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Abstract
Over the recent years, flood risks and losses have been increasing for coastal cities due to climate
change, subsidence, population and economic growth. Hong Kong and Macau are two cities located in
the Pearl River Delta that experience a significant flood risk due to storm surges. The increased losses
and risks has sparked interest around the world for efficient and accurate flood forecasting. At the mo­
ment coastal flooding events are often simulated with difficult hydrodynamic models that reproduce the
physical phenoms. Over the last decades there has been more interest in other methods to forecast
storm surges, namely neural networks. Other than hydrodynamic models a neural network is capable
is making predictions in seconds, while the model can take hours to finish simulation. fast and accurate
storm surge forecasting is of importance for disaster and evacuations management strategies and will
only become more important in the future. During this research the main goal is to develop a neural
network capable of prediction maximum water levels due to storm surges in case of an approaching
tropical cyclone. The neural network is trained with data that is obtained from hydrodynamic simula­
tions. A synthetic storm database is used to provide the necessary data to conduct 1000 simulations
of which the results are used in the neural network.

The first step is developing a hydrodynamic model capable of accurately simulation tropical cyclone
induced storm surges in Hong Kong and Macau. The model is calibrated in a way to reproduce the
real world as close as possible. It accounts for the real life bathymetry, topography, tidal elevations
and wind forcing. The storm surge model is validated extensively based on three historical tropical
cyclones. By comparing the actual observed water level during these storms with the model output,
one can proof that the model output is accurate and can be used for the synthetic simulations. The
errors between the observed and simulated water level are below 20 cm, after calibrations of different
physical parameters within the model.

The second step of this research is to use the validated storm surge model to run synthetic storm
simulations. Instead of using historical storms who only have been recorded for 40 years, a synthetic
storm database is used containing 10000 years worth of data. From that storm data, 1000 synthetic
tropical cyclones are selected that come close to Hong Kong and Macau. Where it is not possible
to obtain enough data for neural network training with historical storm data. The synthetic database
provides the ability to produce sufficient number of samples for network training. Additionally during
this research multiple Matlab tools are developed that provide a high degree of automation for syn­
thetic model setup and data processing. These tools can be easily adapted and used for storm surge
simulation around the world.

With the data obtained from the previous two steps, it is finally possible to training the neural net­
work. In this network a total of seven input parameters (tropical cyclone track parameters) are used
to estimate the maximum water level that will occur during the tropical cyclone. The input parameters
considered are: latitude, longitude of TC eye, maximum wind speed, minimum eye pressure, radius of
maximum winds, forward speed, forward propagation direction. Based on these TC track parameters,
the network should be able to accurately predict the surge heights. During the development of the
network, three different types of configurations are tested. The first one: A complex neural network
capable of outputting the entire maximum water level map for Hong Kong and Macau. The second
configuration only focuses on the water levels at the coastline. When considering only water level pre­
diction for the coastline, the complexity of the NN can be significantly reduced and more configurations
can be tested. The final configuration only gives the output for 10 locations of interest instead of the
entire domain.

Based on extensive calibration and validation it is concluded that the neural network capable of
map predictions cannot be trained sufficiently to produce accurate results. The sheer size of the output
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layer makes this network very complex and is accompanied with limitations in network training and
architecture. The trained map neural network, gives errors up to 1 meter. The coastline network shows
significant improvements compared to the map output with much lower mean square errors. How­
ever, variability in the quality of predictions are observed. For most combinations of input parameters
reasonable predictions are obtained. However, for some other input parameter combinations the pre­
dictions are poor. Additional efforts should me made to try to improve the map and coastline network
for applicability to real storm surge forecasts. The complexity of the neural network with 10 locations is
much simpler. This provides more training and configuration possibilities than the other network. After
training, this network provides much more accurate results. Based on the track parameters, the trained
network is capable of prediction the maximum water level for the 10 location with a maximum error of
30 cm. Although the neural network is trained with synthetic data, it can be used for real life storm
predictions by taking the track parameters of an approaching storm. Only the tidal elevation must be
added to the neural network output to be used for real storms. The estimations by the locations network
are considered to be reasonable accurate but shows variability in the accuracy between combination
of input parameters. The networks should be used with care.
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processes.

Hong Kong Densely populated city inside the special administrative region of the people’s republic of
China. It is a former British colony, consisting of 236 smaller islands with 7.4 million inhabitants
in 2019.

Macau Like Hong Kong also a special administrative region and a former Portuguese colony. The city
is located approximately 70 km from Hong Kong with a population of 650,000 in 2017.

Pearl River Delta Located on the coast of the South Chinese Sea, this is one of the most densely
urbanised delta of the world.

Storm Surge The rapid rise of water due to low­pressure systems like tropical cyclones. Known to
cause devastating floods in coastal flood planes..

Synthetic Storm Data Artificially generated best track data of tropical cyclones. It can be used instead
of historical storm data for a wide variety of purposes like storm simulations, statistics, machine
learning etc.

Tropical Cyclone Rapid rotating storm system with a low­pressure center and very strong winds. De­
pending its locations and or strength it referred by different names like hurricane, typhoon, tropical
depression..
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1
Introduction

Global and mega cities are often referred as the engines of economic growth and serve as a hub within
a globalized economic network. Most global cities are located on or near the coast on low lying flat
areas. Often they are also located near major river mouths, providing easy access to the hinterland.
The favourable locations of these cities facilitates trade and welfare growth (de Sherbinin et al., 2007).
On the other hand, their location close to the sea and major rivers often puts them at greater risk for
natural hazards. Due to the changing climate, subsidence, population and economic growth, the flood
risks and losses are increasing in coastal cities (Hallegatte et al., 2013).

Due to the worldwide increases of flood losses, there is a growing interest in the monitoring, mod­
elling and prediction of coastal floods. Storm surges and waves, generally generated by tropical cy­
clones are considered the main drivers for coastal flooding. The knowledge on flood exposure and
losses of coastal cities is of increasing interest for the French company AXA, a worldwide leader in
insurances. The AXA group risk management (GRM) department is collaborating with Delft University
of Technology and UNESCO­IHE Delft to model, quantify and predict coastal floods around the world.
This MSc thesis aims at simulating storm surges in Hong Kong and Macau based of tropical cyclones.
The storm surge model will provide the basis for development of a machine learning framework that
can accurately predict storm surges.

1.1. Background and motivation
Situated in the Pearl river delta on the South coast of China, Hong Kong and Macau are two densely
populated areas inside the special administrative region of the people’s republic of China. Hong Kong
a former British colony, consists of 236 smaller islands with 7.4 million inhabitants in 2019. Macau, a
former Portuguese colony is located approximately 70 km from Hong Kong with a population of 650,000
in 2017. Both Hong Kong and Macau are among the most densely populated cities around the world.
Hong Kong has a land area of 1106 square kilometers and a population density of 6600 people per
square kilometer. With 30.4 square kilometers of land surface, Macau’s area is small compared to
Hong Kong. However, the population density is significantly larger with 21,400 people per square
kilometer (Kwong and Wong, 2017). With 62 million inhabitants, the pearl river delta is one of the
largest megalopolis of world.

Both Hong Kong and Macau have a rich history with natural disasters like tropical cyclones (ex­
treme wind and heavy precipitation), storm surges and earthquakes which have caused floods, storm
damages and land slides (Sim et al., 2018). According to the sustainability index 2015, Hong Kong
is listed as the Asian city that is most at risk from natural hazards (Arcadis, 2015). From a worldwide
perspective, Hong Kong is listed as the third most city at risk. The annual tropical cyclone season is
from March to early September and on average 6 to 7 tropical cyclones affect Hong Kong each year
(Lam and Lam, 2005). Especially the low lying areas of Hong Kong and Macau are vulnerable to storm
surges caused by tropical cyclones. In the past, storm surges induced by tropical cyclones have caused
significant floods, damages and casualties in Hong Kong. The most devastating observed storm surge
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occurred in 1906 and caused approximately 15,000 casualties in Hong Kong (Lau et al., 2017). Other
natural hazards that Hong Kong and Macau have experienced in the past are extreme precipitation
events (often during a TC), wildfires and earthquakes. Studies by Du et al. (2018), Li et al. (2018),
Sepúlveda et al. (2019) conclude that the current risk for a high intensity earthquake or tsunami in the
pearl river delta is low. However, the study by Li et al. (2018) also concludes that the tsunami hazard
will increase significantly if sea level rise is considered.

Figure 1.1: Distribution of cities by population size in 2011 and risk of natural hazards. Adapted from:United Nations (2011)

The significant natural hazard threat for Hong Kong and Macau is further underlined by a report
from the United Nations (United Nations, 2011). Figure 1.1 displays the worlds largest cities and the
natural hazards they are exposed to. Hong Kong and Macau are exposed to 2 hazards that fall in the
top 3 deciles. This means that for two natural hazards, the exposure risk to the population is high.
For example the 10th decile means that 100 % of the population is exposed to that hazard. For the
Hong Kong region, flood and cyclone risks are listed in the 8­10th decile, meaning that there is a very
high risk for population exposure to flood and cyclones. The multi hazard annual average loss (AAL)
is often used in risk management and represents the long­term expected annual loss per year for
hazards averaged over multiple years. For Honk Kong, the AAL due to storm surges is approximately
898 millions US dollars. Storm surges contribute 79% to the total AAL of Hong Kong (Preventionweb,
2019). Of all the reported losses of life during natural disasters between 1990 and 2014, loss of life
due to floods account for 67.2% of all losses (EM­DAT, 2019). The AAL and loss of life statistics show,
that storm surges and its associated floods are responsible for the major part of losses due to natural
disasters in Hong Kong. (economic losses and loss of life). An additional trend is the rapid urbanisation
of large cities. For Hong Kong it is projected that the population will grow to 9.3 million by 2050. Macau
is projected to grow to 824.000 inhabitants by 2050 (United Nations, 2011). Due to the growing urban
population, more people and infrastructure will be exposed to natural hazards in the future, which lead
higher risks, more potential damages and loss of life in case of natural hazards.

Not only the rapid urbanisation but also climate change poses new problems for Hong Kong and
Macau. Climate change is considered an important driver for many natural hazards. The most recent
climate change report from the intergovernmental panel on Climate change (IPCC) discusses the ob­
served and projected climate change (Yasuaki et al., 2014). The report shows that the mean annual
temperature in East Asia has been increasing up to 0.2°C per decade since 1960. Precipitation trends
on the other hand show great variability between regions and not significant trends can be observed on
the return periods of tropical cyclones making landfall. Finally, all over the Asian region sea level rising
has been observed. The magnitude of the sea level rise is specific to the ocean basin. Besides the
projected climate change the IPCC report also treats the projected climate change. The assessment
shows that further rising of temperatures in the 21st century is very likely. Models and simulations
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shows that the mean temperature for South and Southeast Asia is projected to rise with more than
3 °C by the mid­21st century compared to the late­20th century. Furthermore, the precipitation and
ocean temperatures are expected to increase under all considered scenarios. For the sea level rise
the IPCC considers different scenarios that estimate a global sea level rise for the 21st century. The
worst scenario predicts a global sea level rise up to 2m. Overall, the IPCC projects an increase in
riverine, coastal and urban flooding leading to damages to infrastructure, livelihoods and settlements
in Asia (Yasuaki et al., 2014). Furthermore, an increased risk of flood related deaths and injuries is
projected with medium confidence. The people that live in low­lying coastal areas are most at risk from
climate change.

According to Sim et al. (2018), Hong Kong can be considered a disaster resilience city overall. Risk
mitigation strategies are developed and sufficient financial resources are allocated. However, there
is still much room for improvement. Disaster management in Hong Kong focuses mainly on building
resilience and emergency responses. However, a long term disaster strategy and vision is missing.
Especially the response to climate change is insufficient and the government is failing to adapt an
integrated approach. Part of the problem is the fact that Hong Kong and Macau have not experienced
natural disasters with significant fatalities over the last 50 years. This inexperience in natural disasters
and the lack of a long term vision suggests that it is unclear if Hong Kong and Macau can cope with
the impacts of disasters in the future. On local scale very little can be done to reduce tropical cyclone
activity and storm surges. However, the study and simulation of the impacts of TC’s and storm surges
for Hong Kong and Macau can lead to new insights to improve the disaster resilience.

1.2. Objective
In the previous section, the background and motivation for the study has been discussed. In summary,
the natural hazards, rapid urbanisation and changing climate will increase the risk and consequences
for Hong Kong and Macau in the future. From all discussed natural hazards, tropical cyclones and its
associated flooding poses the most danger for Hong Kong and Macau. Therefore, this research mainly
focuses on the simulation and prediction of coastal floods due to TC activity. Recently TC Hato (2017)
made landfall in the pearl river delta. It was one the strongest tropical cyclones of the last decades. Hato
severely impacted Hong Kong and Macau causing flooding, electricity and water shortages bringing the
cities to a standstill. In Hong Kong no fatalities were registered but in Macau 10 people died and over
200 people were injured. Moreover, parts of the city were inundated due to the unprecedented storm
surge heights. Track analysis and surge investigation showed that Hato had unusually rapid approach
speeds (Takagi et al., 2018). Authorities did not have sufficient time to prepare and storm warning
signals were not issued in time. This shows the importance for improvements in tropical cyclone and
storm surge forecasting.

Presently, different numerical hydraulic models are used to simulate coastal flooding in case of a
tropical cyclone. The numerical models use complex mathematical and physics processes to describe
the flow of water and predict floods. Although these models have shown in the past that they can
produce accurate results, their accuracy is depending on the model selection, setup, validations and
analysis. Due to their complexity, the simulations often have long computational time. In case of an ap­
proaching TC, predictions on surge heights must be computed quickly. However, the more accurate the
model the longer the computation time becomes. In the past decades new methods have been devel­
oped to predict floods by mimicking the mathematical and physical processes. Today, these machine
learning methods like neural networks, have contributed in the advancement of prediction systems,
providing better performance and cost­effective solutions (Mosavi et al., 2016). An added bonus of
these ML methods is that they have a significant faster computation time. However, the development
of ML methods requires historical or synthetic data to work. The data needed to develop an ML method
can also be obtained by doing many simulations in a hydrodynamic model and use its results for the
development of the ML method. The main objective of this research is the development of an hydro­
dynamic model that will be used to develop an artificial neural network that uses TC storm parameters
only to accurately and fast predict storm surge heights for Hong Kong and Macau. Additionally, three
sub research questions are considered in order to answer to main research question. These sub ques­
tions mostly relate back to the preliminary work that must be completed in order to start development
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of the artificial neural network.
‘

Main research question:

• Is it possible to develop a neural network using synthetic storm data that is capable of accurately
prediction the maximum water levels in case of an approaching tropical cyclone?

Sub research questions:

• What is the best way to set­up and calibrate a hydrodynamic model accurately for a large number
of synthetic storm simulations?

• How should a synthetic storm database be implemented to efficiently process large amounts of
data for use in synthetic storm surge simulations and neural networks?

• What are the advantages and or disadvantages of using neural networks to predict maximum
storm surge heights, compared to traditional hydrodynamic modelling?

Multiple research activities are defined to work systematically towards answering the main research
question. These activities form the basics of the proposed methodology.

Research activities:

1. Literature study and data collection

2. Hydrodynamic model set­up in Delft3D (wind model, waves, tides)

3. Model validation with historical TC’s (Hagupit 2008, Hato 2017, Mangkhut 2018)

4. Synthetic storm catalogue data preparing and handling

5. Up to 1000 storm surge simulations with synthetic TC track catalogue. Simulation results will be
used for the development of the neural network.

6. Development of an artificial neural network capable of predictionmaximum surge heights for Hong
Kong and Macau in case op an approaching TC.

1.3. Methodology
The methodology of this research can be best described by dividing the project into three phases i.e.
research initiation, Hydrodynamic processes and machine learning processes.The different activities
all contribute towards answering the research questions. This section aims at describing the different
activities in more detail. Figure 1.2 shows the different phases during the thesis and figure 1.3 shows
a flow chart of the proposed activities.

Figure 1.2: Phases Overview Thesis Research
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Phase 1: Research initiation
The starting point for this research are the problem and objective statements. In sections 1.1 and 1.2
the background, motivation and objective of the research are discussed. It discusses the factors and
aspects that are responsible for the conduction of this study. Chapter 2 focuses on the literature study
and data collection. The literature study includes all the theoretical and physical background needed to
answer the research question. Data collection involves gathering all the required data that is needed for
the research. The collected data is used in phase 2 for the storm surge simulations. This includes the
collection of topography and bathymetry maps for Hong Kong and Macau (provided by Delft University
of Technology). The ocean tides, required as boundary conditions input in the model will be adapted
from global and regional tide models (TPXO) or FES2014 model. The tidal models allows the user to
include the tidal forces as harmonics in the model instead of time dependent measurements. Data on
historical TC tracks are provide by the IBTrACS database. Furthermore, historical measured data from
tidal and wave stations around Hong Kong and Macau are gathered from local Authorities. The data
is provided by the Hong Kong Observatory, Hong Kong Marine Department and the Civil Engineering
and Development Department (CEDD).

Phase 2: Hydrodynamic processes
The second phase consists of the model set­up in Delft3D. In section 2.6, different types of hydro­
dynamic models and software packages are discussed. For this research, the Delft3D model will be
used to simulate storm surge and coastal flooding. Delft3D is a widely used and validated package
around the world. The additional packages to integrate tides, waves, wind speeds and pressures in
to model increase the ease of use. An additional advantage for the Delft3D model is the fact, that the
Delft University of Technology thesis supervisors have a lot of experience using this software.

The accuracy of the storm surge predictions is largely dependent on the TC track data, intensity and
wind fields (Bao et al., 2006). Therefore, computations of wind speeds and pressures for the input of the
model are derived from the parametric Holland et al. (2010) wind model. The Holland model uses the
sea level pressure and wind profiles to provide estimates of required parameters. This model is used
frequently to simulate TC’s and a low computational cost, which makes it suitable for a large number of
simulations. The Holland wind model is extensively treated in Section 2.5. With all the gathered data,
the hydrodynamic model can be set­up for estimation of surge heights and coastal water levels.

After development, the model will be validated. This can be done by hind casting a historical storm.
The validation process consists of two parts. First, the model is tested with only tidal forcing and no
waves or storms. The coastal water levels of the simulation are then compared with the historical tidal
data from the measurement stations. By comparing the simulated and historical water levels, one can
determine whether the model is capable of accurately simulating tides. The tidal validation part will
be done for a historical day with very calm conditions (hardly any waves and wind). Adapting this
approach, ensures that the data of the tidal stations can be compared with the model output without
interference of the waves and wind. After the tidal part of the model has been validated, the second
part of the validation process can be conducted. This includes a simulation with tides, waves and
storm conditions combined. For this part it is necessary simulate an historical TC and compare it with
the model input. TC Hato (2017) will be used for this second validation part. Again the results of the
simulation will be compared with the historical tidal and wave data.

After the model has been tested and validated, one can start with the synthetic storm simulations.
A synthetic TC track database is required since there are not sufficient historical TC tracks in the PRD
region to conduct a correct machine learning analysis. Recently, Bloemendaal et al. (2020) developed
a synthetic storm catalogue containing 10,000 years worth of storm data for all basins around the world.
This database is generated from observed storm track data of historical TC’s. A number of relevant
storms will be selected and their track data is parametrized by a wind model. This will then be used as
the main forcing in the Delft3D model to simulate many storm surges. he results of all these simulations
are then used for the training of the machine learning framework in the final phase.



6 1. Introduction

Phase 3: Machine Learning Method
The final phase includes the development of the neural network. As discussed previously, neural net­
works are a great tool for the estimation of surge heights, arrival times and flood depths at a low compu­
tational cost. The development of an accurate neural network can significantly reduce the time required
for storm surge forecasting. The reduced time required for forecasting can help authorities in the future
for disaster and evacuations management. Additionally, by increasing knowledge on the surge heights
around Hong Kong and Macau, possible weak spots in the flood defences can be identified. This again
gives authorities the possibly the most vulnerable locations, which then can be evacuated in time, when
a TC approaches the area. Multiple different neural network architectures exist today that can be used
for forecasting purposes. In general Bayesian Networks and artificial neural networks are used often
for forecasting.

Figure 1.3: Flow chart of thesis project
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1.4. Readers Guide
The section is written with the aim to give the readers insight in the structure of this thesis research.
Chapter 2 focuses on reviewing the fundamental literature that is used during this research. It treats the
physical process associated with storm surges and tropical cyclones. Furthermore, the background of
hydrodynamic and neural network modelling is discussed. Chapter 3 aims at setting up and validating
of the hydrodynamic storm surgemodel. All aspects that are relevant for model setup is treated in detail.
The final product is an validation model capable of prediction storm surge height for tropical cyclones.
Chapter 4 contains all steps to efficiently handle the synthetic storm data and make it suitable for
synthetic storm surge simulations. In chapter 5 the results of the synthetic simulations are used for the
development of a neural network capable of predicting maximum surge height for TC track parameters.
The network is tested and validated extensively to ensure the production of accurate results. Chapter
6 discusses the results of the hydrodynamic and synthetic modeling. Finally, chapter 7 discusses the
conclusion of this study. Additionally, recommendations for future research possibilities are given.





2
Literature

This chapter aims at describing all the theoretical and physical backgrounds required for this research.
Furthermore, this chapter also present the collected relevant data on astronomical tides, waves and
wind that will be used for the coastal flooding model. First, The formation and structure of TC’s will be
discussed. This is followed by a theoretical explanation of storm surges, waves and tide processes.
The final part of this chapter focuses on the numerical hydrodynamic models that are used in the study.
Different models will be discussed and their advantages and limitations. A review on the different
methods is required to correctly choose the methods to be used during the study. This chapter often
refers to appendix A that contains additional theory and background information to supplements the
topics discussed in this chapter.

2.1. Tropical cyclones
Tropical cyclones are large scale warm­cored rotary storms that form over warm oceanwaters in tropical
regions and are driven by heat transfer from the ocean (Emanuel, 2003, Montgomery and Farrell, 1993).
These storms are characterised by a low pressure system, strong winds, heavy rain and thunderstorms.
The extreme winds and rain accompanied by storm surges can have devastating effects on coastal
regions in the tropics. The regions in which these storm form are around the equator and is bordered
by the tropic of Cancer (23.5°𝑁) and the tropic of Capricorn (23.5°𝑆). Depending their location in the
world, tropical cyclones are named differently. In the Atlantic ocean they are called hurricanes and in
the Pacific ocean they are called Typhoons. In the Indian ocean they are simply called tropical cyclones
or cyclones. Although named differently, these storms all refer back to the same type of storm. The
classification of tropical cyclones is defined according their maximum wind speed at an altitude of 10 m,
averaged over 10 minutes (Bell, 2010). Three different intensity classes can be distinguished: Tropical
depressions with maximum wind speeds of 17 m/s, tropical storms with wind speeds ranging from 18
to 32 m/s and finally tropical cyclones with a maximum wind speeds over 33 m/s. This classification
depends on the time averaged wind speed, however gusts can be significantly higher. For hurricanes,
a more extensive classification is used (Saffir­Simpson scale) with five different intensity categories.

2.1.1. Tropical Cyclone structure
As stated by Kepert (2010), tropical cyclones can vary significantly from one to another, and from day to
day, in intensity, size, boundary layer structure, spiral banding, eye structure and degree of symmetry.
These complex and different parts have been researched extensively in the past decades. However,
physical changes processes responsible for structure and intensity changes are still not understood
well today. To increase knowledge, data from these storms has been gathered by means of airplanes,
sensors, radar, satellites and numerical simulations (Emanuel, 2003). Wang and Wu (2004) describes
the TC structure by defining three components: storm­scale structure, inner­core and spiral rainbands.
The storm­scale structure represents the whole cyclonic circulation with sustained winds larger than
15 m/s. The inner­core includes the eyewall and eye of the storm. Figure 2.1 shows an schematic of
a TC structure with it main components.
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Figure 2.1: Schematization of TC structure. Adapted from:Li et al. (2013)

The TC center is called the eye and has relatively calm conditions compared to the rest of the storm
system. Storm eyes can often be easily seen in case of well­developed storms with high intensities.
For less intense storms, the eye is usually less defined. The eyewall is a ring of very deep convective
cloud with thunderstorms extending from the edge of the eye to 20­50 km outwards (Wang and Wu,
2004). Usually the eyewall has the highest winds and precipitation. Another component of the TC
structure are the spiral rainbands. The spiral rainbands are located outside the inner­core of the storm
and often produce extreme precipitation. The rainbands of a storm system can extend up to 150 km
from the eye. According to Wang and Wu (2004) the dynamics in the TC core are believed to be the
key in structure and intensity changes. TC’s can vary significantly in size.

2.1.2. Formation
The formation of tropical cyclones is often referred as cyclogenesis. Today, this field of research is still
not completely understood. However, there is general consensus regarding the climatological condi­
tions in which TC’s can form. According to Tory and Frank (2010) the following five conditions can be
distinguished that are favorable for the formation of TC’s:

• Sea surface temperature above 26.5 °C coupled with relatively deep ocean mixed layer. In gen­
eral the TC uses the heat of the ocean to gain ins tensity and strength. The warm ocean water is
evaporated and included in the developing TC. Eventually, the water vapor condensates to form
clouds.

• A deep surface based layer of conditional instability. This basically means that there must be a
pre­existing disturbance presence which can grow into a TC.

• Enhanced values of cyclonic low level absolute vorticity. The easiest way to describe vorticity is
simply as a clockwise or counter clock wise movement.

• Organized deep convection in an area with large scalemean ascent and high tomid level humidity.
TC need the humidity in troposphere to sustain the thunderstorm and clouds. A low humidity will
cause the dry air the start eating away the clouds.

• Weak to moderate vertical wind shear. Vertical wind shear is defined as the difference in wind
speed and directions at two different heights in the atmosphere. In general TC have problems
developing in area with high wind shear, meaning that the disturbance are displaced way from
the TC centre.



