidar (2017) it is stated that when dealing
with volatile and intermittent demand, segmenting the products based on their demand characteristics is
important.

Another approach to clustering looks at demand patterns. A relatively new technique in this field is Pattern
Sequence-based Forecasting (PSF) which is applied in Mart́ınez-Álvarez et al. (2011),Jin et al. (2015),Jin
et al. (2014),Bokde et al. (2018). This method requires that at an individual level distinguishing patterns
are present. The method is only applied on individual, smooth demand where a clear demand pattern can
be identified at the lowest level of aggregation. Another attempt that tries to solve for intermittent demand
forecasting is presented in Venkitachalam et al. (2003). In this study a clustering-bootstrap method is in-
troduced that classifies individual components into groups that have similar failure patterns. The authors
identify two benefits namely the provision of better statistics for forecasting models and a reduction in total
amount of models.

The studies above show that when individual characteristics can be found, demand clustering is promising.
However when similarities among individual demand generators are not there the clustering is not beneficial
as is shown in Viswanathan et al. (2008). In this study a comparison is made between top-down (disaggre-
gating demand from a fully aggregated time series) and a bottom-up approach (using the disaggregated data
for the forecast). The authors concluded that when variability of the inter-order times is high a top-down
approach is best in terms of model performance.

Shortly, it can be concluded that effective clustering of data can only be performed when characteristics of
individual time series are known.

A logical continuation of this treatise is the application of hybrid models that combine cross-sectional aggre-
gation with temporal aggregation. In Spiliotis et al. (2019b) the hybrid model implementation is primarily
done to improve forecasting performance and to minimize the effect of modeling uncertainty. On top of that
a cross-sectional hierarchical method is applied to ensure reconciliation across the levels of aggregation. It
turns out that this hybrid aggregation method outperforms a method based on temporal aggregation only.
An application of this hybrid approach on the Australian tourism sector showed slight benefits in terms of
forecasting performance (Kourentzes and Athanasopoulos, 2019). However, the authors state that the largest
benefit is from a organizational perspective as the reconciled nature of the forecast allows for alignment of
local, regional and national tourism forecasts.

Both temporal and cross-sectional aggregation methods outperform traditional demand forecast models.
Also from an strategic capacity planning perspective the aggregation of demand is desirable. Therefore this
approach will be assumed in the methodology section.
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Chapter 5

Methodology

The literature study provided the theoretical foundation which now can be used to formulate the methodol-
ogy. As argued in Sec. 4.3 the aggregation of demand causes intermittent demand to become more smooth.
Smooth demand can generally be forecasted more accurately but requires other models compared to inter-
mittent demand. Preliminary data analysis shows a clear linear relationship between the potential variables
and the demand data which directs the model selection process towards linear models. This, in combination
with the research question at hand makes the General Least Square regression model (GLS) a valid starting
point for the model selection process. Namely, the GLS offers an efficient way to assess the influence of the
explanatory factors. A further refinement of model selection is not possible during this stage of the research.
Therefore the methodology incorporates a model selection procedure that is steered by data characteristics.

When not stated explicitly the source of the statistical theory is from Fox (2016).

5.1 Generalized Least Squares Regression

The generalized linear model can be described as follows:

y = Xβ + ε (5.1)

Where y is a (n × 1) vector of the dependent variable values, X is the (n × k + 1) matrix of the values of
the independent variables. β is the (k + 1 × 1) vector of parameters and ε is the (n × 1) vector containing
the error term. In the GLS case the error term is not independently distributed but can be described as:

ε ∼ Nn(0,Σεε) (5.2)

Where Σεε is the covariance matrix. Using a log-likelihood estimation the estimation of β becomes:

bGLS = (X′Σ−1εε X)−1X′Σ−1εε y (5.3)

This estimator requires Σεε to be known but in practice this is never the case. Also, simultaneous estimation
of Σεε and β is not realistic as the amount of unknowns is too large. To be able to estimate β, restrictions for
Σεε have to be found. In the following sections applicable restrictions are elaborated on. These particular
models will form the input for the general methodology, graphically described in Fig. 5.2.

In least square regression an important concept is the Best Linear Unbiased Estimator (BLUE) concept
which is based on the Gauss-Markov theorem. This theorem states: ’When the error probability distribution
is unknown in a linear model, then, amongst all of the linear unbiased estimators for the parameters of
the linear model, the estimator obtained using the method of least squares is the one that minimizes the
variance. The mathematical expectation of each error is assumed to be zero, and all of them have the same
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(unknown) variance’. (Springer, 2008). Where best means lowest variance and no bias. The requirements
for the model posed by the BLUE property of no autocorrelation, constant variance and mean of zero are by
definition true for the Ordinary Least Squares regression (OLS) which is why this is an interesting restriction
of the General Least Squares model.

5.1.1 Ordinary Least Squares Regression

OLS poses the most stringent restriction on the covariance matrix. It assumes that all diagonal entries are
equal and positive. The rest of the entries are zero. This model thus assumes no auto-correlation (serial
dependency) and homoscedasticity. Due to this assumption of constant variance the β estimator reduces to:

bOLS = (X′X)−1X′y (5.4)

The OLS is in essence a special form of the Weighted Least Squares regression as all weights are equal to
one. To cope with heteroscedastic errors the more general Weighted Least Squares regression can be used.

5.1.2 Weighted Least Squares Regression

If no auto-correlation of the error is assumed but when the errors are heteroscedastic the OLS model is
consistent but not efficient. A solution to this heteroscedasticity is the application of weighted least squares
(WLS). This rationale behind this method is to apply higher weights to the data points with low variance
and lower weights to data points with high variance.

bWLS = (X′WX)−1X′Wy (5.5)

Where W is the matrix of weight values. In principle any weight matrix can be constructed however only
if each weight is equal to the reciprocal of the variance of the measurement the bWLS is also BLUE. When
a physical explanation can be given for the heterogeneity, explanatory variables can be used to form the
weight matrix. WLS is especially valuable for small data-sets.

