Motion Control for
Visual Tracking

Visual Recording Object Oriented Mapping

BSc Thesis

D. Al-Rushdy
E Nezamie

]
TUDelft

Motion Control tor
Visual Tracking

BSc Thesis

by

Dany Al-Rushdy & Ferdaws Nezamie

Student Name Student Number
Dany Al-Rushdy 5870836
Ferdaws Nezamie 5876788

Supervisors:
Dr. Padmakumar R. Rao
Dr. Sandra K. Raveendran
Tejus Kusur

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Monday 16" June, 2025

Abstract

This thesis presents the design and implementation of a motion control system intended for a real-time
vision-based tracking application. The goal was to track a coloured, free-falling water droplet using low-
cost hardware. For initial system verification, a coloured splash ball was used as a proxy target, chosen
for its higher visibility and consistent shape. The system integrated a Raspberry Pi 5 with a Raspberry
Pi HQ Camera and a Pimoroni PIM183 pan-tilt unit for vertical target tracking. A PD controller adjusted
the tilt angle based on positional data to track and centre the target. To compensate for approximately
100 ms of actuation latency, along with additional delays introduced by processing and computation,
the PD controller used predicted target positions. These were provided by an Extended Kalman Filter,
which was configured to forecast motion 160 ms ahead. Experimental results showed that the splash
ball remained in view for approximately 40-50% of its fall duration. Accurate centring was not achieved,
as delays in actuator response limited the system’s ability to keep pace with the high velocity of the
target. Furthermore, water droplet tracking proved to be infeasible, as the detection system could not
detect such small targets. These findings indicate that, due to hardware-induced delays, the system was
unable to achieve stable tracking of high-velocity targets.

Preface

This thesis is written as part of the Bachelor Graduation Project of the Electrical Engineering programme
at Delft University of Technology. The project focuses on combining embedded control systems, real-time
computer vision and predictive tracking methods.

The idea for choosing this project came from an interest in how low-cost hardware, like the Raspberry
Pi, can be used in high-performance tracking systems. During the project, we had the opportunity to
engage in both the theory behind control design and the practical side of building and integrating the
system.

We would like to express our gratitude to our supervisors Dr. Padmakumar R. Rao, Dr. Sandra K. Raveen-
dran and Tejus Kusur for their guidance and support during this project. We would also like to thank the
members of the collaborating subgroup: Enes Kaya, Naufal El Khatibi and Timo Haas for a pleasant
collaboration throughout the quarter.

11

contents

Abstract i
Preface ii
1 Introduction 1
1.1 State-of-the-Art 1
1.2 Project Objectivesand Challenges 2
1.3 Thesis Structure e 2

2 Programme of Requirements 3
21 TargetEnvironment. 3
2.2 Functional Requirements L 3
2.3 Trade-Off Requirements e 3
2.4 DevelopmentConstraints 4

3 System Characterization 5
3.1 SystemOverview e 5
3.2 Hardware Configuration 6
3.21 Raspberry Pi5 e 6

3.2.2 Raspberry PiHigh Quality Camera 7

3.2.3 PIM183 Pan-Tilt HAT e 7

4 PIM183 Pimoroni Pan-Tilt HAT 8
4.1 Actuator Objective e 8
4.2 Physical Setup 8
4.3 Characteristics and Actuation Behavior, 9

5 Controller Methodology 10
5.1 Control Objective 10
5.2 Review of Candidate Control Strategies, 10
521 PIDControl e 10

5.2.2 Model Predictive Control 10

5.2.3 Other Approaches Considered 10

5.3 Selectionand Rationale 11

6 Predictive State Estimation 12
6.1 Estimation Objective e 12
6.2 Review of Candidate Estimation Techniques 12
6.2.1 KalmanFilter e 12

6.2.2 Extended KalmanFilter 12

6.2.3 ParticleFilter 12

6.3 SelectionandRationale 13

7 Prototype Implementation and Validation Results 14
7.1 PDController e 14
7.1.1 Control Law Formulation 15

7.1.2 Derivative Term with Low-Pass Filtering 15

7.1.3 Actuator Command Generation 15

7.1.4 Gain Tuning Methodology 16

7.2 Extended Kalman Filter 16
7.21 SystemModeling 16

7.2.2 EKF Predictionand Update Cycle 17

7.2.3 Latency Compensation 18

7.3 Experimental Validation and System Tuning 18
7.3.1 Initial Trials and Problem Identification 18

11

7.3.2 Debugging and Latency Analysis
733 Results

8 Discussion
9 Conclusion
10 Recommendation and Future Work

A Python codes

A.1 PDcontroller e
A.2 Extended Kalman Filter
A.3 Systemintegration

Introduction

Real-time object tracking using active camera systems is a fundamental challenge in computer vision and
control, with applications in areas such as video surveillance and unmanned aerial vehicles (UAVs) [1],
[2]. The specific task of tracking a free-falling object introduces significant constraints on both detection
accuracy and control speed due to rapid acceleration under gravity and the limited time window in which
the object remains visible. To keep a rapidly exiting free-falling object in view, active cameras require
extremely fast and precise control.

Visual servoing, a control methodology where visual feedback is used to guide camera orientation, has
proven effective in keeping moving targets within the camera frame [3]. Dynamic camera systems out-
perform static setups by increasing tracking accuracy and extending the operational workspace [4]. How-
ever, high-speed visual tracking systems often rely on specialized hardware platforms such as FPGAs
and galvanometer mirrors to meet stringent real-time requirements [5], [6]. While these platforms are
effective, they are high in costs.

1.1. State-of-the-Art

In embedded systems, classical control strategies such as PID controllers are frequently combined with
predictive estimation techniques like Kalman filters. These methods have been successfully applied to
track moderately fast objects using pan-tilt platforms in real-time scenarios [7], [8]. However, their per-
formance are rarely evaluated under more demanding conditions, such as those involving gravitational
acceleration and strict actuator latency constraints.

Recent research has explored more advanced predictive control strategies to address the limitations of
traditional feedback methods. Nebeluk et al. present a model predictive control (MPC) approach for pan—
tilt camera systems, employing second-order linear models to forecast target motion over a finite horizon.
Their method maintains the object near the image centre by tightly integrating visual feedback with
actuator prediction and demonstrates improved tracking performance in both simulation and physical
robot experiments [9].

When tracking small and fast-moving objects, such as water droplets, additional challenges arise due
to motion blur and low signal-to-noise ratios. Mirzaei et al. provide a comprehensive review of these
issues and emphasize that classical detection methods often fail under such conditions. They advocate
for predictive approaches, including Kalman and particle filters, which are particularly effective when
operating with low-resolution visual input and under mechanical latency constraints [10].

1.2. Project Objectives and Challenges

The objective of this project was to design and implement a real-time tracking system capable of main-
taining a free-falling object centred within the frame of a camera throughout its fall. This was initially
tested with a coloured ball and was intended for tracking a water droplet. The motivation for tracking a
falling water droplet stems from its relevance to research in fluid dynamics and atmospheric sciences,
where detailed observation of droplet behaviour is vital for validating physical models related to atom-
ization, rainfall and air—fluid interactions [11].

The tracking system was designed to run on embedded hardware, utilizing low-cost components. This
platform was chosen to evaluate the feasibility of high-speed visual tracking using accessible hardware.
However, the use of an embedded platform imposes strict limitations on system performance. The se-
lected servo mechanism introduce an inherent actuation delay of up to 20 ms, which constrains the
control loop’s responsiveness. When combined with delays from image acquisition and processing, this
further degrades real-time performance. Additionally, objects falling under gravity reach high velocities,
demanding fast and precise control updates. Together, these constraints pose significant challenges to
achieving accurate and responsive real-time tracking.

