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Summary 
 

The role of Thermal-Hydro-Mechanical-Compositional analysis in the development of geo-

energy resources has been amplified in recent years. As an example, challenges such as wellbore 

stability, land subsidence and induced seismicity highlight the necessity for comprehensive 

geomechanical evaluations which are then coupled with thermo-hydrodynamical processes 

within the reservoir. Numerical simulations of the coupled thermo-poromechanical processes 

provide a general-purpose tool capable of performing these evaluations at both continuum 

laboratory and field scales. However, efficient integration of the coupled system of fluid mass, 

energy and momentum conservation equations poses multiple numerical and implementation 

difficulties, such as combining different numerical methods on staggered grids and associated 

limitations on admissible grids.  

 

This paper introduces a new fully-implicit scheme of the Finite Volume Method (FVM) for 

modeling thermal compositional flow in thermo-poroelastic rocks. The scheme uses the gradient-

based variant of coupled multi-point approximations of fluid mass,  momentum, heat convection 

and conduction fluxes, which are derived from their respective local balances. The novelty of the 

scheme is that it incorporates temperature into the approximation of these fluxes. Consequently, 

the approximation of displacement gradients depends on temperatures, while the approximation 

of temperature itself is derived from the balance of heat conduction fluxes. At the same time, we 

utilize a single-point upstream weighting for the temperature-dependent terms in heat convection 

fluxes. The resulting scheme respects the local balance of fluxes in the presence of temperature 

gradients. Besides, it also supports star-shaped and various boundary conditions. Overall, the 

scheme represents a unified FVM-based approach for the integration of all conservation laws 

relevant to geo-energy applications on a cell-centered collocated grid. Furthermore, the 

implemented two-stage block-partitioned preconditioning strategy enables the efficient solution 

of obtained linear systems. The proposed modeling framework has been implemented in an 

open-source Delft Advanced Research Terra Simulator (DARTS). Moreover, the flexibility 

regarding compositional fluid properties is reinforced by the Operator-Based Linearization 

(OBL) technique incorporated into DARTS.  

 

The proposed modeling framework has undergone rigorous validation in convergence study, and 

comparisons against established analytical and numerical solutions. The framework covers 

advanced physical phenomena including thermal expansion and contraction, porosity dependent 

on pressure, temperature and strain, and multiphase flow with phase changes and chemical 

alterations. The framework capabilities and the performance of the preconditioning strategy have 

been assessed in the mechanical extension of the 10th SPE Comparative study (SPE10) model. 



Introduction

Geomechanics is crucial for the safe and optimal operation of modern geo-energy applications (Zoback,
2007). Changes in subsurface conditions (e.g., pressure depletion in gas production) often cause subsi-
dence, can initiate induced seismicity, and cause serious damages to surface infrastructures (Buijze et al.,
2020; Pluymakers et al., 2023). In geothermal operations, the re-injection of cooler fluid causes stress
and strain changes that can potentially (re-)activate faults and lead to induced seismic activity (Ellsworth
et al., 2019; Schultz et al., 2022). The development of CO2 geological storage involves a complex inter-
action of thermal, hydraulic, mechanical, and chemical processes which collectively change the in-situ
stress state, affect fault stability, and can lead to fault activation, CO2 leakage and seismicity (Rohmer
et al., 2016; Cheng et al., 2023). Therefore, the successful and risk-free exploitation of subsurface re-
sources depends on the development of robust and efficient computational techniques for modeling the
coupled geomechanics and hydrothermal processes.

The Finite Volume Method (FVM) has recently been seen as a promissing technique for modeling of
geomechanics, especially when mechanical interactions are modeled in a fully coupled manner with
the flow and transport of mass and energy. The FVM is attractive because it represents an integral
form of conservation laws. Recent literature highlights its development for geomechanical simulations
with both staggered (Deb and Jenny, 2017a; Sokolova et al., 2019; Shokrollahzadeh Behbahani et al.,
2022) and collocated grids (Nordbotten, 2014; Terekhov and Tchelepi, 2020; Novikov et al., 2022). The
advantages of FVM include the local preservation of momentum balance, discontinuous basis functions,
and seamless integration with fluid mass and energy balance solvers.

Coupling different physics within thermal-hydraulic-mechanical-compositional (THMC) simulations is
challenging. Some authors (Deb and Jenny, 2017b; Garipov et al., 2018) use fixed-stress splitting algo-
rithms (Settari and Mourits, 1998; Kim et al., 2011) to decouple mechanics and flow equations. These
are a form of sequential implicit (SI) solution scheme and often lead to more efficient simulations than
a fully implicit (FI) approach. However, sequential schemes introduce certain restrictions on time step
sizes. On the other hand, FI schemes (Sokolova et al., 2019; Garipov et al., 2016, 2018) provide uncondi-
tionally convergent solutions and are often more robust and convenient approaches for the investigation
of complex multiphysics problems. When comparing FI and SI approaches designed using the most
efficient numerical techniques (e.g., proper linear preconditioning), the FI approach often outperforms
the SI approach in the context of coupled thermo-compositional-mechanics simulation (Garipov et al.,
2018).