5.1.3 Transformation of dependent variable

A transformation of the dependent variable is also a way to reduce heteroscedasticity. However, trans-
forming variables can have large consequences for the interpretability of the model and while it may in-
crease the in-sample model fit it does not automatically mean that the out-of-sample predictions after
back-transformations are more accurate. Therefore, transformations should be applied with care.

5.2 Time series regression

When the errors are auto-correlated and the errors are heteroscedastic a time series regression is a valid
option. In this section classical time-series forecasting methods are described mathematically. For the sake
of brevity extensive derivations and proofs of the statistical properties of the models are omitted. When not
specified the model descriptions including the mathematical derivations and the assumptions are obtained
from Palma (2016) and Kendall and Ord (1990).

The models described below are of the ARIMA family which is a special case of the GLS.

5.2.1 ARIMA model family

The Autoregressive Integrated Moving Average (ARIMA) model family is a well-known type of model. It is
build up from different components and all these components are elaborated upon in this section.
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Autoregressive model

The autoregressive model (AR) is a regression model which regresses on its past values. It was first introduced
by Yule in (Yule, 1927). In a modern mathematical representation the AR(p) model is described in the
following way:

Xt = c+

p∑

i=1

φiXt−i + εt (5.6)

Where Xt is the dependent variable of interest, φi is the model parameter and εt is the error term (εt ∼
i.i.d.N(0, σ2)). Finally p designates the order of the model. For the AR process to be stationary |φ| < 1.
A shock at time t (induced by εt) affects the outcome of the variable infinitely long. However, if the AR
process is stationary the effect of the shock diminishes to 0.

Important model characteristics in general are the mean, the variance and the covariance. If assumed that
both statistics are independent of time, simple expressions for them can be found. For sake of brevity the
AR(1) model is used in the description below:

Xt = c+ φXt−1 + εt (5.7)

E(Xt) = E(c) + E(φXt−1) + E(εt) (5.8)

µ = c+ φµ (5.9)

µ =
c

1− φ (5.10)

The variance is given by:

var(Xt) = var(c) + var(φXt−1) + var(εt) (5.11)

var(Xt) = φ2var(Xt) + σ2 (5.12)

var(Xt) =
σ2
ε

1− φ2 (5.13)

Cov(Xt, Xt+h) = Cov(Xt, φXt) = φhvar(Xt) =
φhσ2

1− φ2 (5.14)

The correlation of the AR(p) process depends on φh which causes the model to be weakly dependent and
have a memory. This is also the reason why the model is affected by a shock εt for a theoretical infinite
amount of periods. Due to the property of constant mean and variance the AR model can be used to model
non-seasonal, non-trend time series.

Moving Average Model

The moving average model (MA) states that a variable is linearly dependent on the current and selected
previous values of a stochastic term. Mathematically the MA(q) is described as given below:

Xt = µ+ εt +

q∑

i=1

θiεt−i (5.15)

Where εt is the error term (εt ∼ i.i.d.N(0, σ2)) and θ is the model parameter and µ is a constant. In the
equations below the most important statistics of the MA model are given:

E(Xt) = E(µ+ εt + θεt−1) = µ (5.16)
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var(Xt) = var(µ+ εt + θεt−1) = σ2 + θ2σ2 = (1 + θ2)σ2 (5.17)

Cov(Xt, Xt−1) = Cov(µ+ εt + θεt−1, µ+ εt−1 + θεt−2) = θCov(εt−1, εt−1) = θσ2 (5.18)

The latter is true because (εt ∼ i.i.d.(0, σ2)) and therefore covariance is equal to the variance. Contrarily
to the AR model the shock induced by εt only affects the resulting variable for q+1 periods. This is due to
the fact that Corr(Xt, Xt−τ ) = 0 if τ is larger than q. On the contrary the AR(p) process has a correlation
function that is dependent on h which is analogous to τ . Similar to the AR model the MA model is able to
model non-seasonal and non-trend time series.

Autoregressive Moving Average Model

Combining the AR and MA models is an evident next step. Autoregressive Moving Average Models (ARMA)
models are widely used in literature. The general ARMA model was introduced by Peter Whittle in 1953
and made popular by the book of Box and Jenkins in 1970. The ARMA model is formulated as follows:

Xt = c+

p∑

i=1

φiXt−i + εt +

q∑

i=1

θiεt−i (5.19)

Autoregressive Integrated Moving-Average Model

A generalization of the ARMA model is the Autoregressive Integrated Moving-Average Model (ARIMA).
In contrast with ARMA, ARIMA is able to model a trend in the data. Introducing the lag operator (also
called backshift operator) B the ARMA model can mathematically be described as:

(1−
p′∑

i=1

αBi)Xt = (1 +

q∑

i=1

θiB
i)εt (5.20)

Where BiXt = Xt−k. If one assumes that the left part of Eq. 5.20 has a unit root (1 − B) an ARIMA
process can be described as follows:

(1−
p∑

i=1

φBi)(1− L)dXt = (1 +

q∑

i=1

θiB
i)εt (5.21)

Where, compared to the ARMA model in Eq. 5.20, p = p′ − d. Informally stated: the crucial part of the
ARIMA model is that by differencing a random variable with its past value a possible trend is ’removed’
after which regular ARMA model is applied. By removing the trend a stationary process is created which
can be described by an ARMA model.

An ARIMA model is suitable for modelling time series data with a trend but without seasonality. To include
seasonality effects SARIMA is developed. SARIMA is an extension of the ARIMA model. It includes multiple
differencing terms which account for the seasonality effects. To include exogenous variables an ARIMAX
model or ARMAX model can be applied which can mathematically be described as follows:

Xt = βYt + εt (5.22)

εt = c+

p∑

i=1

φiXt−i + εt +

q∑

i=1

θiεt−i (5.23)

This representation is often used as it allows for a straightforward interpretation of the correlation coefficient
β.
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5.2.2 Autoregressive Conditional Heteroskedasticity models

In the previous section various methods that can deal with changing mean have been described. Especially in
the area of volatility analysis there are various studies where a time-series is analyzed that is non-stationary
due to a non-constant variance. The class of models that can model changing variances are (G)ARCH mod-
els. This model type is introduced by Engle in (Engle, 1982).