1.3. Thesis Structure

This thesis is organized as follows. Chapter 2 defines the Programme of Requirements, detailing both
functional constraints and performance metrics that guided the development. Chapter 3 outlines the
overall system design and methodology, including a description of the hardware configuration. Chap-
ter 4 provides a detailed analysis of the actuator used for motion tracking. Chapter 5 discusses the
selection of an appropriate control strategy. Chapter 6 focuses on predictive estimation techniques and
the justification for selecting an approach capable of addressing system delays and modelling require-
ments. The implementation and tuning of both the control algorithm and the state estimator, including
latency compensation and validation, are presented in Chapter 7. The capabilities of the system are dis-
cussed in Chapter 8. Chapter 9 presents the final conclusions. Chapter 10 outlines recommendations
for future work.

Programme of Requirements

This section defines the requirements for a system designed to track a falling object using a camera
mounted on a pan-tilt unit. The goal is to vertically maintain the object within the camera frame through-
out the fall by continuously adjusting the orientation of the camera based on the object’s position. The
system includes a Raspberry Pi 5, a Raspberry Pi HQ camera and a Pimoroni PIM183 pan-tilt unit.
The PIM183 pan-tilt actuator receives pulse-width modulated (PWM) commands. Object position is ex-
tracted using image processing and actuator commands are computed accordingly. The specifications
presented below reflect the known constraints and performance goals.

2.1. Target Environment

The operating environment is a controlled laboratory setup with consistent lighting and a fixed drop zone.
The distance of the object from the camera should be known before it falls. The proxy object to be tracked
is a coloured ball approximately 5 cm in diameter.

2.2. Functional Requirements

Table 2.1: Mandatory Functional Requirements.

ID Requirement

MR-01 | The system must track a vertically falling object using tilt-only motion,
operating at a frequency of 50 FPS.

MR-02 | The control loop, consisting of image acquisition, state estimation and
command generation, must complete execution within 20 ms.

MR-03 | The actuator commands must remain within mechanical tilt constraints
of —90° to +90° throughout operation.

MR-04 | The system must execute all computations exclusively on the Raspberry
Pi 5 without external assistance.

2.3. Trade-Off Requirements

Table 2.2: Trade-Off Requirements.

ID Requirement
ToR-01 | The object’s position should remain within £5% of the image center dur-
ing the fall.

ToR-02 | The control system should minimize overshoot and oscillations in the
actuator response.

2.4. Development Constraints
» The system is built on a Raspberry Pi 5 running Raspberry Pi OS.

* The camera is a Raspberry Pi HQ Camera connected via the CSl interface.

* The pan-tilt mechanism is controlled via PWM signals generated by the microcontroller on the
PIM183 Pan-Tilt HAT.

» The PWM response delay of the actuator is approximately 20 ms, based on initial hardware docu-
mentation.

System Characterization

3.1. System Overview

The tracking system was designed to follow and centre a falling object along the vertical axis. For initial
system verification, a coloured splash ball was used as a proxy target. The complete control loop con-
sisted of visual detection, which provided the object’s centre position along the image’s vertical axis; a
controller for adjusting the camera’s tilt; and state estimation using a filter to feed future predicted posi-
tions to the controller, compensating for system delay. The group responsible for object detection [12]
only provided y-coordinates. Therefore, the system was limited to vertical tracking. The system overview
can be seen in Fig. 3.1.

Controller

Hardware

Figure 3.1: Pipeline flowchart of the tracking system.

3.2. Hardware Configuration

To implement a real-time vertical tracking system with predictive control, specific hardware components
were selected to meet the processing and actuation requirements under strict timing constraints. Each
component played a distinct role within the control loop: acquiring visual information, performing onboard
computation and actuating the camera’s tilt. The system consisted of the following main components:
the Raspberry Pi 5 as the central processing unit, the Raspberry Pi High Quality Camera for visual input
and the PIM183 Pan-Tilt HAT for tilt actuation. These components were chosen for their compatibility
with the Raspberry Pi platform and low cost. The overall setup is shown in Figs. 3.2 and 3.3.

Figure 3.3: PIM183 actuator setup.
Figure 3.2: Raspberry Pi 5 setup.

3.2.1. Raspberry Pi5

The Raspberry Pi 5 serves as the central processing unit. It executed the entire tracking pipeline, includ-
ing image capture, object detection, filter-based prediction and control, at 50 Hz. The board’s processing
capabilities enable concurrent execution of computationally intensive tasks, while GPIO access allows
direct communication with the servo controller. This hardware configuration facilitated a responsive track-
ing platform, within the physical and computational constraints of embedded systems. The component
is illustrated in Fig. 3.4.

Figure 3.4: Raspberry Pi 5.

3.2.2. Raspberry Pi High Quality Camera

The Raspberry Pl HQ Camera delivers video frames with a vertical resolution of 640 pixels at a frame
rate of 120 FPS. The large sensor enhances image clarity under moderate lighting conditions, while the
manual fixed-focus lens offers flexibility to adjust the focal length prior to operation. Fig. 3.5 shows the
camera module.

Figure 3.5: Raspberry Pi High Quality Camera.

3.2.3. PIM183 Pan-Tilt HAT

The PIM183 Pan-Tilt HAT was used to actuate the tilt motion of the HQ camera. Only the tilt axis was
utilized in this project to follow the vertically falling object. The PIM183 receives control commands di-
rectly from the Raspberry Pi GPIO interface. Further details of this module are provided in Chapter 4.
The component is shown in Fig. 3.6.

Figure 3.6: PIM183 Module.

PIM183 Pimoroni Pan-Tilt HAT

4.1. Actuator Objective

To track a free-falling object in real time, it was necessary to move the camera dynamically. A static
camera would lose sight of the target within a fraction of a second, because of its fixed field of view
and the high velocity of the object. Since the object’s motion is driven by gravity and accelerates rapidly,
keeping it in view required the camera to tilt downward in real time to follow the object’s fall. This made
an actuator essential to adjust the camera angle continuously and keep the object centred in the video
frame. Without this capability, the tracking system would fail to maximize visible tracking duration and
precision.

The Pimoroni PIM183 Pan-Tilt HAT (hereafter referred to as the PIM183) was selected, because it pro-
vided an integrated, compact and Pi-compatible solution for actuating the camera. The HAT features
two SG90 micro servos, one for panning and one for tilting. The PIM183 served as the physical actu-
ator in the system’s control loop by receiving angular displacement commands to correct the camera’s
orientation in response to perceived object movement.

4.2. Physical Setup

During the integration phase of the PIM183, several mechanical constraints were encountered. The
active cooling system of the Raspberry Pi 5 obstructed direct mounting of the PIM183 on the GPIO pins.
This was resolved using a 40-pin male-to-female jumper cable. This jumper cable can be seen in Fig.
41.

Another problem was that the actuator experienced a large force when attempting to tilt the camera at
full speed. This affected mechanical stability and led to unintended oscillations. To tackle this, long bolts
were used to attach the system to a block of wood. This solution significantly increased the stability of
the actuator and the camera.

An overview of the complete physical setup is shown in Figs. 3.2 and 3.3, which illustrate the connection
between the PIM183 and the Raspberry Pi.

Figure 4.1: 40-pin male-to-female jumper cable used to connect the PIM183 to the Raspberry Pi.

4.3. Characteristics and Actuation Behavior

The tilt axis of the PIM183 is actuated using a standard Pulse Width Modulation (PWM) signal, which
is generated by the onboard microcontroller of the PIM183 module. The SG90 micro servo, which can
be seen in Fig. 4.2, interprets this PWM signal to determine its target angle within a nominal range of
approximately +90°.

Figure 4.2: SG90 micro servo.

The control signal operates at a fixed frequency of 50 Hz, which corresponds to one 20 ms cycle per
control update. Within each cycle, the pulse width determines the desired angle:

* 1.0ms pulse — =~ 0° (minimum position),
* 1.5ms pulse — =~ 90° (neutral),
* 2.0ms pulse — ~ 180° (maximum position).