2.1. Tropical cyclones 11

Figure 2.2 displays a schematic diagram of a TC lifecycle and shows the intensity changes over
time. The formation typically start with warm ocean temperatures, relatively low surfaces pressures
and a cluster of thunderstorms (initial disturbance) (Pielke and Pielke, 1997). Air is attracted towards
the center of the low pressure system (convergence). The Coriolis effect deflects the wind creating
vorticity. The warm sea level temperature provides the heat for evaporation and adds heat to the
lower atmosphere. The to the low pressure spiraling air is forced up, since is has no way to go. If
the troposphere’s humidity is favorable (mid to high humidity), clouds can develop up to top of the
troposphere. The stratosphere acts as an barrier for upward moving heat and moisture. When the
stratosphere is reached, the air spreads diverges. The diverging air caused an additional pressure drop
at the surface, leading the extra air convergence which again feeds the thunderstorms and clouds. Due
to the small windshear the thunderstorm stay concentrated, allowing the system to further grow. By
now the system is called a tropical disturbance (cluster of thunderstorms and weak wind circulation).
If conditions stay favorable, the disturbance can keep developing and grow into a TC. As the system
increases in strength it becomes more difficult for air to reach the centre. This is cause by the increase
in speed when the air spirals towards the center. As a result the air is spun out of the inwards spiral
and spiral bands are formed. Due to the inflow of air at low level, the spiral bands can further grow.
The spiral bands also contribute more heat and moisture to the center enhancing the storm. When the
winds speeds reach sufficient speeds, it can no longer reach the center, resulting in relatively calm area
(storm eye). The tropical cyclone has reached ’maturity’ and can travel of thousands of kilometers. The
final stage, the decay can be caused by multiple factors. Increase in windshear, movement of dry air
into the center or disruption in the outflow. However there are usually two factor that cause the decay:
travelling over cool water and making landfall. Cool water temperature prevent the evaporation and
heat convergence, stopping the ability for the TC to sustain itself. As the TC makes landfall, it loses its
water source. As a consequence, the storm starts to decrease in intensity.

Figure 2.2: Lifecylce of a TC. Adapted from:Wang and Wu (2004)
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2.2. Storm surge
Storm surges can be defined as the increase in sea surface elevation due to a TC moving towards
the coast. The significant increase of sea surface elevation can cause devastating coastal floods with
many fatalities. Multiple factors determine the height of the storm surge. The surge is generated
by atmospheric forces like, drag of the wind on the sea surface and variations in the atmospheric
pressures. Not only the intensity of the TC but also, the topography, bathymetry, forward speed, central
pressure and angle of approach are influencing the height of the surge (Ellis and Sherman, 2015).
The storm surge represents the total marine inundation associated with the storm (Nott, 2015). Other
components that can be distinguished are: The tides, wave setup, wave actions and wave run­up. The
contribution of waves and tides towards the sea level rise, is discussed in detail in sections 2.3 and 2.4.

2.2.1. Storm surge processes
Harris (1964) lists five main processes that are responsible for the storm surge generation.

• The pressure effect causes the sea level to rise due to low atmospheric pressure. The rela­
tion between pressure and sea level rise is 11 millibar drop in atmospheric pressures will cause
approximately 1cm of sea level rise.

• Direct wind effect (wind setup). The surface winds generate surface currents with a 45°angle.
This deviation from the wind angle is caused by the Coriolis effect. The Coriolis effects forces
the flow to the right of their motion in the Northern Hemisphere and to the left in the Southern
Hemisphere. The same effect occurs deeper below the sea surface but with lower speeds, cre­
ating a spiral effect. As a consequence, the resulting net water transport is perpendicular to the
wind direction. This effect is called the Ekman spiral. The same theory implies that for shallow
water, the net transport must be parallel to the wind direction (no spiral effect). However, Water
flow near the coast is parallel to the depth contours. The main effect that causes the sea level
rise is called wind setup. Wind blowing on a lake has the tendency to drop water levels at upwind
shore and increase water level at the downwind shore. Due to the Ekman spiral effects, the wind
set­up is proportional to the water depth. The same effect holds for coastal areas and estuaries.
The shallower the water, the higher the wind setup effect will be. The theoretical formulation to
calculate the wind setup can be found in appendix A.1.

• Coriolis effect (Earth’s rotation). Surge effects can be further amplified when the currents are
perpendicular to the shoreline due to the Coriolis effect.

• Wave effect. The wind generated waves that follow the same direction of the wind (windwaves).
The effect of wind waves are minimal at deeper water. However, towards the coast where the
water is shallower, the wave will increase in steepness and eventually break. The breaking waves
transport significant amounts of water towards the coast (wave run­up and overtopping).

• Rainfall effect. Finally, the extreme precipitation during a TC cause surface run­off towards rives
and estuaries, increasing the water level even more.

Figure 2.3 shows the different components of the storm surge and their increasing effect towards
on the water level towards the shoaling coast. Especially the wind setup causes a significant increase
in the water level towards the shoaling coast line. A fairly recent study by Irish et al. (2008) investigates
the influence of TC size and other parameters on the peak surge height. With the use of numerical
simulations it can be concluded that the surge heights are mainly influenced by the storm intensity,
bottom slope and storm size. The results indicated that the storm size plays a key role in the surge
generation in coastal areas, especially in case of a severe storm with shallow slopes.
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Figure 2.3: Storm surge profile. Adapted from OAS (1996)

2.3. Waves
Wind generated gravity waves are the major supplier of energy to the coastal system. They form in
open oceans by wind and have in general an irregular character. Therefore, they are called irregular
or random. The short term variations can be best described in a statistical way by taking average
parameters (Holthuijsen, 2007). There are two methods the characterise these irregular wave records,
by direct analysis or spectral energy density analysis. Both these methods result in a wave height
parameter. The wave height can be expressed in multiple forms i.e. the mean wave height, significant
wave height and root mean square height. For practical purposes, the significant wave height is used
most often and is defined as the average wave height of the highest 1/3 of the waves in the sample
set.

𝐻1/3 = 𝐻𝑚0 =
1
𝑁/3

𝑁/3

∑
𝑗=1

𝐻𝑗 (2.1)

Ocean waves are generated by local wind fields. At the generation area, the new waves are steep
and short­crested and have different travel directions and travel speeds. Location dependent parame­
ters that influence the wave characteristics are the wind field, fetch and local water depth. The Navier­
Stokes and continuity equations are used to describe the motion of waves. Difficulties arise when
trying to solve these equations. To overcome this problem, the non­linearity’s are neglected to derive
the linear wave theory. With the linear wave theory it is possible to describe a variety of wave char­
acteristics like: wave speeds, height, velocity, length, period etc in shallow, deep or transitional water
depths. According the linear wave theory, the propagation speed of a wave is dependent on the water
depth i.e. the shallower the water depth the slower the propagation speed is. Sea waves (short and
irregular) vary considerably from swell waves (long and fairly regular). This can be explained by the
fact that wave field disperses since the different harmonics travel at different speeds depending their
frequency. This phenomenon is called frequency dispersion. Furthermore, the wave fields spreads out
due to different directions of propagation (directional dispersion). As a result, only a long, fairly regular



14 2. Literature

wave field remains (swell). More detailed information and theoretical background of the linear wave
theory can be found in appendix A.2.

2.3.1. Wave transformations
Wave transformation occurs when waves propagate from deep into shallow water depths. Different
processes causes the wave height, length and direction changes until the wave finally breaks and its
energy is dissipated. The processes that causes these wave transformations are: shoaling, refraction
and wave breaking.

• Shoaling. The waves slow down due to the decreasing water depth. As a consequence the
waves increase in height. The wave height increase due to shoaling is limited by dissipation due
to wave breaking.

• Refraction. This phenomenon occurs when waves approach underwater contours. The wave
crests in the deeper parts will propagate faster than in the shallower parts. The wave crest turns
towards the depth contours

• Wave setup During a TC, waves generated by storm winds are propagating towards the coast.
These wave not only carry energy towards the coast but also momentum. When the waves reach
coastal areas they can induce wave setup. Wave setup is defined as the increase in water level
above the still water level due to momentum transfer by waves that are in the surf zone. This
setup is primarily present in and near the coastal surf zone due to the shallow water depth. A
more detailed theoretical background on wave setup can be found in appendix A.3.

• Wave breaking. Wave breaking occurs when a wave becomes to steep. The bed slope and
bottom friction both have a influence on the breaking process. Depending the slope the waves
break in different types (collapsing, surging, plunging and spilling breakers).

Figure 2.4: Example of beach profiles that can cause wave setup in front of the coast. Adapted from Dean et al. (2005)
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2.4. Tides
Tides are the rise and fall of the sea water level caused by so called tide generating forces. The tide
generating forces are caused by the gravitational pull of the moon and the sun on the water in the
oceans (Bosboom and Stive, 2015). Tides can be best observed along the coast and are either diurnal
or semi­diurnal. At most places around the world, tides are semi­diurnal, which means that the tidal
period is approximately half a day. A diurnal tides has a period of approximately 1 day, which means
that one high and one low water can be observed each day. The tidal range is depending on the location
around the world. In this section the theory behind the generation of tides is explained. Furthermore,
the tidal situation in the South Chinese Sea is analysed.

2.4.1. Generation of the tide
The first theory on the generation of tides was explained by Isaac Newton and is called the equilibrium
theory of tides. In this theory, Newton assumed that the tide­generating forces cause an instant re­
sponse of the ocean waters. The theory furthermore assumed, that there is no friction and the earth
is entirely covered with water. To explain the tide generation theory, the approach from Bosboom and
Stive (2015) is used. The tide­generating forces find their origin in the gravitation pull of the moon and
sun on the ocean water bodies. The gravitation pull can be best described as the attraction that the
earth exerts on an object. For the tidal generation the gravitational pull caused by the moon and sun
are of importance. The moon and earth move in a circular orbit around a common center of gravity.
The same holds for the sun and earth system. The revolving motion around the common centers of
gravity implies that the attraction forces act as centripetal forces. A centripetal force is a force that acts
on an object to make it follow a circular path. The centripetal force maintains the motion of the earth
around the center of gravity of the earth­sun or earth­moon system. The gravitational pull between two
bodies is directly proportional to the product of the masses of the bodies and inversely proportional to
the square of the distance between them. The gravitational pull of the sun is approximately 2 times
larges than that of the moon. Although the gravitational pull of the sun is larger than the moon, the
sun only accounts for approximately 30 % of the tidal amplitudes. This can be explained by the fact
that the tide is generated by a different effect, namely differential pull. The differential pull is the differ­
ence between the gravitational pull on ocean water masses that are located a different distances from
the moon and the sun. For example the gravitational pull directly under the moon is bigger than the
gravitational pull on the opposites side of the planet (greater distance from the moon). The differential
pull can be calculated for all locations of the earth. Since the differential pull is responsible for the tidal
generation, it is referred as the tidal force.

Figure 2.5: Horizontal component tidal force.

The effect of the horizontal (tangential) forces is shifting the water to the side of the earth facing the
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sun or moon and to the opposites side of the earth (tidal bulges). The rotation of the earth around the
axis shown in figure 3.4 forces the earth to rotate underneath the tidal bulges, producing two low and
two high waters (semi­diurnal tide) on earth everyday (on the equator). We have seen that both the
moon and sun are responsible for the tidal motion on the earth. The rotation of the earth around the
sun and the moon around the earth with different periods implies that the differential pull at a location
on earth changes over time. Tides are reinforced when the moon,sun and earth are in one line (spring
tide). One the other hand neap tide occurs when the sun and the moon are 90 degrees out of phase. In
the previous section it was assumed that the sun and moon are directly above the equator of the earth.
However, in real life the orbits of the moon and sun are not in the equatorial plane all the time. The
theory behind this is not in the scope of the thesis, but it implies that at the equator the daily inequality is
zero and it increases with the latitude. At higher latitudes, the daily inequality becomes so large to there
is only one high and low water per day (diurnal tide). Another effect that influences the tides on the
earth is seasonal varying declination of the sun. This effect is responsible for the seasonal variability
in the height of the tides. The influence of the moon, sun, daily inequality and seasonal effects on the
tides can be described by tidal constituents. Three main categories are used for the tidal constituents:
the semi­diurnal constituents, diurnal and long period constituents. The constituents all have their own
equilibrium amplitude and period.

2.4.2. Propagation of the tide
In the previous section the background of the tidal theory was given. However, this theory was made
under the assumption that the entire earth is covered with water without any land masses. The in
real life existing land masses act as an barrier for the water. The water cannot move through the land
masses but rather along the land masses. The propagation speed of a tidal wave can be calculated
with the dispersion relation ship. A tidal wave is considered a long wave since the wave length is much
bigger than the water depth (L»h or h/L<1/20) Since the tidal wave is a long wave, the relationship
reduces to equation 2.2.

𝑐 = √𝑔ℎ (2.2)

where:
𝑐 = wave propagation speed [𝑚/𝑠]
𝑔 = gravitation acceleration [𝑚/𝑠2]
ℎ = water depth [𝑚]

Equation 2.2 shows that the wave propagation speed is dependent on the water depth. For a
shallow water depth the propagation speed is also lower. The wave propagation equation is derived
from simplified shallowwater equations and can be used for tide propagation in open oceans. It neglects
friction, advection, diffusion and short wave effects. For deep oceans, a small tidal level and current
velocities are observed. In shallower water the tidal amplitude is large and current velocities are fast.
Friction, shapes and depth of the ocean all influence the propagation of the tides. The tidal motion
is also influence by the Coriolis effect. The movement of the tides are def elected by the Coriolis
effect and land masses, as a consequence rotary movements are formed in ocean basins, bays and
seas. The movement of these systems is counter­clockwise in the Northern Hemisphere and opposite
and the Southern Hemisphere. In those so­called amphidromic systems, the tidal waves propagates
around a node with an anti node rotating at the basin edge. The node is the point that has no vertical
displacement, while the anti nodes have maximum vertical displacement.

2.4.3. Tidal Prediction
Since the tides are generated by astronomical forces, the water level elevation due to the pure tide
signal can be predicted accurate. This does not include the influence of wind and waves on the water
level. The water level elevation due to the astronomical tides can be described with formula 2.3. The
tidal constituents i.e. the phase angle and amplitude are location specific and can be determined by
observations (Satellite or physical observations. When the astronomical tides are known for a certain
location it can be used to predict the tide over a long time. Today, the tidal constituents are known for
all oceanic waters. Although being it with varying resolutions.
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𝜂(𝑡) = 𝑎0 +
𝑁

∑
𝑛=1

𝑎𝑛𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝛼𝑛) (2.3)

where:
𝜂(𝑡) = tidal level [𝑚]
𝑎0 = mean level [𝑚]
𝑎𝑛 = amplitude of astronomical component number n [𝑚]
𝜔𝑛 = angular velocity of astronomical component number n [1/ℎ𝑟]
𝛼𝑛 = phase angle of astronomical component number n [−]

The tidal data required for the study can be collected by means of using tide models. Today multiple
solutions exist that provide tidal levels and constituents for oceanic waters all around the world. The
software contains tidal models that include, bathymetry/depth grid (m), elevations (m) and transport
𝑚2/𝑠. It is capable of predicting tides at given times and locations, and also features historical tidal
levels. Additionally, the software allows the used to extract the harmonic constants of the tide that is
required as input in the hydrodynamic model for the boundary condition forcing. There are different tidal
models that provide both worldwide and regional solutions. For the storm surge simulation the focus
lies on the regional tidal models. Three different tidal models are tested during the hydroynamic flow
model setup. These tidal models are the TPXO 8 and TPXO 9 (regional South Chinese Sea models)
and the FES2014 global model. These models are discussed in more detail in B.1.

Figure 2.6: Example of global tide model (TPX09). Adapted from:Egbert and Erofeeva (2002)

The second source of tidal data comes from tidal stations around the waters of Hong Kong and
Macau. This historical water level data is needed to validate the model. By comparing the simulated
water levels of a hydrodynamic simulation with the historical water levels, one can determine if the
model is capable of producing accurate results. The tidal stations are operated by local authorities and
provide historical tidal data. For validation purposes an effort was made to collect the data of as many
station as possible. Data from three different tidal stations in Hong Kong was obtained. On the other
side for Macau no tidal data could be collected.
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2.5. Wind model
Today, multiple parametric wind models exist that can be used as forcing input in hydraulic models that
estimate surges and wave actions. The wind field, that is required as input for the hydraulic model
can be estimated by different methods. One option is to reanalyse historical TC data sets. However,
these methods are often to coarse to represent the wind field accurately, leading to underestimations of
maximum winds (Ruiz­Salcines et al., 2019). An alternative is to reconstruct the wind field based on a
limited set of parameters. These parametric wind models are often used due their efficiency, simplicity
and low computational cost. The low computational cost makes these parametric models especially
usefull for studies that require the modelling of a large number of TC’s. Parametric wind models use a
wind profile to derive the wind distribution around the centre of a storm Dima and Desflots (2010). The
choice of the wind profile is important for computing realistic wind speed in tropical cyclones.

Figure 2.7: schematic cross section of Tropical cyclone wind field with wind speed profile in Northern Hemisphere. Adapted
from: Dima and Desflots (2010)

The basis of most parametric wind models is the gradient wind equation. This equation describes
the balance between three forces in tropical cyclones: pressure gradient forces, centrifugal forces and
Coriolis forces. The gradient wind equation is derived from the continuity and momentum equation,
more information on the derivation can be found in Holton and Hakim (2012).

𝑉𝑔 = −
𝑓𝑅
2 ± (𝑓

2𝑅2
4 + 𝑓𝑅𝑉𝑔𝑒𝑜)1/2 (2.4)

Where:
𝑉𝑔 = Gradient wind speed
𝑅 = Radius of curvature
𝑓 = Coriolis forces
𝑉𝑔𝑒𝑜 = Geostrophic wind

The Holland (1980) wind model is a modification to the gradient wind equation. Holland improved
the work by Schloemer (1954) who suggested that the radial surface pressure profile can be approxi­
mated by an rectangular hyperbola which can be differentiated to derive wind speeds. Holland (1980)
improved this work by describing the rectangular hyperbola for the pressure field in a different form with
two scaling parameters A and B.

𝑝(𝑟) = 𝑝𝑐 + (𝑝𝑛 − 𝑝𝑐) exp−(
𝐴
𝑟𝐵 ) (2.5)
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Where:
𝑝(𝑟) = Surface pressure at distance r from storm center
𝑝𝑐 = Central pressure
𝑝𝑛 = Ambient pressure
𝐴 = Location parameter
𝐵 = Holland pressure profile parameter

By taking equations 2.5 and using the gradient wind equation, the wind profile can be described by
equation 2.6, where 𝑉𝑔 represents the gradient wind at radius 𝑟, 𝑓 is the Coriolis parameter and 𝜌 the
air density.

𝑉𝑔 = [
𝐴𝐵(𝑝𝑛 − 𝑝𝑐)𝑒𝑥𝑝(−𝐴/𝑟𝑏)

𝜌𝑟𝐵 + 𝑟
2𝑓2
4 ]1/2 − 𝑟𝑓2 (2.6)

According to Holland (1980), the Coriolis force is small compared to the pressure gradient and cen­
trifugal forces in the region of maximum winds. The winds in these regions are described by equation
2.7 and is called the cyclostrophic wind speed.

𝑉𝑐 = [
𝐴𝐵(𝑝𝑛 − 𝑝𝑐)𝑒𝑥𝑝(−𝐴/𝑟𝑏)

𝜌𝑟𝐵 ]1/2 (2.7)

By setting the derivative of 𝑉𝑐 to 0, the radius of maximum winds (RMW) is obtained. The RMW
value is dependent on the scaling parameters A and B, it is independent of the central and ambient
pressure

𝑅𝑤 = 𝐴1/𝐵 (2.8)

By substituting equation 2.8 into 2.7, the maximum wind speed is obtained:

𝑉𝑚 = 𝐶(𝑝𝑛 − 𝑝𝑐)1/2 (2.9)

where:
𝐶 = (𝐵/𝜌𝑒)1/2 (2.10)

The symbol 𝑒 in equation 2.10 represents the base of natural logarithms. The empirically derived
parameter C has been used extensively for estimating the RMW in the past. The approach fromHolland
allows to derive Tropical cyclones pressure and wind speed profiles from pressures observation taken
during TC’s. The parameter 𝐵 defines the shape of the pressure profile and 𝐴 determines the location
relative to the origin. The model requires the parameters A and B to be derived from observed tropical
cyclones to let the wind and pressure profile fit the real tropical cyclone. Figure 2.8 shows the influence
of parameter B on the wind and pressure profile. It is clearly shown that higher values for B will generate
sharper wind speed profiles with higher peak wind speeds.

Figure 2.8: Effect of parameter B on the radial wind and pressure field of Tropical cyclones. Adapted from: Holland (1980)
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Equation 2.8 shows, that the RMW is independent from the air pressure and defined entirely by
the scaling parameters A and B. Technological developments of the past decades have improved the
predictions and observations of TC’s significantly. This has led to new estimations of RMW directly
from observations or new methods to estimate the RMW. If the RMW is known, parameters A and B
can now be rewritten and expressed in a different form.

𝐴 = 𝑅𝐵𝑤 (2.11)

𝐵 = 𝜌𝑒𝑉2𝑚𝑎𝑥
𝑝𝑛 − 𝑝𝑐

(2.12)

This shows that A and B can be determined easily if the RMW is known. Today some TC agencies
provide values for RMW in their track data. Other investigations suggested the estimation of the RMW
based of the eye pressure or radius of 50 knot winds. By substituting equations 2.11 and 2.12 in 2.6
the gradient wind equation can be expressed in terms of the RMW.

𝑉𝑔(𝑟) = √(𝑅𝑤/𝑟)𝐵𝑉2𝑚𝑎𝑥𝑒𝑥𝑝(1 − (𝑅𝑤/𝑟)𝐵) + 𝑟2𝑓2/4) −
𝑟𝑓
2

(2.13)

Over the recent years, multiple studies into the estimation of parameter B and RMW have been
conducted to improve the wind profile derived from the parametric model. Lajoie and Walsh (2008)
suggests to estimate the RMW from satellite cloud data by analysing the radius of the storm eye. The
study by Vickery and Wadhera (2008) proposes the estimate the RMW from the eye pressure. The
same study also looks into a new determination of the shape parameter B.

Veltcheva and Kawai (2002) proposes a new method to estimate the wind and pressure distribution.
The structure of the tropical cyclone changes when approaching land due to an increase in friction of the
air systemwith the land surface. This distortion effect is not captured in the original pressure distribution
equation (equation 2.5) where the pressures field is distributed symmetrically with the radial distance
form the TC centre. Veltcheva and Kawai (2002) includes the distortion effect into the pressure field
equation. The TC pressure field is now dependent on the angle between the observation point and the
direction of the TC movement:

𝑝(𝑟, 𝜃) = 𝑝𝑐 + (𝑝𝑛 − 𝑝𝑐) exp−(
𝑟(𝜃)
𝑟 ) (2.14)

To include the effect of pressure distortion for the determination of the wind field, the gradient wind
equation is modified.

𝑈𝑔 = 𝑉𝑐(√𝛾2 + 1 − 𝛾) (2.15)

𝛾 = 0.5(𝐹𝑆 ∗ 𝑠𝑖𝑛𝜃𝑉𝑐
+ 𝑉𝑐
𝑉𝑔𝑒𝑜) (2.16)

Equation 2.16 is used to calculate the parameter 𝛾. This parameter is dependent on the forward
speed of the TC, cyclostrophic and geostrophic wind speeds and the parameter 𝜃. Where 𝜃 is the
angle between the observation point and direction of typhoon movement.The cyclostrophic and the
geostrophic wind speeds at distance r form the TC centre are given by equation 2.17 and 2.18.

𝑉𝑐 = √
𝑟
𝜌
𝑑𝑝
𝑑𝑟 (2.17)

𝑉𝑔𝑒𝑜 =
1
𝜌𝑓
𝑑𝑝
𝑑𝑟 (2.18)

The forward direction of the TC can be calculated by taking the Four­quadrant inverse tangent
function (atan2) of the latitude and longitude difference between time steps. The output of this function
is given in radian values between −𝜋 and +𝜋. These values can than be transformed to values in
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degrees and to the correct reference plane. The output of equation 2.19 also contains negative values
in degrees. To overcome this problem 360 is added to all negative values, as a results all FD values
now range between 0 and 360° indicating the forward direction of the TC.

𝐹𝐷(𝑡) = −(𝑎𝑡𝑎𝑛2((𝑙𝑎𝑡(𝑡) − 𝐿𝑎𝑡(𝑡 − 1)), 𝐿𝑜𝑛𝑔(𝑡) − 𝐿𝑜𝑛𝑔(𝑡 − 1)) ∗ 𝑐𝑜𝑠𝑑(𝐿𝑎𝑡(𝑡))) ∗ 180/𝑝𝑖) + 90;
(2.19)

𝐹𝑆(𝑡) = √
(𝐿𝑎𝑡(𝑡) − 𝐿𝑎𝑡(𝑡 − 1)) ∗ 𝑅𝑒𝑎𝑟𝑡ℎ ∗ 𝜋/180)2
+ ((𝐿𝑜𝑛(𝑡) − 𝐿𝑜𝑛(𝑡 − 1)) ∗ 𝑐𝑜𝑠𝑑(𝐿𝑎𝑡(𝑡)) ∗ 𝑅𝑒𝑎𝑟𝑡ℎ ∗ 𝜋/180)2

((𝑑𝑎𝑦(𝑡) − 𝑑𝑎𝑦(𝑡 − 1)) ∗ 24 ∗ 3600(ℎ𝑜𝑢𝑟(𝑡) − ℎ𝑜𝑢𝑟(𝑡 − 1)) ∗ 3600 (2.20)

The comparison of this method to the older methods, that don’t include the distortion of the pressure
field showed that a better agreement of the wind was obtained for the new method. Furthermore, the
corrected wind and pressure field were tested on a storm surge model. The results showed that the
new method improves the estimation of the storm surge in the model. The original Holland model and
the discussed modifications/ improvements allow, the pressure and wind speeds to be calculated. By
varying the equations for different distance from the center of the storm, the entire radial profile of the
storm can be computed. This radial wind profile can than be adapted on a moving spiderweb grid,
which can be used in the hydrodynamic model as TC wind forcing.

Figure 2.9: Spiderweb grid. adapted from DELFT3D flow manual.

The spiderweb grid allows for space varying wind velocity, direction and air pressure input in the
hydrodynamic model. The grid cell sizes are dependent on the number of radial bins, tangential bins
and total radius of the grid. The larger the number of radial and tangential bins, the higher the resolution
of the grid cells. The location of the eye of the spiderweb is given by the latitude and longitude. The
spiderweb grid can be generated for different time steps moving along with the TC.



22 2. Literature

2.6. Flood models
As discussed in chapter 1, floods have caused significant damages and loss of life all over the world
in the past. Due to the existing risk of floods, many different models have been developed to under­
stand, predict and assess flood events. The hydrodynamic processes that exist in coastal ares are
generated by multiple drivers. The drivers of these processes are currents, tides, waves, surges etc.
All these drivers are forces that drive the fluid motion in the coastal area. For the modelling of these
coastal hydrodynamic processes, different types of models can be used depending the topic of the in­
vestigation. Four main types of models can be identified, namely the physical, empirical (data driven),
hydrodynamic, and conceptual models (Teng et al., 2017).

2.6.1. Physical models
Physical and laboratory experiments are still used today to better understand the effects of tides, cur­
rents and waves on hydraulic structures like beaches, dunes, dikes, harbors, locks and other flood de­
fences. Conducting physical or laboratory experiments allows for better understanding on the physics
of coastal processes. Furthermore, the use of physical models is well establishes method for testing
and designing of hydraulic structures. The possibility to test how a hydraulic structure will perform be­
fore it is constructed gives engineers the possibly to gain knowledge on its performance. For example
wave flumes are used to test the proposed design of flood defences. By scaling down the design, one
can reproduce the ’real world’ in a controlled environment. For example, by creating a scale model of
a proposed dike improvement in a wave flume, it is possible to investigate the dynamic wave actions,
run­up and overtopping. The data collected during the tests can then be used to validate, or improve
the design. Physical models are often not suited for studies into coastal floods and therefore won’t be
considered in this thesis.