First the ARCH model is explained. For the sake of brevity the ARCH(1) model is selected to serve as
an example. The same but slightly more tedious analysis can be done for the general case of an ARCH(q)
model.

yt = σtεt (5.24)

Where yt are the so called return residuals (errors of a mean process such as ARIMA or ARMA), σt is the
time dependent standard deviation while εt is the white noise random variable. σt is modeled as follows:

σ2
t = α0 + α1y

2
t−1 (5.25)

Which is analogous to the AR process.

A generalization of the ARCH(q) model is the GARCH(p,q) model introduced by (Bollerslev, 1986). This
model includes an MA process which results in the following mathematical representation:

σ2
t = ω +

q∑

i=1

αiy
2
t−i +

p∑

i=1

βiσ
2
t−i (5.26)

Note the similarity with the ARMA(p,q) model given in Eq. 5.19. The GARCH model adds a term that
includes past values of the standard deviation.

For econometric purposes the prediction of variance (volatility in jargon) could be a goal on itself as it gives
insight in market or stock behavior. However, from a demand forecasting point of view one is interested in
combining the variance estimate with the mean estimate to achieve a better overall model fit and prediction.
These so called hybrid models are applied extensively in literature such as in the field traffic flow modeling
(Chen et al., 2011),(Zhou et al., 2006), in agriculture (Paul, 2015) and electricity price forecasting (Tan et al.,
2010), (Liu and Shi, 2013).

5.3 Proposed methodology

To be able to answer the main research question the influence of fleet characteristics on maintenance demand
forecasting performance has to be assessed. As stated in the beginning of this chapter regression analysis is
a suitable method for this problem.

5.3.1 Data description

The data available is Boeing 777 maintenance log data. This data contains information on failure times of
parts per aircraft. There is no information given on the required man hours for the related maintenance task.
Consequently, a conversion from the amount of failures to the actual workforce demand cannot be made.
Therefore, the demand that will be forecasted is the amount of failures of a selection of components for the
entire fleet. The selection of components is based on the need for skill based planning as described in Ch.
2. Composite components generally require specialized personnel which is why as the component selection
all components consisting fully or partly of composite material are chosen. After this selection about 3000
data points from 30 aircraft are left for analysis, spread over 10 years.

23



5.3.2 Predictor variables and controlled factors

In Ch. 3 it was shown that there were several predictor variables of interest for strategic maintenance demand
forecasting purposes. Preliminary data exploration and analysis show that four of them are feasible. The
variables are retrieved from external data sources and are listed below:

• Fleet size

• Average fleet age

• Expected demand due to A-Check

• Expected demand due to C-Check

The values of these variables are all well known in advance and assumed to be fixed. This means that they
are not prone to uncertainty. This assumption can be made due to the fact that aircraft have long delivery
times. Also, due to the inspection based maintenance policy that airlines apply nowadays, A-Check and
C-Check schedules can be determined for years to come. In order to use the schedules of A-Check and
C-Check as explanatory variables a continuous model should be made of them with these schedules as input.
The four factors will be assessed in different combinations.

The variables have properties that are of influence on the methodology. It is expected that the variables
show collinearity due to the fact that they are all related to time and the amount of aircraft in one way
or the other. This has some consequences for statistical test interpretability which should be taken into
account when constructing the methodology. Next to the collinearity issue the variables are physically not
continuous but ordinal. From a modeling perspective this has consequences as ordinal variables should be
modeled as categorical variables. However, one can consider ordinal variables to be continuous when the
amount of categories is larger than eight and therefore the variables will be assumed to be continuous.

Next to the predictor variables there are factors that might influence demand characteristics which cannot
be formatted into a variable. These factors should be controlled for. These factors are listed below:

• Aircraft type

• Airline

• Aircraft usage

• Acquisition policy

There is only one aircraft type described in the data but the available aircraft belong to two different air-
lines. According to the literature given in Ch. 3 the latter might be of influence which is why it should be
controlled for. Due to the unbalanced data (one airline owns significantly more aircraft than the other) it
is not wise to include this factor as a variable which is why the aircraft of the smaller airline are excluded
from the analysis. This also minimizes the influence on the maintenance demand due to the usage of the
aircraft as both airlines might assign their aircraft to different types of routes that have different operational
characteristics or environmental conditions. Although usage data of the individual aircraft are not available
it can be assumed that the aircraft belonging to one airline are used in similar conditions which eliminates
that influencing factor automatically. This assumption is even more valid considering the long-term per-
spective of this research and the fact that aircraft are assigned to different routes continuously during their
lifetime. Another factor is the fleet planning policy. It is possible that the demand forecast on fleets that
are ordered in batches instead of more spread out over time have a different forecast performance. Also fleet
size might have an influence on the forecasting performance. This variation cannot easily be transformed
into a explanatory variable which is why it is included in the model in the form of various fleet scenarios.
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5.3.3 Data pre-processing and model assessment

In Fig. 5.1 the proposed methodology is shown graphically. The need for a strategic perspective on special-
ized workforce planning requires strategic demand forecasts. Therefore, the aggregation should be done at
fleet level and over all components that require the same, specific skill to maintain them. Preliminary data
analysis showed that there are no demand characteristics known at the lowest aggregation level which means
that clustering is not beneficial.

The strategic perspective on maintenance demand makes that a monthly or quarterly temporal aggregation
is most suitable. The variable set is re-sampled accordingly and per temporal aggregation level an OLS
is applied using all four variables. Thereafter the residuals are then used to assess the potential models.
This process is explained in Fig. 5.2. First the linearity assumption is checked visually followed by a visual
check of the presence of monthly periodicity. Also autocorrelation and homoscedasticity are checked visually.
Depending on the residual characteristics, a single or a multitude of models can be found. The residuals
of all the potential models are assessed using the full data-set in both the monthly and quarterly temporal
aggregation level.