This results in a linear mapping between pulse width and angular position, where each microsecond of
pulse duration corresponds to approximately 0.09° of rotation. The servo reads this pulse once every
20 ms and begins moving toward the corresponding target angle.

One key limitation in high-speed servoing is the latency introduced by the servo’s mechanical response.
According to the datasheet, the SG90 operates with a control signal period of 20 ms [13]. This implies
that it may take up to one full cycle, 20 ms, for the PIM183 to receive and respond to a new tilt command.

Controller Methodology

5.1. Control Objective

The objective of the project was to keep the falling target object centred and within the camera frame
throughout its fall. To enable this, a closed-loop control system was required. In the absence of feedback,
the system would be incapable of compensating for the fall of the object. Therefore, the platform had to
be provided with continuous corrective commands to ensure proper centring during the fall.

5.2. Review of Candidate Control Strategies

Successful real-time tracking requires a control strategy capable of rapid, accurate responses while
operating within the computational constraints of the used hardware. To identify the most suitable ap-
proach for this project, several prominent control methodologies were evaluated for their applicability
to high-speed visual servoing scenarios. These included classic proportional-integral-derivative (PID)
control, more advanced model predictive control (MPC) and a brief consideration of other sophisticated
techniques.

5.2.1. PID Control

The PID controller is widely used in industrial and embedded applications due to its simple structure
and reliable performance across a variety of control problems [14, pp. 1-2]. It combines proportional
action for immediate error correction, derivative action to dampen system response and integral action
to eliminate steady-state error [14, p. 72]. Although the set-point in image coordinates remains fixed at
the centre of the frame, the continuously falling object generates a rapidly changing error signal. As a
result, the integral term becomes ineffective and potentially detrimental, since it integrates non-stationary
error. This could lead to overshoot and degraded transient response [14, p. 77].

5.2.2. Model Predictive Control

Model Predictive Control is an advanced control approach that optimizes future control actions over a
defined time horizon by solving a constrained optimization problem at each time step [15]. Its predictive
capability is advantageous in dynamic scenarios, particularly when delays or constraints are present [9].
Nonetheless, MPC typically demands significant computational resources and requires a reliable system
model, which may be difficult to construct and maintain on lightweight embedded platforms such as the
Raspberry Pi 5. For instance, Forgione et al. [16, p. 5193] reported an average MPC computation time
of 22 ms per iteration on a Raspberry Pi 3. This highlights the computational limitations of such devices
in real-time settings.

5.2.3. Other Approaches Considered

Additional methods such as Linear Quadratic Regulation [14] and fuzzy control schemes [17] were also
acknowledged during the design phase. These methods, while promising in theory, were deemed too
complex or model-dependent for the scope and constraints of this application.

10

5.3. Selection and Rationale

Given the need for responsiveness, computational efficiency and minimal tuning complexity, a Proportional-
Derivative (PD) controller was selected. Unlike the full PID approach, the exclusion of the integral term
eliminates the risk of integral wind-up caused by the continuously and rapidly changing error signal
associated with a falling object. The PD structure provides immediate corrective action through the pro-
portional term while improving system stability and transient response with derivative damping. This
configuration was found to be more suitable for high-speed tracking applications, where fast response
and stability outweigh steady-state accuracy. Additionally, the PD controller offered a better fit for real-
time implementation on embedded hardware with constrained computational resources.

1

Predictive State Estimation

6.1. Estimation Objective

To counteract the delay of up to 20 ms in the PIM183, a prediction-based approach is essential. This
delay, introduced by the PWM signal generation, results in control actions based on outdated positional
data. Therefore, a real-time state estimator capable of predicting the near-future position of the falling
object was required. The estimator must model the trajectory of the falling target, process noisy visual
data and be compatible with the computational constraints of the Raspberry Pi 5.

6.2. Review of Candidate Estimation Techniques

Several estimation techniques were reviewed to determine their suitability for real-time object tracking.
The methods considered include the classical Kalman Filter (KF), the Extended Kalman Filter (EKF) and
the Particle Filter (PF). Each technique is briefly described below.

6.2.1. Kalman Filter

The Kalman Filter is a recursive state estimator that assumes linear system dynamics and additive
Gaussian noise in both the process and measurement models [18]. It operates through two main, iter-
ative phases. First, a prediction step uses a known control input and a dynamic model to forecast the
system’s current state. This is followed by an update step, which then corrects and refines this state
estimate based on new measurements. While highly efficient and optimal for linear systems, the KF is
limited by its assumption of linearity. In scenarios involving non-linear dynamics, such as gravitational
acceleration with air resistance, its accuracy degrades.

6.2.2. Extended Kalman Filter

The Extended Kalman Filter generalizes the standard Kalman Filter to non-linear systems by linearizing
the process and observation models around the current state estimate using first-order Taylor expan-
sion [19]. This allows it to estimate states in systems where the motion model includes non-linearities,
such as quadratic drag during free fall. The EKF maintains the recursive prediction-update structure of
the KF but incorporates Jacobians to approximate the local behaviour of the system. It is particularly
suitable for systems with smooth non-linearities and modest computational budgets. EKFs are widely
used in object modelling, robot control, target tracking and surveillance due to their efficient handling of
mild non-linearities in dynamic systems [20].

6.2.3. Particle Filter

The Particle Filter is a Bayesian estimation method that approximates the posterior distribution of a sys-
tem’s state using a set of weighted particles [21]. Each particle represents a potential state and its weight
reflects how well that state explains the observed measurements. Unlike Kalman-based methods, the
Particle Filter does not assume linearity or Gaussian noise. This makes it suitable for highly non-linear
and multimodal distributions. However, its computational complexity grows with the number of particles
required to achieve sufficient estimation accuracy, especially at high update rates such as 50 frames
per second. This makes the method difficult to implement in real time on constrained embedded plat-

12

forms. As noted by Mirzaei et al., while the Particle Filter resolves the limitations of linear and unimodal
assumptions, its increased computational cost renders it unsuitable for real-time applications [10, p. 14].

6.3. Selection and Rationale

The Extended Kalman Filter was selected as the optimal state estimation technique due to its superior
balance of non-linear predictive performance and computational efficiency for this application. This al-
lows accurate prediction of vertical position and velocity, incorporating both gravity and drag effects. The
EKF’s recursive nature enables operation at high update rates with minimal latency, making it well-suited
for compensating the 20 ms servo delay. Furthermore, its lightweight computational footprint ensures

real-time compatibility with the constraints of the Raspberry Pi 5, without compromising estimation fi-
delity.

13

Prototype Implementation and
Validation Results

7.1. PD Controller

A PD controller was implemented to correct the positional offset between the tracked object and the cen-
tre of the camera frame. The block diagram in Fig. 7.1 represents the core structure of the PD controller
applied to the tracking problem. This configuration is designed to minimize the tracking error by com-
bining a proportional and derivative response before commanding the tilt adjustment. The mathematical
formulation of this controller is presented next.

Y

Kpe(t)

ig(i +Cr)@- Process ()

_ de(t)
K
d dt

Y

Figure 7.1: Block diagram of the PD controller.

14

7.1.1. Control Law Formulation
The discrete-time PD control law used in the implementation is expressed as:

de(t)
dt

where u(t) denotes the commanded tilt adjustment in pixels, e(¢) is the pixel error between the object’s
position and the camera’s centreline and K,,, K, are the proportional and derivative gains, respectively
[14, p. 64].

u(t) =Kp-e(t)+ Kq- (7.1)

7.1.2. Derivative Term with Low-Pass Filtering

To prevent excessive amplification of high-frequency noise, the derivative term in the PD controller was
implemented with a first-order low-pass filter. As discussed in [14, p. 73], the ideal derivative D(s) = Kgs
has unbounded gain as frequency increases. This is undesirable in practical systems where sensor
measurements are noisy. To address this, the derivative term is implemented as:

- de
14 8Ty

D(s) (7.2)

where Ty = % is the filter time constant and N is a tuning parameter typically chosen in the range

2 < N < 20 to balance noise suppression and responsiveness.