Although the FI approach does not impose any restriction on time step size, it requires efficient nonlinear
and linear solution strategies for high-resolution models. One such strategy is to construct a precondi-
tioner based on the idea of the SI approach. In White et al. (2016), the authors employ a fixed-stress
splitting concept in a sparse approximation of the Schur complement to obtain a block-preconditioned
solution strategy. Later this approach was combined with a constrained pressure residual (CPR) precon-
ditioner to construct a robust and effective solution strategy for coupled multiphase flow and mechanics
(Klevtsov et al., 2016; White et al., 2019).

In this study, we present a novel cell-centered collocated FI multi-point FVM scheme for THMC sim-
ulation of subsurface reservoirs. It treats mass, energy, and momentum fluxes in a unified vector form
within the framework of FVM, resulting in a simplified formulation. The framework can be used to
resolve the coupled THMC processes in arbitrarily anisotropic thermoporoelastic rocks on unstructured
polyhedral grids with a minimum number of degrees of freedom per cell. It is also capable of han-
dling material heterogeneities while preserving mass, energy and momentum balances. The framework
supports multiphase compositional fluid physics, including phase equilibrium and chemical reactions
resolved through operator-based linearization (Khait and Voskov, 2017). To further enhance the scal-
ability of the framework, a block-partitioned preconditioning strategy is implemented. The developed
computational capabilities are verified in benchmarks.

These methods are implemented in the open-source Delft Advanced Research Terra Simulator (open-
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DARTS) (Voskov et al., 2023). open-DARTS is a scalable parallel simulator, which has been success-
fully applied to the modeling of hydrocarbon (Khait and Voskov, 2018a; Lyu et al., 2021a), geothermal
(Khait and Voskov, 2018b; Wang et al., 2020), CO2 sequestration (Kala and Voskov, 2020; Lyu et al.,
2021b) applications, as well as evaluating potential to fault reactivation and seismicity (Novikov et al.,
2022; Novikov, 2024). This study further extends the coupling between geomechanical modeling and
the advanced hydro-thermal modeling capabilities of open-DARTS, making it a fully coupled THMC
simulator for complex geo-energy applications.

Governing Equations

Continuous formulation

The system of various conservation laws governs the thermohydromechanical response of porous rock
saturated by compositional fluid flow. It includes the mass balances of fluid components i = 1, . . . ,nc,
the energy balance and the momentum balance (Coussy, 2003) that can be written as

∂

∂ t

(
φ

np

∑
α

xiα sα ρα

)
+∇ ·

(
np

∑
α

xiα ραqqq(f)α

)
−

np

∑
α

xiα ρα rα = 0, i = 1, . . . ,nc, (1)

∂

∂ t

(
(1−φ)ρsUs +φ

np

∑
α

sα ρα Uα

)
+∇ ·

(
np

∑
α

(
ρα hαqqq(f)α +φsαqqq(θ)α

)
+(1−φ)qqq(θ)s

)
−

np

∑
α

ρα hα rα = 0, (2)

−∇ ·σσσ −

(
(1−φ)ρs +φ

np

∑
α

sα ρα

)
g∇z = 0, (3)

where subscripts s,α denote rock matrix and fluid phases 1, . . . ,np respectively, φ is porosity, xiα are
compositions, sα are phase saturations, ρα are phase densities, qqq(f)α are Darcy’s phase velocities, rα are
phase source terms, Us,Uα are the internal energies of rock matrix and fluid phases respectively, hα are
phase enthalpies, qqq(θ)s and qqq(θ)α are the vectors of heat conduction fluxes in rock matrix s and in fluid
phase α correspondingly, σσσ is the rank-two total Couchy’s stress tensor, ρs is the density of rock matrix,
g is the gravitational acceleration, z is depth.

The balance laws in Eqs. (1)-(3) are subjected to the following constitutive relationships (Coussy, 2003;
Zhao and Borja, 2020)

qqq(f)α =−krαKKK
µα

(∇p−ρα g∇z) , (4)

qqq(θ)α =−ΛΛΛα ∇T, (5)

φ −φ0 =
(ψ −φ0)(1−ψ)

Ks
(p−p0)+BBB : ∇

s(uuu−uuu0)+αφ (T−T0), (6)

σσσ −σσσ0 = C : ∇
s (uuu−uuu0)− (p−p0)BBB− (T−T0)AAA, (7)

ρα = ρα(p,T,xiα), µα = µα(p,T,xiα), hα = cα(T−T0), Uα = hα − p
ρα

, (8)

