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We present a mechanically robust, cost-effective, and scalable ultra-superhydrophobic ceramic-polymer com-
posite coating featuring a hierarchical micro/nano-structured surface. This advanced coating, fabricated via a
single-step process, integrates alumina (AlyO3) and zirconia (ZrO5) to harness their individual and synergistic
effects, achieving an extreme water contact angle of 180° and a sliding angle of 1°. The coating demonstrates
strong adhesion and compatibility with a wide range of substrates, including aluminum and concrete. The
Aly03-ZrOg-based composite exhibits outstanding physicochemical properties, including ultra-
superhydrophobicity, anti-icing, anti-corrosion, and anti-vapor condensation capabilities. It also maintains
excellent non-wetting behavior across a variety of liquids. Comprehensive surface analyses, encompassing
microstructural, morphological, and chemical characterization, underscore the critical role of hierarchical
structuring and tailored surface chemistry in enhancing functionality. Mechanical durability assessments reveal
that the coating retains its superhydrophobic performance even after extensive scratching test. Moreover, it
exhibits self-cleaning, anti-adhesion, and anti-fouling characteristics, attributed to its engineered surface texture
and the synergistic contributions of Al;03-ZrO heterojunctions and oxide-silane bonding (Si—-O-Si and Si-OH).
This multifunctional ceramic-polymer coating addresses key challenges in large-scale deployment by offering a
streamlined, scalable fabrication method and versatile performance, positioning it as a promising solution for
diverse industrial applications.

1. Introduction for more durable, low-maintenance solutions that can effectively miti-

gate water and ice adhesion. Superhydrophobic surfaces have emerged

The accumulation and adhesion of water and ice on solid surfaces
pose significant challenges across various industries, including con-
struction, aviation, marine transportation, and renewable energy [1,2].
Ice accretion on infrastructure, such as power lines, aircraft, and wind
turbines, can lead to aerodynamic instability, reduced efficiency, and
ultimately increase maintenance costs [3-5]. Addressing these issues
requires effective strategies that optimize performance, sustainability,
and economic feasibility. Conventionally, strategies for preventing ice
accumulation are categorized into active and passive methods [6-8].
Active techniques, such as mechanical removal and thermal de-icing, are
energy-intensive and often rely on environmentally hazardous chem-
icals [9,10]. Passive methods, including low-surface-energy coatings,
seek to prevent ice accumulation but often suffer from limited durability
and mechanical robustness [11,12]. These limitations highlight the need
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as a promising approach due to their ability to repel water, with contact
angles exceeding 150° and sliding angles below 10° [13]. Inspired by
natural examples like lotus leaves, these surfaces utilize a combination
of low surface energy and hierarchical micro- and nanoscale roughness
to minimize contact with water, allowing droplets to roll off easily. This
unique morphology not only prevents water from adhering before
freezing but also delays icing and reduces ice adhesion while main-
taining surface cleanliness [13,14].

However, the application of superhydrophobic surface treatments
for anti-icing purposes poses significant technical limitations. The
transition from the Cassie-Baxter state, where air pockets prevent water
penetration, to the Wenzel state, where water infiltrates surface
roughness, increases ice adhesion [15,16]. Repeated icing and de-icing
cycles degrade surface structures, ultimately compromising long-term
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performance [17]. These issues emphasize the need for mechanically
robust and durable superhydrophobic coatings to ensure long-term
effectiveness. Ruan et al. [18] stated that the choice of experimental
parameters during the fabrication process plays a crucial role in deter-
mining surface properties and, in turn, the superhydrophobic behavior
of materials. For example, Chen et al. [19] demonstrated that chemical
etching time directly affects the transition in wettability of aluminum
surfaces from hydrophilic to hydrophobic. Similarly, Shi et al. [20]
employed a two-step method to create a superhydrophobic aluminum
surface, first using hydrothermal treatment to develop a flower-like hi-
erarchical structure, followed by lauric acid treatment to lower surface
energy. These studies underscore the need to optimize fabrication pa-
rameters for achieving desirable superhydrophobic properties.

In addition to anti-icing, superhydrophobic surfaces exhibit excellent
potential for corrosion inhibition. Dou et al. [21] observed that copper
superhydrophobic surfaces enhanced corrosion resistance by more than
102 times in marine environments. Likewise, Li et al. [22] demonstrated
that superhydrophobic surfaces on 6061 aluminum alloy exhibited a
corrosion resistance efficiency of about 76 % in comparison to hydro-
phobic surfaces. Feng et al. [23] further demonstrated that super-
hydrophobic coatings with water contact angles (WCA) above 156° and
sliding angles around 3° provide long-term corrosion resistance on
aluminum alloys. An effective strategy for enhancing super-
hydrophobicity involves the deposition of self-assembled silane mono-
layers on surfaces. Prior literature [22,24-29] suggests that self-
assembled monolayers significantly reduce surface energy while
improving hydrophobicity. This approach is advantageous due to its
ability to produce well-defined, highly ordered structures with minimal
processing complexity. Particularly, alkylsilane-based self-assembled
monolayers exhibit strong siloxane bonding, which ensures mechanical
and chemical stability [23,30,31]. These properties make them suitable
for various applications, including wear protection, corrosion preven-
tion, and chemical sensing. Despite these advancements, existing
fabrication methods face challenges such as multi-step processes, high
costs, and reliance on environmentally harmful chemicals like fluori-
nated compounds. Ruan et al. [18] emphasized the need for cost-
effective and environmentally friendly techniques to overcome these
barriers and enable the large-scale application of superhydrophobic
surfaces. Other applications of superhydrophobic surfaces include rapid
oil-water separation [32,33], efficient solar evaporator with antibacte-
rial properties [34], a thermally stable superhydrophobic surface [35],
and photocatalytic self-cleaning capabilities [36].