5.3.4 Forecasting and result analysis

After the model assessment the forecasting performance of the potential models will be investigated. An
extensive description of the forecasting analysis is given in Fig. 5.3. Each potential model that comes
out the model assessment phase is put through the flowchart presented in this figure. Eight different fleet
scenarios are formed from the available data set. In order to validate the model ten variations of the fleet
are constructed within the limits that the fleet scenario poses. Both temporal aggregation levels are used
for analysis. Six evenly spaced split up points are chosen, the first one being after two years of operations
and the last one three years before the last datapoint. Next to this, five different forecast horizons are
used to vary among. Using the split up point and the forecast horizon the training-set and the test set are
constructed. The model is trained on the training set and applied on the test set. If the respective model
applied a transformation on the data, the values are back transformed to receive the true demand forecast.
Also, the performance of the combined forecast (using the prediction of both the monthly and quarterly
forecast) is assessed. According to literature it cannot be determined beforehand if a combined temporal
aggregation level forecast is more accurate than a single optimal aggregation level forecast and therefore the
combination will also be analyzed. The disaggregation step as presented in the ADIDA method (see Fig.
4.3 ) will be used for this purpose. The used performance metric is the Root Mean Squared Error (RMSE)

The output of the forecasting module is a multi-labeled list of RMSE values. To assess the influence of
the variable sets a multi-way Analysis Of Variance (ANOVA) will be performed. This method focuses on
the difference among group means, in this case the grouped RMSE value means. Using this method the
difference in groups and thus the difference due to the variable selection can be assessed quantitatively.

This flexible approach also allows for nuanced and systematic analysis of the results which is useful when
differences in forecast performance are not directly noticeable. For example, it might be that at the highest
level there is not a large difference in performance while for specific fleet scenarios, or specific splitting-points
there is a difference. On top of that, this approach allows for a thorough analysis of the reasons for the
potential differences.
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Figure 5.1: Methodology overview. The content of the blocks model assessment, forecasting and analysis of
RMSE data are given in figures 5.2 and 5.3
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Figure 5.2: Model assessment phase
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Figure 5.3: Forecasting phase

28



Chapter 6

Conclusion

The aim of this literature study is to provide the necessary theoretical background for the thesis research.
This entails building a strong foundation for the in the thesis addressed need, assessing the state of the art
literature regarding the subject, finding the gap in scientific knowledge and exploring the available methods
of analysis. The goal of these literature study objectives is to fully or partly answer the research questions at
hand. These questions, presented in the introduction (Ch. 1), are answered in this report and are summa-
rized in this conclusion. The statements and conclusions are all based on sources and observations presented
in the chapters of this report. For the sake of legibility the corresponding references are not repeated in here.

Strategic capacity planning aims to plan the resources hanger space, spare parts and workforce. At a strate-
gic level especially workforce is relevant due to the long training times and high costs involved. In the field of
aircraft maintenance no literature on strategic workforce planning could be found. However, literature from
other sources suggest that there is a large need for the skill based planning of workforce as maintenance and
manufacturing of high-end products such as aircraft require specialized personnel. Due to the clear need for
further research, the focus of this research is on strategic demand forecasting to improve workforce capacity
planning.

Strategic demand forecasting requires the appropriate levels of aggregation and a suitable forecast hori-
zon/temporal frequency. The latter two are not clearly defined in literature. However, experts suggest a 1-3
year forecast horizon with a quarterly or monthly frequency. The demand of structural aircraft components
is intermittent. This causes difficulties as intermittent demand forecasting models are often inaccurate. The
literature study shows that temporal aggregation of demand provides the best forecasting performance as
it transforms intermittent demand into smooth demand which makes other models available. The choice
of temporal aggregation level can either be optimized for or a combined aggregation level approach can be
applied. During the current stage of the research a choice between them cannot be made which is why both
approaches are researched.

From a strategic standpoint aggregation of components up to fleet level is most optimal. Preliminary data
analysis showed that there are no component characteristics available at the lowest level of aggregation.
Therefore clustering is not a valid option.

The influence of fleet properties and fleet planning on maintenance is scarcely described in literature. Text-
books on fleet planning state that the most important factor that is taken into account regarding maintenance
is fleet commonality as it impacts the maintenance costs considerably. Influential fleet properties are fleet
size, fleet age, airline, maintenance check schedule and aircraft usage. Data availability makes fleet size,
fleet age, A-Check schedule and C-Check schedule feasible variables and these are the ones that will be
assessed during the research. Fleet commonality, aircraft usage and fleet planning are factors that can have
an influence on either the demand itself or the demand forecasting and are therefore controlled for.
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To evaluate the influence of fleet size, fleet age, A-Check schedule and C-Check on strategic maintenance
demand forecasting a regression model is a logical choice. The methodology includes a model selection phase
where properties of the data such as serial dependence, seasonality and heteroskedasticity determine which
model is most suitable. It is expected that multiple models result from that selection phase and all of these
are then used in the forecasting phase where the performance of each model with different variable selections
is assessed. Each model is applied in different fleet settings, using multiple variable combinations, using
multiple groups of aircraft (to ensure cross-validation) and by using multiple split-up points and forecast
horizons. The RMSE values resulting from the forecasting phase are then analyzed using an ANOVA anal-
ysis. This analysis can assess the significance of the difference between means of RMSE groups.

The findings in this literature studies enabled the answering of the sub questions. The methodology ex-
tracted from the preliminary data analysis and the theoretical background is solid and will allow for a good
quantitative analysis. This analysis will be the continuation of the master thesis which will ultimately answer
the research question and add to the body of science on strategic maintenance demand prediction.
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Chapter 3

Project plan

In this chapter the project plan is presented. This thesis deliverable is already graded.

GRADED
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Abstract

Due to ever increasing competition in the MRO market there is a clear need for optimizing strategic
capacity planning. In this research it is argued that at a strategic level one is not interested in the failure
of a specific component but rather in the failure of a component with specific characteristics that influence
the amount of resources required or the capacity planning in general. This novel approach towards
maintenance demand prediction has not been applied before. An advanced Cox model is proposed that
incorporates covariates on failure data that categorize failures in their respective groups. The resulting
hazard functions offer the failure information which can be used to optimize the strategic capacity
planning. Altogether it is expected that this new approach to strategic demand will open up new ways
towards modeling failure data in a strategic maintenance planning context.