2.6.2. Hydrodynamic models
The previously discussed coastal processes can all be described by mathematical expressions. How­
ever, these processes are often complex and vary in time due to the changing conditions. These pro­
cesses are also space dependent. Changes in bathymetry, bottom roughness, and coastline shapes
all have an effect on the fluid motion. These complex processes all influence each other. For example
changes in the water level will also change the wave characteristics at that location. Traditionally these
processes have been studied with physical and empirical models. However, the reproduction of these
complex and unsteady processes often requires the development of expensive facilities and model
representations. The development in computer science has made it possible to develop (often numer­
ical) models that can simulate the coastal processes ranging from small to very large study areas. By
using hydrodynamic models, engineers can gain insight in the interaction between the complex coastal
processes, which can be used in the design, planning and disaster management for coastal areas.
It must be noted that numerical models are also often used for the simulation of fluid and sediment
transport in rivers and lakes. It must be noted that the use of hydrodynamic models is complex and the
accuracy of the results are dependent on different factors like boundary conditions, model parameters
and numerical methods. The development of these models is therefore a specialised task, and requires
a good understanding of the physical processes that occur.

Today, a wide variety of numerical models exist that can be used for different applications. The
hydrodynamic models can be classified in three classes (1D,2D and 3D).

• 1D models. The most simple model is one­dimensional and can be used for flood plain flow
in the down­valley direction. The governing equation for 1D channel flow can be derived form
the mass and momentum equation between two cross sections. This yields the St. Venant or
shallow water equations. The shallow water equations can be solved numerically with with use
of boundary and initial conditions (Teng et al., 2017). Modelling software that uses these 1D
equations are: MIKE11,ISIS and SOBEK.

• 2D models. This model represents the flood plain in a two­dimensional field. This approach
uses the depth average velocity obtained by integrating the Navier­Stokes equations over the
flow depth. This method can be solved numerically to calculate predictions of water depth and
the two components of the depth­averaged velocity. 2D models are often applied to flows with
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large aerial extent compared to the depth and for large lateral variations in velocity. They are
well suited for the computation of overbank flood flows in compound channels, tides, tsunamis or
dam break (Asselman, 2009). Examples of 2D modelling software are: Mike 21, SOBEK­OF and
Delft­3D.

• 3D models. The most complex model is the 3D model which requires the three­dimensional
Navier Stokes equations to be used. The modelling of vertical turbulence, vortices and spiral flow
for large scale floods (Teng et al., 2017). However, due to the computational cost for the model,
there is a trade off between the cell size, domain size and complexity of used schemes. The 3D
models give as output the inundation extent, water depth and the u,v,w velocities for each cell. It
is mostly used for coastal applications where 3D velocity profiles are important. Examples of 3D
models are: Delft­3D and Delft­3D FM.

The Sea Lake and Overland Surge from Hurricanes (SLOSH) is a well known storm simple surge
model for sea, lake and overland surges caused by hurricanes. The model was developed by the US
National Weather Service. SLOSH is a 2D model that can estimate surge heights from hurricane data.
The model is computationally efficient and fast but that comes at a cost of losing accuracy. SLOSH
also lacks the possibility the include tides, waves, precipitation and rivers. Empirical wind profiles are
used as input to compute wind speeds at the coastline and surge heights. The model is reasonably
accurate but much simpler than for example Deflt3D and TELEMAC.

TELEMAC­MASCARET is an open source suite for the field of free surface flow. It includes pack­
ages for 1D, 2D and 3D flow computations. The 2D module uses a finite elements method to solve the
St. Venant equations with a triangular mesh. The main fields of application are free surface maritime
and river hydraulics like the sizing of port structures, effects of building immersible dikes or dredging,
impact of construction works in rivers etc. The 3Dmodule is mostly used for topics related to the marine
environment like tides, currents, wind and air pressure. Overall, the TELEMAC package is validated
and used frequently by professionals.

Delft3D is an open source 2D and 3D hydrodynamic model developed by Deltares in the Nether­
lands. It has many areas of applications for Tides and wind driven flow (storm surges), river flows, deep
lakes and reservoirs and the simulation of tsunamis, hydraulic jumps and flood waves. The Delft3D
suite consists of various modules that are integrated and linked with each other. The modules are di­
vided in to D­flow, D­waves, D­water, D­morphology, D­particle tracking and D­sediment. Additionally,
visualisation and other tools are provided with the package. The D­wave package uses a modified ver­
sion of the SWAN model, which is developed by Delft University of Technology. The SWAN model is
used for the computation of short­crested­wind­generated waves in coastal regions and inland waters.
The entire Delft3D suite is well tested and validated. Currently, Deltares is developing the successor
of Delft3D. The new Delft3D Flexible Mesh package can be used for hydrodynamic simulations on un­
structured grids in 1D, 2D or 3D. The software is currently available for users, but is still in development.
The new version has the same functionalities as it predecessor and has the same areas of application.
The main progress in the flexible mesh version is the possibility to use grids that consist of triangles,
quads, pentagons and hexagons besides the curvilinear grids of the older version. This addition pro­
vides improved modelling flexibility and ease in setting up and modifying grids. Furthermore, 1D and
2D grids can be combined and it features new user and graphical interfaces. The different Delft3D
FM modules have been extensively tested, but the suite as a whole still needs testing and validation.
Furthermore, the integration of the wave package still has some errors. A conceptual description and
theory behind DELFT3D can be found in appendix A.4.

2.6.3. Empirical, data driven models
Empirical data driven models try to find a relationship between a set of inputs and outputs. Statistical
models, are also included in this category. A difference compared to the physical and hydrodynamic
models is that data driven models do no use any physical parameters or equations to solve the problem.
An advantage of these models is that they are generally fast to run, making them interesting for real
time forecasting. However, there performance is completely dependent on the quality and quantity
of the data used to develop the model. For data driven models the required data is often obtained
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from historical time series observations i.e. wave and tide buoys, weather stations etc. Over the past
decades Bayesian Networks (BN) and Artificial Neural Networks (ANN) have become more popular in
flood forecasting.

The BN is a probabilistic model that graphically represents the conditional dependence between a
set of interdependent variables that characterise a (flood) event. Either discrete or continuous variables
can be used in the network and the dependency between the variables are quantified by conditional
probability functions.

Boutkhamouine et al. (2020) developed a model for river flood forecasting with a BN approach.
The BN is used to estimate the discharge in a river basin. The network is capable of predicting the
discharges in upstream rivers of the discharge in the downstream basin is known. The is very use full
to estimate river discharge upstream with missing hydrological measurements. BN’s are also used for
other hydrological purposes like coastal risk analysis, compound flood hazards and flood predictions
based on atmospheric variables among others (Couasnon et al., 2018), (Jäger et al., 2018). Finally,
we consider the study by Sebastian et al. (2017) in which a BN is developed that considers five TC
characteristics at landfall: wind speed, angle of approach, landfall location, radius of maximum winds
and forward speed. Observations of over 300 TC’s were used to create a synthetic database with
100,000 synthetic storm events for the Gulf of Mexico. These synthetic storms were then used in an
empirical wind model to simulate storm surges. With the results, probable values for the peak surge
height can be determined. This study shows close resemblance with this thesis research and can be
used to determine flood risk.

Figure 2.10: Bayesian network schematic for storm surge prediction in the Gulf of Mexico. Adapted from: Sebastian et al. (2017)

The second data driven model that we consider are the artificial neural networks. By feeding input
and output data in to the model, the ANN learns the relationship between the in and output, which
then can be used for forecasting. The ANN is completely data driven and does not use any physical
equations for forecasting.

Over the years, the development of neural networks for the prediction of storm surges has become
more popular. Most storm surge prediction neural networks use a set meteorological and/or hydrologi­
cal input/output parameters for a specified time interval. The output neuron or neurons often represent
either the water level or tidal elevation for a specific location. Lee (2006) developed a neural network
based on four input parameters at a measurement location in Taiwan: Wind speed, Wind direction, eye
pressures and harmonic tidal level in 3 hourly intervals. The network only contains one output parame­
ter, namely the tidal level (water level elevation due to tides and storm). Extensive validations showed,
that the network was able to make acceptable water level predictions based on the four input param­
eters only. Sztobryn (2003) followed a slightly different approach by assuming a tide less sea. This
study, investigates two variations: one with continues data (time series) and a set of random ’storm sea
level’ samples. The results show that the network that used the continuous data set produces better
results. Other examples of studies that develop NN capable of making flood prediction are: (Kim et al.,
2019) and (French et al., 2017).
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Bayesian and neural networks both share similarities and differences. Generally speaking the BN
is easier to develop with less decisions about nodes, hidden layer etc. On the other hand, the visual
representation of the network structure gives valuable insight on the conditional dependence between
the variables. The ANN structure itself does not say anything. ANN generally are able to make accurate
predictions if sufficient training data is available. Since we are using synthetic storm simulations during
this thesis we are able to simulate many storms and create a substantial amount of data to train the
neural network. Combining this with the fact that my predecessor student Guill (2020) focused on
Bayesian networks, it is decided to develop an ANN for the storm surge predictions in Hong Kong and
Macau. In the next section neural networks are treated in more detail.

2.7. Artificial Neural Networks
As stated before, artificial neural networks are mathematical models that can be modelled and trained
for performing particular tasks based on available data. In the literature no universal clear definition of
ANNs can be found. The original concept of neural networks was inspired from the conceptualisation
of the human brain based on a network of interconnected cells (neurons) (Haykin, 1994). The first
neural networks only had one hidden layer and were unable to solve complex problems. Over the
years developments have led to the introduction of multiple hidden layers in the model to solve more
complex problems. Additionally multiple training and learning algorithm’s have been developed for
more efficient learning. The development of an ANN can be described by three main phases:

1. Create training database

2. Create networks architecture

3. Train network

2.7.1. Conceptual & mathematical background
A neural network can be characterized by its structure. The structure represents the pattern of connec­
tion between nodes, method of determining the connection weights and the activation function. The
categorization of ANNs can be based on the number of hidden layers and the direction of information
flow and processing.

Figure 2.11: Structure of three layer feed forward ANN. Adapted from Govindaraju (2000)

Figure 2.11 shows an example of a simple feed forward neural network with a single hidden layer. In
a feed forward network the data passes from the input layer to the output layer. The nodes in the layer
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are connected to the nodes in the next layer but are no connected to the nodes in the same layer. Thus,
in a feed forward network the output data is only dependent on the input is receives from previous layers
and their corresponding weights. However, different structures on ANN exist that allow for information
flow in both directions (recurrent networks). Sometimes connection between the nodes in the same
layer can also be connected. The input layer is provides the data feed into the network. Each input
node represents a different variable or parameter. The final layer (output layer) of the network contains
the predicted model output. Although there are some rules of thumb to estimate the required number
of nodes in the hidden layer, they are not set in stone. The number of nodes in the hidden layer are
often determined by trial and error.

Figure 2.12: Neural Network Schematic. Adapted from Tabbussum and Dar (2020)

Figure 2.12 represents a schematic diagram of a neural network. Suppose we have an input vector
𝑋 = (𝑥1, 𝑥𝑖 , 𝑥𝑛) that contains the input data that influence the system behaviour. The weight vector𝑊 =
(𝑤1𝑗 , 𝑤𝑖𝑗 , 𝑤𝑛𝑗) represents the connection between the nodes in different layers and assigns weights to
the neurons. The operation within the network can be defined by the following equation (Govindaraju,
2000):

𝑦𝑗 = 𝑓 (X ⋅W𝑗 + 𝑏𝑗) (2.21)

Where 𝑏𝑗 is a threshold value (bias) and 𝑓 an activation or transfer function that determines the
response of a node to the input signal. The activation function are equations that determine the output
of the network. The function holds for each neuron and determines whether it should be activated.
Activation of a neuron should only happen if the input is relevant for the model’s prediction. A range of
different activation functions exist like the step and sigmoid function (equation 2.22).

𝑓(𝑡) = 1
1 + 𝑒−𝑡 (2.22)

2.7.2. Training Algorithms
After setting up the structure of the ANN, the learning process can start. This process is used to find
the optimal values of the weights W that minimise the error between the in and outputs. During training
the network tries the minimise the global error or sum of squared difference error:

𝑒 = 1
𝑁

𝑁

∑
𝑛=1
(𝑦 − 𝑡)2 (2.23)
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Where𝑁 is total number of training patterns, 𝑒𝑖 is the error for the training pattern 𝑛 and 𝑡 is the target.
𝑦 is the output of the network. There are two types of training: supervised and unsupervised. The
supervised training requires a large number of samples with input and output data. During the training
process, the weights are adjusted and optimized for each nodes, to minimize the error function. The
unsupervised learning process does not need a large number of training samples. Only input samples
are provided. The network adapts its connection weight to cluster these input patterns into classes with
similar properties. Over the years many different algorithms for training have been developed. For this
thesis some widely used algorithms that are used in flood prediction networks are considered. The
different training algorithms are discussed in more detail in appendix A.5.

2.8. Synthetic storm catalogue
The synthetic storm catalogue from (Bloemendaal et al., 2020) provides the ability to simulate much
more storms than historically have been measured. The catalogue contains the track data of more than
200,000 unique storm events for the Western Pacific Basin. From the database, a number of storms
will be selected that influence the water levels near Hong Kong and Macau. The track data of these
storms will then be parametrized by means of a wind model and the resulting spiderweb grids will be
used as the main forcing in the hydrodynamic model. The catalogue uses 38 years worth of track data
from IBTrACS to generate 10000 years worth of TC tracks and intensity data. The sheer size of the
database provides excellent opportunities to simulate a large number of storms in Delft3D and use the
output data for the development of machine learning models like a neural network. The development
of the synthetic catalogue itself can be divided into three phases:

Figure 2.13: Flow chart generation synthetic TC database. Adapted from Bloemendaal et al. (2020)
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1. Data preparation and input. During this phase TC track data ranging from 1980 to 2018 is
extracted from the IBTrACS database for each basin. No data older than 1980 is considered due
to comply with modern measurement techniques. Furthermore the minimal threshold is 18 m/s
to be selected. Depending on the time intervals of the IBTrACS measurements, the storm data
in linearly interpolated to 3 hourly values. The modelling of the synthetic storms also requires
additional data like monthly mean sea level pressure (MSLP) and sea­surface temperatures.

2. Fitting distributions and relationships. The second stage of the synthetic database develop­
ment can be divided into three sub­stages namely: TC genesis, TC movement and TC char­
acteristics. During the TC genesis stage, the number of events per year are simulated using a
Poisson distribution. Each generated event is randomly assigned to a genesis month.The next
step in the development is the generation of the TC genesis location. The genesis locations for
the synthetic TC’s are generated from the weighted genesis location in the IBTrACS database.
For the movement of the synthetic TC, again track data from the IBTrACS database is used and
grouped together in 5°latitude sections per basin. For every bin a set of regression formulas are
fit to the data. The final step is to generate the characteristics of the TC (eye pressure, max­
imum wind speed, radius to maximum winds etc.). First, the TC characteristics are assigned
along each track. The conversion between the maximum 10­minute averages wind speed and
minimum pressure is modelled with the empirical wind­pressure relationship.

𝑉𝑡 = 𝑎 (𝑃𝑒𝑛𝑣 − 𝑃𝑡)
𝑏 (2.24)

In which 𝑉𝑡 and 𝑃𝑡 are the 10­minute average wind speed and the minimum sea level pressure at
time step t. 𝑎 and 𝑏 are variables that are different for every month and basin. The data is fitted to
the equation using least squares method. The maximum storm intensity is restrained by the so­
called maximum potential intensity, to make sure that the synthetic storms don’t grow to intense.
The pressure drop can then be calculated with the following formula. Where the coefficient 𝐴, 𝐵, 𝐶
are estimated using least squares methods.

𝑃env − 𝑃 = 𝐴 + 𝐵𝑒𝐶(𝑆𝑇𝑇−𝑇0), 𝑇0 = 30.0∘C (2.25)

Finally, the MPI can be determined by subtracting the maximum pressure drop from 𝑃𝑒𝑛𝑣. The
changes in pressure along the TC track are calculated with equation 2. To do so, the pressure
changes are extracted from IBTrACS and fitted to the equation. The C coefficients are deduced
for every month and basin.

Δ𝑃𝑡 = 𝑐0 + 𝑐1Δ𝑃𝑡−1 + 𝑐2𝑒−𝑐3𝑋 , 𝑐2 > 0, 𝑋 =max {0, 𝑃𝑡 −𝑀𝑃𝐼} (2.26)

Δ𝑃0.01 ≤ Δ𝑃𝑡 + 𝜀𝑝 ≤ Δ𝑃0.99, 𝜀𝑝 ∼ 𝑁 (𝜇𝑝, 𝜎𝑒𝑝) (2.27)

𝑃𝑡 = 𝑃𝑡−1 + Δ𝑃𝑡 + 𝜀𝑝 (2.28)

Another aspect that is considered during the synthetic storm generation is the fact that the intensity
of the storm will decrease after making landfall. To ensure that this effect is captured in the
database an addition is made that assumes that the TC intensity decreases as a function of the
time and distance it has covered while being over land. Finally, the radius of maximum winds
is derived for each time step. Based on historical observations, it seems that intense TC’s in
general have a smaller RMW. For week TC’s a larger RMW is observed. To capture this effect,
the derivations of the RMW is divided into three subsets for different storm intensities.

3. Creating synthetic TC’s. During the third and final stage the 10.000 years of synthetic storms
are generated for each basin with the STORM model. This model is consist of series of python
programs and follows the components described in the previous two stages.
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Figure 2.14: Left side: 38 years of TC tracks IBTrACS WP. Right side: 1000 years of synthetic TC tracks WP . Adapted from
Bloemendaal et al. (2020)

The final product is a catalogue for each TC basin consisting of 10 text files that all contain 1000
years worth of storms. The track data for each storm is listed in intervals of 3 hours. The columns in
the file contain the essential storm track data, like latitude, longitude, wind speed, air pressure, RMW
etc.





3
Delft3D Storm Surge Model

This chapter contains all aspects regarding the Delft3D storm surge model for Hong Kong and Macau.
In the first section the model setup is discussed. The model setup will form the basis of the synthetic
simulations. It is therefore important to reproduce the real world as accurately as possible in the model.
In the second section the calibration and validation of the model is discussed. The calibration phase
of the model is supported by appendix B in which the sensitivity of different model parameters are
discussed. The tidal validation is conducted in two steps. First, only astronomical tide forcing of the
model is validated and wind is not yet included in the model. Then the model is validated for simulating
storm tide (simulation with astronomical tides and wind forcing). The storm surge validation is done for
three historical TC’s that have affected Hong Kong and Macau in the past.

3.1. Model setup
The model setup determines for a large part the performance during the simulations. For a correct
model construction, many aspects must be considered like data input, grid creation, boundary condi­
tions etc. This section discusses in detail the setup of the model.

3.1.1. Grid
The computational grid forms the basis of the numerical model and can be created in RGFGRID, a
subprogram of the Delft3D suite. The key factors during the grid creation that should be considered
are the grid extent and the grid size. They both influence the overall performance of the model and
must be implemented correctly. Since the focus lies on storm surge simulations, the grid should cover a
large area of the South Chinese Sea in order to model the different physical aspects correctly. Tropical
Cyclones often have large a radius and travel large distances. To allow for a correct simulation of
the TC’s physics and gradual entering in the domain, a rectangular grid of approximately 500 by 700
km is used. The grid covers the pearl river delta and extends almost all the way up to Taiwan and
the Philippines. The choice of grid cell size is dependent on the desired resolution for the model. In
general, shallow coastal waters require smaller grid cells to accurately reproduce the steep changes in
bathymetry. The accurate reproduction of the bathymetry in shallow water is needed for accurate storm
surge predictions. In the open ocean, the changes in bathymetry are most often much more gradual
and since the ocean is deep water the accuracy of the bathymetry is less important. Furthermore, in
case of rectangular grid cells, an higher resolution will reduce the number of grid cells that cover both
land and water. Since, this focus lies on the water levels in the pearl river delta, this area requires the
highest resolution in he model. Delft3D offers a technique called domain decomposition that allows the
model to be divided into several domains with different grid sizes. This provides the possibility to have
larger grid cells in the open ocean and smaller grid cells with higher resolution in the coastal areas.
The grid cell size also influences the computational time of the model i.e. the smaller the grid cells,
the higher the total number of cells needed to cover the same area. Therefore, it is beneficial from a
computational time perspective to have larger grid cells in the open ocean. The model setup in Delft3D
uses three domains with different grid sizes. The large course domain has grid cells of 2 by 2 km,
followed by the middle domain with grid cell size of 660 by 660 m. Finally, the fine domain that covers
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the water surrounding Hong Kong and Macau has a resolution of 225 by 225 m.

Figure 3.1: Computational grid a) Overview b) Fine grid Hong Kong area

Appendix B.4 aims at investigation the influence of the spatial resolution on the model performance.
To do so, two storm surge simulations are conducted with differing resolutions. One model has three
domain decomposition steps with a maximum spatial resolution of 225 by 225 m. The second model
includes four different domain decomposition steps, with a maximum resolution of 75 by 75 m. Based
of the results, it can be concluded that both for both models, almost the same results are obtained in
terms of water levels. However, the high resolution model has a much longer computational time than
the 3 step domain decomposition model. Based on the minimal difference between the two models
and significant time increase of the finer model it is decided to use the 3 step domain decomposition
model.

3.1.2. Bathymetry and Topography
Data on the topography and bathymetry for the area of interest are collected from different sources. For
bathymetry of the Oceanic waters, the General Bathymetry Card Of Oceans (GEBCO19) is used. This
database provides up to 500 m accurate bathymetry and land cards by using different measurements
and estimations.

Coordinate system Reference level
Gebco19 EPSG:4326 Mean Sea Level
Pearl river delta bathymetry EPSG:4326 Mean Lower Low Water (1.45m below MSL)
Hong Kong topography EPSG:2326 (orignal HK grid system Hong Kong Principal Datum (1.3m below MSL)
Macau topography EPSG:102159 (Macau grid) Mean Sea Level

Table 3.1: Topography and bathymetry sources

Before the data sets can be used to create the Delft3Dmodel, some sourcemust be transformed and
edited. This is due to the fact the different coordinate systems and reference levels are used.The data
with different coordinate systems and reference levels are all transformed to EPSG:4326 and MSL. The
original topography cards are in 5m resolution. This very high resolution is not needed for the model
since the main focus in not on inland flooding. To improve the computational speed, the topography
data accuracy is reduced to 100m. Furthermore, some of the data overlap each other and need to be
filtered out. The data filtering ensures that the most accurate data is used and the overlapping points
are deleted. The local topography and bathymetry sources are significantly more accurate then the
global Gebco19 database. The points from the Gebco database that overlap any of the points from
the other sources are deleted. All the points from the Gebco database that represent lands with and
altitude higher of 30m are also filtered out and deleted. Finally, the transformed and edited sources
are combined in one .xyz file that can be used in Delft3D. To make the bathymetry suitable as input
for Delft3d, it must be adapted to the computational grid. With QUICKIN the bathymetry points are
averaged or interpolated over the grid to obtain bed levels at the grid cell corners.
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Figure 3.2: Bathymetry computational domain ­ South Chinese Sea

3.1.3. Time Step
In Delft3D flow the time step can be chosen based on accuracy reasons only, in most cases stability
is no issue. A too large Δ𝑡 will produce inaccurate results. On the other hand, a very small Δ𝑡 will
significantly increase the computational time, without large improvements in accuracy. The Courant­
Friedrichs­Lewy number is used to determine the desired time step.

𝐶𝐹𝐿 = Δ𝑡√𝑔𝐻
{Δ𝑥, Δ𝑦} (3.1)

For accuracy reasons the value of the Courant number may in general not exceed a value of 10.
The Courant number is dependent on the time step, water depth and grid spacing. When using domain
decomposition all the grids must have the same time step. The finest grid needs the smallest time
step and is therefore leading for the other grids. When considering a grid spacing of 225m, and with
Δ𝑡=60 seconds, the Courant number becomes 5.9 and is well below 10. An additional simulation was
conducted with Δ𝑡=30 seconds to check if the accuracy could be improved. The results showed no
accuracy improvements compared to the Δ𝑡=60 s simulation. The time step used for all simulations will
therefore be 60 seconds.

3.1.4. Boundary conditions
To model the influence of the areas outside the model, one needs to impose boundary conditions at the
open boundaries of the computational grid. Depending on the type of forcing from outside the domain
that must be modelled, different types of boundary conditions can be imposed on the edges of the
computational domain. Delft3D allows the user to choose between 5 different types of boundary forcing:
water level, current (velocity), Neumann, Discharge or flux and Riemann boundary conditions. The
boundary conditions are only imposed on open water boundaries on the outside of the course domain.
At the intersection of the course with the middle domain and the middle with fine domain no boundary
conditions need to be imposed. The choice of the type of open boundary condition is dependent on
the phenomenon to be studied. The discharge or flux boundaries are often used for modelling river
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flow problem with an inflow upstream and outflow downstream. The velocity boundary is often used for
cross flow problems and the Neumann boundary condition is used to impose alongshore water level
gradients. Finally, the Riemann boundary condition or so­called weakly reflective boundary. The main
characteristic of this boundary is that it is transparent to a certain level for outgoing waves. This types
of boundary allow outgoing waves to pass the boundary without being reflected back into the domain
and causing disturbances. The water level boundary is mostly used for larger open ocean models,
since this is often the only quantity that is known with some accuracy compared to the other boundary
types. A single boundary condition is described at two points: Start point A and end point B. The points
that lie between point A and B are calculated by Delft3D by means of linear interpolation. By imposing
multiple boundary conditions along the domain, it is possible to simulate the physical behaviour of the
water surface along the entire domain.

For the water level, current, discharge boundary types one also need to assign an reflection param­
eter to each boundary. The reflection parameters specifies the amount by which the open boundary
should be less reflective for short wave disturbance. The Delft3D flow manual proposes the following
values for the reflection parameter:

𝑊𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∶ 𝛼 = 𝑇𝑑√
𝐻
𝑔 , [s

2] (3.2)

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∶ 𝛼 = 𝑇𝑑[𝑠] (3.3)

As can be seen from the equations, the reflection parameter (𝛼) is dependent on the time it takes a
free surface wave to travel from the left boundary to the right boundary (𝑇𝑑). Being dependent on the
travel time, the reflection parameter is thus also dependent on the size of domain. Generally speaking
reflection values up to 1000 s2 are considered safe. By increasing the reflection parameter values, to
boundary also start to dampen the forcing that is sent by the boundary itself. Due to the size of domain
on restrictions on the use of the parameter, the values for 𝛼 has been determined by trial and error
and comparing results with each other. The final input in the boundary section is the type of boundary
forcing. Delft3d allows the user to choose between different types of forcing:

• Astronomic. Astronomic constituents are used for imposing the phases and amplitudes of the
tidal constituents. As is stated in previous chapters, the water level elevation changes cause
by tidal forcing can be described by taking the amplitude and phase of a large number of tidal
constituents and equation 2.3. The values of each constituent are determined for the start time
of the simulation and are updated every time interval which can be set by the user.

