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THE ℓs-BOUNDEDNESS OF A FAMILY OF INTEGRAL

OPERATORS ON UMD BANACH FUNCTION SPACES

EMIEL LORIST

Dedicated to Ben de Pagter on the occasion of his 65th birthday.

Abstract. We prove the ℓs-boundedness of a family of integral oper-
ators with an operator-valued kernel on UMD Banach function spaces.
This generalizes and simplifies the earlier work by Gallarati, Veraar
and the author [12], where the ℓs-boundedness of this family of inte-
gral operators was shown on Lebesgue spaces. The proof is based on a
characterization of ℓs-boundedness as weighted boundedness by Rubio
de Francia.

1. Introduction

Over the past decades there has been a lot of interest in the Lp-maximal
regularity of PDEs. Maximal Lp-regularity of the abstract Cauchy problem

{
u′(t) +Au(t) = f(t), t ∈ (0, T ]

u(0) = x,
(1.1)

where A is a closed operator on a Banach space X, means that for all
f ∈ Lp((0, T ];X) the solution u has “maximal regularity”, i.e. both u′ and
Au are in Lp((0, T ];X). Maximal Lp-regularity can for example be used
to solve quasi-linear and fully nonlinear PDEs by linearization techniques
combined with the contraction mapping principle, see e.g. [1, 8, 30, 36].

In the breakthrough work of Weis [40, 41], an operator theoretic character-
ization of maximal Lp-regularity on UMD Banach spaces was found in terms
of the R-boundedness of the resolvents of A on a sector. R-boundedness is a
random boundedness condition on a family of operators which is a strength-
ening of uniform boundedness. We refer to [7, 21] for more information on
R-boundedness.

In [13, 14] Gallarati and Veraar developed a new approach to maximal
Lp-regularity for the case where the operator A in (1.1) is time-dependent
and t 7→ A(t) is merely assumed to be measurable. In this new approach
R-boundedness is once again one of the main tools. For their approach the
R-boundedness of the family of integral operators {Ik : k ∈ K} on Lp(R;X)
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is required. Here Ik is defined for f ∈ Lp(R;X) as

Ikf(t) :=

∫ t

−∞

k(t− s)T (t, r)f(r) dr, t ∈ R,

where T (t, s) is the two-parameter evolution family associated to A(t) and
K contains all kernels k ∈ L1(R) such that |k| ∗ |g| ≤ Mg for all simple
g : R → C.

In the literature there are many R-boundedness results for integral oper-
ators, see [21, Chapter 8] for an overview. However none of these are ap-
plicable to the operator family of {Ik : k ∈ K}. Therefore in [12] Gallarati,
Veraar and the author show a sufficient condition for the R-boundedness
of {Ik : k ∈ K} on Lp(R;X) in the special case where X = Lq. This is
done through the notion of ℓs-boundedness, which states that for all finite
sequences (Ikj)

n
j=1 in {Ik : k ∈ K} and (xj)

n
j=1 in X we have

∥∥∥
( n∑

j=1

|Ikjxj|
s
)1/s∥∥∥

X
.

∥∥∥
( n∑

j=1

|xj |
s
)1/s∥∥∥

X
.

For s = 2 this notion coincides with R-boundedness as a consequence of the
Kahane-Khintchine inequalities.

Our main contribution is the generalization of the main result in [12] to
the setting of UMD Banach function spaces X. For the proof we will follow
the general scheme of [12] with some simplifications. As in case X = Lq,
for any UMD Banach function space the notions of ℓ2-boundedness and R-
boundedness coincide, so the following theorem in particular implies the
R-boundedness of {Ik : k ∈ K}.

Theorem 1.1. Let X be a UMD Banach function space and p ∈ (1,∞).
Let T : R× R → L(X) be such that the family of operators

{
T (t, r) : t, r ∈ R

}

is ℓs-bounded for all s ∈ (1,∞). Then {Ik : k ∈ K} is ℓs-bounded on
Lp(R;X) for all s ∈ (1,∞).

We will prove Theorem 1.1 in a more general setting in Section 3. In
particular we allow weights in time, which in applications for example allow
rather rough initial values (see e.g. [23, 26, 31, 37]).