This study explores the development of a mechanically robust, cost-
effective, and scalable ceramic-polymer ultrasuperhydrophobic coating
with a hierarchical micro-nano structure. The coating is fabricated
through a single-step process and is designed for compatibility with
various substrates, including aluminum and concrete (Available in
Movies S1 and S2). The research investigates the role of alumina (Al;O3)
and zirconia (ZrO5) in influencing the coating’s structural and chemical
properties, with a particular focus on Al-O/Zr-O heterojunctions and
siloxane (Si-O-Si) bonding. Alumina (Al;03) and zirconia (ZrO3) were
selected as key components of the coating due to their synergistic
properties that are well-suited for ultra-superhydrophobic and anti-icing
applications. Al;Og3 contributes high hardness and excellent wear resis-
tance [37], which helps preserve the micro/nanostructure under me-
chanical abrasion. In contrast, ZrO, offers superior fracture toughness
and crack resistance [38], which enhances the structural integrity of the
coating during repeated icing and de-icing cycles. Both oxides exhibit
high thermal stability and chemical inertness, ensuring durability under
extreme environmental conditions such as temperature fluctuations,
humidity, and UV exposure [39,40]. Furthermore, the distinct particle
morphologies of Al,O3 and ZrO, facilitate the formation of a hierar-
chical surface architecture essential for achieving the Cassie-Baxter
wetting regime and minimizing ice adhesion [41]. Together, these ma-
terials enable the fabrication of a robust, thermally stable, and envi-
ronmentally resilient coating optimized for long-term anti-icing
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performance.

To understand the mechanisms underlying its performance, this
study examines the coating’s interaction with water, hot vapor, and ice,
focusing on its resistance to vapor condensation, anti-icing behavior,
and long-term chemical durability, including anti-corrosion perfor-
mance. Durability assessments further evaluate its chemical stability
and functionalities under aggressive chloride-containing environments.
This approach addresses key challenges in scalability and fabrication,
offering insights into the development of multifunctional coatings for
water, vapor, and ice-related applications. While this study focuses on
experimental observations of the coating’s performance under cyclic ice
shear testing, it does not include theoretical analysis of the underlying
mechanisms. Future work will aim to incorporate theoretical modeling
to further explore the interfacial behavior during repeated ice adhesion
and detachment cycles.

2. Experimental procedure
2.1. Materials and reagents

An aluminum alloy as substrate (30 mm x 24 mm x 2 mm) was
obtained from a 1000 mm x 1000 mm x 2 mm as received laminated
plate made of the commercially available EN AW6082-T6 aluminum
alloy (nominal chemical composition Si 0.70-1.3 wt%; Mg 0.60-1.2 wt
%; Fe < 0.50 wt%; Cu < 0.10 wt%; Mn 0.40-1.0 wt%; Cr < 0.25 wt%j;
Zn < 0.20 wt%; Ti < 0.10 wt%,; Al balance). This alloy is widely used in
machining, offshore, or transport applications. Octadecyltrimethox-
ysilane (C21H4603Si, 99 %) was purchased from Sigma-Aldrich, St.
Louis, MO, USA. Silanol-terminated polydimethylsiloxane, PDMS, M.W.
18,0000, Viscosity at 25 °C, 700-800 cSt, CAS: 70131-67-8 compounds,
was supplied by Gelest (Morrisville, USA). Detailed information on the
micro and nanopowders of alumina (Aly03) and zirconia (ZrO3) used in
the fabrication of superhydrophobic coating is provided in Table 1.

2.2. Preparation of various superhydrophobic coatings

All aluminum substrates, with a root mean square surface roughness
of Rq = 269 + 50 nm (analyzed by AFM in section 2.5) were cleaned
using the following procedure: ultrasonic cleaning in acetone, ultra-pure
water, and ethanol, and finally drying at room temperature in a silica-gel
dryer. The coating suspension was prepared by adding poly-
dimethylsiloxane (PDMS) and silane to ethanol (weight ratio 1:4:15) at
room temperature, with vigorous stirring for 30 min. Both the nano-
powder and micropowder of the selected oxides were added gradually in
equal amounts to the prepared suspension. The mixture was then me-
chanically stirred for 10 min, followed by ultrasonication for an addi-
tional 10 min. The coating suspension was then applied to the aluminum
substrate using a dipping process. Finally, the samples were dried at
room temperature for 30 min to allow solvent evaporation, followed by
curing at 200 °C for 2 h.

2.3. Wettability and surface energy analyses

The WCA'’s of the coatings were measured using an Attension Theta
Tensiometer (Attension, Biolin Scientific, Gothenburg, Sweden) pro-
vided by Biolin Scientific, following the sessile drop technique. A

Table 1
Detailed information related to the micro- and nano-sized oxide particles.
Oxides  Particle size  Purity (%) CAS number  Product
suppliers
ZrO, 0.9-1.1 pm 99.5 % 1314-23-4 Alfa Aesar
40-50 nm 99.5 % 1314-23-4 IOLITEC nanomaterials
Al,03 0.9-1.1 ym 99.9 % 1344-28-1 Alfa Aesar
40-50 nm 99.5 % 1344-28-1 Alfa Aesar
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distilled water droplet of 3 uL was placed on the sample surface at room
temperature. A micro charged-coupled device (CCD) camera (Attension,
Biolin Scientific) on-site recorded images of the droplets, which were
subsequently analyzed using the PC Attension software (OneAttension
V. 2.3) to obtain the static contact angles of the droplets on each of the
coatings. Fifty WCA measurements were taken per sample on a regular
grid. The surface free energy (SFE) was calculated using the OWRK
formula (Equation (1)), based on the contact angle measurements of
water and three other aprotic liquids with known surface tensions:
glycerol and ethylene glycol, which are polar liquids, and diiodo-
methane, a non-polar liquid.

va =1 tn—2000)" —2(24)°° (€8]

where ysd and yf are the dispersive components and ¢ and ﬁ are the
polar components of the surface tension for liquids and solid phases.