• Harmonic. Flow conditions are specified using frequencies, amplitudes and phases at the be­
ginning and end of the simulation

• QH­relation. water level is calculated from the computed discharge passing through the bound­
ary.

• Time­series. flow conditions specified by time series. For example the water level change at an
open boundary over a period of time.

Given the purpose of the storm surge simulation model, boundary conditions of the water level type
in combination with astronomical forcing is favoured. The water level change due to the tides can
be easily determined by taking the astronomical constituents at the outside boundary from one of the
many tidal models that are available today. There are multiple open source platforms that provide this
data in different spectral resolutions. To ensure the model’s quality, three different models are used
to determine the performing one. In Appendix B.1, a sensitivity analysis is conducted to determine
the best performing tidal model. The model considered are the TPXO8, TPXO9 and FES2014 model.
Both the TPXO8 and TPXO9 are regional models and have a resolution of 1/30 degrees (+­ 500m.
This means that all the grid points are space 500 m apart and that for each grid point a unique set of
astronomical constituents are available that can be used for the boundary conditions. The resolution of
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the FES2014 global model is 1/16 degrees (+­ 250m). From the sensitivity analysis it can be concluded
that the regional TPXO8 tidal model has the best performance. The TPXO8 model is therefore used in
the boundary conditions for the simulations.

The following constituents are considered in the boundary conditions:

• M2: Principal lunar semidiurnal constituent

• S1: Principal solar semidiurnal constituent

• N2: Larger lunar elliptic semidiurnal constituent

• K2: Lunisolar semidiurnal constituent

• K1: Lunar diurnal constituent

• O1: Lunar diurnal constituent

• P1: Solar diurnal constituent

• Q1: Larger lunar elliptic diurnal constituent

• MM: Lunar monthly constituent

• MF: Lunisolar fortnightly constituent

• M4: Shallow water overtides of principal lunar constituent

• MN4: Shallow water quarter diurnal constituent

• MS4: Shallow water quarter diurnal constituent

3.1.5. Wind and wave forcing
For storm surge simulations, the wind input is the most important forcing factor in the model. As dis­
cussed in section 2.5 the observed wind speeds and pressure can be used in a parametric wind model
to describe the wind and pressure field of the TC throughout it’s life cycle. Data from historical TC’s
all around the world are stored in the IBTrACS database from the national oceanic and atmospheric
administration (NOAA). The database contains information on the location, maximumwind speed, pres­
sures and other relevant parameters for the duration of the TC. The TC track data is used as input for a
matlab script that applies the wind model as discussed in section 2.5. The applied wind model creates
a file with the wind speed and pressure fields on a moving spiderweb grid. This spiderweb file is used
as the TC forcing in the model. Figure 3.3 shows that reproduction of the wind field in Delft3D during
an approaching TC.

For the simulation of waves, the Delft3D wave module can be used which runs the SWAN model
to simulate the evolution of waves. The Delft3D wave module can be coupled with the flow module
to obtain a combined flow/wave simulation. With the SWAN model a wide variety of physics can be
simulated, for example: refraction, wave generation by wind, dissipation, shoaling, diffraction etc. For
this research the wave module is used to determine the extent of the wave setup during the storm
surge. The wave module used the wind forcing form the Delft3D model to compute the wave field
and propagation. Just like the flow module, the standalone wave module requires a computational
grid to compute to wave field on. The wave module allows for different grid resolutions by means of
nesting. For accuracy reasons, three different wave grids are used. The course large grid cover the
same space as the flow grid. The two finer wave grids are nested in the course and allow for a more
detailed simulation in the coastal region.
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Figure 3.3: Wind field simulated in Delft3D flow for an TC
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3.2. Model Calibration and Validation

3.2.1. Astronomical tide validation
As stated in the previous section, the boundary conditions provide the tidal forcing into the computa­
tional domain. Multiple tidal models with different resolutions are available. To determine the most
accurate model for this study, the different tidal models are tested in Delft3D by means of a tidal val­
idation. The main purpose of the tidal validation is to check if the simulated tides correspond to the
measurement station in Hong Kong. For tidal validation purposes, the Hong Kong marine department
provided the data sets for three different tidal measurement stations in the Hong Kong waters. These
stations measure the water level elevation in 10 minute intervals. The reference level used for tidal
measurements in Hong Kong is the principal datum (1.45m below mean sea level). Unfortunately it
was impossible to obtain tidal measurement data for the waters surrounding Macau. Therefore, the
tidal validation of the hydrodynamic model is based on the tidal movement in Hong Kong only. The
CT8 station is location at the entrance of a large contained port. The water depth at stations CT8 and
MWC is approximately 18 meter measured from mean sea level. Station CHC is not located near a
large port or shipping channel. The water depth at this station is approximately 10 meter

Figure 3.4: Location of tide stations

The tidal measurement stations also measure the water level elevation due to other hydrodynamic
processes besides pure tide movement. In the real world tides are not the only forcing of the water
level. Wind setup, wave setup, river discharge, precipitation are aspects that can contribute to the
measured water level elevation. For the tidal validation, it is therefore important to choose a time frame
for the simulation in a period of low wind speeds, wave heights etc. By taking a period of calm weather
in the simulation the other processes are minimal and the pure tide simulation will obtain results that
are closer to the measured water level elevations. Based on an analysis of historic weather in Hong
Kong and Macau Augustus 2015 has been chosen for the tidal validation. During this month the wind
speed and waves were historically low and the simulation gave significant better results than for period
with more wind and waves.

The analysis of the different models in appendix B shows that all three considered tidal models can
reproduce the water levels for Hong Kong with an acceptable error for the time and phase. In general
the measured tidal signal is reproduced correctly by the numerical model. However, some under and
over estimations during high and low tide can be observed. This can be explained by the fact the
only tides were included in the simulation and other physical processes were excluded. Processes
like wind and wave setup, river discharges and precipitation can all have an effect on the water level
elevation. From the results it can clearly be seen that the simulated tidal signal is in phase for all three
tidal measurement stations. This means that the propagation of the tidal wave is captures correctly
in the model. On the other hand, some errors can be observed for the simulated water levels during
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high and low tide. The highest errors can be observer during the period around neap tide (22­25
Augustus). The results clearly show that around this time period the model performance is reduced for
all three models. Since the tidal models all produce similar results it is hard to visually determine the
best performing model. Although the root mean square (RMSE) and percentage error are similar for
the three models, the TPXO8 model has the best performance overall. For the entire month Augustus
2015 the RMSE is between 10 and 12 cm for all considered tidal stations.

Figure 3.5: Astronomical Tide Validation for three tide station ­ TPXO8 model
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3.2.2. Storm tide validation
Since the tidal validation has shown that themodel can reproduce satisfactory tidal results, the next step
is to include wind forcing in the model, to simulate storm surges and determine the storm tide (mean
storm surge level plus tide). The validation is required to evaluate the performance of the model, can
it estimate surge heights within reasonable accuracy? The validation is based on three historical TC’s
namely: Hato (2017), Mangkhut (2018), and Hagupit (2008). As stated before, the track data from
the TC’s are parametrized and converted to spiderweb format for the Delft3D input. The different TC
agencies all use slightly differing methods or parameters to describe the TC. Appendix B.3 aims at
investigating the influence of the data from different agencies and different derived radius of maximum
winds. he results show that the simulated surge heights can differ significantly depending the data used.
Besides the wind speed and eye pressure, the RMW is plays also an important role in the simulation
results.

Figure 3.6: Tropical cyclone tracks

Furthermore, in appendix B.2 the influence of the values for wind drag coefficients for varying wind
speeds is also investigated. Over the years many investigations have been conducted into the be­
haviour of the wind drag coefficient under cyclone conditions. It is generally agreed that the drag
coefficient increases with the wind speed until a maximum wind speed after which the drag coefficient
value will decrease again. However, the exact values for the drag coefficient can differ per research.
During the sensitivity analysis a total of 5 different relations for the drag coefficient were used in the
simulation for TC Hato. Again the results show that the type of drag coefficient relation used signifi­
cantly influences the simulated surge height. One limitation of Delft3D becomes clear for the wind drag
coefficients. Delft3d only allows for linear interpolation between three values of the drag coefficient for
varying wind speeds. However, multiple recent papers suggest a parabolic relationship between the
drag coefficient and wind speed. Due to the linear behaviour of the drag coefficients in Delft3D, it is
impossible to capture the drag coefficient values for all wind speed points exactly. As a consequence,
the linear interpolated drag coefficient values are slightly underestimated compared to the parabolic
values. In the end, the sensitivity analysis shows that the drag coefficient by Peng et al. specially
derived for the south Chinese sea will generate the most accurate results in Delft3D.

Hato (2017)
Hato was one of the strongest TC to impact Hong Kong and Macau over the last 50 years. Hato started
as a tropical depression on August 18 southwest of Taiwan. Over the following days the storm kept
increasing in size and intensity and was declared a tropical cyclone. On August 23 Hato made landfall
near the pearl river delta, it was classified as an category 2 typhoon by the JWTC. The storm surge
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associated with Hato caused flooding of multiple area along the pearl river delta. In Hong Kong city,
most damages reported came from wind damage. However some low lying areas were inundated due
to the storm surge. Macau was hit even harder by Hato, Many parts of the city were inundated. The
eye of the storm passed Macau at a distance of approximately 30 km. According to Takagi et al. (2018),
the surge heights reached up to 2m in Hong Kong and up to 2.5 m in Macau. Field surveys after the
TC provided evidence of an inundation depth of over 2m for downtown Macau. According to Li et al.
(2018) several factors were responsible for the extent of damages in Macau. The first one begin that
Hato made landfall during high tide. Furthermore, the wind speed measured was the strongest of all
the TC’s since 1953.

Figure 3.7: Observed vs simulated storm tide for TC Hato

The results of the simulation show that the model is capable of estimating themaximum surge height
within reasonable levels. The smallest error is obtained for station ct8 an is 8 cm, the highest error is
at CHC with 17 cm difference between the maximum simulated surge height and the measured height.
It must be noted that the tidal measurement buoy CHC had a malfunctioning during the peak of the
storm. The maximum measured surge heights were all recorded at 23/09 at 2:40 am. However in the
simulations, the maximum surge height occurred more than an hour later at approximately 4:00 am.
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Mangkhut (2018)
Mangkhut was first noticed as an tropical disturbance on September 5. The following days, the storm
increased in intensity and made landfall as a category 5 TC on September 15 at the coast of the
Philippines. After traversing the Philippines, Mangkhut weakened to an category 3 TC while passing
over the South Chinese Sea. Early September 16 the storm passed in front of the coast of the PRD.
Mangkhut is classified as the strongest hitting typhoon in terms of maximum sustained wind since
reliable records are kept. In terms of the affected area, Mangkhut was the most severe event since
1979 to hit the PRD Yang et al. (2019). Although Mangkhut had similar meteorological characteristics
compared to Hato, some key differences can be defined. First, Mangkhut passed the PRD at neap tide.
The radius of the storm was significantly larger for Mangkhut. The eye passed Macau at a distance of
approximately 70 km. The storm surge caused flooding in parts of Hong Kong and Macau. Other than
during Hato, no fatalities were registered during Mangkhut.

Figure 3.8: Observed vs simulated storm tide for TC Mangkhut

At first sight, the results of the simulation shows that the maximum surge height is estimated in
correspondence with the measured signals for station CT8 and MWC. For station CHC a slight un­
derestimation for the maximum surge height is estimated. The arrival of the storm surge peak in the
simulation corresponds to the measured arrival time. However, it can also be noted that the water
level before and after the passing of Mangkhut are under estimated in the model. Especially the water
level after the passing of Mangkhut are underestimated in the simulation for all three measurement
stations. The relative poor performance of the model after the passing of the TC can be explained by
the fact that Mangkhut occurred during neap tide. As discussed during the tidal validation. The tidal
constituents used in the model have the largest errors in the period around neap tide. After the passing
of the storm, the tides become the main forcing of the water levels again. Since the tide estimation of
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the model during period of neap tide is not optimal, the water levels after the passing of Mangkhut are
underestimated. Other factors that can be responsible for part of the discrepancies are possible errors
in the bathymetry/ topography. The underestimation of the water levels during the period around neap
tide is not necessary a problem for this thesis research. We are mainly interested in the maximum
surge heights and the arrival times. Therefore the period before and after the storm surge are of less
importance for the research. Furthermore, the synthetic TC simulation will be done without tidal forcing
present in the model. The reason behind this will be explained in the next chapter.

3.2.3. Hagupit (2008)

Figure 3.9: Observed vs simulated storm tide for TC Hagupit

The first thing that can be noticed from the figure is the malfunctioning of station MWC during the
passing of Hagupit. The results show that for station CT8 and CHC the simulated water levels are
in good correspondence with the measured levels. The maximum simulated surge height is slightly
overestimated with 10 cm. Other than for Hato and Mangkhut, the rise and fall of the water levels are
very similar to the measured levels.
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3.2.4. Storm tide simulation with waves
As discussed previously, waves can have significant impacts on coastal areas. Especially in the breaker
zone a lot of wave energy is dissipated. The wave simulation shows that high waves are generated
during the passing of the storm. Especially, the high wave heights can be observed in front of the PRD
during passing of the storm. The many islands in front of the PRD are responsible for refraction and
diffraction and create shadow zoneswith lowwave heights on the back side. A storm tide simulation with
waves is performed, to gain knowledge into the degree waves are responsible for water level increases
during a TC event. The storm tide model for TC Hato is coupled with a separate SWAN (wave) model.
The SWAN model is included in the Delft3D package. To so, so a two separate wave grids are created
with RGFGRID and QUICKIN. Figures 3.10 and 3.11 show a snapshot of the significant wave height
during the peak storm tide for the two grids. The results shows, that the significant wave height can
reach up to 5 m in the outskirts of the pearls river delta. Near the cities of Hong Kong and Macau the
significant wave heights are up 3 meter.

Figure 3.10: Significant wave height at peak storm tide, Course computational grid ­ Hato (2017)

Figure 3.11: Significant wave height at peak storm tide, Fine computational grid ­ Hato (2017)
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For wave validation purposes, the Hong Kong Marine department shared data of two wave mea­
surement buoys. However, relevant wave data was missing for all three validations TC’s. Due to the
lack of data, the wave model can therefore not be validated accurately. Other data sources mention
the maximum wave heights during storms, but without any exact locations. According to Takagi et al.
(2018), the off shore significant wave height in front of Hong Kong island was 5.5 m during the passing
of Hato. Although it is impossible to to validate the wave model without exact measurement locations,
the model is in line with a significant wave height of 5­6 m in front of Hong Kong island. As stated in
previous sections, the wave setup depends largely on the radiation stress and water depth. The effect
of wave setup will therefore be the largest in the surf zone where radiation stress decreases. The tidal
gauges that are used for the validation process are located in deep water and are therefore expected
to have minimal increase in water level elevation due to wave setup.

Figure 3.12: Storm tide with waves ­TC Hato (2017)

From the results it can clearly be seen that that wave have hardly any influence on the water levels
at the measurement locations. The maximum water level increase compared for the simulation with
waves compared to the one without waves is 5 cm at the location of the tidal gauges. A consequence
of running the coupled flow and wave model, is the sharp increase in computational time. A coupled
simulation run takes on average about 300 % more time than a flow model without waves. Since the
effect of wave setup is very minimal for the water levels at the tidal gauges, it will be excluded for the
synthetic simulation. Due to the large amount of synthetic simulation, the computation time becomes
a relevant factor in the process. Although the waves show a very limited effect on the water level of
the considered locations, wave setup will be significant in the surf zone. Additionally the enormous
amounts of energy dissipated in the surf zone will act on flood defences and coastal structures.
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Synthetic Storm Surge Simulations

In the previous chapter, the Delft3d model setup and performance has been discussed in detail. The
hydrodynamic model forms the basis to gather the data on the water levels variations during storms that
will be used in the neural network. The development of the neural network requires a lot of data input
for the learning process. Generally speaking, the more data input the more accurate the network will
become in predicting the water levels during a storm surge. The meteorological data (TC track data)
used by the Delft3D model to estimate the water levels is limited by the amount of historical storms that
passed through the PRD. To overcome this limiting data factor, a synthetic storm database is used that
contain significantly more track data than the IBTrACS database. The development of the catalogue is
discussed in 2.8.

4.1. Synthetic simulations
The contents of the synthetic storm database are used for running a specified number of synthetic
storm surge simulations in Delft3D. The synthetic TC track data forms the input for the parametric
wind model in order to create the spiderweb file required for each simulation. Other than for historical
storms, the synthetic storms don’t have a date of occurrence, but only a month and year assigned.
This forms a problem for the set­up of the Delft3D model. In order for the model to know when to start
and stop the simulation, it requires a start and stop date and time. Furthermore, the tidal elevation and
forcing changes over the month and seasons and therefore dependent on the exact date and time.
There are two main options to overcome the missing date problem. The first one is to assign a random
start date to the synthetic storm in order to capture the astronomical tides. By doing so each storm is
assigned a start date, which can be used to model the tidal forcing at that point in time. This option
allows for the astronomical constituents to be included in the neural network as input neuron. The
other option is to separate the storm and tidal forcing by removing astronomical tides from the model.
This option eliminates the need to assign a random date to each storm no neural network input node
is required with the tidal forcing, simplifying the structure of the neural network (This will be discussed
in the next chapter). However, if the tidal forcing is removed from the simulation, the neural network
that is developed will be only be able to predict the water levels without astronomical tides. In the real
world the tide plays an important role in the change change of the water levels. To get accurate real
life predictions in case of an approaching storms, the tidal elevation must be added to the output of the
neural network in case of this option is chosen. By adding the expected tidal elevation at the moment
of maximum water levels, one can still get an accurate prediction of the maximum real life water levels
during a storm surge.

4.2. TC selection criteria and scripts
Do to the size of the Western Pacific basin and the number of storms in the catalogue a total of 1000
storms are selected from the database based on different criteria. To automate the selection process a
Matlab script was created that selects all data from the synthetic storms that are selected and assigns
an unique ID to each storm. Creating unique ID’s for each storm is needed for correct naming of the
corresponding flow files for each storm.

45
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• Location. In order for a storm to be selected, it must have a minimal of two track points (Location
eye of the storm) inside a specified area surrounding Hong Kong and Macau.

• Landfall. The storm must make landfall in the area of previous criteria to be selected (Storms
that don’t make landfall area not avoided.

• Category. The storm must reach a minimal category of 1 on the Saffir­Simpson Hurricane Wind
Scale during the duration of the storm. All storms with category 0 are called tropical depressions
and will not be considered.

• Minimal duration. To ensure that the Delft3D model has sufficient simulation time to allow for
model spin up, the minimal duration of a storm must be 48 hours

The Matlab script only selects a storm if the criteria discussed above are met. The track data of the
selected storm is then stored in a new array for further use. For each synthetic storm that is simulated
in Delft3D a separate spiderweb must be generated based of the track data in the catalogue. To run a
Delft3D flow model, the program requires a wide variety of input files. Some files are the same for all
synthetic simulation like the grid, bathymetry, domain and boundary conditions files. However, for some
files the name and/or their input must be changed for each simulation. For example the spiderweb file
is different for each simulation and therefore also needs an unique name. Another example is the
master definition file (MDF) and the boundary definitions file (.bnd). The MDF is a file that contains all
the settings of the model and also calls the other files required for the simulation. While most of the
content stays the same, some settings change for each simulation. The start and stop time (duration) is
different for each storm and therefore has to change every time. Additionally a new spiderweb file must
be called as well with the corresponding wind forcing input. Due to the sheer size of the simulations to
be conducted it would be inefficient to generate all these files manually. To speed up the process, the
Matlab script previously discussed is supplemented with a part that automatically generates and names
the spiderweb files for each storm. The method of the generation of the spiderweb file from track data
is the same as discussed in previous chapter. Additionally the Matlab script also generated uniquely
names MDF files for each domain with that contain the correct spiderweb file names and simulation
duration.

The synthetic simulations are be computed in the TU Delft cluster, a system that provides high
performance computing power for research purposes. The cluster contains 12 nodes, which means
that it can compute 12 different jobs at the same time. The cluster completes the jobs significantly
faster than a normal laptop and can do multiple at the same time. To make running the simulation on
the cluster possible some additional files must be created. The required files to run each simulation
in the cluster (.xml, .url. &.sh) are also created. In the end with one press of a button, the Matlab
script will select all the storms (or a part) that full fills the set requirements, generate the corresponding
Delft3D files with unique ID names and save all files in a unique folder per storm event. Although being
setup for the Hong Kong area in the western pacific, the script can be easily adapted for other areas of
interest and different selection criteria and therefore very use full for anyone who uses this Synthetic
TC catalogue in combination with Delft3D­Flow. The working of the Matlab script is discussed in more
detail in appendix D.
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4.3. Validation Delft3D model without astronomical tide forcing
The last step before starting with the synthetic simulations is the validation of the storm surge model
without any tides. The synthetic models differs from the original model discussed in chapter 3 in the
fact that tides are excluded during the synthetic simulations. Since there is no tidal forcing present in
the model anymore, the surge height will consequently also decrease depending the tidal elevation at
the arrival time of the TC. Since the tide less model will be executed in the TU Delft cluster, this also
provides the ability to validate the storm surge model when running in the cluster instead on a PC. This
ensures, that Delft3D works and produces the same results as in the PC simulations.

To validate the output of the model with the new Riemann weakly reflective boundary conditions TC
Hato is validated. To do so, the water level change at the three tidal stations is selected. To compare
the tide less simulation with the actual water level that occurred during TC Hato, the astronomical tide
at that time must be manually added to the Delft3D output. Figure 4.1 displays the results for tidal
measurement station CHC for the simulation without astronomical tides. The figure shows clearly that
the harmonic water level change is not present anymore, the only forcing left in the model is the wind.

Figure 4.1: Storm surge without astronomical tide ­ tide station: CHC. Hato (2017)

To compare the tide less simulation with the observed water levels, the astronomical tide during
Hato must be added to the water level output. The peak of the water level occurred at approximately
3 am on 23 August 2017. The exact tidal elevation at that time can be determined with the Xtide
toolbox. Xtide is an package that provides astronomical tide and current predictions all around the
world. The algorithm used by the Xtide package is same as used by the NOAA. Figure 4.2 shows the
tidal prediction for Hong Kong on 23 August 2017. The reference level is in Hong Kong Chart Datum
or Mean lower low water which is 1.45m below sea level (table 3.1). The tidal elevation at 3 am on 23
August was 2.3 m above HK chart datum, which represent a tidal elevation of 0.85 m above MSL.
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Figure 4.2: Xtide Tidal prediction for Hong Kong 23 August 2017 (reference level HK chart datum)

The comparison between the simulation and observed water levels shows that when the tidal ele­
vation is added to the simulation water level, the results are within 10 cm from the observed values.
The low errors show that the performance of the tide less model can be validated to a historical storm.
This shows, that removing astronomical tides from the simulation does change the model performance
and still produces usable results.

CT8 CHC MWC
Synthetic sim wl (m) 1.2+0.75 1.12+0.75 1.17+0.75
Measured wl (m) 2.0 2.0 1.95
Error (m) ­0.05 ­ 0.13 0.03

Table 4.1: Simulation without tide ­ Validation TC Hato 2017
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Artificial Neural Network

The main goal during this thesis study is the development of a neural network capable of predicting
maximumwater levels in case of an approaching TC. All the work that has been done so­far (setting­up,
calibrating, validating the storm surge model and running synthetic simulations) in the cluster was with
the purpose of collecting the data needed for the development of the neural network. In this chapter, the
development of the neural network is treated in detail. First, an overall approach is presented to obtain
maximum predicted water levels from the neural network. This is followed by a detailed explanation
of the input and output data needed for training the neural network. The NN input and output data is
selected and adapted where needed to make it suitable for the NN input. As discussed in section 2.7,
there are many different possible architectures for the development of neural networks. Depending
on the problem to solve, complexity and size of the data, one can make changes to the architecture to
improve the results of the NN. To find the most optimal architecture, different configurations and training
algorithms are investigated in section 5.3. Finally, the different NN configurations will be validated and
their performance checked (section 5.4, 5.5 and 5.6)

5.1. General approach
Most recent applications on storm surge predictions have been conducted for historical storms. For
these storms, the meteorological data is actually obtained from measurements stations. The same
holds for the water levels that are recorded by measurement buoys at specific locations. During this
study the approach towards NN modelling will be different compared to the previous discussed ap­
proaches. The reason for the different approach is the fact that during this study, the NN data is
obtained from synthetic track data and simulations. Other than real life water level measurements,
the synthetic simulations give insight on the water levels in the entire computational domain and not
only a specific measurement location. Thus the synthetic simulations provide the data to increase the
number of output neurons in the network, to give insight in the water levels of the entire domain instead
at only specific locations. Same as the output of Delft3D, it is possible to develop a neural network that
instead of predicting water levels at one location, is capable to output a map with predicted maximum
water levels. An advantage of working with synthetic data compared to historical data is the ability to
obtain data from a large number of storms. The synthetic track data contains 10000 years worth of
storm while historical data sets like IBTrACS only contain up to 40 years of historical data. Generally
speaking, neural networks will become more accurate when increasing the number of training samples.
On the other side, by increasing the number of output neurons the networks architecture will become
more complicated and will require more hidden neurons and more computational time and memory.
Furthermore, this approach requires extensive testing and validating of the storm surge model to cal­
culate water levels. When checking the literature, no publications can be found of NN’s capable of
predicting maximum water levels in map format. Therefore, the development of the NN will investigate
the suitability and accuracy of such an network compared to the more ’traditional’ networks that only
give the output for a few locations. The flowchart in figure 5.1 shows the steps for developing the neu­
ral network. The prediction of the maximum water levels is based of seven relevant track parameters:
latitude, longitude, maximum wind speed, eye pressure, radius of maximum winds, forward speed TC
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50 5. Artificial Neural Network

and forward direction.These parameters provide valuable information on the location, movement and
intensity of the TC and will be linked in the NN to the maximum water levels.