For certain UMD Banach function spaces the ℓs-boundedness assumption
in Theorem 1.1 can be checked by weighted extrapolation techniques, see
Corollary 3.5 and Remark 3.6.

Notation. For a measure space (S, µ) we denote the space of all measurable
functions by L0(S). We denote the Lebesgue measure of a Borel set E ∈
B(Rd) by |E|. For Banach spaces X and Y we denote the vector space of
bounded linear operators from X to Y by L(X,Y ) and we set L(X) :=
L(X,X). For a operator family Γ ⊂ L(X,Y ) we set Γ∗ := {T ∗ : T ∈ Γ}.
For p ∈ [1,∞] we let p′ ∈ [1,∞] be such that 1

p + 1
p′ = 1.

Throughout the paper we write Ca,b,··· and φa,b,··· to denote a constant
and a nondecreasing function on [1,∞) respectively, which only depend on
the parameters a, b, · · · and the dimension d and which may change from
line to line.
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2. Preliminaries

2.1. Banach function spaces. Let (S, µ) be a σ-finite measure space. An
order ideal X of L0(S) equipped with a norm ‖·‖X is called a Banach func-
tion space if it has the following properties:

(i) Compatibility: If ξ, η ∈ L0(S) with |ξ| ≤ |η|, then ‖ξ‖X ≤ ‖η‖X
(ii) Weak order unit: There is a ξ ∈ X with ξ > 0.
(iii) Fatou property: If 0 ≤ ξn ↑ ξ for (ξn)

∞
n=1 in X, ξ ∈ L0(S) and

supn∈N‖ξn‖X < ∞, then ξ ∈ X and ‖ξ‖X = supn∈N‖ξn‖X .

A Banach function space is called order continuous if for any sequence 0 ≤
ξn ↑ ξ ∈ X we have ‖ξn − ξ‖X → 0. Every reflexive Banach function space
is order continuous. Order continuity ensures that the dual of X is also a
a Banach function space. For a thorough introduction to Banach function
spaces we refer to [28, section 1.b] or [3, Chapter 1].

A Banach function space X is said to be p-convex for p ∈ [1,∞] if

∥∥∥
( n∑

j=1

|ξk|
p
)1/p∥∥∥

X
≤

( n∑

j=1

‖ξj‖
p
X

)1/p

for all ξ1, · · · , ξn ∈ X with the sums replaced by suprema if p = ∞. The
defining inequality for p-convexity often includes a constant, but X can
always be renormed such that this constant equals 1. If a Banach function
space is p-convex for some p ∈ [1,∞], thenX is also q-convex for all q ∈ [1, q].

For a p-convex Banach function space X we can define another Banach
function space by

Xp :=
{
|ξ|p sgn ξ : ξ ∈ X

}
=

{
ξ ∈ L0(S) : |ξ|1/p ∈ X

}

equipped with the norm ‖ξ‖Xp :=
∥∥|ξ|1/p

∥∥p
X
. We refer the interested reader

to [28, section 1.d] for an introduction to p-convexity.

2.2. ℓs-boundedness. Let X and Y be Banach functions spaces and let
Γ ⊆ L(X,Y ) be a family of operators. We say that Γ is ℓs-bounded if for all
finite sequences (Tj)

n
j=1 in Γ and (xj)

n
j=1 in X we have

∥∥∥
( n∑

j=1

|Tjxj|
s
)1/s∥∥∥

Y
≤ C

∥∥∥
( n∑

j=1

|xj |
s
)1/s∥∥∥

X
.

with the sums replaced by suprema if s = ∞. The least admissible constant
C will be denoted by [Γ]ℓs .

Implicitly ℓs-boundedness is a classical tool in harmonic analysis for op-
erators on Lp-spaces (see e.g. [16, Chapter V] and [17, 18]). For Ba-
nach function spaces the notion was introduced in [40] under the name
Rs-boundedness, underlining its connection to the more well-known notion
of R-boundedness. An extensive study of ℓs-boundedness can be found in
[24] and for a comparison between ℓ2-boundedness and R-boundedness we
refer to [25].