2.4. Chemical surface characterization by XPS

The chemical bonding information of the coating materials on the
metal substrates was analyzed in this work through X-ray photoelectron
spectroscopy (XPS). Metal substrates with appropriate coatings of size 1
x 1 cm? were carefully loaded inside the ESCA 5400 system (supplied by
Physical Electronics, INC. (PHI)), equipped with an Aluminium (Al) Ka
X-ray nonmonochromatic source (hv = 1486.7 eV). During the analysis,
the vacuum inside the XPS system was maintained at around 10 mbar.
All specimens were analyzed on a circular scanning area with a diameter
of 0.4 mm, and the analysis depth ranged from 3 to 5 nm. The settings of
the instrument during the full survey measurement were 89.45 eV pass
energy and 0.5 eV resolution. Subsequently, during high-resolution
multiplex scans, measurements were carried out at 0.2 eV resolution
with 71.55 eV pass energy. The take-off angle for both the full survey
and high-resolution measurement was set at 45 . The resultant spectra
from the XPS instrument were processed using the MultiPak version 8.0
software supplied by Physical Electronics Inc. To counterbalance the
charging of the specimen studied during the XPS analysis, all the high-
resolution spectra were adjusted through carbon shift (by referencing
the C-C peak of the Cls spectrum at 284.8 eV). Subsequently, curve
fitting of the XPS data was performed.

2.5. Microstructural, morphological, and surface potential/charge
characterizations

The micro- and nano-scale structural features present across all
coatings were systematically characterized using Field Emission Scan-
ning Electron Microscopy (FE-SEM, JEOL JSM-6500F) equipped with an
energy-dispersive X-ray spectrometer (EDXS). High-resolution images
were acquired at an acceleration voltage of 5 kV with working distances
of 10 mm and 25 mm. The cross-sectional morphology of all coatings
was analyzed using a Thermo Scientific™ Helios™ UXe DualBeam G4
scanning electron microscope. This advanced instrument, equipped with
an EDXS detector and a Focused Ion Beam (FIB), utilized FIB milling to
facilitate precise cross-sectional imaging of the coated specimens in
conjunction with SEM. Surface characterization, including topography,
amplitude signals (derived from cantilever oscillation amplitudes), and
surface potential or charge distribution, was conducted through atomic
force microscopy (AFM) and scanning Kelvin probe force microscopy
(SKPFM). The AFM measurements were performed using a Bruker
Dimension Edge™ system with an n-type doped silicon pyramid single-
crystal tip coated with PtIr5 (SCM-Pit probe), featuring a tip radius of 20
nm and a height of 10-15 pm. The initial scan, performed in tapping
mode, captured surface topography and amplitude signals. For SKPFM
analysis, a subsequent backward scan involved lifting the AFM tip to a
height of 100 nm, enabling surface potential and charge distribution
measurements based on the topographical data recorded during the first
scan. The 100 nm lift was chosen to minimize the influence of local
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surface topography heterogeneities on the potential signals. AFM and
SKPFM imaging were performed under ambient conditions (tempera-
ture: 23 °C, relative humidity: ~42 %). All images had a pixel resolution
of 512 x 512 and were acquired at a scan frequency of 0.3 Hz.

2.6. Anti-icing and vapor condensation properties

The anti-icing properties were evaluated by shear stress analysis
performed with a custom-built mold using a universal testing machine
(Lloyd EZ 50). Anti-icing test specimens included uncoated (bare
aluminum alloy) and Al;03 — ZrO; polymer coating samples, which
were frozen in a mold containing 40 ml of deionized water at — 19 °C for
48 h. Afterward, the mold was fixed in the universal testing machine,
and the sample was extracted from the ice at a speed of 3 mm/min. The
force (F) required to detach the sample from the mold was recorded and
converted into shear stress. The shear stress was calculated as the
average of three tests carried out on three different specimens.

Ice adhesion properties were evaluated by shear stress analysis. The
experiment was carried out in less than 30 s in a conditioned environ-
ment (T: 20 °C; Humidity: 46 %). The peak force F needed to detach the
ice from the sample was registered. The ice adhesion strength (t) in
shear can be calculated by:

t=F/A 2

where A is the surface of the specimen in contact with the ice. The shear
stresses were calculated as the average of three tests carried out on three
different specimens for each treatment [42,43].

2.7. Experimental vapor condensation process

The vapor condensation experiment was conducted within a sealed
chamber containing a beaker of heated water to generate water vapor.
The chamber environment was allowed to equilibrate until it reached
100 % relative humidity, ensuring a fully saturated vapor atmosphere.
Two sample types were placed inside the chamber: a bare aluminium
substrate and a substrate coated with an Al,O3 — ZrOy polymer com-
posite. Both samples were positioned to face the saturated vapor
directly, allowing for uniform exposure. The condensation behavior on
each surface was carefully monitored and compared to evaluate differ-
ences in nucleation and droplet formation characteristics.