Figure 5.1: Neural Network Flowchart

5.2. Neural Network data collection and processing
NN input data
Since the aim lies at predicting the maximum water levels (peak storm tide), the input track parameters
should correspond closely to the conditions at that peak time. Generally this means that the maximum
water levels will occur when the TC makes landfall and/or the TC eye is close to or above the Pearl
River Delta. One obvious way it to simply select the track parameters of the first time step when the
TC makes landfall. This method would be sufficient if all the TC’s make landfall in the PRD, however
this is not the case. Although all selected storms make landfall, there landfall location can vary along
the Chinese coast. The fact that not all storms make landfall in the PRD, would mean that for some
storms the selected track data does not completely correspond to the time when the maximum water
levels occur. Suppose we have a storm making landfall west of the Pearl River Delta. Due to the
general storm direction in the western Pacific (from east to west), the storm will have passed Hong
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Kong longitude wise prior to landfall. Depending on the exact location this means that the maximum
water levels in the PRD occur before the stormmaking landfall. Thus by selected the first time step after
landfall as input data, some samples will have less accurate data. One way to overcome this problem
is to selected the track data not based on first landfall but by selecting the time step that the TC eye has
the closest distance to the PRD. Of the considered input parameters all but two are already displayed
in the synthetic TC catalogue. Only the forward speed and direction of the TC must be calculated. FD
and FS are already calculated in the Matlab script that creates the spiderweb files and other Delft3d
files. By making a quick modification to the script the FD and FS can be added to the track parameters
for all time steps.

NN output data
The results of the synthetic simulations are stored in special history (trih) and map (trim) files produced
by Delft3D. For each computational domain one trih and trim file is produced per simulation. These files
contain the results for all parameters (Water level, water depth, bed level, wind speed, velocity etc.).
The trih (history) files only contains the results for specified observation locations. These observation
locations must be identified by the user prior to the simulation. The observation points are generally
used to observe the results of the simulation in points specific points of interest. The trim files does
not work with observation points but instead displays the results for the entire computational domain.
For both the trih and trim file, the time interval for which the simulation results are stored can be set
by the user. Since the trih and trim files are so­called data files and contain the results for different
parameters, one needs additional tools to process the results. Provided with the Delft3D suite is the
Quickplot toolbox, which allows for easy reading, exporting and displaying of the simulation results.
Quickplot also allows to select the parameter of interest (for example water level) and export it as a
.mat file. However, this action must be done manually for each simulation and it would be very time
consuming to manually create a .mat file for each simulation. To overcome the problem of big data data
processing, Deltares hosts a platform called Open Earth Tools with open source tools, data and models
for Delft3D applications. The open earth tools also includes a section with tool for data processing in
Matlab. These functions can be downloaded and added to Matlab, providing efficient and direct access
to the Delft3D results. For efficient processing of the simulation results, a Matlab script is developed
that uses the open earth tools and can read and save the results of up to 100 simulations at the same
time. The exact workings of the Matlab script is discussed in appendix B, but in short the scripts reads
the results of the water levels for all time intervals for the fine domain. From all the time intervals,
the maximum water levels are selected and stored in a array. Finally, the result is an array with the
maximum water levels for each simulation. These files can be combined into one data file containing
the maximumwater levels for all synthetic simulations. The file containing the maximumwater levels for
all simulations will be adapted further and is finally used in the neural network training. More information
on the Matlab scripts can be found in Appendix D.

5.3. Architecture
The neural network is created with the Deep learning toolbox from Matlab. This toolbox provides the
framework for designing and implementing neural networks and deep learning networks. After the input
and output data has been obtained, one can start with the actual implementation of the NN. To do so,
decisions must be made concerning the training algorithm, number of hidden layers, training ratios and
type of activation function.

• Training algorithm. The NN is trained by means of a training algorithm or optimization algorithm.
The goal is to minimize the error between the NN output and target output by changing the weights
in the hidden neurons. Presently, a wide variety of training algorithms exist with different learning
times and memory requirements. The deep learning toolbox includes about 10 different learning
algorithms. For a NN with the size of figure 5.2, many of these algorithms are unusable on this
problem due to the memory requirements of the training algorithms. The Levenberg­Marquardt
(LM) and Bayesian regularization (BR) algorithms require too much memory for training this spe­
cific network. On the other side the scaled gradient conjugate (SCG) and the Conjugate Gradient
with Powell/Bealle (SGB) will take longer time to train but can be used for training without the
memory problems.
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• Number of hidden neurons. In the field of deep learning there is no general consensus on
how many hidden neurons a network should have. In many applications, the optimal number of
neurons are determined by trial and error. Multiple NN’s with different number of hidden nodes
are trained and cross validated with the test sample set. Based on the validation performance
one can select the best performing network. It must be noted that an increase in the number of
hidden neurons, will also increase the complexity of the NN function in Matlab. In case the Matlab
function becomes too large, it cannot be executed

• Number of hidden layers. A neural network with more than one hidden layer is called a deep
learning network. The number of hidden layers in a NN can be related to the model capacity.
The model capacity or complexity represents the number of connections or number of output
parameters. The higher the model capacity the more complex function the NN can learn. This
by increasing the number of hidden layers, the number of connection increase and this gener­
ally provides the ability to learn more complex functions with potentially better performance. A
drawback of increasing the complexity of the NN is that it requires more data samples to learn
from.

• Training ratio. The data samples are divided based on user defined ratios into three classes:
training samples, validation samples and test samples. The training samples are only used for
training the NN. The validation samples are used to validate that the network generalizing and
makes sure that the training stops before over fitting. Over fitting can occur when the network
keeps learning while the weights already have reached an optimum values. As a consequence,
the accuracy of the network goes down. To prevent over fitting to validation samples are used to
determine the MSE, if the MSE is not decreasing over a number of iterations, the training will stop.
Finally, the test samples are used as a completely independent test. For learning the following
ratio is used: 80% training, 10% validation and 10% test samples.

• Machine mode or regression mode. When the NN runs in machine mode, it will return a class
label i.e. The inputs are classified toward a set of target categories. In regression mode the NN
will return a specific value. Since the focus lies on water levels, the NN is ran in regression mode.

• Training stop criterion. The stop criterion is important to prevent over fitting of the network since
it reduces the accuracy of the network. This means that the training script determines when the
optimal accuracy is reached and when to stop training based on the validation checks. During
the training process, the weights of the neurons are constantly adjusted in an effort to reduce the
error. The generalization errors will reduce fast at the start of training gradually slowing down. At
some time during training, the minimal error (optimal values for weights found) will be achieved,
after which the error will start increasing again. The key to prevent over fitting in the network is
to make sure to stop training if the error starts increasing again. To do so, the Matlab training
script defines the number of validation checks that must fail in order to stop training. For the
development of the network, the number of validation checks is set to 10. In other words, If the
generalization error increases for 10 validation samples in a row, the training will be stopped.
Another measure that checks for over fitting is the variance, which is defined as the difference
between the training error and validation error. By considering the variance, one can gain insight
in the degree of under or over fitting of the already trained network.

• Other settings Network settings that also are considered are the activation or transfer function
andmaximum number of epochs. Themaximum number of epochmeans the number of iterations
allowed before the training is stopped. During training the maximum number of epochs is set
2000. The deep learning toolbox allows for three different transfer functions to be implemented.
The transfer function is responsible for determining the network’s output by taking the sum of the
weighted inputs and bias as the input in the function. The types if transfer functions are: log­
sigmoid, tan­sigmoid and a linear transfer function. For pattern recognition problems the sigmoid
functions are often used. For function fitting the linear function is most widely used. Feed forward
networks often have a sigmoid function for the hidden layers. The non linear function for the
neurons in the hidden layer allows the network to learn the non linear relationships between the
input and output vectors. A linear output layer is used for function fitting.
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5.4. Neural Network ­ Water level map output
This section aims at the development and validation of a neural network that is capable of predicting
the maximum water level for the entire domain. Each output neuron of the network will represent a pixel
with a water level from the map. The water level map consists of a total of 60952 pixels. The enormous
amount of output neurons needed for this network will lead to higher computational demand. It can
be noted that the water level map also contains land areas. By removing the land areas from the NN,
the total number of output neurons can be reduced to 38189 representing only the water pixels. By
lowering the number of output neurons, the NN is simplified and requires less memory.

Figure 5.2: 1 layer 50 hidden nodes feed forward neural network

Figure 5.3: 2 layer 25x25 hidden nodes feed forward neural network

To gain insight in the most suitable network architecture to predict the maximum water levels, differ­
ent configurations are learned and tested. Figure 5.2 and 5.3 display the network structure for two of
the considered network configurations. The NN validation consists of different stages. First, the global
errors of the networks are compared to each other. These error give an initial insight in the performance
of the network. During the second phase certain track data samples are used to obtain the NN output
map. This output map is then compared to the water level map of the corresponding synthetic TC. The
final phase in the validation process is testing the NN prediction performance in case of an historical
storm. The tidal elevation at that point in time is added to the NN results and can then be compared to
the observed water level during that specified historical storm.

5.4.1. Performance indicators
Table 5.1 displays the results of the six different architectures investigated. It must be noted that single
hidden layer NN’s with more than 100 hidden neurons, requires too much memory to run on a normal
PC. The network performance can be expressed in the mean square errors as in equation 2.7.2. This
error represents the average squared difference between the target vector and the output vector. As
previously discussed the samples are divided based on ratio into different classes for training purposes.
The errors are calculated for each sample division by taking the average errors of the corresponding
sample set.

Performance error (m) Training error (m) Validation error (m) Test error (m)
1 layer 25 Nodes 0.218 0.2177 0.2189 0.2196
1 layer 50 Nodes 0.1314 0.128 0.1322 0.1334
1 layer 100 Nodes 0.2169 0.2154 0.2240 0.2219
2 layers 25*25 Nodes 0.3924 0.3936 0.3866 0.3674
2 layers 50*50 Nodes 0.3569 0.3537 0.4176 0.3325
2 layers 25*100 Nodes 0.3887 0.3882 0.4645 0.3173

Table 5.1: Neural network performance
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The results show that the 1 layer feed forward networks outperforms all double layer networks.
Thus by increasing the complexity of the network the errors increase for this specific case. The NN is
essentially a black­box model. Input parameters are inserted in the network and results come out with
very few insight what happens in between. Due to the mathematical complexity it is hard to understand
what causes the errors. To gain more knowledge on the network behaviour, other indicators that are
often used in error analyses. The bias and variance give further insight in the network performance.
High bias means that the output of the network is considered bad for all data i.e. the model is not fitting
on the training data. This means the training error will be large. Low bias means the model is fitting well,
and training error will be low. The Variance of a model is the difference between validation error and
training error. It gives good insight in whether the network is under or over fitting. If the variance is high,
the network is not performing well on the validation set. For network performance the variance should
be low as possible. To lower the bias, one can increase the number of epochs (iterations) or increase
the size of the network. The variance can be possibly be lowered by increasing the number of data
samples or changing the network architecture. The quality of the samples data is also very important
for network performance. When working with large data sets, there will be errors present. For example,
while checking the results of random synthetic simulations, a few simulations were found that had an
error in it. As a consequence these simulations stopped prior to the TC arriving, and therefore only
produced maximum water levels of about 20 cm. If these samples are used in the NN in combination
with the correct track data, it will lead to significant under estimations of the water level for the more
intense TC’s.

The highest variances are obtained for the double layer networks. Adding additional data to the
samples is not an options since no more than 1000 synthetic storm surge simulations have been con­
ducted. If there not enough data to train the so­call randomness of the initial values in the weights will
remain. This will lead to incorrect results. By reducing the model size or changing the architecture,
better results might be obtained. Based on this first analysis step it becomes clear that it is likely that
the network has insufficient data samples for good double layer network performance. Do to the high
number of connections between hidden neurons in the double layer network the non­linear function
becomes more complicated and requires more training data, for higher model performance.

Figure 5.4: Training performance Figure 5.5: Training state

Figure 5.4 shows the NN training phase of the single layer 50 hidden nodes network. The network
is trained with 892 samples i.e. the samples remaining after removing the samples with low water level
elevation. At the start of the training process, the MSE was over 10m because the weights are initially
assigned a random values. The error improvement occurs mostly on the first 100 epochs after the
error is already reduced to approximately 0.4 meters. After the first 100 epochs, the learning rate slows
down considerably. Finally after 415 epochs the network reaches the optimum values for the weights
to predict the maximum water level. The gradients displayed in figure 5.5 are used during training the
improve the accuracy of the network. Mathematically, the gradient is an vector that gives the direction
in which the loss function increases the fastest. A high gradient value means the the weights are
changing significantly. The steps in weight change will become smaller as the network approaches a
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global minimum. Finally the number of validation checks is set to 10. The network must pass these
check is order for the training the stop.

5.4.2. Neural Network ­ Model performance and validation
During this validation phase the output of the neural network is compared with the output of the synthetic
simulations. Since the NN produces a water level map, it can easily be compared to the water level
map output of the simulation with the maximum water levels. The first map comparison is made for
a training sample. The track data of an training sample if selected. The data is inserted in the NN
function that has been created by training the single layer 50 hidden nodes network. The NN function
then calculates the output which only contains the results for water points. To create the water level
map, the land masses must be added again to the output data. To do so a Matlab script is written that
uses the locations of the original landmass points to recreate the water level map.

Figure 5.6: Comparison between maximum water levels of Delft3D and NN output. Training sample 7

As can be seen from figure 5.6, the predicted NN output shows a relatively ’grainy’ map. This
means that neighbouring grid cells have different values for the water level. This also clearly illustrates
the difference between the synthetic simulation and the NN. Where the synthetic simulation recreates
the physical processes that causes the water levels the change. The NN is a purely mathematical
function that does not include any physical relations. The values of the output neurons that represent
the water levels are independent from their neighboring neurons. When the results are transformed
back to the map format, that independent behaviour becomes visible. To improve the output results
an effort is made to smooth the map. For image processing often 2­dimensional convolution is used.
With convolution the 2d matrix that represents the image is convoluted with a smaller matrix called the
kernel, the resulting in a smoother map with less values differences between neighboring cells (figure
5.7). equation 5.4.2 shows the formulation that defines the convolution of A and B. Where A is the
original matrix, B a matrix in the form 1/9∗ones(3) and the results are stored in array C.

𝐶(𝑗, 𝑘) =∑
𝑝
∑
𝑞
𝐴(𝑝, 𝑞)𝐵(𝑗 − 𝑝 + 1, 𝑘 − 𝑞 + 1) (5.1)
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Figure 5.7: Smoothed NN output ­ Training sample 7

Appendix C contains more figures with different samples comparisons. To get insight in the overall
performance, samples with different storm intensities are selected. The validation and test samples are
also compared besides the training samples. Although the visual comparison gives good insight in the
overall model performance it does not show the water level errors at a specific locations. Therefore, a
closer look is taken at the locations highlighted in figure 5.8.

Figure 5.8: Locations of interest that are used during the neural network validation

For each of the considered locations, the error is calculated by subtracting the results of the synthetic
simulation from the NN output. Besides the sample error, the relative error is also calculated. The
relative error compares the measurement (NN output) with the real values (Delft3D output). This puts
the error in perspective and gives insight to how far or close the NN output comes to the Delft3D output.
In other words, this type of error is relative to the size of the item being measured. The relative error
can be easily adapted to display the error in percentages.

Relative Error = ∣ measured ­ real ∣
real (5.2)
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Percent Error = ∣ measured − real ∣
real × 100% (5.3)

HK Kowloon Bay HK Airport HK Mawan HK ct8 Macau Airport Macau City

Sample error (m) relative
error (m) error (m) relative

error error (m) relative
error error (m) relative

error error (m) relative
error error (m) relative

error
Train Sample 20 0.02 0.011 ­0.36 0.163 ­0.34 0.170 0.06 0.028 ­0.58 0.197 ­0.13 0.043
Train sample 45 ­0.4 0.297 0.08 0.133 ­0.10 0.119 ­0.31 0.259 0.52 1.916 0.604 2.007
Train sample 154 ­0.4 0.249 ­0.29 0.227 ­0.27 0.212 ­0.489 0.280 ­0.099 0.077 ­0.176 0.107
Train sample 425 0.4 1.789 0.26 2.120 0.35 2.099 0.34 1.761 0.1 0.391 0.0345 0.127
Val sample 772 ­0.22 0.195 0.09 0.164 0.05 0.070 ­0.18 0.174 0.43 1.420 0.5 1.559
Val sample 779 ­0.5 0.253 ­0.46 0.269 ­0.45 0.267 ­0.51 0.246 ­0.59 0.274 ­0.39 0.167
Test sample 818 ­0.0428 0.451 ­0.285 0.226 ­0.22 0.196 ­0.2 0.353 ­0.71 0.018 ­0.93 0.030
Test sample 828 ­0.5 0.251 ­0.1 0.284 ­0.51 0.291 ­0.54 0.255 ­0.43 0.211 ­0.35 0.150
Test sample 848 ­0.33 0.174 ­0.49 0.265 ­0.50 0.275 ­0.36 0.177 ­0.59 0.257 ­0.304 0.121

Table 5.2: Global errors and relative errors for different samples and locations of interest ­ Map NN

Table 5.2 shows the results of the error analysis for the locations of interest for different samples.
Negative errors imply an underestimation of the surge heights and positive values indicate an over­
estimation of the surge heights by the NN. It becomes clear that the range of errors is significant.
Depending the sample considered, the water level location in Hong Kong show errors up to 0.5m,
sometimes under estimating the surge height while for other samples over estimations are made. The
model performance is worse for the two locations in Macau, where errors up 1 m are found. When
considering the relative errors it becomes clear that some predictions also have large errors. The high­
est relative errors is obtained for sample 425 for station HK Airport with a value of 2.1 or 210%. When
one compares the relative errors with the real errors it becomes clear that a small real errors does not
automatically means that the relative error is also small. Overall, the results in table 5.2 shows that
there is a wide range of small and large relative errors. The following possible reasons are identified
as a cause for the model performance:

• The size of the output layer (38189 output neurons) is very large and increases the NN complexity
significantly. as a consequence many training algorithms cannot be used and the maximum
number of hidden nodes is 100 to prevent memory issues.

• Neural network training data. As discussed earlier, the NN output data consists of the maximum
water levels during the entire simulation. This can be considered a simplification compared to the
real world. In case of a real TC approaching, the water levels in HK and Macau will not reach the
maximum valued at the same time. For most TC’s, HK will experience the maximum water level
earlier than Macau. The maximum water level map used in the NN, does not distinguish between
the arrival time difference of the maximum water levels. Especially, when linking the NN output
data with the TC track parameters this spatial difference becomes more important. The track data
that is selected for the NN is the time interval with the TC eye locations closest to HK. However,
this often means that the selected track parameters do no completely comply with the model for
Macau. The maximum water levels at Macau occur when the TC eye is closer to Macau. This
problem can be avoided when using time series in the NN. In that case, the track parameter for
each time step are combined with the water level at that same time interval. This also would give
insight in the propagation of the water level increase due to the storm surge. However, introducing
time series would have increased the model complexity and memory required even further.

• Number of samples. It is also possible that there are simply to few samples for this network to
learn the non­linear function with reasonable accuracy. Because, the sample data consists very
intense and less intense storms, the maximum water level range is also large. The NN therefore
requires a lot a sample data to accurately predict the water levels with large range.

The current state of the neural network is not very accurate in the prediction of the maximum water
levels. In an effort to increase the NN performance, two new NN architectures are set­up. Both new
architectures aim at increasing the network performance, by reducing the overall model complexity.
The easiest way to decrease the complexity of the network is by removing a large part of the neurons
in the output layer. For storm surge forecasting, the water levels near the coast are of most value. The
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first new NN architecture only consider the water levels at the coastline. Finally, an even less complex
network is developed that only considers the water levels at ten specified locations.

5.5. Neural Network ­ Coastline water levels
The coastline neural network uses the same track data as the previous network. From the maximum
water level data, only the cells are selected that are neighboured by the coastline. The cells that
represent land masses have a value 0 in the water level data set. To select the coastline points from the
original data set, aMatlab script is developed that selects or deselects a cell based on their neighbouring
cells. If a grid cell is surrounded by one or more cells that represents land, it will be selected by the
script to form the coastline. The coastline that covers the entire grid has a total of 2795 grid cells. The
resolution of the coastline is the same as the resolution of the fine computational domain used in the
Delft3D simulations i.e. one grid cells represent an area of 225 by 225 meter. Figure 5.9 shows the grid
cells that are selected to form the coastline. Due to the number of small and large islands in the PRD,
the entire coastline still consists of almost 2800 grid cells. In an effort to reduce the number of output
neurons even more, the current resolution of the coastline is reduced by a factor 5, generating a new
resolution of approximately 1100m. By reducing the coastline resolution, the number of output neurons
are reduces to 590 output neurons in total. The consequence of reducing the resolution of the coastline
is the fact that the coastline grid cells are no longer connected to each other. Therefore, the coastline
is dotted in figure 5.10. By reducing the resolution of the coastline, it is possible to significantly reduce
the complexity of the neural network without losing the water level prediction capability for the domain.

Figure 5.9: Extracted Water level grid cells that form the coastline of Hong Kong and Macau (+m MSL)

5.5.1. Model Performance and Validation
The validation process for the coastline model is largely the same as for the map network from the
previous section. Table C.1 in appendix C shows the network training results for different configurations.
The 100 and 200 nodes networks have the best overall performance. Increasing the number of hidden
nodes more, results in a decrease of the model performance. The two best performing networks are
further investigated by determining the errors between the network output and training samples. Table
5.3 and 5.4 are displayed below with the results of the validation of the 200 nodes coastline network.
The table validation tables for the 100 nodes network can be found in Appendix C.2.
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error (m) HK
Mawan

HK
ct8

HK
chc

HK
Kowloon Bay

HK
Mt Davis

West lamma
Channel

HK
Airport

HK
Lung Chau

Macau
Airport

Macau
CitySample Number

7 ­0.183 ­0.235 ­0.160 ­0.146 ­0.163 ­0.127 ­0.156 ­0.158 ­0.133 ­0.136
20 ­0.060 ­0.083 ­0.159 ­0.072 ­0.072 ­0.131 ­0.167 ­0.310 ­0.404 ­0.442
45 ­0.034 ­0.004 ­0.027 ­0.077 ­0.031 ­0.067 ­0.066 ­0.027 0.091 0.128
154 ­0.048 ­0.075 ­0.131 ­0.035 ­0.088 ­0.128 ­0.054 ­0.057 0.280 0.126
425 0.073 0.066 0.066 0.079 0.058 0.089 0.081 0.094 0.134 0.161
772 0.048 0.123 0.093 0.047 0.111 0.081 0.000 0.046 0.179 0.297
779 0.142 0.133 0.009 0.138 0.128 0.041 0.057 0.009 ­0.280 ­0.121
796 0.010 ­0.065 ­0.073 ­0.071 ­0.011 ­0.057 0.004 ­0.191 ­0.024 ­0.080
818 ­0.237 ­0.267 ­0.224 ­0.187 ­0.208 ­0.189 ­0.274 ­0.023 ­0.017 ­0.096
828 ­0.080 ­0.115 ­0.055 ­0.073 ­0.052 ­0.084 0.002 ­0.032 0.030 0.033
848 ­0.093 ­0.081 ­0.167 ­0.054 ­0.060 ­0.125 ­0.101 ­0.059 ­0.337 ­0.170

Table 5.3: Sample errors (m)­ Coastline Network, 200 Nodes

The results show that in general the network is capable of predicting the maximum water levels
with reasonable accuracy. However, it must be noted that the accuracy can vary significantly over the
samples. For some samples, very low errors are obtained while for other samples the errors can be
significantly. The results also show that the maximum water level predictions are more accurate for
the coastline in Hong Kong than for Macau. When comparing the results to the previous network that
predicts the water level for the entire domain, some aspects stand out. Firstly, the reduction of the
number of neurons in the output layer directly influence the number of hidden neurons that can be
used. For the coastline network, a hidden layer with more than 2000 nodes is possible, while for the
map network the maximum number of nodes in the hidden layer was 100. Secondly, it is observed
that by reducing the complexity of the network, the training performance is improved significantly. The
training, validation and test errors are reduced substantially compared to the map network. Despite,
the significant reduction in the complexity, the coastline network is still too complex to be trained with
other training algorithms than the scaled conjugate gradient (SCG) algorithm.

When the mean errors over the selected samples are calculated, it becomes clear that the 200
nodes network has a slightly better performance than the 100 nodes network. For the 200 nodes
network, the mean error is ­0.0587 m while the 100 nodes network has a mean error of ­0.08018 m.
The negative values mean that the neural network is underestimating the maximum water levels. It
must be noted that for most samples the network is underestimating the maximum surge height. On
the other hand, a few samples are identified that are overestimated by the network.

Relative
Error HK

Mawan
HK
ct8

HK
chc

HK
Kowloon Bay

HK
Mt Davis

HK West
Lamma Channel

HK
Airport

HK
Lung Chau

Macau
Airport Macau City

Sample
7 0.084 0.108 0.079 0.073 0.079 0.065 0.082 0.082 0.056 0.044
20 0.027 0.038 0.073 0.036 0.034 0.064 0.078 0.156 0.138 0.130
45 0.028 0.004 0.029 0.056 0.027 0.063 0.109 0.025 0.353 0.423
154 0.029 0.045 0.084 0.021 0.053 0.083 0.042 0.036 0.273 0.073
425 0.412 0.371 0.290 0.351 0.266 0.387 0.625 0.301 0.576 0.673
772 0.045 0.115 0.121 0.040 0.113 0.092 0.000 0.048 0.601 0.584
779 0.070 0.065 0.005 0.069 0.064 0.021 0.034 0.004 0.128 0.047
796 0.008 0.055 0.064 0.069 0.010 0.054 0.003 0.191 0.014 0.038
818 0.196 0.220 0.205 0.179 0.193 0.189 0.259 0.029 0.012 0.046
828 0.038 0.054 0.028 0.036 0.026 0.044 0.001 0.017 0.015 0.013
848 0.045 0.039 0.085 0.028 0.030 0.066 0.055 0.032 0.145 0.064

Table 5.4: Relative errors ­ Coastline network, 200 Nodes

The relative errors are also lower for the coastline network. A substantial part of the samples have
relative errors below 10 % which can be considered accurate. However, as discussed before for some
samples a significant error is observed of up to 60 %.
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Figure 5.10: Maximum predicted water levels Neural Network output (+m MSL)

5.5.2. Validation for Historical TCs

The final step in the NN validation is to check whether, the NN is capable of predicting the water levels for
an historical TC. By taking the track data from TC Hato, and adding the tidal elevation to the NN output,
the networks performance on historical storms can be checked. Like for the storm surge validation,
TC Hato, Mangkhut and Hagupit are considered again. For each TC, the track data is selected from
IBTrACS. The closest eye location to Hong Kong is then used in the NN function. The results of the NN
are stored and the corresponding tidal elevation at that time is exported from Xtide. The tidal elevation
is added to the NN results and are then compared to the observed maximum water levels during these
TC’s. It must be noted that this comparison can only be made for the three tidal stations (ct8,chc and
mwc), due to lack of data for other locations.