Lemma 2.1. Let X and Y be Banach function spaces and let Γ ⊆ L(X,Y ).
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(i) Let 1 ≤ s0 < s1 ≤ ∞ and assume that X and Y are order continuous.
If Γ is ℓs0- and ℓs1-bounded, then Γ is ℓs-bounded for all s ∈ [s0, s1]
with [Γ]ℓs ≤ max

{
[Γ]ℓs0 , [Γ]ℓs1

}

(ii) Let s ∈ [1,∞] and assume that Γ is ℓs-bounded. Then the adjoint

family Γ∗ is ℓs
′

-bounded with [Γ∗]ℓs′ = [Γ]ℓs

Proof. Lemma 2.1(i) follows from Calderón’s theory of complex interpolation
of vector-valued function spaces, see [6] or [24, Proposition 2.14]. Lemma

2.1(ii) is direct from the identification X(ℓsn)
∗ = X∗(ℓs

′

n ), see [28, Section
1.d] or [24, Proposition 2.17] �

The following characterization of ℓs-boundedness for s ∈ [1,∞) will be
one of the key ingredients of our main result. This characterization relating
ℓs-boundedness to a certain weighted boundedness comes from the work of
Rubio de Francia [16, 38, 39].

Proposition 2.2. Let s ∈ [1,∞) and let X and Y be s-convex order contin-
uous Banach function spaces over (SX , µX) and (SY , µY ) respectively. Let
Γ ⊆ L(X) and take C > 0. Then the following are equivalent:

(i) Γ is ℓs-bounded with [Γ]ℓs ≤ C.
(ii) For all nonnegative u ∈ (Y s)∗, there exists a nonnegative v ∈ (Xs)∗

with ‖v‖(Y s)∗ ≤ ‖u‖(Xs)∗ and

(∫

SY

|T (ξ)|su dµY

)1/s
≤ C

(∫

SX

|ξ|sv dµX

)1/s

for all ξ ∈ X and T ∈ Γ.

Proof. The statement is a combination of [39, Lemma 1, p. 217] and [16,
Theorem VI.5.3], which for X = Y is proven [2, Lemma 3.4]. The statement
for X 6= Y is can be extracted from the proof of [2, Lemma 3.4] and can in
full detail be found in [29, Proposition 6.1.3] �

2.3. Muckenhoupt weights. A locally integrable function w : Rd → (0,∞)
is called a weight. For p ∈ (1,∞) and a weight w we let Lp(w) be the space
of all f ∈ L0(Rd) such that

‖f‖Lp(w) :=
(∫

Rd

|f |pw
)1/p

< ∞.

We will say that a weight w lies in the Muckenhoupt class Ap and write
w ∈ Ap if it satisfies

[w]Ap
:= sup

Q

1

|Q|

∫

Q
w ·

( 1

|Q|

∫

Q
w1−p′

)p−1
< ∞,

where the supremum is taken over all cubes Q ⊆ R
d with sides parallel to

the coordinate axes.

Lemma 2.3. Let p ∈ (1,∞) and w ∈ Ap.

(i) w ∈ Aq for all q ∈ (p,∞) with [w]Aq ≤ [w]Ap .

(ii) w1−p′ ∈ Ap′ with [w]
1/p
Ap

= [w1−p′ ]
1/p′

A′

p
.

(iii) w ∈ Ap−ε for ε = 1
φp([w]Ap)

with [w]Ap−ε ≤ φp([w]Ap).
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The first two properties of Lemma 2.3 follow directly from the definition.
The third is for example proven in [18, Exercise 9.2.4]. For a more thorough
introduction to Muckenhoupt weights we refer to [18, Chapter 9].

2.4. The UMD property. A Banach space X is said to have the UMD
property if the martingale difference sequence of any finite martingale in
Lp(Ω;X) is unconditional for some (equivalently all) p ∈ (1,∞). We will
work with UMD Banach function spaces, of which standard examples in-
clude reflexive Lebesgue, Lorentz and Orlicz spaces. In this Festschrift it is
shown that reflexive Musielak-Orlicz spaces, so in particular reflexive vari-
able Lebesgue spaces, have the UMD property, see [27]. The UMD property
implies reflexivity, so in particular L1 and L∞ do not have the UMD prop-
erty. For a thorough introduction to the theory of UMD Banach spaces we
refer to [5, 20].