Us = cs(T−T0), (9)
ϕiα(p,T,xiα)−ϕiβ (p,T,xiβ ) = 0, ∀α ̸= β = 1, . . . ,np, i = 1, . . . ,nc,

np

∑
α

sα = 1,
nc

∑
i

xiα = 1, α = 1, . . . ,np, (10)

where krα are relative phase permeabilities, KKK is the rank-two permeability tensor, p is pore pressure, µα

are phase viscosities, ΛΛΛs and ΛΛΛα are the rank-two heat conduction tensors of rock matrix and fluid phases
respectively, ∇suuu=(∇uuu+(∇uuu)T )/2 is the matrix of symmetric gradients of displacements, BBB is the rank-
two tensor of Biot’s coefficients (Coussy, 2003; Zhao and Borja, 2020; Cheng, 1997), ψ = I1(BBB)/3
is one-third of the first invariant of BBB, Ks is rock matrix drained bulk modulus, αφ is the volumetric
coefficient of rock matrix thermal dilation, C is the rank-four drained stiffness tensor, AAA is the rank-two
rock matrix thermal dilation tensor, uuu is a vector of displacements, cs and cα are constant-pressure heat
capacities of rock matrix and fluid phases correspondingly, ϕiα is the fugacity of component i in phase
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α , and the subscript 0 denotes the reference state of a variable, i.e.,

σσσ0 =σσσ(uuu0,p0,T0), φ0 = φ(uuu0,p0,T0). (11)

Eqs. (4) and (5) represent Darcy’s and Fourier’s laws that define fluid and heat conduction fluxes caused
by spatial variation of pore pressure and temperature respectively, Eqs. (6) and (7) represent porosity
and stress changes in anisotropic thermoporoelastic media under the assumption of infinitesimal strains,
the fluid properties, i.e density, viscosity, enthalpy and internal energy are defined in Eq. (8) while
rock matrix internal energy is specified in Eq. (9), the distribution of components between fluid phases
is evaluated from thermodynamic equilibrium written in Eq. (10). We do not consider the effect of
capillary forces between fluid phases neither in the Darcy’s law in Eq. (4) nor in the phase equilibrium
in Eq. (10). All variables have been listed in the Nomenclature section at the end of the paper.

The projection of stress tensor σσσ to an interface with unit normal vector nnn is called total traction vector
fff and defined as

fff =−σσσnnn, (12)

where the negative sign is motivated by the sign of the corresponding term in the momentum balance in
Eq. (3). Traction vector can be decomposed into normal fN and tangential components fffT as

fff = fNnnn+fffT , fN =−nnnT
σσσnnn, fffT = (III−nnnnnnT )fff, (13)

where −fN and |fffT | are called normal and shear stresses, respectively and III is an identity matrix.

For the system of balance laws in Eqs. (1)-(3) and constitutive relationships in Eqs. (4)-(10) we consider
boundary conditions in the following form

αppb +βp (KKKnnn · (∇p−ρfg∇z))b = γp, (14)
αθ Tb +βθ (ΛΛΛnnn ·∇T)b = γθ , (15)

nnnT (αnuuub +βnfffb) = γn, (16)
(III−nnnnnnT )(αtuuub +βtfffb) = γγγ t , (17)

where subscript b denotes the property evaluated at the boundary, αp,βp, αθ ,βθ , αn,βn and αt ,βt are
coefficients that determine the particular kind of boundary conditions, while γp,γθ ,γn and γγγ t represent
the values the corresponding conditions are assigned to, ρf stands for the effective density of fluid flux
estimated as

ρf =
np

∑
α

sαρα . (18)

Additionally, Eq. (14) defines the boundary condition for fluid mass balance, Eq. (15) specifies the
boundary condition for energy balance, Eqs. (16), (17) represent normal and tangential boundary con-
ditions for the momentum balance respectively

Eqs. (14)-(17) describe a broad range of possible boundary conditions, including

• Dirichlet for mechanics (αn = αt = 1, βn = βt = 0),

• distributed force loading (αn = αt = 0, βn = βt = 1),

• free boundary (αn = αt = γn = 0, βn = βt = 1, γγγ t = 0), and

• roller conditions (αn = βt = 1, βn = γn = αt = 0, γγγ t = 000) for mechanics; and

• Dirichlet (αp = αθ = 1, βp = βθ = 0) and

• Neumann (αp = αθ = 0, βp = βθ = 1) conditions for flow and energy.
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Eqs. (1)-(3) with substituted Eqs. (4)-(10) represent a system of nc + 4 equations with respect to un-
known pressure p, compositions xiα , temperature T and displacements uuu. The problem definition is
further refined by incorporating boundary conditions as specified in Eqs. (14)-(17), along with the initial
values assigned to the unknown variables.