1 Introduction

Commercial aircraft maintenance is a growing industry that, according to IATA, comprised of US$76 Bil.
worldwide in 2017 (Maintenance Cost Task Force, 2018). From an airline perspective the maintenance costs
represent about 11% of the total operational costs. During the last decades the aviation market has become
a competitive market which forces airlines to reduce costs wherever they can. Next to the airlines evident
interest in maintenance cost reduction, Maintenance Repair and Overhaul organizations (MROs) on their
turn are interested in more efficient maintenance operations as the competition in the MRO market has
increased tremendously as well (Phillips et al., 2009). The Above stated observations show a general need
for maintenance cost reduction in aviation and this is therefore an active field of research.

Maintenance costs are generally subdivided into Direct Maintenance Costs (DMC) and Indirect Maintenance
Costs (IMC) (Dupuy et al., 2011). DMC are defined by Wu as ”The labor and material costs directly ex-
pended in performing maintenance on an aircraft or related equipment” (Wu et al., 2004). Inefficient use
of resource capacity has an adverse effect on the DMC. Saltoglu et al. defines the IMC as downtime, which
is the costs incurred by the airline due to being unable to operate the aircraft (Saltoglu et al., 2016b). To
determine the downtime costs they propose a model that incorporates Labour Capacity, clearly indicating
that capacity planning is also vital in reducing the IMC (Saltoglu et al., 2016a).

This research mainly considers strategic capacity planning which is a form of capacity planning that de-
termines the appropriate level of maintenance resources, long-term workload assignment on a strategic
level(Duffuaa and Alfares, 2009). The main resources under consideration are mainly spare parts, hangar
space and labor force . To make optimal use of these resources strategic, or long-term capacity planning is
required. Strategic capacity planning does, however, require long-term demand forecasts, which are chal-
lenging to obtain due to the stochastic nature of unscheduled maintenance. Therefore finding new methods
that forecast maintenance demand is a large subject within academia and industry due to the high costs
involved (Cook et al., 2012).
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To scope this research we argue the following. For strategic capacity planning one is not interested in the
failure of a specific component but more so in the failure of any component of which the required maintenance
action has certain characteristics. This is particularly true for resources like personnel and hangar space or
equipment availability.
The general objective of this research is to investigate the improving strategic capacity planning by mod-
eling group based aggregated failure data. The groups are based on criteria that originate from aircraft
maintenance practice.
In Sec. 2 the literature review is presented. This is followed by Sec. 3, Sec. 4 and Sec. 5 in which
the objective, theory and experimental set up are elaborated upon respectively. Furthermore the expected
results, project planning and conclusions are given in Sec. 6, 7 and 8.

2 Literature review

In this section the literature review is presented.

2.1 Strategic capacity planning

Strategic capacity planning in aircraft maintenance industry does not have a common definition in academic
literature, even though it is of large importance as stated by Duffuaa and Alfares in (Duffuaa and Alfares,
2009). Without defining it explicitly Duffuaa and Alfares suggest assuming a time frame of months to years
(Duffuaa and Alfares, 2009). They also give a definition for capacity planning: ”Capacity planning aims to
find the optimal balance between two kinds of capacity: available capacity, and required capacity”. Due to
strict safety regulations in the airline industry, required capacity is leading in the capacity planning pro-
cess. This means that to optimize the capacity planning, future knowledge on the required capacity is crucial.

According to Heimerl and Kolish the first step in resource capacity planning is the determination of the
number of resources required per skill and period (Heimerl and Kolisch, 2010). The second step is the actual
assignment of people to work-packages. As stated in the introduction one of the resources that are of partic-
ular interest for MROs and airlines is personnel. Nowadays skilled personnel is hard to come by in aerospace
industry due to technicians leaving airlines and MRO organisations for various reasons, retirement being the
largest one, and due to young people not joining these organizations. Next to the low influx of new person-
nel, the training of technicians is time consuming and expensive due to strict aviation regulations (Johnson,
2018). From a capacity planning perspective this means that strategic information on required personnel is
vital for an optimized capacity planning. It would therefore be interesting to predict maintenance demand
based on required skill. However, to the authors knowledge there is no literature on skill based maintenance
demand prediction.

Clustering of maintenance jobs at MROs is now performed mostly based on the experience of the decision
maker but is a cost saver (Van Dijkhuizen and Van Harten, 1997), (Li et al., 2016),(Dinis et al., 2019).
In railroad and highway maintenance industry, optimization of maintenance schedule taking into account
spatial distance between failures is well represented in literature according to Peng (Peng et al., 2011). In
this field the need for models that take into account spatial distance is feeded by the long travel times
of maintenance crews. In aircraft industry the spatial distances between maintenance tasks are obviously
smaller but locations of defect are often harder to reach, and require extensive preparation works such as
scaffolding or the use of advanced equipment. A strategic capacity approach that takes into account the
aforementioned is not found in literature.
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2.2 Univariate reliability models

To support the maintenance demand determination, reliability models have been developed that can model
the failure characteristics of systems.

Currently the vast majority of reliability models in the MRO industry are so called univariate reliability
models. Univariate reliability analysis considers only one variable which is often a time variable of some
sort. The most common univariate models are the Homogeneous Poisson Process (HPP), Non-homogeneous
Poisson Process and the RP model. All three models assume different failure behaviors of the system or part
under consideration (Basu and Rigdon, 2000).

The HPP can be used to model systems that have a constant intensity function which means that the system
under consideration cannot be improving or deteriorating. Contrarily the NHPP model has a intensity func-
tion that is not constant and often the power law process is chosen as intensity function. The non-constant
intensity function allows for modeling of improving and deteriorating systems. The Renewal Process is a
process that assumes perfect repair after each failure. To accommodate for more accurate modeling of main-
tenance demand extensions of the aforementioned univariate models have been developed such as non-perfect
repair.

The advantages of univariate reliability modeling is that it is relatively easy to implement but on the other
hand it restricts the model to one variable which may induce oversimplification of the problem. Also, the
assumptions belonging to each of the aforementioned models can become stringent and reduce the flexibility
of the model.