For an order continuous Banach function space X over (S, µ) there is
also a characterization of the UMD property in terms of the lattice Hardy–
Littlewood maximal operator, which for simple functions f : Rd → X is given
by

M̃f(x) := sup
Q∋x

1

|Q|

∫

Q
|f(y)| dy, x ∈ R

d

where the supremum is taken pointwise in S and over all cubes Q ⊆ R
d

with sides parallel to the coordinate axes (see [15] or [19, Lemma 5.1] for

a detailed definition of M̃ ). It is a deep result by Bourgain [4] and Rubio

de Francia [39] that X has the UMD property if and only if M̃ is bounded
on Lp(Rd;X) and Lp(Rd;X∗) for some (equivalently all) p ∈ (1,∞). For
weighted Lp-spaces we have the following proposition, which was proven in
[15]. The increasing dependence on [w]Ap is shown in [19, Corollary 5.3].

Proposition 2.4. Let X be a UMD Banach function space, p ∈ (1,∞) and
w ∈ Ap. Then for all f ∈ Lp(w;X) we have

∥∥M̃f
∥∥
Lp(w;X)

≤ φX,p

(
[w]Ap

)
‖f‖Lp(w;X).

The UMD property of a Banach function space X also implies that Xq

has the UMD property for a q > 1, which is a deep result by Rubio de
Francia [39, Theorem 4].

Proposition 2.5. Let X be a UMD Banach function space. Then there is
a p > 1 such that X is p-convex and Xq is a UMD Banach function space
for all q ∈ [1, p].

3. Integral operators with an operator-valued kernel

Before turning to our main result on the ℓs-boundedness of a family of
integral operators on Lp(w;X) with operator-valued kernels, we will first
study the ℓs-boundedness of a family of convolution operators on Lp(w;X)
with scalar-valued kernels. For this define

K := {k ∈ L1(Rd) : |k| ∗ |f | ≤ Mf a.e. for all simple f : Rd → C}.

As an example any radially decreasing k ∈ L1(Rd) with ‖k‖L1(Rd) ≤ 1 is an

element of K. For more examples see [17, Chapter 2] and [34, Proposition
4.6].
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Let X be a Banach function space. For a kernel k ∈ K and a simple
function f : Rd → X we define

Tkf := k ∗ f =

∫

Rd

k(x− y)f(y) dy.

As

‖Tkf‖X ≤ |k| ∗ ‖f‖X ≤ M
(
‖f‖X

)
,

and since the Hardy-Littlewood maximal operator M is bounded on Lp(w)
for all p ∈ (1,∞) and w ∈ Ap, Tk extends to a bounded linear operator
on Lp(w;X) by density. This argument also shows that the family of con-
volution operators given by Γ := {Tk : k ∈ K} is uniformly bounded on
Lp(w;X).

If X is a UMD Banach function space we can say more. The following
lemma was first developed by van Neerven, Veraar and Weis in [33, 34] in
connection to stochastic maximal regularity. As in [33, 34], the endpoint
case s = 1 will play a major role in the proof of our main theorem in the
next section.

Proposition 3.1. Let X be a UMD Banach function space, s ∈ [1,∞],
p ∈ (1,∞) and w ∈ Ap. Then Γ = {Tk : k ∈ K} is ℓs-bounded on Lp(w;X)
with

[Γ]ℓs ≤ φX,p

(
[w]Ap

)
.

The proof is a weighted variant of [34, Theorem 4.7], which for the special
case where X is an iterated Lebesgue space is presented in [12, Proposition
3.6]. For convenience of the reader we sketch the proof in the general case.

Proof. AsX is reflexive and therefore order-continuous, M̃ is well-defined on

Lp(w;X) and we have Tkf ≤ M̃f pointwise a.e. for all simple f : Rd → X.
If s = ∞ take simple functions f1, · · · , fn ∈ Lp(w;X) and k1, · · · , kn ∈ K.