Equation (7.2) represents a standard first-order low-pass filtered derivative, which approximates the
ideal derivative at low frequencies while limiting the gain at high frequencies. To realize this in discrete
time, the following steps are taken:

» The raw discrete derivative is computed using a backward difference:

t)—e(t—1
draw(t) = 6() ;t()
* A first-order infinite impulse response (lIR) filter is then applied:
diit(t) = o - draw(t) + (1 —) - drn(t — 1)

where the smoothing factor « is defined by:

_dt
“= Tf + dt
This yields the final discrete-time expression:
dt e(t) —e(t—1) dt
(1) = - 1— ———) -dmg(t — 1 7.
drii(t) T+ di pr + T+ di die(t — 1) (7.3)

Equation (7.3) matches the implementation used in this work. It ensures that the derivative action re-
mains responsive to meaningful error changes while attenuating high-frequency noise, in accordance
with the design recommendations in [14, p. 73].

7.1.3. Actuator Command Generation

Since the object position was expressed in pixel coordinates, the control signal «(t) was initially repre-
sented in pixels. To actuate the tilt mechanism, this pixel displacement was converted into an angular
command in degrees. The conversion required calculating the camera’s vertical angular resolution, de-
fined as the number of degrees per pixel.

The vertical field of view angle (65,,) was determined using the formula [22, p. 14]:

H.

Orov = 2 - arctan (S;?”) (7.4)
where Hgensor is the sensor height and f the focal length, both in millimetres. The angular resolution was
then calculated as:

Orov - 180° /7

deg/px =
a/p. o

(7.5)

15

where H,, is the vertical resolution in pixels. This formulation is based on the pinhole camera model [22,
p. 14], a standard in vision-based control systems due to its simplicity and practical accuracy under
narrow field-of-view conditions. The camera specifications were based on the Raspberry Pi HQ Camera
module, featuring a sensor height of 4.712 mm and a mounted lens with a 35 mm focal length [23].
These parameters result in a vertical field of view (FoV) of approximately 7.7° and an angular resolution
of 0.012° per pixel for an image height of 640 pixels.

7.1.4. Gain Tuning Methodology

The proportional and derivative gains (K,, K,) of the PD controller were determined through iterative
testing using a slow-moving coloured ball. This setup enabled controlled evaluation of the system’s
response to gradual displacements without rapid dynamics or tracking noise dominating the behavior.

The tuning procedure followed a classical heuristic approach: the proportional gain K, was gradually
increased from zero until the system began to exhibit visible oscillations in response to positional errors.
Once continuous oscillation was observed, the value of K, was halved to achieve a more stable and
damped response [24, p. 234].

After determining a suitable K, the derivative gain K, was incrementally adjusted to further reduce
overshoot and damp residual oscillations, without significantly slowing the response. The final gain val-
ues were selected based on qualitative observation of smooth, stable object tracking under slow motion
conditions.

7.2. Extended Kalman Filter

To counteract significant system latency arising from image processing and actuator response, an Ex-
tended Kalman Filter (EKF) was implemented. The EKF serves a dual purpose: it filters noise from the
visual sensor measurements and provides a predictive estimate of the falling object’s state. This enables
a feed-forward control strategy that targets the object’s future position, rather than reacting to delayed
and noisy observations.

7.2.1. System Modeling

The state of the system at time step k is defined by the vector:
Yk
=" 7.6
x= %] 76)
where y;, is the vertical position and g, is the vertical velocity in the image frame.

The system dynamics are described by a non-linear process model that accounts for gravity and quadratic
air drag:

X = f(Xp-1) + w1 (7.7)
where f is the non-linear state transition function and wy_; is a zero-mean Gaussian process noise with
covariance Q.

To apply a physics-based model, physical parameters were scaled into the pixel domain. A scale factor
spim (in px/m) was determined from the camera’s geometry using the pinhole model [22]:

m (7.8)

Sp/m =

16

Figure 7.2: Camera geometry for determining pixel-to-meter scale factor using the pinhole model.

where H,y is the sensor’s vertical resolution in pixels, D is the known object distance in meters and 6,y
is the vertical field of view.

Consequently, gravitational acceleration g = 9.81 m/s* was converted to pixel units as Gpix = G * Spim-
The drag term, based on the standard drag equation, was also converted to a pixel-based coefficient to
enable its use in image coordinate space. The resulting proportional gain K, retains the dimension of
inverse meters:

[Kp] = m~!
This was subsequently scaled by a pixel-to-meter conversion factor to match the coordinate system
used by the vision-based tracking system,

L 05-p-Cy- A

k
b m - Sp/m

(7.9)

where p is air density, Cy is the drag coefficient, A is the cross-sectional area and m is the object mass.

7.2.2. EKF Prediction and Update Cycle

The EKF operates in a two-step cycle:

1. Prediction: The state and covariance are projected forward in time. The predicted state estimate
x, is computed using the non-linear model:

anet = Gpix — kp + (r—1)” (7.10)
. 1

Ui = U1+ Je1 At + SaneAL? (7.11)

yk_ = Yp—1+ net At (7.12)

The system dynamics are linearized around the previous state estimate x;_; to compute the Jacobian
matrix F:
1 At —ky-gp_1 - At?

F. = 0 T—2-k-jos- At (7.13)
The predicted covariance estimate is then found by:
P, =FP, 1 F] + Qi (7.14)

2. Update: The predicted estimate is corrected using the incoming measurement z;.. The measure-
ment model is linear, observing only the position:

zr, = Hxp + v, withH = [1 0} (7.15)

where v, is zero-mean Gaussian measurement noise with covariance R. The standard EKF update
equations are then applied [19]:

K,=P,H (HP,H' + R)™* (7.16)
X = X]: + Kk(zk — HXI;) (717)
P, =(1-KH)P, (7.18)

17

where K, is the optimal Kalman gain and x;, and Py, are the final updated state and covariance estimates
for time step £.

7.2.3. Latency Compensation

A key function of the filter is to provide a future state prediction, %;., 4%, to compensate for a total system
latency of approximately 20 ms. This prediction was generated by extrapolating the non-linear dynamics
model over a fixed time horizon as shown in Equations (7.10)—(7.12), for A future time steps, starting
from the latest updated state x;. As the EKF ran at 50 Hz, A was set to 1 to predict exactly 20 ms ahead.
This physics-informed projection yields an accurate target for the controller, effectively mitigating the
delay.

This EKF framework fuses noisy sensor data with a physical process model to produce robust state
estimates. Its predictive capability is critical for achieving real-time control in the presence of systemic
latencies, while remaining computationally efficient for on-board processing [19].

7.3. Experimental Validation and System Tuning

7.3.1. Initial Trials and Problem Identification

Initial validation trials revealed that the system was unable to reliably track the falling object. In early
experiments, the camera would not follow the ball during free fall and instead exhibited a single, small
corrective movement only after the ball had already impacted the ground. This indicated a substantial
latency between the visual detection, state estimation and actuator response.

7.3.2. Debugging and Latency Analysis

To methodically isolate the source of the delay, the investigation began with the actuator itself. A minimal
test script was developed to command the PIM183 tilt actuator directly, bypassing the entire object
detection, EKF and PD control pipeline. This allowed for the characterization of the actuator’s baseline
performance in isolation. To capture the results, a separate Raspberry Pi Al camera was set up as an
independent observer, recording the actuator’s response to step commands under controlled conditions.
The actuator was given a step command to change tilt angle and a red visual marker was displayed
immediately upon issuing the command to mark the frame of initiation. The scene was recorded at 30
frames per second under two conditions: (1) with the HQ camera mounted on the actuator and (2) without
it.