2.3 Multi-component system reliability modeling

Aircraft are multi-component systems. From a strategic capacity planning point of view it makes sense to
look at the failure characteristics of these multi-component systems instead of the components seperately
as one is generally not interested in the failure of a specific component but in the failure of a component in
general.

Modeling of multi-component systems is complicated due to stochastic dependencies between the compo-
nents (Shi and Zeng, 2016),(Scarf, 1997),(Song et al., 2014). Shi and Zeng argue: ”Interactions between
these components should not be neglected, and should be taken into account in prognostics and maintenance
decisions.” (Shi and Zeng, 2016). In the same paper they state that models that incorporate stochastic
dependency offer opportunities to optimize the maintenance policies as they can include joint maintenance
of multiple components. Song et al. developed a model that incorporates competing failure processes of
stochastic dependent components by implementing competing failure process analysis (Song et al., 2014).
Roberts applied an adjusted NHPP model (Crow NHPP model) to model the failure of a multi component
system (Roberts, 1993). Consequently he compared the Crow NHPP model with a Weibull model fitted to
each component separately. He concluded that the latter fit was more accurate.

Philip Scarf offers a word of warning in (Scarf, 1997). On the one hand he acknowledges and encourages the
development of advanced mathematical models that can incorporate dependencies but stresses that from an
practical perspective less complex models are preferred.

Recent literature combines multi-component system analysis with condition monitoring techniques (Ge et al.,
2012),(Aizpurua et al., 2017). A recent survey paper by Wang and Chen stresses that Condition Monitoring
can improve the analysis of deteriorating, multi-component systems as sensors are more and more applied
in complex systems (Wang and Chen, 2016).
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2.4 Prognostic Health Management

Nowadays the main trend in maintenance demand prediction is towards condition monitoring which falls
under the umbrella of Prognostic Health Management as defined by Pecht and Kumar (Pecht and Kumar,
2008). They identify four different PHM models categories: Statistical reliability based approach, Life cycle
load based approach, State estimation based approach and feature extraction based approach. The sta-
tistical reliability based approach is a method that does not require failure specific knowledge or systems
operational conditions. Life cycle load based approach takes into account the external loads that can affect
the system during its entire life cycle. The state estimation method requires real-time estimates of the
present state of the component or system. The complete state cannot always be observed but by using state
estimation sensor data can be combined to determine the underlying behavior of the system at any point in
time. Feature extraction based approach is often used as it is usually difficult or impossible to implement a
physics-of-failure based approach for prediction purposes. This approach is derived directly from routinely
monitored system operating data and uses statistical and learning techniques from the theory of pattern
recognition.

Condition monitoring is currently a widely researched topic in structural maintenance, also in the aerospace
industry (Haider, 2019),(Dragan et al., 2020). However, the lack of sensors in aircraft air frames of aircraft
in operation nowadays prohibits the use of the life cycle load approach and state estimation methods and the
first pilot projects in commercial aviation have been introduced only recently (Korvesis et al., 2018),(Cheung
et al., 2020). The statistical reliability based approach is a valid option and builds on the aforementioned
univariate methods. The feature extraction method is a promising method as no sensors are required which
means that it can be implemented immediately. An evident type of data that can be included in this method
is the aircraft usage information or operational data. Examples of usage data are the types of routes the
aircraft has flown, take-off weight and amount of hard touch downs.

2.5 Cox Proportional Hazard Model

From the aforementioned developments it can be extracted that the current trend in aircraft maintenance
demand prediction is towards multivariate, multi-component system reliability analysis. The most used
multivariate reliability analysis model is the Proportion Hazard Model (PHM), also known as the Cox model
which was first introduced by David Cox in 1972 (Cox, 1972). Since its introduction the original paper has
been cited numerous times, primarily in medical papers (Yazdi et al., 2002),(Deng et al., 2019),(Papier et al.,
2019). In the area of maintenance the Cox model and its extensions have been used less often compared to
medical field but especially in the last years the model has gained in popularity (Tian and Liao, 2011).

The proportional hazard model is in the basis a regression model that uses a hazard function as dependent
variable:

λ(t; z) = exp(zβ)λ0(t) (1)

In Eq. 1 λ(t; z) is the resulting hazard function depending on time and the value of the covariates z, λ0(t)
is the baseline hazard function when z = 0 and β is a vector of unknown parameters. The Cox model has
the following important characteristics:

1. The model adheres to the proportionality principle

2. The baseline hazard function can be chosen arbitrarily

3. The model cannot deal with tied events

4. Right censored
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The first aspect is the most important characteristic of the model. The survival functions belonging to
the different samples (defined by the explanatory variables) must adhere to this principle of proportionality
which means that the relative risk of an event does not change over time (Cox, 1972). The principle of
proportionality can be checked using both quantitative and qualitative methods. A well known qualitative
method is the Andersen method, firstly introduced by Kay (Kay, 1977) and popularized by Andersen in
(Andersen and Gill, 1982). It is based on a comparison of the cumulative hazard functions between two
groups. Another method is the Schoenfeld residual method, firstly introduced by Schoenfeld in (Schoenfeld,
1980). This method makes use of the so called Schoenfeld residuals which are the difference between the
covariate vector and the partial mean of the estimated covariate vector at the same time instant. Finally the
Kaplan-Meier estimates for the survival function of each group can also indicate whether or not the survival
functions show proportionality (Kaplan and Meier, 1958).

Next to the graphical methods quantitative methods that check for proportionality are available. Commonly
used methods are the Gill and Schumachers test which uses a generalized rank statistics and the Gramb-
sch Thernau method which is a score test based on weighted Schoenfeld residuals (Gill and Schumacher,
1987),(Grambsch and Thernauw, 1994).