Using Proposition 2.4 we have
∥∥∥ sup
1≤j≤n

|Tkjfj|
∥∥∥
Lp(w;X)

≤
∥∥∥ sup
1≤j≤n

M̃fj(x)
∥∥∥
Lp(w;X)

≤
∥∥∥M̃

(
sup

1≤j≤n
|fj|

)
(x)

∥∥∥
Lp(w;X)

≤ φX,p

(
[w]Ap

) ∥∥∥ sup
1≤j≤n

|fj|
∥∥∥
Lp(w;X)

.

The result now follows by the density of simple functions in Lp(w;X).
If s = 1 we use duality. Note that sinceX is reflexive we have Lp(w;X)∗ =

Lp′(w′;X∗)∗ with w′ = w1−p′ under the duality pairing

(3.1) 〈f, g〉Lp(w;X),Lp′(w′;X∗) =

∫

Rd

〈
f(x), g(x)

〉
X,X∗

dx

by Lemma 2.3(ii) and [20, Corollary 1.3.22]. One can routinely check that

T ∗
k = Tk̃ with k̃(x) = k(−x) and that k ∈ K if and only if k̃ ∈ K. Since

X∗ is also a UMD Banach function space (see [20, Proposition 4.2.17]) we
know from the case s = ∞ that the adjoint family Γ∗ is ℓ∞-bounded on
Lp′(Rd, w′;X∗), so the result follows by Lemma 2.1(ii). Finally if s ∈ (1,∞)
the result follows by Lemma 2.1(i). �



THE ℓs-BOUNDEDNESS OF A FAMILY OF INTEGRAL OPERATORS 7

With these preparations done we can now introduce the family of integral
operators with operator-valued kernel that we will consider. Let X and Y

be a Banach function space and let T be a family of operators Rd × R
d →

L(X,Y ) such that (x, y) 7→ T (x, y)ξ is measurable for all T ∈ T and ξ ∈ X.
The integral operators that we will consider are for simple f : Rd → X given
by

Ik,Tf(x) =

∫

Rd

k(x− y)T (x, y)f(y) dy

with k ∈ K and T ∈ T . If ‖T (x, y)‖L(X,Y ) ≤ C for all T ∈ T and x, y ∈ R
d,

we have

‖Ik,Tf‖X ≤ C |k| ∗ ‖f‖X ≤ CM
(
‖f‖X

)
.

So as before Ik,T extends to a bounded linear operator from Lp(w;X) to
Lp(w;Y ) for all p ∈ (1,∞) and w ∈ Ap, and

IT :=
{
Ik,T : k ∈ K, T ∈ T

}

is uniformly bounded. For the details see [12, Lemma 3.9].
If X and Y are Hilbert spaces, this implies that IT is also ℓ2-bounded

from L2(Rd;X) to L2(Rd;Y ), as these notions coincide on Hilbert spaces.
However if X and Y are not Hilbert spaces, but a UMD Banach function
space or if we move to weighted Lp-spaces, the ℓ2-boundedness of IT is a
lot more delicate.

Our main theorem is a quantitative and more general version of Theorem
1.1 in the introduction:

Theorem 3.2. Let X and Y be a UMD Banach function spaces and let
p, s ∈ (1,∞). Let T be a family of operators R

d × R
d → L(X,Y ) such that

(i) (x, y) 7→ T (x, y)ξ is measurable for all T ∈ T and ξ ∈ X.

(ii) The family of operators T̃ := {T (x, y) : T ∈ T , x, y ∈ R
d} is ℓσ-

bounded for all σ ∈ (1,∞).

Then IT is ℓs-bounded from Lp(w;X) to Lp(w;Y ) for all w ∈ Ap with

[IT ]ℓs ≤ φX,Y,p

(
[w]Ap

)
max

{[
T̃
]
ℓσ
,
[
T̃
]
ℓσ′

}
, σ = 1 +

1

φp,s [w]Ap

≤ φX,Y,T ,p,s

(
[w]Ap

)
.

We will first prove a result assuming the ℓs-boundedness of T̃ for a fixed
s ∈ [1,∞).