Tide station
and storm

NN results
(+ m MSL)

\Tidal elevation
(+m MSL)

NN combined with tides
(+m MSL)

Observed water levels
(+m MSL) Error (m)

chc (Hato) 1.41 0.75 2.16 2 0.16
ct8 (Hato) 1.61 0.75 2.37 2 0.37
mwc (Hato) 1.6 0.75 2.35 1.95 0.4
chc (Mangkhut) 1.97 ­0.05 1.92 2.23 ­0.33
ct8 (Mangkhut) 2.15 ­0.05 2.10 2.13 ­0.03
mwc (Mangkhut) 2.14 ­0.05 2.09 2.05 ­0.04
chc (Hagupit) 1.96 0 1.96 2 0.04
ct8 (Hagupit) 1.97 0 1.97 2 0.03
mwc (Hagupit) 1.95 0 1.95 no measurement

Table 5.5: 200 Nodes network ­ Performance for Historical TC

The network has the poorest performance for the prediction of the maximum water level for TC
Hato. The largest error for Hato is obtained for station ct8 and mwc and are up to 40 cm. On the other
hand, the predictions for Mangkhut and Hagupit are much better. It is likely that the training data set did
not include input parameters that closely correspond to the track data for TC Hato. As a consequence,
the network is not trained well, to solve for these parameters. This illustrates the importance of having
a large variety of input parameter values during training. If there is only a small variety of the values
in the training track data set, the network will only be capable of predicting accurate values for input
parameters that are close to the values used in the training data set.
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Figure 5.11: Neural Network prediction for TC Mangkhut track parameters (+m MSL)



62 5. Artificial Neural Network

5.6. Neural Network ­ water levels for 10 locations
The final neural network that is developed also has the lowest complexity. This NN will only predict the
maximum water levels at 10 locations instead of for the entire map. The selected locations are near
the city centres, airports and other relevant locations. By not generating a map or coastline output, the
NN is significantly less complex, allowing for different training algorithms and new configurations. For
the NN with 10 output locations, multiple configurations are tested again.

Figure 5.12: Neural Network architecture

In total 15 different configurations are trained. The results are displayed in table C.4 in appendix
C. Reducing the complexity of the NN by only training for the locations of interest causes a significant
reduction is the global errors. For all considered configurations the errors are reduced compared to the
NN water level map version. The reduction in errors is most likely due to the reduction of complexity.
Furthermore, instead of only using the SCG algorithm for training, others can be used as well. In total
18 different configuration are trained. There are multiple configurations that produce low errors. To
selected the best NN, the most promising configurations are analysed further by calculating the errors
for the locations of interest. For validation purposes, two of the best performing networks are analysed:
the 30 nodes SCG network (Table 5.6, 5.7) and 20 nodes LM network for which the results can be
found in appendix C.3.

Error (m) HK
Mawan

HK
ct8

HK
chc

HK
Kowloon Bay

HK
Mount Davis

West Lamma
channel

HK
Airport Lung Chau Macau

Airport
Macau
CitySample

7 ­0.12 ­0.07 ­0.07 ­0.02 ­0.09 ­0.05 0.02 0.01 0.03 0.04
20 ­0.22 ­0.11 ­0.29 ­0.13 ­0.28 ­0.29 ­0.16 ­0.35 ­0.28 ­0.32
45 ­0.13 ­0.12 ­0.10 ­0.15 ­0.12 ­0.12 ­0.09 ­0.07 0.17 0.13
154 ­0.19 ­0.21 ­0.24 ­0.16 ­0.21 ­0.21 ­0.10 ­0.17 0.11 0.06
425 0.16 0.17 0.07 0.19 0.12 0.09 0.06 0.12 0.03 0.04
772 ­0.02 0.05 0.09 ­0.01 0.05 0.04 0.01 0.00 0.20 0.16
779 0.06 0.02 ­0.07 0.01 0.02 0.00 ­0.06 ­0.05 ­0.33 ­0.24
796 ­0.05 ­0.02 ­0.11 ­0.03 ­0.11 ­0.13 ­0.08 ­0.19 ­0.17 ­0.24
818 ­0.29 ­0.29 ­0.27 ­0.18 ­0.21 ­0.22 ­0.13 ­0.09 ­0.14 ­0.20
828 ­0.13 ­0.21 ­0.13 ­0.21 ­0.16 ­0.14 ­0.05 ­0.18 0.04 0.09
848 ­0.04 ­0.05 ­0.11 ­0.04 ­0.01 0.01 ­0.16 0.16 ­0.30 ­0.26

Table 5.6: Water level errors for 10 locations ­ Single layer, 30 hidden nodes network, SCG training algorithm

Relative error HK
Mawan

HK
ct8

HK
chc

HK
Kowloon Bay

HK
Mount Davis

West Lamma
channel

HK
Airport Lung Chau Macau

Airport
Macau
CitySample

7 0.056 0.032 0.034 0.010 0.044 0.026 0.010 0.005 0.012 0.015
20 0.100 0.051 0.133 0.064 0.132 0.140 0.073 0.176 0.088 0.102
45 0.112 0.094 0.108 0.111 0.104 0.119 0.149 0.068 0.624 0.447
154 0.116 0.119 0.153 0.097 0.127 0.136 0.078 0.109 0.084 0.039
425 0.848 0.852 0.306 0.826 0.548 0.373 0.465 0.377 0.117 0.157
772 0.019 0.046 0.117 0.009 0.052 0.048 0.018 0.000 0.652 0.489
779 0.030 0.010 0.036 0.005 0.010 0.000 0.035 0.025 0.151 0.103
796 0.043 0.018 0.095 0.029 0.100 0.121 0.061 0.189 0.097 0.127
818 0.245 0.242 0.246 0.174 0.195 0.222 0.125 0.113 0.090 0.111
828 0.063 0.097 0.067 0.104 0.079 0.074 0.028 0.100 0.020 0.040
848 0.020 0.024 0.056 0.021 0.005 0.005 0.086 0.087 0.129 0.105

Table 5.7: Relative errors ­ Single layer, 30 hidden nodes network, SCG training algorithm

The Single layer 30 hidden nodes network for which the error results are displayed in table 5.6,
shows that for the 10 considered sample the prediction errors for the locations of interest stay within a
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maximum underestimation of 0.3 and a maximum overestimation of 0.2 m. For some samples the NN
shows a slight underestimation of the maximum surge height for the locations. The prediction for the
locations in Macau still have poorer performance than the locations in Hong Kong. As stated before,
this can be related back to the way the track data and maximum water level were selected. When
considering the relative error some aspects stand out. Firstly, for themajority of the samples, the relative
error is reasonable. However, some samples show differences between the errors for the locations.
This means that the errors change over the locations within the same sample. For examples, the errors
for Macau airport and City have significant errors for some samples. By introducing time series in the
NN, the error in Macau would have probably been reduced even more. Another trend that became
visible during the analysis is the fact that the degree of surge underestimation generally increases
for more intense TC’s. For simulated events with high surge heights the NN will often underestimate
the surge height slightly. When comparing the performance of the map NN with the 10 locations NN
it becomes clear that by reducing the complexity of the network, significantly increases in accuracy
have been obtained for this case. While for the map NN, errors up to 0.9 m were observed, this new
network outperforms the old for every tested sample. For actual maximum water level prediction, the
locations NN, is capable of producing more accurate results. Additionally, it is relatively easy to add
more locations to the network to include more areas of interest.

5.6.1. Network validation for historical TC
The same as for the coastline network, the current network performance is checked for the historical
TCs Hato, Mangkhut and Hagupit.

Tide station
and Storm ID

NN result
(+m MSL)

Tidal elevation
(+m MSL)

NN combined
Water level (+m MSL)

Observed water level
(+m MSL)\

ct8 (Hato) 1.35 0.75 2.2 2
chc (Hato) 1.26 0.75 2.11 2
mwc (Hato) 1.36 0.75 2.21 1.95
ct8 (Mangkhut) 2.03 ­0.05 1.97 2.13
chc (Mangkhut) 1.81 ­0.05 1.76 2.23
mwc (Mangkhut) 1.90 ­0.05 1.85 2.05
ct8 (Hagupit) 2.1 0 2.1 2
chc (Hagupit) 2.016 0 2.016 2
mwc (Hagupit) 2.0 0 2.0 No measurement

Table 5.8: NN network validation for three historical TC’s

The results show that if the tidal elevation is added to the NN output, the maximum predicted water
levels errors are below 0.3 m for all considered TC’s. This current method gives good insight in the
maximum water levels that can be expected in case of an approaching TC. However, The NN output
is completely trained on 7 input parameters. Therefore, the correct selection of the track data is of the
upmost importance. For applicability, the user should always select the track data point that comes
closest to Hong Kong. If other track data points are used, the accuracy of the NN will go down consid­
erably. Since in the NN, the model is purely mathematical, a slight change in the input parameters, can
have significant consequences for the NN output. The accuracy of the maximum water level prediction
is therefore for a large part dependent on the quality of the track data.
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Discussion

This chapter focuses on discussing the methodology followed and results obtained during this Thesis
research. The discussion is divided into two main parts: the hydrodynamic model and neural network.

6.1. Hydrodynamic storm surge model
The storm surge model discussed in chapter 3 has been developed for the purpose of generating
data, that can be used in the neural network. Since the results of the storm surge model are used
as input in the second model, it is important that the results of the storm surge model are sufficiently
accurate to be used in the neural network. An inaccurate storm surge model will automatically lead to
an inaccurate neural network. To make sure that the results of the storm surge model are accurate, an
emphasis towards understanding the physical processes and a detailed validation process has been
made during development. The performance of the storm surge model itself is dependent on a large
number of aspects which are discussed in the next part.

6.1.1. Data availability and quality
The data on that is used by the model like bathymetry, topography, storm track data, tidal data etc. is
very important for the overall performance of themodel. TheGEBCOdatabase provides the information
of the bathymetry in the South Chinese sea, with a resolution of 500m. For open oceans, this resolution
is considered sufficient. However, for the coastal region in the PRD, a higher resolution is preferred
to account for all the local bathymetry changes. Therefore, instead of using GEBCO for the PRD
region, a local bathymetry data set is used that provides more detailed (higher resolution) information
on the bathymetry. The bathymetry directly relates to the water depth, which has a influence on the
physical processes. Although to a lesser extent, other aspects like river discharge and precipitation
runoff also influence the water levels. Collecting the required data to model these processes proved to
be impossible. Therefore, the decision was made to exclude river discharge and precipitation from the
model. Including these physical processes into the hydrodynamic model might in increase the model’s
accuracy.

For validation purposes it is necessary to collect actual observed water level and wave data from
measurement stations. In the PRD there are many tidal gauges and wave buoys operated by different
local authorities. For this research it was possible to collect the water level data for three stations near
Hong Kong and two wave stations. The water level data is the main source for validation. The quality of
the water level data was sufficient but sometimes a measurement buoys malfunctioned during a storm
preventing a complete validation of the model. The wave data obtained from the buoys displayed
no data during the period of all three validation storms (Hato, Mangkhut and Hagupit). Since critical
data on the waves was missing from the data set, the storm surge model with waves could not be
validated. Based on the data aspects discussed, it becomes clear that data availability and quality of
very important for physical modelling. Missing data sources lead to the need for making assumptions
and simplifications to the model or prevent a complete validation process.

65
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6.1.2. Physical parameters
There of many physical parameters that must be calibrated in order to simulate the processes accu­
rately. These parameters are identified in the sensitivity analysis (Appendix B). The main purpose of
this analysis is to investigate the influence these parameters have on the result of the model. The
parameters investigated in this appendix are: tidal constituents, wind drag coefficients and TC param­
eters.

• Tidal constituents. The tidal constituents are the forcing on the boundary of the model. In
order the reproduce the actual tidal changes, these constituents must be chosen correctly. In
the analysis, the output of three tidal simulations from different tidal models is compared to the
observed tidal changes at the measurement buoys. The considered tidal models produce results
that are in phase with the observed tidal signal. In terms of the tidal amplitude, the models show
an increase in the error around neap and spring tide but overall the amplitude are in line with the
observe values. The average error for a tidal simulation of 30 days is 12 cm, which is considered
sufficient for storm surge modelling. It is not completely clear why the error increase during neap
and spring tide. A strong possibility is the fact that some of the tidal constituents used may not
be entirely correct. An harmonic analysis can be conducted to find a possible error in the tidal
constituents and improve the model results.

• Wind drag coefficients. A very important physical parameter that can influence the results sig­
nificantly is the wind drag coefficient. This drag coefficient is used in the equation to calculate the
stress (wind shear stress) exerted by the wind on water. The value of this coefficient changes
for changing wind speeds. Over the years, multiple relationships have been developed to deter­
mine the correct value for the coefficient. Some of the drag coefficient relations are linear while
other follow a hyperbolic path. Additionally Delft3D only allows the user to enter drag coefficients
for three different wind speeds. The values in between are linearly interpolated. The sensitivity
analysis shows that the best model results are obtained for the wind drag relationship specially
developed for the South Chinese sea by (Peng and Li, 2015).

• Tropical cyclone parameters. The TC track parameters form the input of the spiderweb grid
calculation and consequently have a direct influence on the wind forcing within the model. There
are multiple TC agencies that register the track data of historical TC’s. These agencies all have
slightly different methods tomeasure/determine these parameters. During the sensitivity analysis,
track data from the different agencies are tested. IBTrACS lists the data from all the different
TC agencies. The ones that are considered in the sensitivity analysis in appendix B.3 are the
JWTC (USA), Tokyo agency (Japan) and CMA (China). Some data like the latitude,longitude,
eye pressure en max wind speed can be determined from satellite imagery. However data on
the RMW is not registered by all agencies and must therefore be calculated in some cases.
The sensitivity analysis showed that the different methods for determining the RMW produce
significant difference in the water levels for the model output. The influence of the TC parameters
illustrates the need to investigate the influence these parameters have on the output.

6.1.3. Model validation
The model validation process consists of simulating three historical TC’s and comparing the results
with the observed data. Based on the validation it can be concluded that the model is capable of
predicting the water levels correctly. Since the focus lies on the maximum water levels, the errors
are also calculated for the maximum water level that occur during a storm. For the three considered
storms, the error for the maximum water level is below 20 cm for the three locations. This translates to
a percentage error below 10% and is considered sufficient for storm surge purposes. It must be noted
that the three tidal measurement stations are all located in Hong Kong. For Macau, which is located
approximately 70 km from Hong Kong no tidal data is available. Therefore, the results of the simulation
for Macau cannot be completely validated, but will be used.

The last step in the validation process is a simulation of a storm surge with waves. Since the focus
is not on coastal flooding, there is no interest in the impact of the on coastal areas. However, waves
can cause an increase in water level in shallow water due to wave setup. Since a large part of the PRD
water depth is considered deep, it is expected that wave setup will have a minimal effect on the water
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level in the areas of interest. The simulation shows indeed, that waves have a minimal contribution
to the water levels. It must be noted, that wave­setup plays a much more significant role in shallow
water areas close to the coast. But since we are not looking at overland flooding, this is neglected.
A additional reason to neglect waves in the model is the fact that wave data collected from the two
buoys, all have data removed during the occurrence of Hato, Mangkhut and Hagupit. It is therefore not
possible to validate the wave parameters like significant wave height, length and period.

6.1.4. Limitations hydrodynamic model
Like any other representation of a physical process in a numerical model, it is not possible to reproduce
the real world with 100 percent accuracy. There are always some trade­offs and neglections to be made
in an effort to reproduce the real world accurately.

• Model does not include precipitation and run­off from land.

• Model does not consider discharges from the rivers connection to the PRD

• Delft3D only allows linear relationships for the wind drag coefficients. Recent studies have sug­
gested the use of hyperbolic relationship for the drag coefficients. This hyperbolic behaviour
cannot be reproduced in Delft3D.

• No complete water level validation for Macau due to missing water level observations for tidal
buoys

• No wave validation due to missing obseverd data.

• Spring and neap tide not captures completely correct in model. Opportunity to improve tidal signal
by means of a tidal analysis of harmonic constituents

6.2. Neural Network

6.2.1. Data selection
The performance of the network is for a large part determined by the training data. As can be expected
for large data set, errors were found in some of the 1000 synthetic simulations. Some of the simulations
were forced to stop before the stop time. Since it is very time consuming the manually check all these
simulations for errors, a threshold criteria was set­up to filter the simulations for which the maximum
water level results hardly changes compared to the simulation. All simulations that produces maximum
water levels below 20 cm compared to the initial level were deleted from the sample set. This ensures
that the samples that did not experience any significant surge heights are not included in the network.
A a consequence only 892 samples remain in the training data set. Of these removed samples not all
simulations had errors, some simulation simply induces a low surge height. To investigate the effect of
the sample change, a network with all samples and 892 samples are trained exactly the same and the
result compared. Analysis shows indeed, that although the number of samples are reduced in the 892
sample network, the performance was significantly better than the original network.

At first instance the development of the NN focused on developing a network capable of producing
a map with maximum predicted water levels for TC track parameters. For this version 38189 output
neurons are needed to represent the water level in each pixel. The development of a network of such
complexity comes with problems. The size of the output layer, means there are many connections
between the nodes in the hidden layer. This increases the memory demand during significantly. As
a consequence some of the most used training algorithms cannot be used. Furthermore, due to the
already complex network, the size of the hidden layer is also limited. In Matlab, networks up to 100
hidden neurons can be trained before running in to memory problems. However, a network with many
output neurons generally also requires many hidden neurons to accurately solve the non­linear prob­
lem. Due to the size of the output layer it is not possible to test preferable configuration which is limiting
for networks accuracy.
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6.2.2. Network Validation
In chapter 2.7, three different neural network architectures have been developed. The purpose of
developing different networks, is to gain insight in the training behaviour en determine to best suited
configuration for maximum water level predictions caused by storm surges. First, a ’complex’ network
was developed capable of predicting the water levels for the entire domain. The second network only
considers the water level at the coastline, reducing the complexity of the network significantly. The
final network developed is a very simple NN, only capable of prediction the maximum water levels at
10 locations surrounding Hong Kong and Macau. The three networks, are analysed in detail.

NN ­ water level map output
Although there are some significant limitations to this network configuration, the network is capable
of producing predicted water level maps. If the output maps are compared to the output map of the
synthetic simulation, the limitations come to light. Visual inspection of the maps shows that for sample
case the network can predict the water levels with a wide variety of error sizes. For some samples
the predicted values are relatively good. While for other samples the errors a large and up to 1 meter.
Especially the predictions for Macau are very poor.

The most likely reason for the inaccurate performance can be linked back the to number of nodes
in the hidden layer. The number of hidden nodes are limited and as a consequence, the network is not
capable of accurately predicting the water levels. It is shown, that by reducing the models complexity
significant improvements can be made in the predictions for the same number of training samples.
Additionally, it is likely that the performance of the network will significantly increase if the number of
hidden nodes are increased. However, this requires way more computing power than a normal PC
can deliver. In the future it might be worth it to try to improve the network for example by running the
training process in a computing cluster. Another possibility for the relative poor performance of the

map NN is the way the in and output data is selected. The network does not use time series. As
discussed in chapter 5.2, this means that for the input data only the track parameters of the time step
with shortest distance to HK is considered. The output data selected represent the maximum water
levels that occurred during the entire simulation. The fact that we are not working with time series
means that the maximum water levels selected did not all occur at the same time. For example for a
TC passing from East to West, Hong Kong would have experienced the TC before it arrives at Macau.
Consequently the maximum water levels in Hong Kong would have occurred earlier. The track data
selected corresponds more to the situation in Hong Kong. This often means that the selected track
parameters do no completely comply with the model for Macau. The maximum water levels at Macau
occur when the TC eye is closer to Macau.

NN­ water levels coastline output
This network has a significant better performance than the previous network. By reducing the number
of output neurons, it is possible to increase the number of nodes in the hidden layer. Although it was
expected that the networks performance would increase with an increase in the number of hidden
nodes, this was not completely true. The analysis in section 5.5 shows that the best performance
is obtained for a 200 Nodes single layer network. Increasing the number of hidden nodes to over
200, leads to a reduction in the performance. Apparently, if more than 200 nodes in the hidden layer
are used for this specific problem, the number of connections between the nodes in different layers
becomes too large and ultimately will decrease the overall model performance. Although the networks
complexity has been reduced, the LM and BR traing algorithm still require too muchmemory to be used.
Therefore, this network is also trained with the SCG algorithm. When comparing the network output
with the training data, there is no real trend visible in whether the network over or under estimates the
maximum water levels. Generally speaking, the ratio of under and over estimations is almost equal for
the 200 nodes network.

The output of the network is also checked for three historical TC’s. We know for sure that the
network input parameters for these storms are not used in the training process. The performance of
the network for historical storms will show whether the network is capable of making predictions for
input parameters that the network has never seen before. The results in table 5.5 shows that the 200
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nodes network can accurately predict the maximum water levels for TC Mangkhut and Hagupit for
most locations. On the other hand the predictions for TC Hato are of less quality. For this storm, over
estimations up to 40 cm are observed.

NN ­ water level locations output
In an effort to improve the network even further, a change towards a more traditional network is made.
Instead of generating a map or coastline network, this new configuration only has the maximum water
level output for 10 locations of interest. The reduction in the complexity of the network allows it to be
trained with more types of algorithms. Since there are less output neurons, the number of connections
between the nodes is reduced enormously. This implies that the non linear function the network tries
to create can also be less complex.

The results of the trained network shows an maximum error of 30 cm between the output data and
actual maximum water levels. Again the largest errors are obtained for the locations in Macau, but they
have improved considerably since the previous configuration. By testing multiple samples it becomes
clear that generally speaking the errors are smaller for less intense TC’s. For very intense TC’s the
network tends to underestimate the surge heights. When comparing the performance indicators of the
coastline network with the 10 locations network, it becomes clear that a lower MSE is obtained for the
coastline network. The performance indicators only give information on the overall performance of the
network by calculating the mean error over all the output nodes. This does not give any information
about the variability on the performance over the different samples. The coastline may have a smaller
MSE than the 10 locations network, but this does not directly means that it can make more accurate
predictions. For the coastline network, the MSE is calculated over 2795 nodes while for the locations
network the error is only calculated over the 10 nodes. Due to the large number of nodes, there can
be nodes with large errors, but due to averaging of the error over all the nodes, this will have a limited
effect on the MSE. For the 10 locations network however, one or two nodes with large errors will already
have a significant influence on the MSE. The validation process shows that the coastline network in
general has larger errors than the 10 locations network.

Based on the validation process, it can be concluded that the 10 locations network is able to predict
the maximum water levels with accuracy for most samples. A downside of this network, is the fact
that the maximum water levels are only predicted for 10 locations, thus it gives a limited amount of
information. The coastline network, is capable of making sufficient predictions in most cases. However,
for some combinations of input parameters significant errors are observed, which makes is less usable
for for real world predictions. Finally the map network, provides the most information on the water
levels. However, this network is also the most inaccurate and is not suitable for predictions in it’s
current state. Due to time constraints it was not possible to further increase the performance of the
considered networks.

6.2.3. Neural Network limitations
• Network configuration limited by computational memory. As stated multiple times, the maximum
complexity of the network is dependent on the computational capacity of the PC.

• Black box model. Hard to identify the reasons the network behaves like it does. Purely mathe­
matical model, hard to distinguish the effect of configuration changes.

• Results not dependent on physical processes. The calculation of the network is purely mathemat­
ical en neglects any physical processes completely. The performance of the network is therefore
completely dependent on the training data and training process. It is possible that the network
produces results that are physically impossible. To prevent this from happening, extensive vali­
dation is required for both the training data of the network en the output performance.

• Large amounts of data needed for training the network. The performance of the network is com­
pletely dependent on the training data. Quantity and quality of the data used is very important.
More samples used for training leads to more variety in the training data set. The network is
therefore, better capable to train for a wide variety of input parameters leading the more accurate
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results. If a limited number of samples are used during training the network will only perform well
on the input parameters that have been used for training.

• No times series data are for training neural network. This means that the maximum water level
used in the training output data, don’t all occur at the same in real life. This can have an effect
on the accuracy of the predictions and prevents the network to be able to predict arrival times.
Introduction of time series in the NN, will also lead to the possibility of predictions of the arrival
time of the maximum surge. it must be noted that introducing time series will also have severe
consequences for the required memory. It is likely, that normal PC’s are unable to handle the
training of a map or coastline network in combination with time series.
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Conclusion and Recommendations

This chapter summarises the conclusion of this study by relating them back to the research questions
as displayed in chapter 1.

Main research question:

• Is it possible to develop a neural network using synthetic storm data that is capable of accurately
prediction the maximum water levels in case of an approaching tropical cyclone?

Sub research questions:

• What is the best way to set­up and calibrate a hydrodynamic model accurately for a large number
of synthetic storm simulations?

• How should a synthetic storm database be implemented to efficiently process large amounts of
data for use in synthetic storm surge simulations and neural networks?

• What are the advantages and or disadvantages of using neural networks to predict maximum
storm surge heights, compared to traditional hydrodynamic modelling?

7.1. Key findings

7.1.1. Set­up and calibration hydrodynamic storm surge model
During this research, the hydrodynamic model forms the basis for the production of reliable data in
the neural network. Since the NN uses the results from the hydrodynamic model it is of the upmost
importance to calibrate and validate the surge model in a way it represents the real world situation as
close as possible. The first aspect to be considered is the size of the computational grid. The grid cell
resolution is a trade­off between the level of detail and the computational demand. For the open ocean
a grid cell resolution of 2 km is used while at the location of interest the resolution increase to 220 m.
The Bathymetry and topography are combined from different sources with various resolution to obtain
one bathymetry and topography map.

The calibrations of the model is conducted based on many different simulations with slightly different
settings. An effort towards understanding the sensitivity of important parameters have been made. The
analysis shows that it is important to calibrate these parameters for their specific purpose. Especially
the wind drag coefficients and RMW parameter has a significant influence on the storm surge height
and must be used with care. There are many methods in the literature to derive these values but an
sensitivity analysis is always preferred to ensure sufficient knowledge in the behaviour of the parameter
of interest.
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For a correct validation of the different physical processes in the model one should divide the model
into different steps: tidal validation, storm surge validation and storm surge with waves. For the tidal val­
idation, the observed water level are compared to the tidal elevations in the model. A tidal simulation of
30 days was conducted to ensure that the model is capable of capturing the daily and monthly changes
in the tidal elevation. To validate the performance of the model for different storm situations, three
historical storms are tested in the surge model: Hato (2017), Mangkhut (2018) and Hagupit (2008).
For these historical storms, observed water level data is available ensuring that a comparison between
the model and real world can be made. Furthermore, by validating the model for multiple storms, one
can ensure that the model performs well for different storm situations. Overall, the validation process
showed that the model is capable of predicting the surge heights with good accuracy in case of a TC
passing the PRD. During the final validation step the storm surge model is coupled with a SWAN wave
model and the effect of wave setup was investigated. The simulations show that waves are responsible
for a negligible increase in the water levels for the locations of interest. Depending on the purpose of
the model, waves can be included. For the storm surge model it can be neglected due to the very low
influence on the water levels.