To model non-proportional hazards four general methods are available (Schemper, 1992),(Dunkler et al.,
2009),(Schemper et al., 2009):

1. Stratification of a model by a covariate with non-proportional hazards

2. Separate models for disjunct time periods

3. Implementing time-dependent covariates

4. Implementing weighted Cox regression

Stratification of the proportional hazard function is shortly the exemption of a non-proportional covariate
out of the model which basically induces k different models (Kleinbaum and Klein, 2012). The disadvantage
of using stratification is that the influence of the covariate cannot be assessed immediately. Another method
to cope with non-proportionality is by creating different models for disjunct time periods. This uses the fact
that for some time intervals the hazards are proportional while for the total considered time it might not.
The disadvantage of implementing this method is that it induces sudden changes at the cutpoint between
two interval. This is often not a valid assumption.

The most advanced way of allowing non-proportionality in the Cox model is by using time-dependent co-
variates. This is done by including an interaction of a covariate with time which is technically the product
of a value of a covariate with a pre-specified function of time: γ(t). This option is the most flexible one,
however there are consequences induced by this method. It is only useful with larger sample sizes and if a
concise description of the time-dependent effect is of interest. Furthermore, it is not always possible to draw
clear conclusions from such models.

The fourth option of analysis is the weighted Cox regression, first introduced by Schemper (Schemper, 1992).
He argues that due to the non-proportionality the average hazard ratios are estimated in an overestimated
or underestimated way. This is due to the fact that in the classic Cox model the average hazard ratio is
computed giving equal weights to each separate hazard ratio, as shown in Eq. 2:

θ =

∫ ∞

0

h1(t)

h2(t)
dt (2)

This differs from the proposed weighted Cox model where a weighting function W (t) is introduced as shown
in Eq. 3:
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θ(W ) =

∫ ∞

0

h1(t)

h2(t)
dW (t) (3)

This weighting function can be defined in various ways, but the most common choice is presented in
(Kalbfleisch and Prentice, 1981). Kalbfleisch and Prentice propose a weighting function that depends on
the survival functions of the compared hazard functions. The method introduced by Schemper is primarily
focused on the estimator of the average hazard ratio and the interpretation of it in a non-proportional case.
He argues that if the amount of information and scientific interest make more detailed modeling of the time
dependence of a covariate’s effect possible, then a Cox model analysis using one or more time-dependent
covariate terms is preferred.

The origin of the allowed arbitrariness of the baseline function lies in the parameter estimation technique
that Cox proposed. He introduced the partial likelihood which he defined in his original paper (Cox, 1972).
This partial likelihood function is derived from the full likelihood function. Cox states that the first part of
the full likelihood contained almost all information about β while the last terms contained the information
about the baseline hazard function λ0(t). To optimize the estimate of β Cox claimed that the regular rules
of maximum likelihood apply. In medicine often the hazard ratio is used as a performance indicator of a
treatment and while computing this ratio the baseline hazard function disappears.

As a result of this partial likelihood estimation there is no estimation of the baseline hazard function,
which makes it impossible to compute the absolute measures of effect such as the survival probability or
hazard rate. However, estimating these two measures is possible and the two most common methods are the
Breslow estimator, which estimates the cumulative hazard, and the Kalbfleisch-Prentice estimator, which is
an estimator for the survival function Ng et al. (2018a). These methods however give a sub-optimal estimate
compared to methods that use the fully specified baseline hazard function.

2.6 Parameterized baseline hazard function models

From a prognostic point of view absolute measures of either the survival function and intensity/hazard func-
tion are important. As aforementioned the baseline hazard functions are not of the original Cox model is not
estimated formally and consequently the hazard function cannot be described. Also, these hazard functions
are prone to overfitting and are usually erratic of nature. To cope with these issues parameterized Cox
models have been developed.

A commonly used parameterized Cox model is the Weibull proportional hazard model. This model assumes
a Weibull baseline hazard function which includes a shape and scale parameter. These two parameters are
estimated using a full maximum likelihood. The Weibull Cox model can model deteriorating and improving
systems.

Another method that uses a parameterized baseline hazard function is the Royston-Parmar model, intro-
duced by Royston and Parmar in (Royston and Parmar, 2002). According to an independent scoping review
paper this model is a promising alternative for the Cox model, especially in the prognostic field of research
(Ng et al., 2018b).

The Royston-Parmar model assumes a smoothed baseline log cumulative hazard function using natural
cubic splines. Royston and Parmar chose to smooth the transformed survival function rather than the
hazard function to anticipate for end effects that would be more severe for the hazard function.

2.7 On reparability

When considering maintenance on aircraft systems it is evident to include repairability or so called recurring
events in the analysis. Multiple papers have been written about the subject both in the field of medicines
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as in the field of maintenance (Prentice et al., 1981),(Fuqing and Kumar, 2013),(Kumar, 1995).

A variation of the proportional hazard model often applied in the context of repairable systems is the
proportional intensity model (PIM) (Fuqing and Kumar, 2013) and (Kumar, 1995). Analogous to the
proportional hazard function the proportional intensity function is defined as follows:

λ(t, z; q) = λ0(t; q) exp(βTz) (4)

Where q is the so called repair factor which is a variable of the baseline intensity function.

A similar but stratified model is the PWP model firstly introduced by Prentice, Williams and Peterson in
(Prentice et al., 1981). They introduced two extensions to the Cox model. In one the baseline function is
dependent on the total time since initial startup while in the other the baseline function for stratum S is
dependent on the time since last failure. For each stratum the risk set is different as the first one consists of
all the subjects that are at risk to fail for the first time, the second one consists of all the subjects that are
at risk to fail for the second time and so forth.

A third model that incorporates recurring events is the Andersen-Gill model (Andersen and Gill, 1982).
Amorim and Cai list the assumptions of the Andersen-Gill model clearly in (Amorim and Cai, 2015). The
baseline hazard function is the same for all events per subject. Furthermore, any correlation of time incre-
ments between events are conditionally uncorrelated, given the covariates. Correlations between events can
be described using the appropriate covariates. In the field of maintenance a suitable covariate would be the
amount of previous repairs. As a final note Amorim and Cai state: ”The Andersen-Gill model is commonly
applied when the interest is in the overall effect on the intensity of the occurrence of a recurrent event.”