Proposition 3.3. Fix 1 ≤ s ≤ r < p < ∞ and let X and Y be s-convex
Banach function spaces such that Xs has the UMD property. Let T be a
family of operators R

d ×R
d → L(X,Y ) such that

(i) (x, y) 7→ T (x, y)ξ is measurable for all T ∈ T and ξ ∈ X.

(ii) The family of operators T̃ := {T (x, y) : T ∈ T , x, y ∈ R
d} is ℓs-

bounded.

Then IT is ℓs-bounded from Lp(w;X) to Lp(w;Y ) for all w ∈ Ap/s with

[IT ]ℓs ≤ φX,p,r

(
[w]Ap/s

)[
T̃
]
ℓs
.
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Proof. Let (SX , µX) and (SY , µY ) be the measure spaces associated to X

and Y respectively. For j = 1, · · · , n take Ij ∈ IT and let kj ∈ K and Tj ∈ T
be such that Ij = Ikj ,Tj

. Fix simple functions f1, · · · , fn ∈ Lp(w;X) and
note that

(3.2)
∥∥∥
( n∑

j=1

|Ijfj|
s
)1/s∥∥∥

Lp(w;Y )
=

∥∥∥
n∑

j=1

|Ijfj|
s
∥∥∥
1/s

Lp/s(w;Y s)
.

Fix x ∈ R
d, then by Hahn-Banach we can find a nonnegative ux ∈ (Y s)∗

with ‖ux‖(Xs)∗ = 1 such that

(3.3)
∥∥∥

n∑

j=1

|Ijfj(x)|
s
∥∥∥
Y s

=

n∑

j=1

∫

SY

|Ijfj(x)|
sux dµY .

With Proposition 2.2 we can then find a nonnegative vx ∈ (Xs)∗ with
‖vx‖(Xs)∗ ≤ 1 such that

(3.4)

∫

SY

|Tj(x, y)ξ|
svx dµY ≤

[
T̃
]
ℓs

∫

SX

|ξ|svx dµX

for j = 1, · · · , n, y ∈ R
d and ξ ∈ X. Since ‖kj‖L1(Rd) ≤ 1 by [34, Lemma

4.3], Holder’s inequality yields

(3.5) |Ijfj(x)|
s ≤

∫

Rd

|kj(x− y)||Tj(x, y)fj(y)|
s dy.

Applying (3.5) and (3.4) successively we get

n∑

j=1

∫

SY

|Ijfj(x)|
sux dµY ≤

n∑

j=1

∫

SY

∫

Rd

|kj(x− y)||Tj(x, y)fj(y)|
s dy ux dµY

=
n∑

j=1

∫

Rd

|kj(x− y)|

∫

SY

|Tj(x, y)fj(y)|
s ux dµY dy

≤
[
T̃
]
ℓs

n∑

j=1

∫

SX

∫

Rd

|kj(x− y)||fj(y)|
s dy vx dµX

≤
[
T̃
]
ℓs

∥∥∥
n∑

j=1

(|kj| ∗ |fj|
s)(x)

∥∥∥
Xs

,

using duality and ‖vx‖(Xs)∗ ≤ 1 in the last step. We can now use the ℓ1-

boundedness result of Proposition 3.1, since (Xs)∗ has the UMD property
by [21, Proposition 4.2.17]. Combined with (3.2) and (3.3) we obtain

∥∥∥
( n∑

j=1

|Ijfj|
s
)1/s∥∥∥

Lp(w;Y )
≤

[
T̃
]
ℓs

∥∥∥
n∑

j=1

|kj | ∗ |fj|
s
∥∥∥

1
s

Lp/s(w;Xs)

≤ φX,p/s

(
[w]Ap/s

) [
T̃
]
ℓs

∥∥∥
n∑

j=1

|fj|
s
∥∥∥
1/s

Lp/s(w;Xs)

≤ φX,p,r

(
[w]Ap/s

)[
T̃
]
ℓs

∥∥∥
( n∑

j=1

|fj|
s
) 1

s
∥∥∥
Lp(w;X)

,
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where we can pick the increasing function φ in the last step independent of
s, since the increasing function in Proposition 3.1 depends continuously on
p. This can for example be seen by writing out the exact dependence on p

in Theorem 2.4 using [19, Theorem 1.3] and [32, Theorem 3.1]. �

Using this preparatory proposition, we will now prove Theorem 3.2.