2.8. Electrochemical and corrosion protection behavior assessments

The electrochemical response and corrosion protective behavior of
Aly,03 — ZrO, polymer coating (Ultra superhydrophobic coating) was
studied in a 3.5 wt% NacCl solution as a corrosive environment at room
temperature and pH ~ 7. The electrochemical measurements were
performed utilizing a computer-controlled potentiostat BioLogicSP-300
in a conventional three-electrode electrochemical cell in which Ag/
AgCl/KClLgyy, a platinum plate, and ultra superhydrophobic coating were
reference, counter, and working electrodes, respectively. Potentiody-
namic polarization (PDP) was conducted to determine the corrosion
potential (Ecoy) and corrosion current density (icor) of the coated and
bare aluminium alloy substrate. The PDP curves were recorded with a
scanning rate of 1 mV/s from the —100 mV vs. open circuit potential
(OCP) for the cathodic branch and extending to +250 mV vs. OCP for the
anodic branch. Prior to the PDP test, both the bare and coated aluminum
alloy were exposed to the electrolyte for 30 min to ensure a steady state
condition at a stable OCP. The long-term corrosion potential and WCA of
the ultra-superhydrophobic coating were monitored for 1 year by
tracking corrosion potential versus time to evaluate its (electro)chemical
stability.
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3. Results and discussion
3.1. Surface microstructural and chemical composition

The mixture was prepared by combining organosilicon compounds, a
blend of silanol-terminated PDMS and octadecyltrimethoxysilane
(OTMS), with micro- and nano-powders of Al;O3, ZrO,, or their com-
bination (Al;03 + ZrO). This process resulted in a heterogeneous
composite coating with a varied distribution of oxide particles on the
AA6082-T6 substrate, as shown in Fig. 1a and 1b. The three coatings
studied included: (1) Aly03 + ZrO5 + organosilicon polymer, (2) ZrO; +
polymer, and (3) Al;O3 + polymer. Among these, the first coating
demonstrated the highest superhydrophobic performance with a hier-
archical micro-nano structure (high-magnified SEM images in Fig. S1).
To understand the underlying reasons for this performance, we con-
ducted a systematic analysis of the coating surface and bulk structure.
SEM and EDX imaging (Figs. S2, S3, and S4) confirmed the presence of
both micro- and nano-sized powders, as well as the expected elemental
composition corresponding to the coating formulation.

The cross-sectional analysis of the bulk composition of the coatings
was carried out in this study using SEM analysis of FIB-milled samples
(Fig. 1c and Fig. 2a and 2b). As illustrated in these figures, both

Al alloy substrate
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aluminium and zirconium elements are uniformly distributed within the
organo-silicon polymer matrix. A similar homogeneous distribution was
observed in Al;O3 + polymer and ZrO; + polymer coatings, as shown in
Fig. 2a and 2b. Based on the organo-silicon chemistry, we propose the
following sequential reactions to explain the formation of this uniform
dispersion of nano- and micro-powder within the polymer matrix.
Initially, silanol-terminated PDMS and OTMS are separately mixed with
ethanol and stirred vigorously for 30 min, with the quantity of OTMS
(silane molecule) being four times that of the PDMS molecules. During
this process, PDMS forms a highly cross-linked network of siloxane
bonds ([-Si-O-Si-]) by reacting specifically with the methoxy groups
[((OCH3)3-Si-)] of OTMS. This cross-linked network forms the backbone
of the polymer matrix. The reaction simultaneously releases methanol
molecules into the polymer mixture [44]. The purity of ethanol used
during mixing plays a critical role in the subsequent reactions. If ethanol
contains water molecules, hydrolysis of the remaining OTMS molecules
can occur, leading to irreversible polymerization into a siloxane polymer
[45]. This process further enhances the structural integrity and unifor-
mity of the polymer matrix.

The primary content of OTMS remains intact in its pristine form,
integrated within the PDMS-linked siloxane polymeric network. Incor-
porating nano- and micro-powders sequentially into the polymeric

Fig. 1. (a) FE-SEM image and (b) multi-layer elemental mapping of Al,03 — ZrO, polymer coating on aluminum substrate, (c) FIB-SEM cross-section image of Al;03

— ZrO, polymer coating on aluminum substrate and corresponding elemental map.
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(a) AlL0;-polymer

(b)

ZrO, polymer

(c) Si2p
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Fig. 2. FIB-SEM cross-section image of (a) Al,O3 and (b) ZrO,-polymer coating on aluminum substrate and corresponding elemental map, (c) High-resolution XPS
spectra of the Si 2p, C1s, and O 1 s energy regions on three diverse applied coatings including polymer (PDMS + Silane), Al,O3-polymer, ZrO, —polymer, and Al,O3

— ZrO; polymer coatings.

matrix results in coatings with varied chemical compositions. The sur-
face moieties of these coatings were analyzed using XPS, as shown in
Fig. 2c. When the polymeric mixture is coated on an aluminum alloy, the
organosilicon compounds interact with the oxide layer on the aluminum
surface, forming an Al-O-Si network, which aligns with observations
from recent studies [46]. This interaction is evident in the high-
resolution XPS spectra. Peak fitting of the Si2p spectrum reveals a
weak peak at 99.9 eV, corresponding to Si-OH bonding. The dominant
peak at 102.6 eV is attributed to the silane-polymeric network, while the
peak at 103.8 eV corresponds to silica particles. These findings are
corroborated by analysis of the Ols spectrum, where minor peaks at
530.47 eV and 534.0 eV are associated with Al-O and Si-OH bonds,
respectively, and the major peak at 532.6 eV corresponds to Si-O-Si
bonds [47]. Similarly, in the Cls spectrum of the polymeric coating, a
peak at 284.8 eV indicates C-C bonding, mainly arising from adventi-
tious carbon contamination during the XPS analysis. Interestingly, when
the polymeric mixture is combined with Aly03 or Al;03 + ZrO, powders,
a significant presence of silicon particles is observed on the coating
surface. This is indicated by the 99.5 eV peaks in the fitted Si2p spec-
trum, alongside an enhancement in the intensity of silica particle peaks.
Notably, the presence of silicon particles is crucial for achieving

superhydrophobicity. In contrast, their absence in coatings without
Al;03 nano- and micro-powders results in diminished hydrophobic
properties. While ZrO, particles form a Zr—-O-Si network within the
polymer matrix [45], they do not facilitate the generation of silicon
particles. This explains the lower hydrophobicity observed in coatings
containing only ZrOy compared to those formulated with Al;03 + ZrOq
+ polymeric mixtures.