Discrete formulation

Finite Volume scheme for the system of partial differential equations (1)-(3) can be written in the fol-
lowing residual form

Hn+1
j =

 Hm
He

Hmom

n+1

j

=Vj

an+1
i −an

i −∆tnrn+1
i

an+1
e −an

e −∆tnrn+1
e

rrrn+1
mom

+ ∑
β∈∂Vj

δβ

∆tnfn+1
i,β

∆tnfn+1
e,β

fffn+1
β

= 0, (19)

where

an+1
i =

(
φ

np

∑
α

xiαsαρα

)n+1

j

, rn+1
i =

(
np

∑
α

xiαρα rα

)n+1

j

,

an+1
e =

(
(1−φ)ρsUs +φ

np

∑
α

ραUα

)n+1

j

, rn+1
e =

(
np

∑
α

ραhα rα

)n+1

j

,

rrrn+1
mom =−

(
(1−φ)ρs +φ

np

∑
α

sαρα

)n+1

j

g∇z,

fn+1
i,β =

np

∑
α

(
xiαραkrα µ

−1
α q(f),n+1

α,β

)
,

fn+1
e,β =

np

∑
α

(
(hαρα)

n+1
u q(f),n+1

α,β −φ
n+1
j sn+1

α,u q(θ),n+1
α,β − (1−φ

n+1
j )q(θ),n+1

s,β

)
.

Additionally, Hm,He and Hmom denote the residuals of the mass balances of fluid components, energy
balance and momentum balance respectively, written for cell j; terms a,r and f stand for accumulation,
source and flux terms, respectively. Furthermore, Vj is the volume of a cell j, ∆tn is n-th timestep,
subscript j denotes the properties evaluated at the center of corresponding cell, subscript β denotes
the properties approximated at the center of corresponding interface, subscript u denotes the upwind
approximation, supercripts n and n+1 denote the current and the next time layers respectively, δβ is the
surface of interface β . Besides, we use the following notations

q(f)
α,β =−(KKKnnn · (∇p−ρα g∇z))

β
, q(θ)

β
=−(ΛΛΛnnn ·∇T)

β
, (20)

where q(f)α is the Darcy’s flux from Eq. (4), q(θ)α is the Fourier’s heat conduction flux from Eq. (5).

Moreover, we approximate porosity defined in Eq. (6) as

φ
n+1
j =

[
φ0 +

(ψ −φ0)(1−ψ)

Ks
(p−p0)+αφ (T−T0)

]n+1

j
+

1
Vj

∑
β∈∂V j

δβ

(
q̃n+1

β
− q̃n

β

)
. (21)

where the flux q̃β is defined as
q̃β =

(
uuuβ −uuu j

)
· (BBBnnn) j. (22)
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Discretization

Approximation of fluxes

Many numerical schemes of FVM rely on flux approximation. Widely exploited in reservoir engineering,
the Two-Point Flux Approximation (TPFA) is applicable for diffusive fluxes under certain constraints.
The Multi-Point Flux Approximation (MPFA) (Aavatsmark et al., 1996; Edwards and Rogers, 1998) is
not limited by those constraints but can introduce instability (Keilegavlen and Aavatsmark, 2008). Its
extension to momentum fluxes in elasticity systems is called Multi-Point Stress Approximation (Nord-
botten, 2014), which has been combined into the MPFA-MPSA approach for the coupled modeling of
poroelasticity (Nordbotten, 2016) and thermoporoelasticity (Stefansson et al., 2020, 2021) systems. To
improve the stability properties of multi-point schemes, a family of weighted schemes has been devel-
oped (Schneider et al., 2018) resulting in the evolution of nonlinear FVM schemes (Le Potier, 2005;
Terekhov et al., 2017; Tripuraneni et al., 2023).

In this work, we extend the gradient-based weighted scheme initially proposed for poroelasticity systems
(Terekhov, 2020), to thermoporoelasticity systems. For this purpose, we utilize MPFA approximation
for the approximation of heat conduction and the interpolation of temperature at the interface. At the
same time, we employ a single-point upstream (SPU) weighting for the temperature-dependent terms in
heat convection fluxes.

The approximation of fluxes can be derived from the continuity of unknowns d =
[
p, T, uuuT

]
and associ-

ated fluxes. Below we impose the continuity of Darcy’s, heat conduction and momentum fluxes which,
along with the continuity of unknowns, constitute the local problem. It can be written for the interior
interface with unit normal vector nnn and belonging to cells 1 and 2 as

dβ1 = d1 +
[
III⊗ (xβ −x1)

T ](∇⊗d1) = d2 +
[
III⊗ (xβ −x2)

T ](∇⊗d2) = dβ2, (23)
−(∇p1 −ρfg∇z) ·KKK1nnn = −(∇p2 −ρfg∇z) ·KKK2nnn, (24)

−∇T1 ·ΛΛΛ1nnn = −∇T2 ·ΛΛΛ2nnn, (25)
−
[
III⊗nnnT ]S1 (∇⊗uuu1)+pβ1BBB1nnn+Tβ1AAA1nnn = −

[
III⊗nnnT ]S2 (∇⊗uuu2)+pβ2BBB2nnn+Tβ2AAA2nnn, (26)

where d1 and d2 are unknowns at the cell centers, x1 and x2 are the positions of the cell centers, ⊗
denotes the Kronecker product, xβ denotes the center of the interface, III⊗ (xβ −x1)

T and III⊗ (xβ −x2)
T

represent 5×15 matrices constructed as

III⊗ (xβ −xi)
T =


(xβ−xi)