In each condition, multiple trials were recorded and the resulting frame sequences were analysed. The
delay between the command signal and the first visible actuator movement was measured in frames. It
was observed that without the camera mounted, the actuator responded after approximately two frames
(=66 ms), whereas with the camera mounted, the delay increased to approximately three frames (=100
ms). This confirmed that the weight introduced by the HQ camera assembly significantly increased the
actuator’s response latency, but also that the PIM183 itself had a latency which was higher than the
expected 20 ms.

Including software processing delays measured during pipeline profiling, the total effective delay of the
system was estimated to be approximately 160 ms. The original EKF configuration had assumed a
single-frame prediction horizon. To account for the newly measured delay, the EKF was reconfigured
to predict eight frames ahead. This modification allowed the controller to target a future position of the
object, partially mitigating the latency.

7.3.3. Results

Subsequent tests with the revised EKF showed improved tracking performance. Frame-by-frame video
analysis revealed that the ball remained within the camera’s field of view for approximately 40-50% of
its fall duration. However, the object often appeared off-centre and the tracking still lagged during fast
downward motion. This behaviour was attributed to the combination of physical limitations of the actuator,
residual latency and the camera’s mounting instability, which caused vibrations during tilt corrections.

18

Discussion

The primary objective of this project was to achieve real-time centring and tracking of a vertically falling
water droplet using embedded, low-cost hardware. While the final system demonstrated partial success
in tracking a coloured splash ball within the camera frame, the complete centring objective and the
ultimate goal of tracking a water droplet proved unattainable.

The integration of a Proportional-Derivative (PD) controller with an Extended Kalman Filter (EKF) en-
abled predictive motion control to compensate for significant system latency. The EKF was configured to
predict the object’s vertical position eight frames ahead, corresponding to a 160 ms delay at 50 frames
per second. This predictive control strategy improved the tracking response relative to initial implemen-
tations that relied solely on current position data.

However, the mechanical response characteristics of the PIM183 actuator constituted a critical perfor-
mance bottleneck. Despite the controller’s ability to issue commands in real time, the actuator introduced
delays of up to 100 ms due to the camera’s weight and motor limitations of the PIM183. Analysis con-
firmed that the system was limited to issuing no more than two effective corrective inputs during the
entire fall duration of the object.

The system was not tested on water droplets, as it could not be detected by the object detection algorithm.
Since detecting a splash ball was already challenging, it can be assumed that detecting a water droplet,
would be even more difficult.

The experiments validated that predictive control with an EKF—PD configuration can meaningfully miti-
gate latency in systems with modest dynamic demands. However, this approach becomes inadequate
when applied to high-speed, low-mass objects with rapid positional changes, such as falling water
droplets. The limitations of low-torque actuators and delayed image processing outweigh the benefits of
model-based prediction. These hardware constraints prevent the system from reacting at the required
rate to track the object accurately. Although the control strategy is theoretically sound and well-designed,
its practical effectiveness is restricted. The overall system performance is ultimately bounded by the re-
sponsiveness of the hardware and the quality of the visual measurements.

19

Conclusion

This thesis investigated the design and implementation of a real-time motion control system for vertically
tracking a free-falling object using embedded hardware. The primary aim was to maintain a water droplet
centred in the camera frame throughout its descent. Due to its limited visibility and rapid motion, a
coloured splash ball was initially used as a proxy to validate the concept. Despite this simplification, the
complete centring objective remained out of reach.

The final system employed a Proportional-Derivative (PD) controller together with an Extended Kalman
Filter (EKF). This configuration aimed to counteract substantial actuation and processing latency, which
was experimentally determined to be approximately 160 ms. The EKF predicted the target’s future po-
sition eight frames ahead, providing the PD controller with a forward-looking reference. This approach
improved system responsiveness compared to non-predictive implementations, allowing the ball to re-
main within the camera frame for nearly half of its fall duration.

Nevertheless, several key limitations emerged. The PIM183 actuator exhibited a mechanical delay of
up to 100 ms, compounded by the inertia of the mounted camera. This restricted the control loop to no
more than two effective adjustments during the fall, making precise tracking unfeasible. Water droplet
tracking was not attempted, as it could not be tracked correctly by the object detection.

In summary, the system fell short of the real-time accuracy and agility required for high-speed droplet
tracking. The results highlight the need for faster actuators and improved visual detection to enable pre-
cise tracking of small objects in real time. Despite these limitations, the system forms a useful foundation
for future research into embedded vision-based tracking systems with predictive capabilities.

20

10

Recommendation and Future Work

The results of this project highlight several promising directions for future research and development in
the domain of embedded visual tracking systems.

Firstly, one of the most critical hardware limitations identified was the mechanical delay introduced by the
PIM183 actuator. To improve system responsiveness, future designs should adopt higher-torque, low-
latency actuators. Alternatives such as direct-drive motors or faster servo mechanisms could significantly
reduce the effective system delay and increase the number of corrective actions possible during a fall.

Secondly, the mass and inertia introduced by the Raspberry Pi HQ camera noticeably impacted the tilt
system’s performance. Employing a lighter camera module or optimising the mechanical mounting could
improve system stability and reduce vibrations, leading to more consistent tracking performance.

Furthermore, while the Extended Kalman Filter improved predictive control under latency constraints, the
detection system itself struggled with reliability under fast-motion conditions. Future work should explore
integrating more advanced object detection techniques, which may offer better performance with small,
fast-moving targets such as water droplets.

Finally, although tracking water droplets was beyond the capabilities of the current system, the under-
lying setup showed promising results when applied to slower-moving objects. This suggests that the
overall approach has potential, especially if key limitations are addressed. Future research could focus
on improving detection for small and fast targets, for instance by applying adaptive filtering techniques
or integrating additional sensors to enhance reliability in visually challenging conditions.

By addressing these mechanical, computational and algorithmic constraints, the system could be devel-
oped into a more versatile and responsive tracking solution that is capable of operating in real time and
handling high-speed motion with greater precision and stability.

21

45
46
47
48
49
50

Python codes

A.l. PD controller

import time

class PD:

def

def

__init__(self, kp, kd, setpoint, deg_per_px,
tau=0.02, max_dt=0.1):

PID gains

self .kp kp

self .kd kd

Desired setpoint in pixels (centre of image height in camera frame)
self.setpoint = setpoint

Conversion factor (amount of degrees a pixel represents)
self.deg_per_px = deg_per_px

Derivative smoothing and dt cap

self.tau = tau
self .max_dt = max_dt

Internal state

self .prev_time = time.monotonic ()
self.deriv = 0.0
self .prev_error = None

self.last_error = 0.0
self.last_dt = 1le-6

update (self, measurement):
now = time.monotonic()
dt = max(le-6, min(now - self.prev_time, self.max_dt))

Compute error in pixels
error = self.setpoint - measurement

Derivative on error, low-pass filtered
if self.prev_error is None:
self.deriv = 0.0

else:
raw_deriv = (error - self.prev_error) / dt
alpha = dt / (self.tau + dt)
self.deriv = alpha * raw_deriv + (1 - alpha) * self.deriv

PID terms

P = self.kp * error

D = self.kd * self.deriv
output_px = P + D

Save state

self .prev_time = now
self .prev_error = error

22

51 self.last_error = error

52 self.last_dt = dt

53

54 # Convert pixel-output to degrees
55 return -output_px * self.deg_per_px
56

57 def reset(self):

58 # Clear integral and derivative history
59 self.integral = 0.0

60 self.deriv = 0.0

61 self .prev_error = None

62 self.prev_time = time.monotonic ()
63 self.last_error = 0.0

64 self.last_dt = 1le-6

A.2. Extended Kalman Filter

import numpy as np
import math

1
2

3

4 class EKF_BallTracker:

5 def __init__(self,

6 initial_y, initial_vy,

7 initial_P_yy, initial_P_vv,

8 process_noise_y, process_noise_vy,
9 measurement_noise_y,

10 dt, g_pix, k_drag_pix, px_per_m):

11 self .px_per_m = px_per_m

12

13 # State vector [y, vyl"T

14 self.x_hat = np.array([initial_y, initial_vyl, dtype=float)

15

16 # State covariance matrix P_klk

17 self .P = np.diag([initial_P_yy, initial_P_vv]).astype(float)

18

19 # Process noise covariance Q

20 self.Q = np.diag([process_noise_y, process_noise_vy]).astype(float)

21

22 # Measurement noise covariance R

23 self .R = float(measurement_noise_y)

24

25 # Time step

26 self.dt = float(dt)

27

28 # Physical parameters (in pixel units)

29 self.g_pix = float(g_pix)

30 self .k_drag_pix = float(k_drag_pix) # Units: 1/pixel

31

32 # Measurement matrix H (constant)

33 self .H = np.array([[1, 0]], dtype=float)

34 self H T = self . H.T

35

36 # Identity matrix

37 self._I = np.eye(2)

38

39 def predict(self):

40 y_prev, vy_prev = self.x_hat

41 a_net = self.g _pix - self.k_drag_pix * vy_prev**2 # Simple quadratic drag model

42

43 # State prediction

44 y_pred = y_prev + vy_prev * self.dt + 0.5 * a_net * self.dtx**2

45 vy_pred = vy_prev + a_net * self.dt

46 self.x_hat = np.array([y_pred, vy_predl])

a7

48 F = np.zeros((2, 2), dtype=float)

49 F[o, 0] = 1.0

50 F[0, 1] = self.dt - self.k_drag_pix * vy_prev * self.dt**2 # Use vy_prev from start of
interval

51 F[1, 0] = 0.0

52 F[1, 1] = 1.0 - 2.0 * self.k_drag_pix * vy_prev * self.dt # Use vy_prev from start of
interval

53

54 # Covariance prediction

23

55 self .P = F @ self.P @ F.T + self.Q

56 return self.x_hat

57

58 def update(self, measurement_y):

59 # Innovation (measurement residual)

60 y_tilde = measurement_y - self.x_hat[0] # x_hat[0] is y_pred_k|k-1
61

62 # Innovation covariance

63 # S = H P_k|lk-1 H'T + R

64 # Since H = [1, 0], HP H'T = P[0,0]

65 S = self.P[0, 0] + self.R

66 if 8 == 0: # Avoid division by zero

67 S = 1e-9 # Add a tiny epsilon

68

69 # Kalman gain K

70 # K = P_k|lk-1 H°T S™-1

71 # P_k|k-1 H°T = [P[0,0], P[1,0]]"T

72 K_column_vector = self.P @ self.H_T

73 K = K_column_vector / S

74

75 # State update

76 self.x_hat = self.x_hat + (K * y_tilde).flatten()

77

78 # Covariance update

79 self.P = (self._I - K @ self.H) @ self.P

80 # Ensure P remains symmetric

81 self .P = 0.5 * (self.P + self.P.T)

82 return self.x_hat

83

84 def get_current_position(self):

85 return self.x_hat [0]

86

87 def get_current_velocity(self):

88 return self.x_hat[1] / self.px_per_m

89

90 def get_predicted(self):

91 en

92 Predicts next-step position based on the current updated state x_hat (klk).
93 This is y_hat (k+1|k).

94 men

95 A =8

96 y_curr_updated, vy_curr_updated = self.x_hat # These are x_klk
97 a_net_curr_updated = self.g_pix - self.k_drag_pix * vy_curr_updated**2
98 return y_curr_updated + vy_curr_updated * A * self.dt + 0.5 * a_net_curr_updated * (A

* self.dt)*x*2

A.3. System Integration

import os
import sys
import time
import math

import cv2 as cv
import numpy as np

import processor.algorithms.colored_frame_difference as proc_color
10 import processor.algorithms.frame_difference as proc_naive

11 import processor.algorithms.dummy_algorithm as dummy

13 import pantilthat as pth

14 import controller.pd as pd_mod

15 import controller.ekf as ekf_mod

17 from processor.camera import CameraStream, SharedObject

18 from threading import Thread

21 def clamp(value, vmin, vmax):
22 return max(vmin, min(vmax, value))

25 def tilt(shared_obj):

24

26 while True:

27 if shared_obj.is_exit:

28 sys.exit (0)

29 loop_start = time.monotonic()

30 pth.pan(0)

31 pth.tilt (shared_obj.current_tilt)

32

33 elapsed = time.monotonic() - loop_start
34 sleep_time = shared_obj.LOOP_DT_TARGET - elapsed
35 if sleep_time > O0:

36 time.sleep(sleep_time)

<74

38

39

40 if __name__ == '__main__"':

41 # Create shared-memory for capturing, processing and tilting
42 shared_obj = SharedObject ()

43

44 # Initialize camera

45 camera = CameraStream(shared_obj)

46 camera.start ()

47

48 # Frame dimensions and timing

49 FRAME_HEIGHT = 640

50 FRAME_RATE = 50

51 shared_obj.LOOP_DT_TARGET = 1.0 / FRAME_RATE
52

53 # Compute vertical FoV

54 SENSOR_HEIGHT_MM = 4.712

55 FOCAL_LENGTH_MM = 35

56 vfov_rad = 2 * math.atan(SENSOR_HEIGHT_MM / (2 * FOCAL_LENGTH_MM))
57 vfov_deg = math.degrees(vfov_rad)

58 deg_per_px = vfov_deg / FRAME_HEIGHT

59 setpoint = FRAME_HEIGHT / 2

60

61 # PID and servo settings

62 SERVO_MIN, SERVO_MAX = -90, 90

63

64 # Initialize PanTilt HAT

65 current_tilt = -23

66 try:

67 pth.servo_enable (2, True)

68 pth.tilt (int (current_tilt))

69 print ("[INFO] Tilt servo initialized.")
70

71 except Exception as e:

72 print (£" [ERROR] Could not initialize PanTilt HAT: {e}")
73 camera.stop ()

74 exit ()

75

76 # Camera variables

77 # Measurement

78 camera_preview_output = None

79 camera_prev_gray = None

80

81 # FPS Overlay

82 camera_prev_time = time.time_ns()

83 camera_diff_time = 0

84 camera_frame_per_sec = 0

85 camera_frame_cnt_in_sec = 0

86 camera_is_one_sec_passed = False

87 recording_id = time.strftime('}y%m%d/H%AM%S', time.gmtime ())
88

89 # Colors

90 color_hues = {

91 "Red": O,

92 "Green": 60,

93 "Blue": 120,

94 "Cyan": 90,

95 "Magenta": 150,

96 "Yellow": 30,

97 "Amber": 15,

98 "Chartreuse": 45,

25

99 "Spring Green": 75,

100 "Azure": 105,

101 "Violet": 135,

102 "Rose": 165

103 }

104

105 pd = pd_mod.PD(kp=0.08, kd=0.01, tau=0.02, setpoint=setpoint, deg_per_px=deg_per_px)
106

107 DROP_DIST_M = 4.5

108 world_h_m = 2 * DROP_DIST_M * math.tan(vfov_rad / 2)

109 px_per_m = FRAME_HEIGHT / world_h_m

110 g_pix = 9.81 * px_per_m

Lt

12 # Ball properties (example values - YOU MUST MEASURE/DETERMINE YOURS)
13 mass = 0.005 # kg (example mass of a dry ping pong ball)

114 rho_air = 1.2 # kg/m~3 (air density at sea level, 15°C)

15 Cd = 0.47 # Drag coefficient for a sphere (typical value)
116 radius_m = 0.025 # m (for a 4cm diameter ball, e.g., ping pong ball)
"7 A_m2 = np.pi * radius_m**2 # Cross-sectional area m~2