3.2. Topography and electrical surface potential

Ceramic oxide nanoparticles, such as Aly03, ZrO5, and hybrid AlyOs-
ZrO,, exhibit diverse shapes, chemical compositions, and electrical
properties, which substantially influence the surface roughness,
morphology, and electrical surface potential/charge distribution of
ceramic-polymer composite coatings. To investigate these surface
properties, the topography, amplitude, and electrical surface potential/
charge distribution of three distinct coatings were analyzed, as illus-
trated in Fig. 3. Analysis of the topography and amplitude maps
(Fig. 3al-a2, 3b1-b2, and 3c1-c2) reveals a heterogeneous distribution
of nanoparticles, ranging from 40 nm to 300 nm in size. The corre-
sponding topography histogram (Fig. 3e) shows that the AlpO3-polymer
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coating exhibits the lowest mean surface roughness of 293 + 167 nm,
while the ZrO,-polymer coating has the highest mean value of 716 +
297 nm. The hybrid Al,03-ZrO, —polymer coating demonstrates an in-
termediate roughness value of 474 + 331 nm. These findings underscore

significant differences in surface roughness and morphological distri-
bution across the coatings. Electrical surface potential/charge maps of
these composite coatings reveal a pseudo-homogeneous distribution of
surface potential (Fig. 3a3, 3b3, and 3¢3). As shown in the histogram
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curves in Fig. 3f, the mean surface potential values progressively in-
crease from Al;O3 to ZrO; and further to the hybrid Al,03-ZrO; coating,
with respective values of 9.1 mV, 10.5 mV, and 14.4 mV. The increased
surface potential/charge distribution in the hybrid AloO3-ZrO5 coating is
attributed to the intrinsic physicochemical properties of the individual
ceramic oxides and the heterojunction effect arising from their combi-
nation (Fig. 3i) [48].

The high-resolution XPS analysis of the Al,03-ZrO, mixed oxide
(Fig. 3h) reveals a single Al 2p peak at a binding energy of 74.75 eV,
which is attributed to y- Al,O3/Al(OH)3 [48-50]. The Zr 3d surface
spectrum is deconvoluted into spin—orbit doublets, corresponding to Zr
3ds/2 and Zr 3ds/; at binding energies of 182.33 eV and 184.7 eV,
respectively. The higher binding energy of the Zr 3ds/, peak is charac-
teristic of the Zr** oxidation state in ZrO, [48].

Fig. S5 presents the FTIR spectra of the Aly03-ZrO, coating. The
absorption bands at 950 cm™! and 800 cm™! correspond to Si-O
stretching and Si-OH deformation vibrations [51], respectively, indi-
cating the presence of silanol groups. Peaks observed at 1100 cm ™! and
470 ecm™! are attributed to the asymmetric and symmetric stretching
modes of Si-O-Si bonds [52] within the siloxane network. A distinct
band at 1262 cm ™ is associated with deformation vibrations of the CHj3
group bonded to silicon [53], confirming the presence of poly-
dimethylsiloxane (PDMS).

Additionally, two minor peaks at 2930 cm ! and 2840 cm ™! are

30
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assigned to the antisymmetric and symmetric stretching vibrations of
the —CH; group, characteristic of silane. These features suggest the
formation of hydrocarbon chain entanglements resulting from monomer
polymerization on the surface, as well as potential electron-withdrawing
effects from adjacent carbonyl groups. The peak at 1450 cm™! is
ascribed to Si—-CHj bending vibrations, further indicating the presence of
silane. Overall, the detection of these characteristic bands of silane and
PDMS confirms the successful formation of a self-assembled silane/
PDMS coating on the aluminum substrate surface.

When these oxide nanoparticles interact physicochemically, an in-
ternal electric field is generated, as illustrated in Fig. 3i. This arises from
band bending at the Aly03 and ZrO, oxide energy levels, coupled with
the formation of a space charge region [49]. The SKPFM results in
Fig. 3a3, 3b3, and 3c3 highlight a more pronounced heterojunction
effect in the mixed Al,03-ZrO; coating compared to the individual Al,O3
and ZrO; coatings. This is evidenced by a higher potential and charge
distribution at the nanoparticle interfaces and their immediate sur-
roundings [50]. In contrast, Fig. 3d displays the topography, amplitude,
and surface potential/charge maps across three distinct regions: the Al
matrix (a small region), a partially coated area (with a thinner coating),
and a heavily coated area. The surface potential/charge map and cor-
responding line profiles in Fig. 3g show that the surface potential in the
Al matrix is approximately 20 mV higher than in the partially coated
region, while the difference between the Al matrix and the thickly
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coated area is around 90 mV (Surface potential of an aluminum sub-
strate and polymer coating alone is presented in Fig. S6). This reduction
in surface potential and charge accumulation in the mixed Aly03-ZrO,
coating indicates a lower tendency for electrochemical activity and
charge transfer at the solid/liquid interface within these regions.