T

(xβ−xi)
T

(xβ−xi)
T

(xβ−xi)
T

(xβ−xi)
T

, i = 1,2,

III⊗nnnT stands for 3×9 matrix constructed in a similar way, ∇⊗d1, ∇⊗d2 and ∇⊗uuu1, ∇⊗uuu2 are 15×1
and 9×1 vectors respectively, constructed as

∇⊗di =

 ∇p
∇T

∇⊗uuu


i

=


∇p
∇T
∇ux
∇uy
∇uz


i

, i = 1,2, (27)

where [uxuyuz]
T are the components of displacement vector uuu, S1 = ΓΓΓC1ΓΓΓT , S2 = ΓΓΓC2ΓΓΓT are 9 × 9

matrices where C denotes a 6×6 symmetric stiffness matrix in Voigt notation and

ΓΓΓ
T =

 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

.
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Flux balances in Eqs. (24), (25) and (26) stem from Darcy’s, Fourier’s and momentum fluxes in Eqs.
(19). While the last one takes into account all contributions to total momentum flux, the local balance of
flux mass in Eq. (24) neglects the fluxes caused by matrix movement and molecular diffusion. Addition-
ally, the local balance of energy in Eq. (25) neglects heat convection fluxes. However, the conservation
of Darcy’s fluxes in Eq. (24) and the use of SPU approximation for advection (mobility) multipliers can
guarantee the sufficiency of Eq. (25) for the conservation of cumulative heat convection and conduction
flux.

It is clearly seen from Eqs. (23)-(26) that the local problem can be split into three subproblems: fluid
mass, heat and momentum. The fluid mass and heat subproblems are completely independent while the
momentum subproblem depends on them. Therefore, we first consider the necessary approximations
derived from the fluid mass and heat subproblems.

For the derivation of MPFA approximation of Darcy’s and Fourier’s fluxes, pressure and temperature
interpolations we employ the co-normal decomposition and gradient-based approach (Terekhov et al.,
2017). The co-normal decomposition implies the split of vectors KKKnnn, ΛΛΛnnn and gradients ∇p,∇T into nor-
mal and tangential projections with respect to an interface. The gradient-based approach evaluates the
approximations in a two-stage procedure. In the first stage, it reconstructs the gradients of unknowns
∇p,∇T from local problems in Eqs. (23), (24) and Eqs. (23), (25), respectively. In the second stage, it
substitutes the approximations of gradients obtained in the first stage into the necessary MPFA approxi-
mations or interpolations of unknowns.

The same approach is utilized for the multi-point approximation of momentum fluxes, i.e. tractions, and
for the interpolation of displacements. We use the co-normal decomposition of

[
III⊗nnnT

]
S and gradients

∇⊗uuu. In the first stage, we reconstruct gradients while in the second stage, we assemble all necessary
approximations.

The approximations of fluxes at boundary interfaces must satisfy corresponding boundary conditions
defined in Eqs. (14)-(17). They replace the local problem, which we use for interior interfaces, and allow
meaningful flux approximations to be derived at the domain’s boundaries. We employ the single-side
approximations from the left-hand side of Eqs. (23)-(26). Their substitution to the boundary conditions
allows us to derive corresponding equations for gradient reconstruction, multi-point approximation and
interpolation.

Reconstruction of gradients

The reconstruction of pressure and temperature gradients can be performed independently. Bringing
together the equations with respect to pressure and temperature gradients for N considered interfaces of
the j-th cell, we build up the independent systems

Mp
j ∇p j = Dp

j ψψψ
p
j , Mθ

j ∇T j = Dθ
j ψψψ

θ
j , (28)

where Mp
j and Mθ

j are N×3 matrices and Dp
j and Dθ

j are N× (N+1) matrices of coefficients in front of
the corresponding unknowns at the right-hand side, while ψψψ

p
j and ψψψθ

j are (N + 1)× 1 vectors of N + 1
unknowns or free terms in the right-hand side of boundary equations.

The solution of Eqs. (28) can be obtained in a least-squares sense as

∇p j = (MpT
j Mp

j )
−1MpT

j Dp
j ψψψ

p
i , ∇T j = (MθT

j Mθ
j )

−1MθT
j Dθ

j ψψψ
θ
i . (29)

The reconstruction of displacement gradients depends on pressure and temperature gradients. Thus,
we evaluate pressure and temperature gradients in all cells first and, subsequently, substitute them into
the reconstruction of displacement gradients. We employ the same approach for the reconstruction of
displacement gradients, i.e. assemble N equations into the system

Mu
j (∇⊗uuu j) = Du

jψψψ
u
j , (30)
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for every j-th cell, where Mu
j is a 3N ×9 matrix, and Du

j is 3N ×5(N +1) matrix of coefficients in front
of the corresponding unknowns at the right-hand side, while ψψψu

j is 5(N + 1)× 1 vectors of 5(N + 1)
unknowns or free terms in the right-hand side of boundary equations. The least-squares solution of the
system in Eq. (30) is

∇⊗uuu j = (MuT
j Mu

j)
−1MuT

j Du
jψψψ

u
i . (31)

The flux approximations and interpolations depend on the tangential projections ξξξ τ of pressure, tem-
perature and displacement gradients evaluated at the interface. For boundary interfaces, we employ
a single-side approximation of those gradients, i.e. ξξξ τ = ξξξ 1τ . For interior interfaces, we utilize the
following weighting

ξξξ τ =
ξξξ τ1 +ξξξ τ2

2
, (32)

A set of cells that contribute to the approximation Eq. (32) for each interface of some cell j is illustrated
in Fig. 1.