Proof of Theorem 3.2. Let w ∈ Ap. We shall prove the theorem in three
steps.

Step 1. First we shall prove the theorem very small s > 1. By Propo-
sition 2.5 we know that there exists a σX,Y ∈ (1, p) such that X and Y

are s-convex and Xs has the UMD property for all s ∈ [1, σX ]. By Lemma
2.3(iii) we can then find a σp,w ∈ (1, σX,Y ] such that for all s ∈ [1, σp,w]

[w]Ap/s
≤ [w]Ap/σp,w

≤ φp

(
[w]Ap

)

Let σ1 = min{σX,Y , σp,w}, then by Proposition 3.3 we know that IT is
ℓs-bounded from Lp(w;X) to Lp(w;Y ) for s ∈ (1, σ1] with

(3.6) [IT ]ℓs ≤ φX,p,σX,Y
([w]Ap/s

)
[
T̃
]
ℓs

≤ φX,Y,p([w]Ap)
[
T̃
]
ℓs
.

Step 2. Now we use a duality argument to prove the theorem for large
s < ∞. As noted in the proof of Proposition 3.1, we have Lp(w;X)∗ =

Lp′(w′;X∗) with w′ = w1−p′ under the duality pairing as in (3.1) and simi-
larly for Y . Furthermore X∗ and Y ∗ have the UMD property.

It is routine to check that under this duality I∗k,T = Ik̃,T̃ with k̃(x) =

k(−x) and T̃ (x, y) = T ∗(y, x) for any Ik,T ∈ IT . Trivially k̃ ∈ K if and only

if k ∈ K and by Proposition 3.1(ii) the adjoint family T̃ ∗ is ℓσ
′

-bounded with
[
T̃ ∗

]
ℓσ′ =

[
T̃
]
ℓσ

for all σ ∈ (1,∞). Therefore, it follows from step 1 that there is a σ2 >

1 such that I∗
T is ℓs-bounded from Lp′(w′;Y ∗) to Lp′(w′;X∗) for all s ∈

(1, σ2]. Using Proposition 3.1(ii) again, we deduce that IT is ℓs-bounded
from Lp(w;X) to Lp(w;Y ) for all s ∈ [σ′

2,∞) with

(3.7) [IT ]ℓs = [I∗
T ]ℓs′ ≤ φX,Y,p

(
[w]Ap

)[
T̃
]
ℓs
.

Step 3. We can finish the prove by an interpolation argument for s ∈
(σ1, σ

′
2). By Proposition 2.2(i) we get for s ∈ (σ1, σ

′
2) that IT is ℓs-bounded

from Lp(w;X) to Lp(w;Y ) with

(3.8) [IT ]ℓs ≤ φX,Y,p([w]Ap) max
{[

T̃
]
ℓσ1

,
[
T̃
]
ℓσ

′

2

}
.

Now note that by Lemma 2.3 there is a σ ∈ (1,∞) such that σ < σ1, σ2 and
σ < s < σ′ and

σ = 1 +
1

φp,s([w]Ap)
.

Thus combining (3.6), (3.7) and (3.8) we obtain

[IT ]ℓs ≤ φX,Y,p

(
[w]Ap

)
max

{[
T̃
]
ℓσ
,
[
T̃
]
ℓσ′

}
≤ φX,Y,T ,p,s

(
[w]Ap

)
,

using the fact that t 7→ max
{[

T̃
]
ℓt
,
[
T̃
]
ℓt′
}
is increasing for t → 1 by Propo-

sition 2.2(i). This proves the theorem. �
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Remark 3.4.

• From Theorem 3.2 one can also conclude that IT is R-bounded,
since R- and ℓ2-boundedness coincide if X and Y have the UMD
property, see e.g. [21, Theorem 8.1.3].