3.3. Water contact angle and free surface energy

The contact angle and free surface energy of various ceramic-
polymer coatings are analyzed, with the results presented in Fig. 4a
and 4b. Among the three coatings studied Al,Os-polymer, ZrO,-poly-
mer, and Al;03 —ZrO5 polymer, a decreasing trend is observed in all free
surface energy components, including the dispersive (yP), polar (yf), and
total surface energy (y"°!), following the order: Al,05-polymer > ZrO,-
polymer > AlyO3 —ZrO2 polymer. Interestingly, this trend is inversely
related to the contact angle, which decreases in the same order for the
various liquids (Fig. S7b): Al,Osz-polymer < ZrOs-polymer < AlyO3
—ZrO,. Fig. 4c demonstrates the graduated color bar representing the
WCA values determined through digital image analysis software. The
distribution of WCAs was relatively homogeneous across the surface.
Except for Al,Os-polymer coating, all WCA values exceeded 150°, sug-
gesting that the proposed surface treatment method is effective in
generating hierarchical superhydrophobic surfaces. Specifically, the
dip-coating process may lead to the thickening of the silane layer at the
specimen bottom edge, which results in a reduction of surface roughness
as the silane deposits in the valleys, thereby decreasing the local WCA. In
contrast, the upper edge, likely featuring a more uniform silane coating,
displays a higher WCA. This variation accounts for the presence of
localized low- or high-contact-angle regions. Fig. S7a presents overall
optical images of the Al,O3 —ZrO; polymer coating immersed in tea
media for the self-cleaning test, along with single droplet images of
various liquids on the coating, indicating excellent self-cleaning
performance.

Upon examining Fig. 4c, it is observed that the difference between
the minimum and maximum contact angles during the wettability map
analysis was approximately 10°. However, the average WCA was 160.0°,
with a standard deviation of 2.4°. While these results indicate some
dispersion in the data, surface homogeneity remains acceptable, espe-
cially considering the large analysis area (720 mm?). Except for Al,O3-
polymer coating, all samples exhibited WCA above the 150° threshold;
only the Al;03 —ZrO polymer samples showed a low water sliding angle
(WSA < 5°), suggesting a transition from the Wenzel to the Cas-
sie-Baxter regime [16]. In this regime, the combined effects of high
roughness and hydrophobicity result in air pockets being trapped at the
droplet-substrate interface. This enhances the hydrophobic behavior, as
predicted by the Cassie-Baxter model, yielding a significantly high
contact angle. Additionally, the entrapped air reduces the contact area
between the liquid droplet and the substrate, facilitating water rolling at
low tilting angles [18]. In contrast, this phenomenon was not observed
for the Al,Os-polymer samples, where the rolling angle exceeded 90°.
Despite the addition of a hydrophobic silane layer, the surface remained
in the Wenzel state. In the Wenzel state, the water droplet penetrates the
surface grooves, with the liquid/air/solid contact line being continuous
and stable. This mode is often referred to as homogeneous wetting.
According to existing literature [54-56], adhesion forces in the Wenzel
state are related to van der Waals forces and the negative pressures
caused by the air trapped within the surface. When a droplet is placed on
a superhydrophobic surface, these negative pressures are negligible.
Upon tilting the surface, the air-water contact line shifts from concave
to convex, causing the trapped air volume to increase [57,58]. This
expansion of the sealed air amplifies the negative pressure, thereby
enhancing liquid adhesion. A high water contact angle (WCA) generally
reflects low surface energy combined with micro/nano-scale roughness
that resists wetting. In contrast, a high water sliding angle (WSA) sug-
gests strong droplet pinning, often caused by surface defects, chemical
heterogeneity, or disruptions in hierarchical structure [59,60]. For the
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ZrOy-polymer coating, this may result from non-uniform nanoscale
roughness or partial transitions to the Wenzel state, where water pen-
etrates the texture, increasing friction and hindering droplet mobility.

3.4. Dynamic droplet monitoring, vapor condensation, and anti-icing
properties

To thoroughly assess the performance of the superhydrophobic sur-
face across various water states, we conducted dynamic droplet moni-
toring, evaluated vapor condensation, and investigated the anti-icing
behavior (ice shear stress test). These experiments offer valuable in-
sights into the coating functionality under diverse environmental con-
ditions. The detailed results of these analyses are presented in Fig. 5.
Fig. 5a captures the dynamic behavior of a water droplet falling freely
from a height of 30 mm onto the Aly03-ZrO ultra superhydrophobic
surface, impacting the substrate with a velocity of 500 mm/s. Upon
impact, the droplet momentarily assumes a nearly spherical shape
before spreading outward, achieving its maximum spread diameter at
200 ms. During this phase, the droplet’s potential energy is completely
converted into kinetic energy. However, part of this kinetic energy is
transformed into surface energy, dissipating as the droplet overcomes
the surface’s sliding friction and adhesion forces [60,61]. Due to the
droplet’s vertical inertia exceeding the combined forces of gravity and
surface tension, it rebounds fully upward at 300 ms, performing an
elastic bounce before rolling off the coated surface without leaving any
trace of water (Movie S3). These observations emphasize the remark-
able wetting resistance of the AlpO3-ZrO, ultra superhydrophobic sur-
face. Its superior hydrophobicity and low adhesion properties drastically
reduce both the contact time and area of the droplet, allowing it to either
bounce off or roll away rapidly.

Thermal imaging monitored the ice melting process was performed
on both an aluminum substrate and an Al;O3-ZrO, ultra-
superhydrophobic surface (Fig. 5b). These samples were cooled in a
fridge to —20 °C for 48 h, and then exposed to ambient temperature
(~19 °C). The temperature of the uncoated surface gradually increased,
reaching ambient temperature after 480 s. In contrast, the Al,O3-ZrO,
ultra-superhydrophobic surface remained significantly cooler than the
ambient temperature even after 600 s. The delayed temperature change
observed during the deicing process on ultra superhydrophobic surfaces,
compared to hydrophilic surfaces, can be attributed to differences in
heat transfer mechanisms, ice formation, and the influence of the air film
on the surface [62]. Superhydrophobic surfaces exhibit minimal contact
between water or ice and the substrate due to their highly repellent
properties. This leads to the formation of a stable air film between the ice
and the surface, further reducing thermal conduction. As air is a poor
conductor of heat, it acts as an insulating barrier that slows the transfer
of heat from the surrounding environment to the coating, thereby
delaying the melting process. In contrast, on hydrophilic surfaces, water
spreads more readily across the surface, increasing the contact area and
facilitating efficient heat transfer, which accelerates the melting of ice
[63]. As a result, the superhydrophobic surface experiences a slower rise
in temperature, indicating minimal ice formation on it. This behavior
highlights the role of surface energy, the presence of the air film, and the
heat transfer properties on ice adhesion and melting efficiency.