Figure 1: Cells that contribute to the approximation of fluxes over the interfaces of cell i. Index j
denotes the nearest neighbors of cell i. Index k denotes farther neighbors that contribute to the gradients
reconstructed in cells j.

It is worth mentioning that the least squares solution in Eq. (29) allows computing the gradients of
unknowns locally and independently for every cell. Note, however, that it does not guarantee the local
conservation property for the scheme. In order to maintain it, individual gradients for every interface
that respects the corresponding flux balance should be employed.

Solution strategy

Solving the system of nc + 4 nonlinear discrete equations written in Eq. (19) involves significant com-
putational challenges. We utilize Newton-Raphson iterations to resolve nonlinearities. Linear systems
appearing in these iterations can not be efficiently handled with direct solvers already for grids comprised
of 104 cells. Therefore, the scalable iterative linear solution strategy is required for the integration of
realistic models (≳ 104 cells).

In this work, we implement the two-stage block-partitioned preconditioning strategy for multiphase
poromechanics (White et al., 2019). The strategy exploits the fixed-stress approximation, which has
been initially developed for the sequential solution of poromechanical systems (Kim et al., 2011), and
later has been successfully utilized in the preconditioning of fully implicit systems (White et al., 2016).
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In the first stage, this preconditioning strategy considers the block-partitioned system

U−1Jδδδd =

III 0 −JpuJ−1
uu

0 III −JsuJ−1
uu

0 0 III

Jpp Jps Jpu
Jsp Jss Jsu
Jup Jus Juu

δδδp
δδδ s
δδδuuu

=

=

 Sps
0
0

Jup Jus Juu

δδδp
δδδ s
δδδuuu

=−

Hp −JpuJ−1
uu Hu

Hs −JsuJ−1
uu Hu

Hu

 , (33)

where J is the Jacobian matrix, δδδd = [δδδp,δδδ s,δδδuuu]T is the vector of unknown increments of pressures,
compositions (and temperature for non-isothermal systems) and displacements while Hp,Hs and Hu are
the residuals in corresponding equations. The Schur complement Sps of block Juu in the Jacobian is
equal to

Sps =

[
Jpp −JpuJ−1

uu Jup Jps −JpuJ−1
uu Jus

Jsp −JsuJ−1
uu Jup Jss −JsuJ−1

uu Jus

]
, (34)

and can be approximated by S̃ps defined as

S̃ps =

[
Jpp −diag

(
JpuJ−1

uu Jupe
)

Jps
Jsp −diag

(
JsuJ−1

uu Jupe
)

Jss

]
, (35)

where row-sum lumping strategy is utilized (Klevtsov et al., 2016), e = [1, · · · ,1]T is a probing vector
and diag() denotes a diagonal matrix constructed from an input vector. For the evaluation of J−1

uu we use
a single V-cycle of algebraic multigrid (AMG) solver that provides a good approximation to this matrix.

In the second stage, the Constrained Pressure Residual (CPR) preconditioner (Wallis et al., 1985; Cao
et al., 2005) can be used to find an approximate solution for the multiphase flow system. CPR precon-
ditioner also performs in two stages. In the first stage, the system is divided into pressure (elliptic) and
composition (hyperbolic) subsystems with True-IMPES (implicit-pressure explicit-saturation) reduction
algorithm (K. Aziz, 1979). The pressure subsystem is solved with an AMG solver and often a single V-
cycle provides a precise enough solution. In the second stage of the CPR preconditioner, the multiphase
flow system with substituted pressure solution is subjected to the Incomplete LU (ILU) preconditioner.
The described CPR preconditioner has proven to be robust and efficient in accelerating the modeling
of a wide range of geo-energy applications (Cao et al., 2005; Khait et al., 2020) Further improvement
of CPR preconditioner in the presence of heat conduction is possible (Roy et al., 2020; Cremon et al.,
2024).

Results

Convergence study

Convergence study of the system of Eqs. (1)-(3) is complicated by a few nonlinearities. First, it is
possible to investigate convergence only for single-phase slightly compressible flow as multiphase com-
positional flow introduces unavoidable nonlinearities compromising the measurement of convergence
rate. Second, the effective density, internal energy and heat conduction averaged over fluid and rock
matrix introduce additional nonlinearities in the system. For this study, we simplify these terms as

(1−φ)ρs +φ

np

∑
α

sαρα → ρtot, (36)

(1−φ)ρsUs +φ

np

∑
α

sαραUs → htot = cT, (37)

(1−φ)qqq(θ)s +
np

∑
α

φsαqqq(θ)α → qqq(θ)tot =−ΛΛΛ∇T, (38)
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where ρtot is a constant, htot and the approximated qqq(θ)tot are linear functions of unknowns, with constant
heat capacity c and heat conductivity tensor ΛΛΛ. Note that Eq. (37) neglects the thermoporoelastic effect
on temperature through porosity changes with alternating pressure and temperature.