When considering the entire validation process, one can conclude that the storm surge model is
capable of predicting surge height with a maximum error of 20 cm for the considered cases. In sum­
mary, for the efficient setup of a storm surge model used for many simulations, sufficient data must
be available. Additionally, it is important to gain knowledge on the effect certain parameters have on
results of the model. Validation should be conducted by testing the physical processes separately and
combined in order to distinguish between the physical processes. Furthermore, validation for more
cases, ensures that the model is capable of producing usable results for different storm situations.

7.1.2. Implementation of synthetic storm data
When referring back to the handling of the synthetic storm database, efficient handling data handling
and automatization of processes becomes important. Due to the size of data, it would take way too
many time to manually prepare all the synthetic simulations. During this research multiple Matlab script
have been produced with the goal of automatizing as much as possible processes. Although, these
scripts are set­up for this specific case, they can easily be adapted for future research purposes on
other subject and locations. The most important tools developed during this research for synthetic data
handling and processing are listed below.

• TC selection tool. This tool can be applied to the synthetic catalogue for all storm basins. With
this script, the track data of storms can be selected based on criteria imposed by the user. This
script provides the possibility to find and select storm of interest from a large database and elim­
inates the need to select storms manually. This script is especially use full in the case that many
synthetic storms must be simulated.

• Synthetic storm Delft3d file creator tool. This tool is the main tool that creates all the required
Delft3D files for the synthetic simulations automatically. It uses the track data of the storms se­
lected in previous tool to create the spiderweb, mdf, ddb and shell files which need different
configurations for each unique simulation. This tool enables researchers to quickly prepare mul­
tiple simulations in Delft3D. Although the script is currently set­up for this specific research, it can
be easily adapted for different Delft3D model setups and for locations all around the world.

• Delft3D output processing tool. This tool is developed to increase the efficiency of processing
Delft3D output files. Rather than using Quickplot and manually export the results for each loca­
tions, the Matlab script used Open Earth Tools functions to load and store the results up to 100
simulation at the same time.

Another aspect that is solved in order to work with synthetic storm data in Delft3D is the fact that
the synthetic storms are not assigned a specific date. Delft3D requires a start date and stop date to
simulate to correct tidal elevation at that time. To overcome this problem, it is decided to remove tidal
forcing in the synthetic storm surge model. Now, the date of occurrence of the storm does not matter
anymore. As a consequence for accurate water level predictions, the tidal elevation should be added
manually to represent the actual water level. The Matlab tools that have been developed of the course
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of this thesis research can be easily used and adapted for other locations and purposes. Efficient data
handling is guaranteed with these tools.

7.1.3. Hydrodynamic model versus neural network
Unlike the hydrodynamic model the neural network is purely based on mathematics and does not in­
clude any physical processes. The behaviour of the output cells is independent, meaning that the value
of a output cell is not dependent on the neighbouring cell. This is a disadvantage for the NN capable
of producing the water level map. The results show that there can be significant water level difference
between neighbouring grid cells. This would have been impossible in storm surge model, where the
physical processes are included. This also illustrated the need for high quality training data. If the
simulation data has large errors, these errors will automatically also be included in the NN.

An advantage of the ease of used and prediction speed of the network. The NN trained for predicting
the maximum water levels for Hong Kong and Macau can be used with minimal knowledge and gives
the prediction results immediately. A hydrodynamic storm surge model must be set­up, and simulated
to obtain the results. Even if the surge model is already setup, in case of an approaching TC, the
parametric wind field still must be calculated and the storm simulated. Depending on the state of the
model, this can take from a few hours up to days or weeks if no surge model is set­up yet. In the case
of an approaching TC, the NN is capable of predicting the maximum water level based on only 7 track
parameters, which published by the TC agencies. The results of NN will give a very fast indication of
the predicted surge height at the locations considered.

A possible disadvantage for the use of NN in storm surge predictions is the fact that many data
samples are required for training. Actual observed data is often only available for shorter periods of time
and for a few specific locations. So when using historical storms, it can be hard to find sufficient data.
This problem is completely overcome by introducing the synthetic storms. With synthetic simulation the
training database can be expanded to large number of samples. Furthermore, instead of water level
data of a few locations (tidal measurement stations), the synthetic simulation provide the results for the
entire computational domain, giving more possibilities for predictions.

7.1.4. Overall Neural Network storm surge prediction performance
During this thesis research three different neural networks were developed, maximum water level pre­
diction is a map version, coastline version and 10 locations version. These network have been tested
and calibrated extensively in an effort to create an accurate prediction network.

At first, an effort was made to develop an accurate network with a map output. During the develop­
ment of this network some limiting factors were discovered. Firstly, the large number of output neurons
needed to produce a water level increase the complexity of the network significantly. As discussed pre­
viously, complex networks are limited by the training algorithm, number of hidden neurons and memory
capacity. With the data from the 1000 synthetic simulations it was impossible to train the network with
reasonable accuracy. The variation in performance for different storms is too high. Although the visual
result of maximum water levels by means of a map output can be very insight full, significant improve­
ments must be made to the current network, to be used in forecasting. However, the current network
requires improvements for reliable estimates.

In an effort to create a network more capable of predicting the water levels, the map network was
simplified. At first, a network that only predicts the water level at the coastline was developed. Although
the performance indicators show a small mean error for the training, validation and test data sets, the
accuracy varies with the samples. For some samples, the network predictions are very accurate while
for other samples the errors can be significant. By reducing the number of water levels cells by taking
the coastline in a 1 km resolution, predictions still can be made without losing valuable water level
information.

The final network that is developed, is the NN capable of makingmaximumwater level predictions for
10 locations. This network is capable of making the most accurate predictions. However, this network
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still shows a variety in the errors for different samples. The validation of the network shows that the
water levels can be predicted with a maximum error of 30 cm. Although the network is trained with
synthetic data, it can be also be used for historical storms. In order to make ’real world’ predictions with
the developed network, one needs the track parameters of the TCwhen it is close to Hong Kong and the
tidal elevation at the moment of the TC passing. Executing the network function for these parameters
will result in reasonable accurate results for the maximum water levels if the tidal elevation is added
to the result (see section 5.6.1). Furthermore, the network gives insight on where the maximum water
levels will occur. Due to missing validation data for Macau and simplification made for the data used in
the network training, the errors for Macau are larger than for Hong Kong. This is likely due to the spatial
separation between the two cities. For accurate water level predictions in Macau, it would be preferred
to develop a separate network that selects the input parameters based on the track data being close
to Macau.

Although three different networks have been developed, there is still room for improvements for
these networks. The main problem is the variety in the quality of the predictions. Especially the coast­
line and locations network are capable of making accurate predictions for many different input data
combinations. However, as we have seen some input combinations still lead to significant errors. Due
to time constraints it was not possible to further improve these networks. However, there are still many
options and aspects that can be considered in an effort to increase the accuracy. These aspects could
be further investigated in future studies. Due to the current variability in the performance of the net­
works, the developed networks are not yet ready to be used for operational forecasting. The obtained
results however show that artificial neural networks provide a promising technique for the prediction of
the maximum water levels. The recent focus towards data science will only increase the use of these
data driven models further in the future.

7.2. Recommendations

• Change hydrodynamic model set­up to include overland flooding. This thesis research has
neglected overland flooding and only focused on predicted water level induces to storm surges.
By adapting the Delft3D model to include over land flooding, one can gain insight in the most
vulnerable locations in Hong Kong and Macau in case of an approaching TC. Additionally, the
flood defences can be represented in the model. This allows for identification of possible weak
spots in the flood defences and gives valuable insights for local authorities and policy makers for
disaster and evacuation management.

• Neural network development with time­series instead of one time­step. By taking the time
series of the track parameters and water levels, an NN can be trained that is also capable of
predicting the arrival time of the maximum surge heights instead of only the level. Introducing
time series can also lead to more accurate results, since the predictions are no longer based on
the track parameters of one time step.

• Additional focus on improving the current Neural Network Architecture. Although the cur­
rent networks are currently not suited to be used for real life forecasting due to the variety in the
prediction accuracy. There is still room for improvement for the current networks. An in depth
analysis of the effects of different architectures (number of nodes and layers etc.) should be
performed, to find the best performing setup. Also it would be interesting to analyse the relation­
ship between the number of hidden nodes and output nodes on the performance of the network.
Additionally, more types of neural networks should be investigated. During this study only feed
forward networks have been developed. There are more types of ANN available like recurrent
ANN’s and feedback networks.

• Increase number of synthetic simulations The synthetic TC catalogue, contains more than
200000 storms for the Western Pacific Basin only. During this thesis only a very small part of
these storms have been simulated. The implementation of the synthetic storm data and the
Matlab tools developed provides the opportunity to simulate a large number of synthetic storms
efficiently and with a high degree of automatization. By increasing the number of simulations,
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more data can be obtained and also the effect of storms that pass the PRD at some distance can
be analysed.

• Influence of sea level rise. All over the world sea levels are rising. What are the implications for
the PRD on the frequency of flooding, mortality rate etc. if the sea level keep rising like predicted.
By linking storm surge research to possible sea level rise scenarios, one can gain additional
insight in the possible week spots in the coastal flood defence system,

• Storm surge simulation with waves included. By including wave in the simulations, one can
gain additional knowledge on the wave impact on the coast and flood defences during a storm.
Wave interactions will become more important if overland flooding is also considered.
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A
Literature Background and Theory

A.1. Wind setup
Moving air exerts a shear stress (𝜏) on the water surface that can be described by:

𝜏𝑤𝑖𝑛𝑑 = 𝐶𝑑𝜌𝑎𝑊2 (A.1)

Where 𝐶𝑑 is the wind drag coefficient, 𝜌𝑎 the density of air and𝑊 the wind speed at the water surface.
Due to the shear stress the water surface starts moving in the same direction as the wind. When the
wind is directed towards the coast, a current towards the coast is generated in the upper layers due
to the wind. The coast forms a barrier for the landwards current. To compensate for the landward
currents, an opposite directed water mass transport occurs in the lower layers. As a consequence
setup or set­down of water level occurs at the coast to balance the wind induced shear stresses. The
wind induces water level setup can be described by the following equation (Bosboom and Stive, 2015):

𝜌𝑔ℎ𝑑𝜂𝑑𝑥 = 𝜏𝑤𝑖𝑛𝑑,𝑥 (A.2)

𝜂(𝑥) = ∫
𝐿

0

𝜏𝑤𝑖𝑛𝑑
𝜌𝑔ℎ 𝑑𝑥 (A.3)

From the equation it can be seen that the water level setup is inversely proportional to the water
depth. This implies that for shallow coastal zones, the water level can pile up to high heights (storm
surge). Walton and Dean (2009) investigated the effect of wind setup caused by storm surges on
varying beach profiles. Te study showed that wind setup is typically the main driver for the increase of
the still water level. Furthermore, it is shown that mild slopes can lead to very high water levels at the
land/water interface.

A.2. Linear wave theory
The linear wave theory is often applied in coastal and oceanic engineering to describe the charac­
teristics of wind waves. As discussed in the previous section, it is obtained from the Navier­ Stokes
and continuity equations. In this section, the equations of the linear wave theory are briefly discussed
without the derivation. The picture below display a single wave with relevant terms of the linear wave
theory.

83



84 A. Literature Background and Theory

Figure A.1: Schematization of a single wave with relevant parameters displayed

The displacement of the water surface can be described by means of the angular frequency 𝜔 and
the wave number (k).

𝜂(𝑥, 𝑡) = 𝑎 sin(𝜔𝑡 − 𝑘𝑥 + 𝛼) (A.4)

𝜔 = 2𝜋
𝑇 (A.5)

𝑘 = 2𝜋
𝐿 (A.6)

The displacement of the wave is dependent on the water depth. In the linear wave theory waves
can either be in shallow, deep or transitional water. In shallow water the wave motion extends all the
way down to the bed. While for deep water the wave motion does not reach the bed. The criteria for
deep or shallow water is besides the water depth also dependent on the wave length. In other words
if the water depth is larger than about half the wave length the water is considered deep.

• Shallow water ℎ/𝐿 < 1/20

• Deep water: ℎ/𝐿 > 0.5

• Transitional water: 1/20 < ℎ/𝐿 < 0.5

The dispersion relationship is often used in the linear wave theory. It relates the wave number and
length of a wave to its frequency and can be used to determine the phase and group velocity

𝜔2 = (2𝜋𝑇 )
2 = 𝑔𝑘 ∗ 𝑡𝑎𝑛ℎ(𝑘ℎ) (A.7)

• For deep water (ℎ/𝐿 > 0.5), the dispersion relation reduces to: 𝜔2 = 𝑔𝑘. The wave length
becomes: 𝐿 = 𝑔𝑇2

2𝜋

• For shallow water, the wave length becomes; 𝐿 = 𝑇 ∗ √𝑔ℎ

The energy plays an important part in the description of waves in a wave field. The total energy
can be divided in potential and kinetic energy. The displacement of the water surface is related to the
potential energy and the orbital movement to the kinetic energy. The total energy per unit of surface
area can be calculated with the following equation:

𝐸 = 1
8𝜌𝑔𝐻

2𝐿 (A.8)
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A.3. Wave setup
During a TC, waves generated by storm winds are propagating towards the coast. These waves not
only carry energy towards the coast but also momentum. When the waves reach coastal areas they
can induce wave setup. Wave setup is defined as the increase in water level above the stillwater level
due to momentum transfer by waves that are in the surf zone. The radiation stress is defined as the
depth integrated and wave averages flow of momentum due to waves. Spatial changes in the radiation
stress causes wave forces to act on the fluid impacting the water motion and levels. The radiation stress
includes the transfer of momentum and the wave induced pressure force. The cross shore radiation
stress of x­momentum in the x­direction is defined as (Dean et al., 2005):

𝑆𝑥𝑥 = ∫
𝜂

−ℎ
(𝑝 + 𝜌𝑢2) 𝑑𝑧 (A.9)

By using the linear wave theory, one can express the radiation stress in terms of wave energy. If the
wave propagating expression is perpendicular to the coast (𝜃 = 0) the equation reduces to equation
A.11. The magnitude of the radiation stress is dependent on the wave height, length and water depth.

𝑆𝑥𝑥 = (𝑛 −
1
2 + 𝑛𝑐𝑜𝑠

2𝜃)𝐸 (A.10)

𝑆𝑥𝑥 = (2𝑛 −
1
2)𝐸 (A.11)

𝑑𝜂̄
𝑑𝑥 = −

1
𝜌𝑔(𝜂̄ + ℎ)

𝑑𝑆𝑥𝑥
𝑑𝑥 (A.12)

The surf zone is defined as the region in front of the coast where wave breaking occurs. In the surf
zone the value of 𝑆𝑥𝑥 decreases, which results in a negative gradient.

𝐹𝑥 = −
𝑑𝑆𝑥𝑥
𝑑𝑥 = 𝜌𝑔ℎ𝑑𝜂̄𝑑𝑥 = 𝜌𝑔(ℎ0 + 𝜂̄)

𝑑𝜂̄
𝑑𝑥 (A.13)

Δ𝜂̄ = −38𝛾
2Δℎ (A.14)

If the dissipation of energy due to wave breaking is included, one can solve equation A.13 and
estimate the maximum water level increase due to wave setup. The discussed theory on wave setup
shows that this effect only occurs in shallow waters in the surf zone close to shore. However, wave
setup can also occur when there is a flooded barrier island or reef present in front of the coast.

Figure A.2: Wave setup in front of the coast. Adapted from Dean et al. (2005)

Today, different models exist that can be used for the modelling of wind wave to describe the sea
state. For example, the SWANwave model developed by Delft University of Technology, can computed
random, short crested wind generated waves in coastal regions and inland waters.
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A.4. Conceptual description Delft3D
With the Delft3D­FLOW software either 2D (depth averaged) or 3D (unsteady flow and transport) sim­
ulations can be conducted. A wide range of natural phenomena like tidal and astronomical forcing can
be simulated. The 2D option uses the depth averaged equations for simulation where the variation
in vertical direction is of less importance. This approach is often used for tidal waves, surges and
tsunamis. The 3D approach is of interest for transport problems where there is significant variations
in the vertical direction and are more used for specific flow problems like salt intrusion, waste water,
sediment transport and river water discharges among others. Both the 2 and 3D model uses a version
of the shallow water equations derived from the three dimensional Navier­Stokes equations Deltares
(2018). Instead of flat xyz coordinates, Delft3D uses orthogonal curvilinear coordinates in which the
coordinate line may be curved. The two types of coordinates systems that can be used are Cartesian
or spherical. The vertical grid used is called a 𝜎, with two planes that are not strictly horizontal but
follow the bathymetry and free surface.

Figure A.3: (a) Definition of water level, depth and total depth (b) 𝜎 grid. Adapted from Deltares (2018)

The shallow water equations are given by the momentum equations in horizontal direction (equa­
tions A.15 and A.16) and the continuity equation (equation A.17). The equations are displayed in the
form of the curvinlinear grid coordinates (𝜉 and 𝜂).
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𝜕𝜁
𝜕𝑡 +

1
√𝐺𝜉𝜉√𝐺𝜂𝜂

𝜕((𝑑 + 𝜁)𝑢√𝐺𝜂𝜂)
𝜕𝜉 + 1

√𝐺𝜉𝜉√𝐺𝜂𝜂
+𝜕𝜔𝜕𝜎 = (𝑑 + 𝜁) (𝑞𝑖𝑛 − 𝑞out ) (A.17)

Where 𝑢 and 𝑣 are the depth average flow velocities in horizontal direction, 𝑤 the velocity in verti­
cal direction, 𝑣𝑣 is the vertical viscosity coefficient, 𝑃 is pressure gradient, 𝐹 are horizontal Reynolds
stresses and𝑀 represent contributions due to external sources. One of the assumptions of the shallow
water equations is the hydro­static pressures assumption, the vertical momentum equation is reduced
to a hydro­static pressure distribution.

1
𝜌0√𝐺𝜉𝜉

𝑃𝜉 =
𝑔

√𝐺𝜉𝜉
𝜕𝜁
𝜕𝜉 +

1
𝜌0√𝐺𝜉𝜉

𝜕𝑃𝑎𝑡𝑚
𝜕𝜉 (A.18)
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𝐹𝜉 =
1

√𝐺𝜉𝜉
𝜕𝜏𝜉𝜉
𝜕𝜉 + 1

√𝐺𝜂𝜂
𝜕𝜏𝜉𝜂
𝜕𝜂 (A.19)

𝑀𝜉 = 𝑞𝑖𝑛(𝑈̂ − 𝑢) (A.20)

The equation that describe the flow in Delft3D are a set of partial differential equations. To solve
this mathematical problem, a set of initial and boundary conditions must be imposed. The boundary
conditions are either closed or open. The open boundaries are imposed on the ’water’ boundaries and
are used to restrict the computational area. Boundary conditions can also be imposed in the vertical
direction, like free surface and seabed boundary conditions. For the depth averaged 2D flow the bed
shear stress induced by turbulent flow is given by the quadratic friction law which used the Chézy
coefficient. The Chézy coefficient is widely used coefficient to include friction and be derived from the
Chézy, Manning or White­Colebrook formulations

𝜏𝑏 =
𝜌0𝑔𝑈⃗|𝑈⃗|
𝐶22𝐷

(A.21)

The ’open’ boundaries are imposed on the edges of the domain and provide forcing into the model
for example tidal forcing. Multiple types of open boundary conditions can be used in Delft3D for different
purposes:

• Water level: 𝜁 = 𝐹𝜁(𝑡) + 𝛿𝑎𝑡𝑚
• Velocity: 𝑈 = 𝐹𝑈(𝑡)

• Discharge: 𝑄 = 𝐹𝑄(𝑡)

• Neumann: 𝜕𝜁𝜕𝑛⃗ = 𝑓(𝑡)

• Riemann invariant: 𝑈 ± 𝜁√𝑔
𝑑 = 𝐹𝑅(𝑡)

A.5. Neural Network ­ Training Algorithms
Back Propagation algorithm
Back propagation is the most widely used training algorithm. The algorithm minimises the the error
function. The input samples are passed through the network to the output layer. Then the output is
compared to the target output and the error is calculated. At the beginning of the training process, all
weights are awarded a small numeric value. These weights are optimized iterative using the steepest
gradient principle (gradient descent). The back propagation algorithm consists of two phases: forward
pass and backward pass. During the forward pass, processing of information occurs from the input to
the output layer. In the backward pass, the error obtained in the output layer is sent back to the input
layer and the weights are modified. The weights are adjusted according the following equation.

Δ𝑤𝑖𝑗(𝑛) = −𝜀∗
𝜕𝐸
𝜕𝑤𝑖𝑗

+ 𝛼∗Δ𝑤𝑖𝑗(𝑛 − 1) (A.22)

Where Δ𝑤𝑖𝑗(𝑛) 𝑎𝑛𝑑 Δ𝑤𝑖𝑗(𝑛 − 1) are the weight increments between the nodes during the 𝑛𝑡ℎ and
(𝑛 − 1) pass, also called epoch (Govindaraju, 2000). In ANN an epoch refers to one cycle through
the full training data set. In the above equation 𝜖 and 𝛼 are the learning rate and momentum. The
momentum factor allows for speeding up the training in areas with small errors and prevent oscillation
in the weights. Since back propagation is an iterative procedure, there must be a criterion imposed to
stop the training. The is usually done, by assigning part of training samples as validation samples. The
iterations are stopped when the squared error in the prediction of the validation set is minimum (loss
function minimum). More iterations after reaching this minimum will lead to larger errors and is often
referred to as over training of the network.
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Conjugate Gradient algorithm
This method does not proceed along the error gradient but in a direction orthogonal from the previous
step. In general, solutions are faster obtained than in the gradient method. The method uses equation
A.5 to determine the weights of the neurons.

W(𝑛 + 1) =W(𝑛) + 𝜀P(𝑛) (A.23)

P(𝑛 + 1) = −g(𝑛 + 1) + 𝛽(𝑛)P(𝑛) (A.24)

Where 𝑃(𝑛) is the direction vector and 𝛽(𝑛) a time dependent parameter and 𝑔(𝑛) the gradient
vector. The initial direction is set equal to the negative gradient vector 𝑃(0) = −𝑔(0).

Bayesian Regularisation algorithm
Bayesian regularisation is a mathematical process that converts a non linear regression into a statistical
problem (Livingstone, 2008). The algorithm is considered to be more robust than back propagation and
no over training can occur.

Levenberg­Marquardt algorithm
This algorithm is also known as the damped least squares method and is used to solve non linear
problems. This iterative technique locates the minimum of a function that is expressed as the sum
of squares and is widely used in fitting problems. It has a fast learning rate but has a large memory
capacity. It can therefore, not be used for very complex networks.

A.6. Recurrent ANNs
Recurrent or feedback neural networks, is another kind of network structure in which the outputs from
the neurons are use as feedback to the neuron in the previous layer (Current output is considered as an
input for the next output). These types of NNs are often used for time series prediction and processing
control. In flood forecasting these types of networks are often used for short term predictions.

Figure A.4: Recurrent Neural Network. Adapted from DiPietro and Hager (2019)



B
Sensitivity Analysis

In this chapter a sensitivity analysis for the calibration of the numerical model is treated in detail. The
main goal of the sensitivity analysis is to investigate the influence of certain parameters on the results of
the simulation. First different tidal models are tested that will represent the boundary conditions in the
model. Secondly an analysis is made concerning the best values for the wind drag coefficient. The final
part of the sensitivity analysis is focused on the best determination of the tropical cyclone parameters.
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B.1. Boundary Conditions ­ Astronomical Constituents
In this section, the influence of the use of different boundary models is investigated. For this purpose,
three different tidal models are used in the simulation: the TPXO8, TPXO9 and FES2014 models.
Figure B.1 shows the results of the simulations with the different models used as tide forcing input. At
first sight the tidal models produce results that are in phase with the measured signals from the tidal
buoys CT8 and CHC. Station MWC clearly shows an phase error between the signals.

Figure B.1: Tidal simulation results for different tidal models

A closer inspection shows that simulated tide are as expected of mixed type with a predominantly
semi­diurnal (two high and low waters per day) signal. For the most part, the simulated signals for CT8
and CHC follows themeasured signal pretty close. However, from the figure it can be seen that between
22 and 25 Augustus the difference becomes more significantly. During this period around neap tide, the
simulated signals consistently underestimate the water level. There are multiple possible explanations
for these underestimations during the period around neap tide. During the tidal simulations there is no
wind forcing included in the model, therefore wind and wave setup are not included. Another possible
reason is the absence of river discharges in the model. As discussed previously, there are many
rivers with significant discharge to flow out into the pearl river delta. It also likely that the neap tide
under estimations are due to the used astronomical constituents in the boundary conditions. Since it
is hard to visually determine the best suited tidal model, the root mean square and percent error are
calculated.These statistics give good insight on the average error between the measured signal and
simulated signal.
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CT8 CHC MWC
RMSE [cm] % error RMSE [cm] % error RMSE [cm] % error

TPXO8 11.07 8.89 10.22 8.8 30.48 24.88
TPXO9 11.22 9.01 10.48 8.9 30.49 24.81
FES2014 10.06 8.52 11.04 9.01 33.63 27.95

Table B.1: Errors between real and simulated tide

The results in table B.1 show that the different tide models produce similar results for the considered
stations. The average errors over the simulation period are close to each other. For the three consid­
ered locations, the poorest results are obtained for station MWC for all tidal model used. As can be
seen from the figure, the model consistently shows an phase error and an error in the estimation of the
low waters. In the real world the water level during low water drops lower than the model calculates.
An explanation for the poor performance of the MWC simulation is the location of the station. Tidal
buoy MWC is located in a relative small channel surrounded by multiple islands. These islands are
connected with bridges to each other. When taking a closer look at the bathymetry used in the model,
it can be seen that at the locations of the bridges the bathymetry file uses the elevation of the bridges
instead of the bed level. As a consequence the bridges form a barrier for the flow in the model. By
changing the bathymetry and rerunning the model, the results for station mwc improve significantly as
can been seen in figure B.2. The new RMSE error reduces to 12.1 cm, which is a significant reduction
compared to the simulation with the original bathymetry.

Figure B.2: Tidal simulation station MWC

Since there is no distinct difference between the simulated signals the best working tidal model is
picked based on the RMS and percentage error. Overall, the TPXO8 atlas seems to be performing the
best for the three tidal buoys. The average error of the tidal signal in the model are below 10%, which
is acceptable for storm surge modelling. Since there is no distinct difference between the cons
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B.2. Wind drag coefficients
The dimensionless wind drag coefficients are usually used to determine the stress (equation B.1) ex­
erted by the wind on water (air­sea interface). In fluid dynamics, the wind shear stress is used to
determine the water level setup due to wind (wind setup) among other things. Over the years a lot of
research has been conducted into the values and behaviour of the drag coefficient.