Vapor condensation was observed on both an aluminum substrate
and an Aly03-ZrO, ultra-superhydrophobic coating during exposure to
hot vapor at 70 °C (Fig. 5C). On the aluminum substrate (19 °C), a thin,
uniform film of water rapidly covered the entire surface within 120 s,
demonstrating the material’s strong condensation-promoting proper-
ties. The vapor efficiently condensed into liquid water, spreading evenly
across the substrate. In contrast, Al;O3-ZrOy ultra-superhydrophobic
coating showed no condensation during the same time frame. After
1500 s, the water film on the uncoated aluminum had thickened, indi-
cating ongoing condensation and accumulation. On the Al;O3-ZrO,
ultra-superhydrophobic coating, however, water droplets only appeared
at the lower region, where the contact angle was reduced due to a
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doping process, as shown in the wetting maps in Fig. 4c. These droplets
swiftly slid off, reflecting the low adhesion and water-repellent behavior
characteristic of superhydrophobic surfaces.

Fig. 5d compares the ice adhesion forces of the Al;03-ZrO, ultra-
superhydrophobic coating and an uncoated control. The ultra-
superhydrophobic surface demonstrated a significantly lower ice adhe-
sion, primarily due to the Cassie-Baxter state, in which a trapped air
layer minimizes direct contact between the ice and the surface. This
results in partial wetting, with only a few isolated contact points be-
tween the ice and the surface, substantially reducing overall adhesion. In
some cases, the reduction in contact is so pronounced that the ice shows
near-complete detachment from the surface, minimizing adhesion to a

remarkable extent. Specifically, the ice shear stress on the Al,O3-ZrOy
ultra-superhydrophobic surface was only 20 kPa, compared to approx-
imately 700 kPa for the uncoated surface. This substantial difference
underscores the effectiveness of the Al;03-ZrO3 ultra-superhydrophobic
coating in reducing ice attachment. For the uncoated surface, the ice
adhesion force remained stable at around 700 kPa even after 20
detachment cycles, indicating a strong resistance to changes in adhesion
strength during repeated freeze-thaw cycles. In contrast, the Aly03-ZrO2
ultra-superhydrophobic coating imagined a slight increase in ice adhe-
sion to 40 kPa after 14 cycles, though it remained significantly lower
than that of the uncoated surface. By the end of the 20 cycles, the Al,O3-
ZrO, ultra-superhydrophobic coating still exhibited an ice adhesion
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force below 100 kPa, demonstrating its sustained performance and
stability under prolonged icing conditions. This behavior aligns with the
broader literature on passive icephobic coatings, where minimizing ice
adhesion strength is crucial for practical applications, with values below
100 kPa considered ideal for efficient ice removal with minimal external
loading [64,65]. Furthermore, these ice detachment experiments also
served as an indirect evaluation of the coating’s durability and scratch
resistance. Despite repeated detachment cycles, the coated sample
maintained its icephobic performance without observable damage. This
indicates that the Aly03-ZrO5 ultra-superhydrophobic coating is not only
highly effective in reducing ice adhesion but also durable under
repeated mechanical stresses [64,66,67].

The ceramic—polymer hybrid coating developed in this study exhibits
exceptional multifunctional performance, particularly in super-
hydrophobicity, icephobicity, and long-term durability. The Al,O3-ZrO,
coating achieved an impressive water contact angle (WCA) of 180° and
an ultralow ice shear stress of just 20 kPa, outperforming many
advanced coatings reported in recent literature (see Table 2). For com-
parison, Polytetrafluoroethylene (PTFE)-fluorinated epoxy coatings
demonstrate a WCA of 156.8° with an ice shear stress of 51 kPa [68],
while 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FOTS)-coated steel
(WCA: 151°) exhibits a significantly higher ice adhesion strength of 207
kPa [69]. Other composite systems, including multi-walled carbon
nanotubes (MWCNTs)- cetyltrimethylsiloxane (HDTMS)-epoxy (WCA:
156°, 105.2 kPa) [70], metal-organic frameworks (MOF)-
MxNS-1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFTS) (WCA:
159°, 55 kPa) [71], and octadecyltrichlorosilane (OTS)-MOF-Cu (WCA:
155.8°, 45.7 kPa) [72], also fall short in both water repellency and
icephobic performance. In contrast, our composite coating not only
achieves ultra-superhydrophobicity but also maintains excellent anti-
icing, anti-vapor condensation, and corrosion-resistant properties,
positioning it as a highly promising solution for use in extreme and
demanding operational environments.

Additionally, to assess the mechanical durability of the super-
hydrophobic coating, a controlled scratch test was conducted using a
cut-off knife with a blade thickness of 0.7 mm, as shown in Fig. S7c. The
surface was deliberately scratched to simulate mechanical damage, after
which water droplets were applied to the affected area. Remarkably, the
coating maintained its superhydrophobic characteristics even after
damage, as evidenced by the formation of nearly spherical water drop-
lets and a static contact angle exceeding 150°. These results demonstrate
that the coating possesses excellent resistance to mechanical abrasion
while preserving its water-repellent properties.