Despite these simplifications, the heat convection in Eq. (2) maintains the system nonlinear. To over-
come this nonlinearity, we perform two convergence studies: the first one investigates the convergence
of a poroelastic system without energy balance while the second, thermoporoelastic, one considers a
linear pressure distribution which allows the convergence of the system to be estimated in the pres-
ence of heat convection. The linearity-preserving property of these numerical schemes (Terekhov, 2020;
Novikov et al., 2022) enables the machine-precision approximation of linearly distributed unknowns
across a domain. As a result, Darcy’s fluxes enjoy a much more accurate approximation compared to
the enthalpy multiplier defined by nonlinearly distributed temperature across the domain. This explains
the possibility of measuring the convergence rate in the second study.

Consider a cubic domain Ω = [0,1]3 [m] with the following constant stiffness matrix C, Biot tensor BBB,
permeability tensor KKK, thermal dilation tensor AAA and heat conductivity tensor ΛΛΛ:

C =


1.323 0.0726 0.263 0.108 −0.08 −0.239

0.0726 1.276 −0.318 0.383 0.108 0.501
0.263 −0.318 0.943 −0.183 0.146 0.182
0.108 0.383 −0.183 1.517 −0.0127 −0.304
−0.08 0.108 0.146 −0.0127 1.209 −0.326

−0.239 0.501 0.182 −0.304 −0.326 1.373

[bar], (39)

BBB =
[

1.5 0.1 0.5
0.1 1.5 0.15
0.5 0.15 1.5

]
, KKK =

[
1.5 0.5 0.35
0.5 1.5 0.45

0.35 0.45 1.5

]
[mD], (40)

AAA =
[

1.5 0.5 0.35
0.5 1.5 0.45

0.35 0.45 1.5

]
[barK−1], ΛΛΛ = α

[
1.5 0.1 0.5
0.1 1.5 0.15
0.5 0.15 1.5

]
[Jd−1 m−1 K−1], (41)

where α denotes an input parameter used to measure the convergence rate for various Peclet numbers.
The remaining properties are listed in Tab. 1.

Table 1: The remaining properties used in the convergence studies.

Property Value Unit

Porosity, φ0 0.1 -
Fluid density, ρf 978 kgm−3

Fluid viscosity, µf 0.01 cP
Fluid compressibility, βf 0 bar−1

Total density, ρtot 2482.8 kgm−3

Rock compressibility, βs 1.4503768×10−6 bar−1

Gravitational acceleration, g 0.0981 md−2

Heat capacity, c 1 kJm−3 K−1

Let us consider the reference solution for displacements defined as

u(x,y,z, t) =
[
(x−0.5)2 − y− z

]
(1+ t2),

v(x,y,z, t) =
[
(y−0.5)2 − x− z

]
(1+ t2),

w(x,y,z, t) =
[
(z−0.5)2 − x− y

]
(1+ t2). (42)

Additionally, let us define the following nonlinear function

f (x,y,z, t) =
1

2sin(1)
sin((1− x)(1− y)(1− z))+0.5(1− x)3(1− y)2(1− z)(1+ t2). (43)
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(a) cubic grid (b) tetrahedral grid

Figure 2: The L2 error norm against space-time resolution obtained with cubic (a) and tetrahedral (a)
grids.

In the first convergence study, we estimate the convergence rate for the poroelastic system. For this
purpose we utilize the function from Eq. (43) as a pressure reference solution, i.e. p = f . Neither energy
balance nor thermal dilation are considered in this study. Subsequently, the reference displacement and
pressure solutions are substituted to fluid mass and momentum balance Eqs. (1) and (3); and the respec-
tive right-hand sides of these equations are calculated for every cell at every time step. These values
are substituted to the numerical scheme as free terms. Besides, the reference solution defines Dirich-
let boundary conditions, applied to fluid and momentum balance equations. As a result, the numerical
scheme must approximate the given reference solution.

Fig. 2 demonstrates the L2 error norms between reference p,uuu and numerical ph,uuuh solutions against
spatiotemporal resolution. The results are obtained with a series of cubic and tetrahedral grids composed
of 82, 83, 84, 85 cubes and 100, 384, 2604, 18921 tetrahedrons, respectively. As it was shown before
(Terekhov, 2020; Novikov et al., 2022), displacements demonstrate a nearly quadratic convergence rate
while pressure, which suffers from the first-order approximation of time derivatives, exhibits only a
super-linear convergence rate. Additionally, Fig. 2 illustrates a linear convergence rate of Darcy’s
velocities q(f)h and stress tensors σσσh reconstructed at cell centers.