• The UMD assumptions in Theorem 3.2 are necessary. Indeed already

if X = Y , w = 1 and if T̃ only contains the identity operator, it
is shown in [22] that the ℓ2-boundedness of IT implies the UMD
property of X.

• The main result of [12] is Theorem 3.2 for the special case X =
Y = Lq(S). In applications to systems of PDEs one needs Theorem
3.2 on Lq(S;Cn) with s = 2, see e.g. [13]. This could be deduced
from the proof of [12, Theorem 3.10], by replacing absolute values
by norms in C

n. In our more general statement the case Lq(S;Cn)
is included, since Lq(S;Cn) is a UMD Banach function space over
S × {1, · · · , n}

If X = Y is a rearrangement invariant Banach function space on R
e, we

can check the ℓσ-boundedness of T̃ for all σ ∈ (1,∞) by weighted extrapo-
lation. Examples of such Banach function spaces are Lebesgue, Lorentz and
Orlicz spaces. See [28, Section 2.a] for an introduction to rearrangement
invariant Banach function spaces.

Corollary 3.5. Let X be a rearrangement invariant UMD Banach function
space on R

e and let p, s ∈ (1,∞). Let T be a family of operators R
d×R

d →
L(X) such that

(i) (x, y) 7→ T (x, y)ξ is measurable for all T ∈ T and ξ ∈ X.
(ii) For some q ∈ (1,∞) and all v ∈ Aq we have

sup
T∈T , x,y∈Rd

‖T (x, y)‖L(Lq(v)) ≤ φT ,q

(
[v]Aq

)

Then IT is ℓs-bounded on Lp(w;X) for all w ∈ Ap with

[IT ]ℓs ≤ φX,Y,T ,p,q,s

(
[w]Ap

)
.

Note that in Corollary 3.5 we need that T (x, y) is well-defined on Lq(v)
for all T ∈ T and x, y ∈ R

d. This is indeed the case, since X∩Lq(v) is dense
in Lq(v).

Proof. Let Y be the linear span of

{1K ξ : K ⊆ R
e compact, ξ ∈ X ∩ L∞(Re)}.

Then Y ⊆ Lq(v) for all v ∈ Ap and Y is dense in X by order continuity.
Define

F :=
{(

|T (x, y)ξ|, |ξ|
)
: T ∈ T , x, y ∈ R

d, ξ ∈ Y
}
.

Note that X has upper Boyd index qX < ∞ by the UMD property (see [21,
Proposition 7.4.12] and [28, Section 2.a]). So we can use the extrapolation
result for Banach function spaces in [11, Theorem 2.1] to conclude that for
σ ∈ (1,∞)

∥∥∥
( n∑

j=1

|Tj(xj , yj)ξj|
σ
)1/σ∥∥∥

X
≤ CT ,q

∥∥∥
( n∑

j=1

|ξj |
σ
)1/σ∥∥∥

X
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for any Tj ∈ T , xj, yj ∈ R
d and ξj ∈ Y for j = 1, · · · , n. By the density this

extends to ξj ∈ X, so

{T (x, y) : x, y ∈ R
d, T ∈ T }

is ℓσ-bounded for all σ ∈ (1,∞). Therefore the corollary follows from The-
orem 3.2. �

Remark 3.6.

• A sufficient condition for the weighted boundedness assumption in
Corollary 3.5 is that T (x, y)ξ ≤ CMξ for all T ∈ T , x, y ∈ R

d and
ξ ∈ Lq(Re), which follows directly from [18, Theorem 9.1.9].

• Corollary 3.5 holds more generally for UMD Banach function spaces
X such that the Hardy-Littlewood maximal operator is bounded on
both X and X∗ (see [10, Theorem 4.6]). For example the variable

Lebesgue spaces Lp(·) satisfy this assumption if p+, p− ∈ (1,∞) and
p(·) satisfies a certain continuity condition, see [9, 35].

• The conclusion of Corollary 3.5 also holds for X(v) for all v ∈ ApX
where pX is the lower Boyd index of X and X(v) is a weighted
version of X, see [11, Theorem 2.1].
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of Rubio de Francia, volume 215 of Operator Theory: Advances and Applications.
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