18 # k_drag_world = 0.5 * rho_air * Cd * A_m2 (units: kg/m)

119 # k_drag_pix = k_drag_world / (px_per_m * mass) (units: 1/pixel)

120 k_drag_pix = (0.5 * rho_air * Cd * A_m2 / px_per_m) / mass

121

122 # initialize with the first measurement (’well overwrite vy once we get the 2nd sample)
123 initial_y = 0.0

124 initial_vy = 0.0

125 P_yo = 2500.0 # e.g. measurement variance

126 P_vyO = (2*P_y0)/(shared_obj.LO0OP_DT_TARGET*%*2)

127 Qy, Qvy = 900.0, 925.0

128 Ry = 2500.0

129

130 ekf = ekf_mod.EKF_BallTracker (

131 initial_y, initial_vy,

132 P_y0, P_vyoO,

133 Qy, Qvy,

134 Ry,

135 shared_obj.LOOP_DT_TARGET, g_pix, k_drag_pix, px_per_m

136)

137

138 ekf_initialized = False

139 prev_meas = None

140

141 print ("[INFO] Starting tracking loop. Press Ctrl+C to exit.")

142 pth.idle_timeout (FRAME_RATE)

143 # iter_machine = dummy.DummyMeasurements ()

144 try:

145 while True:

146 loop_start = time.monotonic ()

147

148 # 1) Read frame

149 current_frame = shared_obj.frame

150 current_gray_frame = cv.cvtColor (current_frame, cv.COLOR_RGB2HSV) if current_frame

is not None else None
151

152 # 2) Detect object

153 if current_frame is None or camera_prev_gray is None:

154 measurement_y = None

155 else:

156 # camera_preview_output, measurement_y = proc_naive.process_frames(
camera_prev_gray, current_gray_frame, current_frame)

157 measurement_y, camera_preview_output, _ = proc_color.process_frames(
camera_prev_gray, current_gray_frame, current_frame, color_hues["Rose"], hue_tolerance=10)

158 # measurement_y, camera_preview_output, _ = iter_machine.next(), current_frame
, None

159

160 print (f"info: y: {measurement_yl}")

161 camera_prev_gray = current_gray_frame

162

163 # 2.1) FPS overlay

164 camera_frame_cnt_in_sec += 1

165 camera_curr_time = time.time_ns ()

166 camera_diff_time += (camera_curr_time - camera_prev_time) / 1le6

167

26

168 if int(camera_diff_time) >= 1000:

169 camera_frame_per_sec = camera_frame_cnt_in_sec

170 camera_frame_cnt_in_sec = 0

171 camera_diff_time = O

172 camera_is_one_sec_passed = True

173

174 if camera_is_one_sec_passed:

175 cv.putText (current_frame, f"FPS: {camera_frame_per_sec}", (10, 25), cv.
FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)

176 else:

177 cv.putText (current_frame, f"FPS: (WAITING...)", (10, 25), cv.

FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
178

179 camera_prev_time = camera_curr_time

180

181 # 5) PID update and servo write when active

182 if measurement_y is not None:

183 if not ekf_initialized:

184 # bootstrap velocity from first two samples

185 if prev_meas is None:

186 prev_meas = measurement_y

187 else:

188 initial_vy = (measurement_y - prev_meas) / shared_obj.LOOP_DT_TARGET

189 ekf.x_hat = np.array([measurement_y, initial_vyl)

190 ekf_initialized = True

191 else:

192 # 1) EKF prediction

193 ekf .predict ()

194

195 # 2) EKF update with the new pixel measurement

196 ekf .update (measurement_y)

197

198 # 3) Get the filtered position & velocity

199 y_filt = ekf.get_current_position()

200 vy_filt = ekf.get_current_velocity()

201

202 # 4) Predict next-step y for your PID set-point

203 y_next_pred = ekf.get_predicted()

204

205 if abs(setpoint - y_next_pred) > O:

206 cv.line(current_frame, (0, int(setpoint)), (current_frame.shapel[1l],
int (setpoint)), (0, 0, 255), 2)

207 delta_deg = pd.update(y_next_pred)

208 else:

209 delta_deg = 0.0

210

211 desired = current_tilt + delta_deg

212 current_tilt = clamp(desired, SERVO_MIN, SERVO_MAX)

213 print (f"info: tilt: {current_tilt} deg")

214

215 if current_frame is not None:

216 cv.imshow(f' [{recording_id}] [Live] Processed Frame', current_frame)

217

218 pth.tilt (current_tilt)

219

220 # 6) Exit & Store frames

221 if cv.waitKey (1) & OxFF == ord('q'):

222 shared_obj.is_exit = True

223

224 output_dir = os.path.join("output_frames", recording_id)

225 os.makedirs (output_dir, exist_ok=True)

226

227 for i, frame in enumerate(shared_obj.frame_buffer):

228 filename = os.path.join(output_dir, f"frame_{i:06d}.png")

229 print (f'info: storing frames [{i:06d}/{len(shared_obj.frame_buffer)}]"')

230 cv.imwrite(filename, frame)

231 sys.exit (0)

232

233 # Fix FPS

234 elapsed = time.monotonic() - loop_start

235 sleep_time = shared_obj.LOOP_DT_TARGET - elapsed

236 if sleep_time > O:

237 time.sleep(sleep_time)

27

238
239
240
241
242
243
244
245

except KeyboardInterrupt:

print ("\n[INFO] Exiting, disabling tilt servo.")

finally:
pth.servo_enable (2, False)
camera.stop ()
cv.destroyAllWindows ()

28

(1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

Bibliography

J. T. Zhou, J. Du, H. Zhu, X. Peng, Y. Liu, and R. S. M. Goh, “AnomalyNet: An Anomaly Detection
Network for Video Surveillance,” IEEE Transactions on Information Forensics and Security, vol. 14,
pp. 2537-2550, 2019. DOI: 10.1109/TIFS.2019.2900907

H. Zhou, L. Wei, C. P. Lim, D. Creighton, and S. Nahavandi, “Robust Vehicle Detection in Aerial
Images Using Bag-of-Words and Orientation Aware Scanning,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 56, no. 12, pp. 7074-7085, 2018. DOI: 10.1109/TGRS.2018.2848243.

F. Chaumette and S. Hutchinson, “Visual servo control. i. basic approaches,” Robotics Automation
Magazine, IEEE, vol. 13, pp. 82-90, Jan. 2007. DOI: 10.1109/MRA.2006.250573.

B. J. Nelson and P. K. Khosla, “Visually servoed manipulation using an active camera,” in Pro-
ceedings of the 33rd Annual Allerton Conference on Communication, Control, and Computing,
[Online]. Available: https://www.ri.cmu.edu/pub_files/pub3/nelson_bradley_1995_2/
nelson_bradley_1995_2.pdf, Urbana-Champaign, IL, Oct. 1995.

Q.-Y. Gu and I. Ishii, “Review of some advances and applications in real-time high-speed vision:
Our views and experiences,” International Journal of Automation and Computing, vol. 13, no. 4,
pp. 305-318, 2016, [Online]. Available: https://doi.org/10.1007/s11633-016-1024-0. DOI:
10.1007/s11633-016-1024-0.

K. Okumura, K. Yokoyama, H. Oku, and M. Ishikawa, “Ims auto pan-tilt— video shooting tech-
nology for objects in motion based on Saccade Mirror with background subtraction,” Advanced
Robotics, vol. 29, no. 7, pp. 457-468, 2015. DOI: 10.1080/01691864.2015.1011299.

B. Torkaman and M. Farrokhi, “Real-time visual tracking of a moving object using pan and tilt
platform: A kalman filter approach,” in Proc. 20th Iranian Conference on Electrical Engineering
(ICEE), 2012, pp. 928-933. DOI: 10.1109/IranianCEE.2012.6292486.