𝜏 = 𝜌𝑎 ∗ 𝐶𝐷 ∗ 𝑈2𝑧 (B.1)
The total wind stress can be described by the taking the sum of three components: viscous, turbulent

and form stresses. For low wind speeds the water surface is flat and turbulence is low. The stress
is dominated by viscous stresses for these low wind speeds. For wind speeds exceeding 5 m/s the
turbulent and stresses become dominant. The turbulent stresses are generated from momentum being
transferred to the water body by turbulent eddies that propagate with the wind field. The form stresses
are caused by interactions between the air surface and waves that are formed by the wind.

𝑈𝑧 =
𝑢∗
𝜅 𝑙𝑛

𝑧
𝑧0 (B.2)

𝐶𝑑 =
𝑢∗
𝑈10

2
= 𝜅2
𝑙𝑛2(10/𝑍0)

(B.3)

Where 𝑢∗ is the friction velocity, 𝜅 the von Kármánn constant, 𝑧0 the roughness length, 𝜈 the kine­
matic viscosity and 𝛼 the Charnock parameter.In general it is agreed that the drag coefficient increases
almost linearly with the wind speed for low to moderate speeds. The behaviour of the drag coefficient
above 30 m/s is less established. Figure B.3 shows the results of different wind drag coefficient re­
searches. It can bee seen that for most researches, the maximum value for the drag coefficient is
obtained for wind speeds between 25 to 35 m/s with values between 0.18 to 0.28 10−3.

Figure B.3: Different Wind Drag Correlation. Adapted from Sterl (2017)
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Some older studies suggested that the drag coefficients increase even further, while most recent
studies show that the value of the drag coefficients reaches a maximum around 30 m/s after which
it decreases again. The wind drag coefficient is dependent on the surface roughness, sea state and
stratification (Sterl, 2017). For increasing wind speeds the sea surface gets rougher and the drag
coefficient increases. Since the drag coefficient is of importance for the Delft3D results and different
studies suggest different drag coefficient values, a sensitivity analysis is conducted to investigate the
effect on the surge height for different drag coefficients. To do so, different storm surge simulation (tides
and wind) are executed in Delft3D. The results of the different simulations are then compared to each
other and the best suited drag relationship is chosen and used for the synthetic TC simulations.

Bi et al. (2015) investigated the observed drag coefficients in high winds in the near offshore of
the South Chinese Sea. For this research data of seven typhoon event from two offshore observation
towers were used. The study suggested that the drag coefficients decreases for increasing speeds
between 5­10 m/s. Then the coefficient increases and reaches a maximum for a wind speed around 18
m/s. For highest wind speeds the coefficient decreases again. An other study for the South Chinese
Sea suggested a parabolic model to determine the drag coefficients for different wind speeds based
on storm surge observations and simulations (Peng and Li, 2015). Equation B.4 is suggested for the
relationship between the drag coefficient and wind speed. 𝛼 and c are constants determined from
different TC’s. This relationship implies that the maximum value for the drag coefficient is reached for
wind speeds of 33 m/s after which the value decreased again.

𝐶𝑑 = −𝛼(𝑉𝑝 − 33)2 + 𝑐 = −0.00215(𝑉𝑝 − 33)2 + 2.797 (B.4)

Holthuijsen et al. (2012) investigated the drag coefficients for wind and waves during tropical cy­
clones. This study included the effects of white capping and cross swell to determine the wind drag
during high winds. The research is based of a large number of observations with drop­sondes to de­
termine the drag coefficients. The research found systematically lower drag coefficients compared to
earlier studies that were also based of drop­sonde measurements. The difference in results was possi­
bly explained by the effect of cross­swell on the drag. The study found evidence that the swell direction
influences the drag coefficient. Furthermore, the reason that the drag coefficient decreases or stays the
same at high wind speeds is also investigated. They conclude that the reason for this might be white
capping and the forming of foam on the surface (Holthuijsen et al., 2012). However, the impact of swell
on drag coefficient is still a topic of investigation today. Finally, Zijlema et al. (2012) proposed a new
method to improve the SWAN wave model results with new drag­wind parameterizations. For wave
modelling often different values are used for the wind drag coefficients and the bottom friction. This
study proposed a new drag parameterization with lower values for drag and bottom friction to improve
the SWAN model results. The study concluded that a lower bottom friction values than the default one
used in SWAN is preferred for both swell and locally generated waves. Furthermore, the proposed
wind drag parameterization (Equation B.5) fit the observations much better than the default coefficients
used in SWAN, especially at high wind speeds.

𝐶𝐷 = (0.55 + 2.97𝑈̃ − 1.49𝑈̃2) ∗ 10−3

𝑈̃ = 𝑈10/𝑈𝑟𝑒𝑓 𝑤𝑖𝑡ℎ 𝑈𝑟𝑒𝑓 = 31.5𝑚/𝑠
(B.5)

Delft3D allows the user to input three values for drag coefficients for different wind speeds. These
values are then linearly interpolated to all wind speeds. As discussed previously, some studies have
suggested the use of parabolic relationships. However, this is not possible with Delft3D. Consequently
all drag coefficients are linearly interpolated between the three input points. Table.. shows the different
values used for the sensitivity analysis. Due to the limitations of Delft3D the drag relationship of Bi et al.
(2015),Peng and Li (2015) and Zijlema et al. (2012) cannot be reproduced exactly. As a consequence,
the linear interpolated drag coefficient values are slightly underestimated compared to the parabolic
values.
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A B B
ws (m/s) 𝐶𝑑 (­) ws (m/s) 𝐶𝑑 (­) ws (m/s) 𝐶𝑑 (­)

Bi et al. (2015) 7 0.0013 18 0.002 33 0.0016
Peng et al. (2015) 0 0.0005 30 0.0027 60 0.0012
Zweers et al (2010) 0 0.001 30 0.0025 60 0.0015
Holthuijsen et al. (2015) 20 0.001 40 0.0022 60 0.0008
Zijlema et al. (2012) 0 0.0006 30 0.0018 80 0.0008

Table B.2: Relation drag coefficients and wind speed

Figure B.4: Hato Cd influence
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B.3. Tropical cyclone parameters
The tropical cyclone track data is provided by multiple agencies participating in the WMO tropical cy­
clone programme. Some of the agencies that provide TC track data are the Joint Warning Typhoon
centre (USA), RMSC Tokyo (Japan), CMA (Chinese meteorological agency) and Hong Kong Observa­
tory. The data provided by these agencies can be visited from: http://ibtracs.unca.edu/ .These agencies
all provide slightly different parameters for the TC’s. For example, the JWTC is the only agency that
also provides the RMW besides the locations, maximum wind speed and eye pressure. The Tokyo
agency provides values for the radius of 50 knot winds (R50) instead of the RMW. Furthermore, the
measured wind speeds and eye pressures also slightly differ between the different agencies. The sen­
sitivity analysis for the TC parameters aims a determining the influence of data from the TC agencies
and different method for estimating the maximum radius of winds on the model results.

A recent study by Ruiz­Salcines et al. (2019) investigated the use of different parametric wind mod­
els for TC modeling. The results showed that one wind model might be better for a particular event,
but for modelling a large number of TC’s the considered models performed basically the same. Due to
the fact that the Holland wind model has been used extensively in the past and yielded good results, it
is used during this Thesis research. The estimation of the radius of maximum winds (RMW) has been
a research topic for a long time and the improvement of the parameterization of the TC’s parameters is
still researched today. One of the topics without widespread consensus is the estimation of the RMW
parameter. The RMW represents to distance from the TC center to the bands with the strongest winds.
For example the Holland (1980) model can estimate the RMW from the wind speed and eye pressure
alone, but the RMW can also be used as input in the wind model. Other studies have suggested to
estimate the RMW based of the diameter of the eye, maximum wind speed or central pressure alone.
Recent insights however have led to the believe that the parameterization based on only the wind speed
an eye pressure can lead to severe over or underestimations of the RMW because of variations in the
data. To investigate the influence of the RMW on the surge heights in the model, a sensitivity analysis
is conducted for multiple estimations of the RMW. For all the considered simulations, the Holland wind
model is used to calculate the spiderweb wind input. Some agencies display the wind speed in 1 minute
average while others use 10 minute average. For storm surge simulations a 10 minute average wind
speed is required. The data in 1 minute average wind speed must therefore by converted. To do so,
a so called wind conversion factor must be applied to the wind speed. According to the Delft3D flow
user manual the wind speed should be multiplied with 0.9 to go from 1 minute to 10 minute average
wind speed.

• RMW directly from USA (JWTC) track data IBTrACS.

• RMW calculated with Takagi from the Tokyo agency data. Takagi and Wu (2016) suggested a
method to estimate the RMW from the radius of 50 knots wind (R50). A new relationship was
created from meteorological TC data for 1990­2013 in the Western Pacific. The study concluded
that the traditional RMW estimation methods from the maximum wind speed and eye pressures
showed significant scatter. The method suggested to estimate from the R50 showed to improve
the estimation of the RMW significantly. The new relationship is: 𝑅𝑀𝑊 = 0.23 ∗ 𝑅50. Although
this relationship improves the estimation of the RMW, there still are under and over estimation for
storm surges. Therefore, this relationship must be used with care. Ultimately a variability of 0.15∗
𝑅50 𝑡𝑜 0.35 ∗ 𝑅50 should be considered to avoid under and over estimations. Furthermore it must
be noted that the R50 parameter is not always given for the entire duration of the TC. Therefore,
this relationship can only be used if sufficient data points of R50 are available in IbTRACs.

• RMW determined from the central pressure. 𝑅𝑀𝑊 = 0.676 ∗ 𝑃𝑐 − 578 with the eye pressure in
hpa and RMW in km.

• Standard value for RMW (25 nautical miles). One option to calculate the spiderweb in the wind
enhancement scheme (WES) in Delft3D is to use a default value of 25 nautical miles for the RMW.
This value is suggested when insufficient data is available.

All simulations have been conducted with wind speed and eye pressure data from either the Tokyo
or United States TC agency with varying values for the RMW. The wind drag coefficients are the same
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for all simulations. The results clearly shows that the RMW has a big influence in the maximum surge
heights. The surge heights obtained from the simulations show that for the USA TC data, the surge
height is overestimated. This can be explained by the fact that the wind speed and pressure provided
by the USA has higher values than the data provided by the Tokyo agency. The RMW used in the
simulation also influences the maximum surge height. The error in the tidal signal of measurement
buoy CHC is due to the fact that it stopped recording for approximately 12 hours during the most
intense part of the storm in the Pearl river delta.

Figure B.5: Hato TC par influence
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B.4. Grid cell resolution
As stated before, the grid cell resolution can be influencing the accuracy of the model. In general
better results can be obtained for higher resolutions. However, the type of hydrodynamic processes to
be simulated also influences the required grid cell resolutions.

Figure B.6: Hato TC ­ Spatial resolution

The figure below shows that increasing the model resolution to 75 by 75 meter, does not signifi­
cantly change or increase the performance of the model. On the other side, a significant increase in
computational time is observed to compute this very fine domain. Based on the results, the 225 by 225
m grid is taken as finest grid.
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Neural Network Output Results

C.1. Neural Network output maps

Training sample comparison

Figure C.1: Training sample 20
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Figure C.2: Training sample 45

Figure C.3: Training sample 154
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Figure C.4: Training Sample 425

Validation sample comparison

Figure C.5: Validation Sample 772
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Figure C.6: Validation sample 779

Test sample comparison

Figure C.7: Test sample 818
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Figure C.8: Test sample 828

Figure C.9: Test sample 848
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C.2. Neural network ­ Coastline

Performance error (m) Training error (m) Validation error (m) Test error (m)
50 Nodes 0.0329 0.0329 0.0306 0.0389
100 Nodes 0.0236 0.0247 0.0347 0.027
200 Nodes 0.024 0.0213 0.0388 0.023
500 Nodes 0.042 0.0413 0.0467 0.0402
1000 Nodes 0.0478 0.0416 0.0621 0.1037
1500 Nodes 0.0457 0.0403 0.0599 0.0833
2000 Nodes 0.0808 0.0761 0.1068 0.0921

Table C.1: Coastline network performance

error (m) HK
Mawan

HK
ct8

HK
chc

HK
Kowloon Bay

HK
Mt Davis

West lamma
Channel

HK
Airport

HK
Lung Chau

Macau
Airport

Macau
CitySample Number

7 ­0.166 ­0.170 ­0.091 ­0.145 ­0.126 ­0.099 ­0.083 ­0.048 0.027 0.077
20 ­0.297 ­0.272 ­0.329 ­0.272 ­0.276 ­0.307 ­0.277 ­0.322 ­0.440 ­0.392
45 ­0.092 ­0.111 ­0.051 ­0.156 ­0.088 ­0.092 ­0.117 ­0.042 0.113 0.183
154 ­0.100 ­0.110 ­0.156 ­0.074 ­0.131 ­0.142 ­0.107 ­0.084 0.272 0.057
425 0.138 0.129 0.075 0.179 0.120 0.090 0.043 0.129 0.075 0.111
772 ­0.080 ­0.045 0.043 ­0.079 ­0.026 ­0.016 ­0.085 ­0.040 0.115 0.208
779 0.112 0.163 ­0.004 0.112 0.095 0.053 ­0.008 ­0.020 ­0.393 ­0.315
796 ­0.050 ­0.050 ­0.038 ­0.057 ­0.022 ­0.059 0.046 ­0.077 ­0.035 ­0.045
818 ­0.245 ­0.272 ­0.284 ­0.133 ­0.207 ­0.188 ­0.305 0.019 ­0.267 ­0.440
828 ­0.096 ­0.105 ­0.079 ­0.134 ­0.116 ­0.094 ­0.021 ­0.073 0.028 ­0.004
848 ­0.105 0.004 ­0.095 0.006 ­0.033 ­0.039 ­0.153 ­0.031 ­0.451 ­0.359

Table C.2: Sample errors (m) ­ Coastline Network, 100 Nodes

Relative
Error HK

Mawan
HK
ct8

HK
chc

HK
Kowloon Bay

HK
Mt Davis

HK West
Lamma Channel

HK
Airport

HK
Lung Chau

Macau
Airport Macau City

Sample
7 0.076547 0.078 0.045 0.073 0.061 0.051 0.044 0.025 0.011 0.025
20 0.134238 0.123 0.152 0.135 0.130 0.149 0.129 0.162 0.150 0.115
45 0.077093 0.093 0.055 0.114 0.075 0.087 0.192 0.040 0.438 0.606
154 0.059282 0.065 0.100 0.045 0.079 0.092 0.084 0.054 0.265 0.033
425 0.776729 0.726 0.328 0.791 0.552 0.393 0.329 0.413 0.324 0.465
772 0.075001 0.042 0.056 0.068 0.027 0.018 0.149 0.042 0.386 0.619
779 0.055005 0.080 0.002 0.056 0.047 0.028 0.005 0.010 0.180 0.123
796 0.042397 0.042 0.033 0.056 0.020 0.055 0.036 0.076 0.020 0.021
818 0.202517 0.225 0.261 0.127 0.192 0.187 0.288 0.024 0.192 0.214
828 0.045467 0.050 0.041 0.066 0.057 0.049 0.012 0.040 0.014 0.001
848 0.050832 0.002 0.048 0.003 0.017 0.021 0.083 0.017 0.195 0.135

Table C.3: Relative errors ­ Coastline network, 100 Nodes
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C.3. Neural Network output locations

Configuration Performance error (m) Training error (m) Validation error (m) Test error (m)
Nodes Training

algorithm
10 BR 0.0501 0.0479 0.0396 0.0787
10 SCG 0.0775 0.077 0.0761 0.0833
10 LM 0.0494 0.0472 0.0625 0.0543
15 BR 0.0488 0.0428 0.0459 0.0598
15 SCG 0.0618 0.0643 0.0539 0.0489
15 LM 0.0497 0.0474 0.0373 0.0801
20 BR 0.0422 0.0361 0.0506 0.0807
20 SCG 0.0784 0.0726 0.1288 0.0746
20 LM 0.0461 0.0451 0.0527 0.0481
30 BR 0.042 0.0381 0.0562 0.0592
30 SCG 0.0487 0.0521 0.0389 0.0411
30 LM 0.0378 0.0306 0.072 0.0613
50 BR 0.0404 0.0377 0.0337 0.0692
50 SCG 0.0537 0.0506 0.0745 0.0576
50 LM 0.0436 0.0391 0.0775 0.0455
100 BR 0.0456 0.0430 0.0421 0.0704
100 SCG 0.0442 0.0385 0.0486 0.0853
100 LM 0.0317 0.0238 0.0336 0.0933

Table C.4: Neural network configurations performance for 10 output neuron network

Error (m) HK
Mawan

HK
ct8

HK
chc

HK
Kowloon Bay

HK
Mount Davis

West Lamma
channel

HK
Airport Lungchau Macau

Airport
Macau
CitySample

7 ­0.28 ­0.27 ­0.18 ­0.18 ­0.21 ­0.16 ­0.24 ­0.10 ­0.18 ­0.12
20 ­0.25 ­0.26 ­0.32 ­0.27 ­0.30 ­0.35 ­0.28 ­0.40 ­0.48 ­0.42
45 ­0.10 ­0.07 ­0.04 ­0.13 ­0.06 ­0.07 ­0.04 ­0.03 0.18 0.16
154 ­0.09 ­0.11 ­0.15 ­0.06 ­0.12 ­0.12 ­0.07 ­0.10 0.06 0.05
425 0.11 0.13 0.05 0.15 0.11 0.06 0.04 0.11 0.03 0.00
772 ­0.13 ­0.06 ­0.03 ­0.10 ­0.05 ­0.05 ­0.09 ­0.10 0.09 0.08
779 0.09 0.10 ­0.03 0.10 0.07 0.01 ­0.06 ­0.05 ­0.34 ­0.32
796 ­0.19 ­0.22 ­0.18 ­0.25 ­0.21 ­0.21 ­0.04 ­0.31 ­0.10 ­0.12
818 ­0.27 ­0.27 ­0.22 ­0.18 ­0.20 ­0.18 ­0.17 ­0.07 ­0.30 ­0.25
828 ­0.10 ­0.11 ­0.08 ­0.13 ­0.09 ­0.08 ­0.05 ­0.04 0.04 0.03
848 ­0.14 ­0.09 ­0.14 ­0.05 ­0.10 ­0.11 ­0.23 ­0.04 ­0.34 ­0.34

Table C.5: Water level errors for 10 locations ­ Single layer, 20 hidden nodes network, LM training algorithm

Relative
Error HK

Mawan
HK
ct8

HK
chc

HK
Kowloon Bay

HK
Mt Davis

HK West
Lamma Channel

HK
Airport

HK
Lung Chau

Macau
Airport Macau City

Sample
7 0.132 0.124 0.088 0.090 0.102 0.082 0.125 0.052 0.072 0.044
20 0.113 0.120 0.147 0.134 0.142 0.168 0.127 0.201 0.162 0.134
45 0.086 0.055 0.043 0.096 0.052 0.069 0.066 0.029 0.661 0.550
154 0.055 0.062 0.096 0.037 0.072 0.078 0.055 0.064 0.046 0.033
425 0.622 0.651 0.219 0.652 0.502 0.249 0.310 0.345 0.117 0.000
772 0.126 0.055 0.039 0.088 0.052 0.060 0.162 0.107 0.293 0.245
779 0.045 0.048 0.015 0.050 0.035 0.005 0.035 0.025 0.156 0.137
796 0.162 0.194 0.156 0.243 0.191 0.195 0.031 0.308 0.057 0.064
818 0.228 0.226 0.200 0.174 0.186 0.182 0.164 0.088 0.193 0.139
828 0.049 0.051 0.041 0.064 0.044 0.042 0.028 0.022 0.020 0.013
848 0.069 0.043 0.071 0.026 0.051 0.058 0.124 0.022 0.146 0.138

Table C.6: Relative errors for 10 locations ­ Single layer, 20 hidden nodes network, LM training algorithm
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Matlab Scripts

Over the course of this research, multiple Matlab scripts have been developed for data processing, file
creation etc. In this appendix the purposes and processes of the different script will be discussed. All
Matlab scripts are uploaded to the 4TU­data centrum (https://data.4tu.nl/info/).

D.1. Synthetic TC selection tool
This tool is developed to select unique synthetic TC events that fulfill specified selection criteria. Fur­
thermore it edits the data set to make it suitable for use in Delft3D.The synthetic database with 10000
years worth of storms contains over 200000 unique event for the Western Pacific basin. The synthetic
database is divided into 10 files with each 1000 years of storms. The files contain three hourly TC track
data with the entries from figure D.1. For the purpose of this study we are interested in the storms
that will reach close to the Pearl river delta and thus will have an effect on the water levels. To do so,
the track data is selected of they meet the criteria based on location, landfall, category and minimal
duration. If a storm meets the criteria set, the track data with all time intervals is selected and stored in
a separate array.

Figure D.1: Synthetic storm database entries. Adapted from Bloemendaal et al. (2020)

As can be seen from the figure the TC number or ID starts again at 0 at the start of a new year.
This means that if the entire catalogue is considered there are no unique IDs for the storms. This is a
problem since Delft3D requires a unique name or ID for each individual simulation. To overcome this
problem the tool can automatically assign a unique ID to each TC that is selected on the criteria. The
unique IDs are added as an entry to the array.

107
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The fact the we are working with synthetic simulations means that the there are no real dates and
times assigned to the data sets. On the other side Delft3D requires a start and stop time/date in order
to operate. To make the track data suitable for Delft3D input a time and date must be assigned to each
time step. The final product is an array that only contains the selected track data. The track data itself
is complemented with unique IDs and times/dates.

D.2. Synthetic Storm Delft3D file creator tool
This Matlab tool can be considered the main script for creating all the required files associated with
running a synthetic simulation in Delft3D. It works like the synthetic TC selection tool by selecting
the track data of the TC’s of interest and assigned them an unique ID. Say we have selected 100
synthetic storm form the first 1000 years of the synthetic catalogue. These 100 storms all require
different files and unique names to be able to run in Delft3D. When executing the Matlab script the
following processes occur for each unique TC (:

• The script selects that track data of TC i, and creates a new folder names after the TC ID. All files
created for TC i will be saved into this folder.

• Creation of spiderweb files. For each computational domain (In this study 3: fine,middle and
course domain), a spiderweb file is created from the track data. The spiderweb files contains the
wind forcing used in the model to simulate the TC.

• Creation of MDF files. For each domain a MDF file is created. These files are mostly the same
for each domain. Only the name ID and duration, stop time in the MDF file change per unique
TC simulation. The physical parameters, and grid,bathymetry files all stay the same.

• Creation of.ddb file. The ddb file is used in Delft3D to couple the domains. Since the MDf file
names change for each simulation, the content of the .ddb file should change as well. The names
of MDF files are changed in the .ddb for every unique TC

• Creation of .sh file. The .sh file is needed for running simulations in the cluster. It is used to start
the simulation and contains information on which files to execute. Again some names of the files
that must be executed are set to the corresponding ID.

• i+1. After all the files have been printed in the folder, the process start again with a new synthetic
TC, until all 100 TC’s have their corresponding Delft3D files. The explained steps are repeated
for the 10 files containing the 10000 years worth of storm data for the Western Pacific

In the end each folder contains 3 .web and .MDF files, 1 .ddb file and 1 .sh file. The Delft3D files
that stay the same for each simulation (grid, depth, boundary files etc) can be manually copies to each
folder. Each folder now contains all the required files for Delft3D simulation (figure D.2).
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Figure D.2: All Delft3D files needed for cluster simulations ­ 𝑆𝑡𝑜𝑟𝑚295_𝑌𝑒𝑎𝑟𝑠0

D.3. Delft3D output processing script
The main purpose of the output script is to efficiently process the Delft3D output data. After 1000
simulations, more than 1200 GB of simulation data has been collected. We are only interested in the
water levels in the fine domain of the simulation. To process the Delft3D output, the user needs to
download Open Earth Tools from Deltares (https://publicwiki.deltares.nl/display/OET/OpenEarth). This
toolbox provides Matlab function that can export the required data from the Delft3D results. If OET is
installed in the PC, it can be manually loaded into the Matlab program by typing the command below in
the Matlab command window. Note that the path changes depending in which folder OET are installed.

run(’C:\\Users\LucasWestrik\Documents\Deltares\OpenEarthTools\matlab\oetsettings’)

The Delft3D output files are stored in separate file for each simulation. Therefore, each file must
be loaded manually into Matlab. The following command are used and the ID number run up to 100
simulation per 1000 years

map_data_001=qpfopen(’trim­FineMDF_Storm295_Years0.dat’);

I001=qpread(map_data_001);

wl_map_data_001=qpread(map_data_001,I001(15),’griddata’,0,0,0);

wl001=wl_map_data_001.Val;

These previously described functions, will load the water level for all time steps for one synthetic
simulation. The size of the fine domain is 152*401 for each time step. To select the maximum water
levels for each synthetic simulation the Matlab function max() is used.This function searches for the
maximum values in the array and stores them in a new array. After selection of the maximum water
levels and landmasses, the 152x401 array is reshaped into a single row array for NN input (1x60952
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array). The final step is to combine the 100 arrays with maximum water levels into one. When this step
is repeated for all years, one can combine and save the arrays into one containing all the maximum
water level data (NN max water level array: 990x60952). Note that for Nn input the landmasses are
removes and the number of output neurons is reduced from 60952 to 38189 output neurons for the NN
map version.

D.4. Delft3D track data selector script
The sole purpose of this script is to select the track data corresponding to the maximum water levels.
The combined tack data of the unique TC’s selected are loaded in to the script. For each unique
simulation 1 time step is selected based on the distance of the TC eye from Hong Kong. The time step
with the shortest distance (calculated with Pythagoras) is selected. The result is an array with track
data (990x7) of 990 simulations with 7 track parameters which is save for NN input.

D.5. Neural Network Training Script
The NN training script is used the Deep Learning Toolbox from Matlab. It requires the user to load
the input and output data (Array with track data and array with maximum water levels). The script
allows the user to change the configuration of the network. The training algorithm, activation function,
normalization function, number of hidden nodes, epochs etc. can all be changed. When the script is
executed, Matlab will open the NN training window (figure D.3). This windows displays the state of
training and current performance of the network

Figure D.3: Neural Network Training Window

When NN training is finished, Matlab creates a NN function for the trained network. This function
has 7 input parameters (track data). The outputs are the predicted water levels.

D.6. Neural Network performance analysis Script
This script is developed to investigate the performance of the NN. With this script the user can compare
the NN output visually with the output of the synthetic simulations. Furthermore, the difference (error)
between the synthetic sims and NN output for specific location of interest are calculated. By checking
the performance of multiple different samples, one can gain good insight in the network performance.
The trained network function of the three different networks considered in this thesis are uploaded to
the datacentre.
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