2.8 Synthesis from literature

In general there is a need for improved strategic capacity planning due to increased competition in both the
aviation and MRO market. Nowadays skilled personnel is scarce and hard to come by which means that
strategic information on required personnel is vital. Prediction of maintenance demand based on required
skill offers an opportunity to solve this issue. Furthermore, spatial information of defects is not yet accounted
for in academic literature.

The current trend leads towards the implementation of multivariate reliability analysis. The success of the
Cox model in the medical field and the interest from the maintenance field of research indicates the potential
of the Cox model. To the authors knowledge a multivariate approach towards strategic capacity planning
using the Cox model has not been conducted before.

3 Research question, aims and objectives

Based on the literature review and the assumed perspective the main research question is the following:

’What is the strategic maintenance demand for groups of B777 structural components based on capacity
planning using the proportional hazard model?’

The following sub-questions are acquired from the main question:

1. ’What are the relevant B777 structural component groups?’

(a) ’Which factors are important to distinguish components with from a resource planning perspec-
tive?’

(b) ’What are the consequences of grouping components from a modeling perspective?’
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2. ’Which proportional hazard model is best to model the strategic maintenance demand of the B777
structural component groups?’

(a) ’What are the relevant limitations of the standard proportional hazard model?’

(b) ’Which extensions of the proportional hazard model are available and what are their limitations
and assumptions?’

(c) ’What limitations on the Cox model are induced by the B777 structural data?’

(d) ’What is the best method to incorporate repairability in the Cox model?’

(e) ’Which of the potential models gives the best fit?’

The objective distilled from the research question is the following:

‘Improve strategic maintenance capacity planning by identifying maintenance demand for groups of B777
structural components based on resource planning practice by using the proportional hazard model’

This objective introduces sub-goals. The first sub-goal is to establish the time variable. In maintenance
demand analysis this is often the amount of flight cycles or aircraft age. Secondly, feature engineering must
take place to be able to create relevant features. The choice of features is based on the literature study on
capacity planning. The next sub goal is the determination of the best model. This is done firstly based on
the literature study. If several models are candidate, the best model will be chosen based on the best fit on
the data. The last sub-goal is the generation of the hazard functions with which the different component
groups can be compared.

The novelties of this research are listed below:

1. Apply resource centered approach to maintenance demand prediction

2. Apply novel implementation of Cox model in maintenance field

4 Theoretical Content and Methodology

Most of the models described in the literature study have not been applied in the field of maintenance pre-
diction. Some of the proposed models are available in toolboxes, others are only available in literature. The
choice of model will first be based on a theoretical study. If after this study still some models are applicable
the models will be fitted to the data and based on that fit the best model will be selected.

Another step in the modeling is the feature selection. This will be primarily based on the available data in
the B777 data and the practice of capacity planning (skill, spatial distance etc.). Due to the fact that some
of the features are in a descriptive form some categorizing has to take place beforehand.

Due to the large amount of data a validation of the method is available using some kind of k-fold method.
A scheme of the methodology is presented in Fig. 1

5 Experimental Set-up

In this section the experiment set-up is explained. Although there are no physical experiments involved of
course computer models are constructed and these do need testing.
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Figure 1: Schematic representation of methodology

5.1 Apparatus

As said in the beginning of this section no physical apparatus is required for this research. On the other
hand a variety of software is available that offers the models described in the literature study. Python, R,
Stata and SPSS all offer advanced statistics packages that can be used for the research project. However, a
short study showed that not all models described in the literature study are available in all software. This
means that a combination of software should probably be used.

5.2 Testing

While developing models good testing is mandatory. The tests that will be performed are listed below:

• Verification tests. These tests are there to check if the program code is working as it should be. These
tests are performed during the development.

• Sensitivity tests. The sensitivity of the features is important to know. During the feature engineering
phase certain choices are made that can influence the end result significantly. The sensitivity of these
choices should be evaluated.

6 Results, Outcome and Relevance

The available data are Structural Damage Report (SDR) data of a varied B-777 fleet. The data consists of
89 variables and 9985 data points. Those variables contain mainly information on location of defect, moment
of defect, responsible engineer, description of defect, tail number and amount of flight hours. A large part
of that information is not relevant for the research objective at hand as most variables do not have any
predictive value.

To identify maintenance demand for groups of B777 components, the hazard function per considered group
of components is of most interest. The sketch given in Fig. 2 shows an example of how the final results of
the research could look like.
The relevance of these results is multitude. Firstly the hazard functions serve as input for the amount of
resources that are needed for each group of components. Based on these hazard functions MROs have more
detailed information about when which skilled personnel is expected to be needed. On top of that the spatial
information offers information about the potentially required equipment.
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Figure 2: Sketch of hazard functions per component group.

7 Project Planning and Gantt Chart

In Fig. 3 in the appendix the Gantt chart of the thesis research is presented. The reddish colored descriptions
indicate the deadlines.

8 Conclusions

Due to ever increasing competition in the MRO market there is a clear need for reducing maintenance
costs. Strategic capacity planning is a vital part of the maintenance process and therefore interesting from
a cost reducing perspective. Namely, by optimizing strategic capacity planning less resources are spilled
which reduces the costs considerably. Resources that are of main interest in aviation industry are personnel,
hangar/equipment use and spare parts.

In this research proposal it is argued that at a strategic level one is not interested in the failure of one specific
component but rather in the failure of a component with specific characteristics that influence the required
resources in a particular way or the capacity planning in general. For example, due to the fact that skilled
personnel is hard to come by it is vital for MROs to know when those skills are needed so that they are able
to plan accordingly. Also spatial information about failures is important for equipment and hanger usage
and in order to cluster maintenance tasks.

In this project plan an advanced Cox model is proposed that incorporates covariates on failure data that
categorize failures in their respective groups. The Cox model results in a hazard function per component
group. These hazard functions offer the failure information which then can be used to optimize the strategic
capacity planning.

To the authors knowledge the above described method of maintenance demand prediction from a strategic
capacity planning perspective has never been applied before. Also a never before applied proportional hazard
model will be used to model the hazard functions.

Altogether it is expected that this new approach to strategic demand will open up new ways towards modeling
failure data from a capacity planning point of view.
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Figure 3: Thesis Gantt chart
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