3.5. Short and long-term corrosion protective performance

To evaluate the chemical stability of AlyO3-ZrOy ultra-
superhydrophobic coating and its corrosion protection of aluminum
substrates, both short- and long-term corrosion analyses were performed
alongside contact angle measurements. Fig. 6a presents the potentio-
dynamic polarization curves for the as-received aluminum substrate and

Table 2
Comparison of the water contact angle (WCA) and ice adhesion strength of
various advanced coatings with the coating developed in this study.

Materials WCA Ice adhesion strength ~ References
©) (kPa)
PTFE, fluorinated 156.8° 51 [68]
epoxy
FOTS, Steel 151 207 [69]
MWCNTs, HDTMS, 156 105.2 [70]
Epoxy
MOF-MXNS, PFTS 159 55 [71]
OTS, MOF, Cu 155.8 45.7 [72]
PDMS@Silane, ZrO,, 180 20 Our developed
Al,03 coating
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the Aly03-ZrO, ultra-superhydrophobic coating, characterized by vary-
ing WCA in a 3.5 wt% NacCl solution. Key electrochemical parameters,
including corrosion current density (icorr) and corrosion potential (Ecoryr),
were determined using the Tafel extrapolation method and are shown in
Fig. 6¢c and 6d to quantify corrosion protection performance. A sub-
stantial reduction in icorr (4.1nA.cm ) and a significant increase in Ecoyy
(47 mV vs. Ag/AgCl) highlight the enhanced corrosion resistance of the
coated sample. The results indicate a positive shift in the corrosion po-
tential of the aluminum substrate with the application of Al;03-ZrO,
ultra-superhydrophobic coating. This improvement is attributed to the
enhanced water repellency provided by the hierarchical rough struc-
tures of the coating, which trap air and form an insulating “cushion.”
This air cushion acts as a barrier, reducing the diffusion of aggressive
electrolytes to the metal surface. Additionally, the self-assembled silane
layer reinforces this barrier, creating a dual protective effect that
significantly enhances corrosion resistance. In contrast, the untreated
substrate permits rapid interaction and penetration of corrosive ions (e.
g., Cl — ), leading to reduced corrosion resistance. The synergistic effect
of surface texturing (air entrapment within micro/nanostructures) and
silanization (energy barrier for water penetration [73]) is crucial for
achieving exceptional corrosion protection. These findings align with
previous studies that reported improved corrosion protective perfor-
mance in superhydrophobic aluminum alloy surfaces compared to un-
treated alloys [22], while another study observed similar enhancements
for aluminum in sterile seawater [21]. Moreover, the SEM images of the
Aly03-ZrO, ultra-superhydrophobic coating (Fig. 6e and 6f), taken after
the potentiodynamic polarization test, show no signs of degradation,
breakdown, or detachment. This indicates excellent chemical stability
and outstanding corrosion resistance of AlyO3-ZrO; ultra-
superhydrophobic coating in 3.5 wt% NaCl aggressive environment.

Fig. 6b presents the open circuit potential (OCP) values in 3.5 % NaCl
for both the aluminum alloy and AlyO3-ZrO, ultra-superhydrophobic
coating. The WCA data indicates that silane treatment and hierarchi-
cal micro/nanostructures effectively keep the chemical stability and trap
air in surface valleys, preserving ultra-superhydrophobic properties for
up to 210 days in a 3.5 % NaCl solution. After approx. 50 days of im-
mersion, the OCP value reflects a corrosion potential of 40 mV vs. Ag/
AgCl, indicating excellent chemical stability and corrosion protection
performance. After this period, the OCP values exhibit a gradual
decrease until the coating stabilizes at an average of —120 mV vs. Ag/
AgCl by 285 days. Throughout the exposure period, the WCA values
remain stable, with only minor changes, reaching approximately 174°,
demonstrating the robust chemical stability of the Al;03-ZrO, ultra-
superhydrophobic coating. This stability is attributed to the strong
interfacial bonding and the synergistic effects of the silane treatment
(especially siloxane bonds (—Si-O-Si-)) with the Al;03-ZrO; compo-
nents. In conclusion, the proposed mixed Al,03-ZrO; polymer coating
significantly enhances the water repellency, chemical stability, and
corrosion shield of AA6082-T6, showcasing its potential for advanced
anti-icing, anti-vapor condensation, scratching resistance, and corrosion
protection in industrial applications.

4. Conclusion

In this study, we successfully developed a mechanically robust, cost-
effective, and scalable Alp03-ZrO, ultra-superhydrophobic coating with
a hierarchical micro-nano structure, applicable to a wide range of ma-
terials, ranging from aluminum to concrete. This surface was fabricated
through a simple, single-step process, enabling efficient production. We
evaluate the individual and synergistic effects of alumina (AloO3) and
zirconia (ZrO3) on superhydrophobicity, demonstrating outstanding
enhanced overall surface physical and chemical properties. The AlyO3-
ZrOy ultra-superhydrophobic coating exhibits exceptional multi-
functionality, including superhydrophobic, anti-icing, anti-corrosion,
anti-vapor condensation, scratching resistance, and self-cleaning prop-
erties. It retains its non-wetting characteristics even when exposed to
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after PDP test.

various liquids, highlighting its durability in diverse environments. The
surface morphology and chemical composition analyses confirmed the
critical role of hierarchical structures in influencing wettability and
other properties. Overall, this innovative Aly03-ZrO» polymer composite
coating, as an ultra-superhydrophobic coating, not only addresses cur-
rent limitations in superhydrophobic surface technology but also paves
the way for large-scale industrial applications. Its simplified fabrication
process, combined with enhanced mechanical and chemical stability,
positions it as a promising solution for industries requiring advanced
surface functionalities, such as aerospace, marine, construction, and
energy sectors.
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