E. Yiimazlar and H. Kusgu, “Object tracking by pid control and image processing on embed-
ded system,” Research Inventy: International Journal of Engineering And Science, vol. 6, no. 9,
pp. 33-37, 2017, ISSN (e): 2278-4721, ISSN (p): 2319-6483. [Online]. Available: https://wuw.
researchgate.net/publication/321996553_0bject_Tracking_by_PID_Control_and_Image_
Processing_On_Embedded_System.

R. Nebeluk, K. Zarzycki, D. Seredynski, et al., “Predictive tracking of an object by a pan—tilt camera
of a robot,” Nonlinear Dynamics, vol. 111, pp. 8383-8395, 2023. DOI: 10.1007/s11071-023~-
08295-z.

B. Mirzaei, H. Nezamabadi-pour, A. Raoof, and R. Derakhshani, “Small object detection and track-
ing: A comprehensive review,” Sensors, vol. 23, no. 15, p. 6887, 2023. DOI: 10.3390/s23156887.
[Online]. Available: https://www.mdpi.com/1424-8220/23/15/6887.

K. Schulte, C. Tropea, and B. Weigand, “Droplet dynamics under extreme ambient conditions,” in
Fluid Mechanics and lIts Applications, vol. 124, Springer, 2022, pp. 1-27.

M. E. Kaya, T. A. Haas, and N. E. Khatibi, “Falling droplet localization: Visual recording object
oriented mapping,” B.Sc. thesis, Delft University of Technology, Delft, Netherlands, Jun. 2025.

Tower Pro, Micro servo 9g SG90 - Datasheet, https://www.kjell.com/globalassets/mediaassets/
701916_87897_datasheet_en.pdf, 2024.

K. J. Astrdm and T. Hagglund, Advanced PID Control. Research Triangle Park, NC: ISA - The
Instrumentation, Systems, and Automation Society, 2006, ISBN: 1-55617-942-1.

P. Chaber, W. Liu, J. Wu, and D. Li, “Model predictive tracking control for a 2-dof gimbal system
based on object motion prediction,” Nonlinear Dynamics, vol. 113, no. 20, pp. 21 327-21 344, 2023.
DOI: 10.1007/s11071-023-08295-z. [Online]. Available: https://doi.org/10.1007/s11071~
023-08295-z.

29

https://doi.org/10.1109/TIFS.2019.2900907
https://doi.org/10.1109/TGRS.2018.2848243
https://doi.org/10.1109/MRA.2006.250573
https://www.ri.cmu.edu/pub_files/pub3/nelson_bradley_1995_2/nelson_bradley_1995_2.pdf
https://www.ri.cmu.edu/pub_files/pub3/nelson_bradley_1995_2/nelson_bradley_1995_2.pdf
https://doi.org/10.1007/s11633-016-1024-0
https://doi.org/10.1007/s11633-016-1024-0
https://doi.org/10.1080/01691864.2015.1011299
https://doi.org/10.1109/IranianCEE.2012.6292486
https://www.researchgate.net/publication/321996553_Object_Tracking_by_PID_Control_and_Image_Processing_On_Embedded_System
https://www.researchgate.net/publication/321996553_Object_Tracking_by_PID_Control_and_Image_Processing_On_Embedded_System
https://www.researchgate.net/publication/321996553_Object_Tracking_by_PID_Control_and_Image_Processing_On_Embedded_System
https://doi.org/10.1007/s11071-023-08295-z
https://doi.org/10.1007/s11071-023-08295-z
https://doi.org/10.3390/s23156887
https://www.mdpi.com/1424-8220/23/15/6887
https://www.kjell.com/globalassets/mediaassets/701916_87897_datasheet_en.pdf
https://www.kjell.com/globalassets/mediaassets/701916_87897_datasheet_en.pdf
https://doi.org/10.1007/s11071-023-08295-z
https://doi.org/10.1007/s11071-023-08295-z
https://doi.org/10.1007/s11071-023-08295-z

[16] M. Forgione, D. Piga, and A. Bemporad, “Efficient calibration of embedded mpc,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 5189-5194, 2020, 21st IFAC World Congress, ISSN: 2405-8963. DOI: https:
//doi.org/10.1016/j.ifacol.2020.12.1188. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2405896320315822.

[17] Y.L. Melese, G. K. Alitasb, and M. D. Belete, “Optimal fuzzy-pid controller design for object track-
ing,” Scientific Reports, vol. 15, p. 12064, 2025. DOI: 10.1038/s41598-025-92309-w. [Online].
Available: https://www.nature.com/articles/s41598-025-92309-w.

[18] B.D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall, 1979.

[19] A. Becker, Kalman Filter from the Ground Up. Alex Becker, 2023, Available: https://ebooknice.
com/product/kalman-filter-from-the-ground-up-50262730, ISBN: 978-9655984392.

[20] S.Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Transactions on Industrial Electronics,
vol. 59, no. 11, pp. 4409-4420, 2012. DOI: 10.1109/TIE.2011.2162714.

[21] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2,
pp. 174-188, 2002. DOI: 10.1109/78.978374.

[22] E. Gamy, Camera sensor size fov (3), [Online], Appendix: “How to calculate angle of view”, 2015.
[Online]. Available: https://www.academia.edu/34473790/Camera_Sensor_Size_ FOV_3_.

[23] Raspberry Pi Foundation, Raspberry pi hq camera module, [Online], Accessed: Jun. 15, 2025.

Available: https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/,
2020.

[24] K. J. Astrém, Control system design: Chapter 6 — pid control, https://www . cds . caltech.edu/
~murray/courses/cds101/fa02/caltech/astrom-ch6.pdf, Accessed June 2025, 2002.

30

https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1188
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1188
https://www.sciencedirect.com/science/article/pii/S2405896320315822
https://www.sciencedirect.com/science/article/pii/S2405896320315822
https://doi.org/10.1038/s41598-025-92309-w
https://www.nature.com/articles/s41598-025-92309-w
https://ebooknice.com/product/kalman-filter-from-the-ground-up-50262730
https://ebooknice.com/product/kalman-filter-from-the-ground-up-50262730
https://doi.org/10.1109/TIE.2011.2162714
https://doi.org/10.1109/78.978374
https://www.academia.edu/34473790/Camera_Sensor_Size_FOV_3_
https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom-ch6.pdf
https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom-ch6.pdf

	Abstract
	Preface
	Introduction
	State-of-the-Art
	Project Objectives and Challenges
	Thesis Structure

	Programme of Requirements
	Target Environment
	Functional Requirements
	Trade-Off Requirements
	Development Constraints

	System Characterization
	System Overview
	Hardware Configuration
	Raspberry Pi 5
	Raspberry Pi High Quality Camera
	PIM183 Pan-Tilt HAT

	PIM183 Pimoroni Pan-Tilt HAT
	Actuator Objective
	Physical Setup
	Characteristics and Actuation Behavior

	Controller Methodology
	Control Objective
	Review of Candidate Control Strategies
	PID Control
	Model Predictive Control
	Other Approaches Considered

	Selection and Rationale

	Predictive State Estimation
	Estimation Objective
	Review of Candidate Estimation Techniques
	Kalman Filter
	Extended Kalman Filter
	Particle Filter

	Selection and Rationale

	Prototype Implementation and Validation Results
	PD Controller
	Control Law Formulation
	Derivative Term with Low-Pass Filtering
	Actuator Command Generation
	Gain Tuning Methodology

	Extended Kalman Filter
	System Modeling
	EKF Prediction and Update Cycle
	Latency Compensation

	Experimental Validation and System Tuning
	Initial Trials and Problem Identification
	Debugging and Latency Analysis
	Results

	Discussion
	Conclusion
	Recommendation and Future Work
	Python codes
	PD controller
	Extended Kalman Filter
	System Integration