In the second convergence study, we estimate the convergence rate for the thermoporoelastic system. To
avoid the nonlinearity of convective fluxes in energy balance, we employ the following time-independent
reference solution for pressure

p(x,y,z, t) = 3− x− y− z, (44)

which represents a linear function in space. Temperature is defined by the reference solution from Eq.
(43), i.e. T = f while the reference solutions for displacements remain the one defined in Eq. (42).
Following the same procedure as in the first study, we incorporate these reference solutions into the
numerical calculations.

Thermoporoelastic extension of SPE10 model

This field-scale test case utilizes a reservoir model from the 10th SPE Comparative Solution Project
(SPE10). Following Garipov et al. (2018), we extend this model with mechanical properties to perform
coupled THMC modeling.
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(a) cubic grid (b) tetrahedral grid

Figure 3: The sensitivity of numerical convergence rate to the Peclet number of heat transfer investigated
with cubic (a) and tetrahedral (a) grids.

Figure 4: Young modulus (in tens of GPa) and lateral permeability (in mD) fields shown from the top
(top row) and from the bottom (bottom row) of reservoir. Young’s modulus is calculated as a linear
function of porosity.

The original project’s model is covered with a regular Cartesian 60 × 220 × 85 grid that spans two
formations: the top 50 layers have a channelized permeability distribution while the bottom 35 layers
represent a permeability field that has a Gaussian spatial covariance. Mechanical properties are defined
by heterogeneous Young’s modulus linearly dependent on porosity, uniform Poisson’s ratio ν = 0.2,
Biot’s coefficient b = 1, thermal expansion coefficient α = 9 · 10−7◦C−1. The reservoir has a uniform
rock density ρs = 2650kgm−3, rock heat capacity cs = 2.2kJkg−1 ◦C−1 and effective heat conductivity
λ0 = 72.23kJm−1 d−1 ◦C−1. Fig. 4 shows the corresponding Young’s modulus E and x-axis permeability
kx maps. For the scalability study, we coarsened the original model using a volume-averaging approach
(Garipov et al., 2018). The domain is subjected to impermeable boundary conditions and constant
temperature defined by the temperature at top Ttop = 26.85 ◦C and bottom Tbot = 76.85 ◦C of domain
distributed between according to a constant geothermal gradient. Furthermore, we apply roller boundary
conditions at all domain’s sides except the top boundary where we apply a uniform normal load ftop

N =
90MPa.

In this study, we examine three fluid physics: single-phase, two-phase and thermal two-phase. Tab. 2
list parameters which describe single-phase and thermal two-phase fluid physics. For the isothermal
two-phase fluid physics, thermal properties should be omitted.

We model the THMC reservoir response perturbed by the doublet of injection and production wells
placed over the longest centerline (along the y-axis) as shown in the top-left of Fig. 4. The vertical wells
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Table 2: The description of fluid physics used in the study.

Property Single-phase Two-phase

Phase densities, kgm−3 666.85 1014, 50
Phase compressibilities, bar−1 1.45 ·10−5 10−5, 5 ·10−3

Phase viscosities, cP 1.0 0.3, 0.03
Connate water saturations – 0.1, 0.1
Residual gas saturation – 0.1, 0.1
Corey exponent – 2
Phase heat capacities, kJkg−1 ◦C−1 – 4.18, 0.035
Initial phase saturation 1 0.67, 0.33

perforate the whole thickness of the reservoir. Pressure controls pin j = pmax +50bar and pprod = pmin −
50bar are applied to the wells, respectively, where pmax and pmin are maximal and minimal unperturbed
pressures over perforated cells. In all variants of fluid physics, single-phase fluid is pumped into the
reservoir through the injection well. In the case of two-phase thermal fluid, specifically, pure water of
temperature Tinj = 27.85 ◦C is injected. The simulation is performed up to tmax = 20d.

Figure 5: Solution profiles for single-phase fluid plotted over the longest centerline at the top of the
reservoir (white line in the top-left of Fig. 4). The results are displayed for three different grid resolutions
and at three time steps.

Figs. 5 and 6 demonstrate solution profiles along the longest centerline of the reservoir, indicated by a
white line in the top-left of Fig. 4. This centerline passes through the top of the reservoir and is aligned
with the y-axis. Fig. 5 presents the vertical displacement and pressure obtained for single-phase fluid
while Fig. 6 additionally shows water saturation and water saturation with temperature obtained for
two-phase and thermal two-phase fluids, respectively. The results for three different grid resolutions and
at three time steps t = 0,1,20d are shown in both figures.
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(a) Two-phase fluid (b) Thermal two-phase fluid

Figure 6: Solution profiles for two-phase (a) and thermal two-phase (b) fluids plotted over the longest
centerline at the top of the reservoir (white line in the top-left of Fig. 4). The results are displayed for
three different grid resolutions and at three time steps.

The vertical displacement profiles for all three fluid types show significant differences between grid res-
olutions. The results calculated with the coarsest resolution (32k) overestimate subsidence compared to
those calculated with finer grids. This applies to both the subsidence at the initial unperturbed condition
(t = 0d) and the subsidence due to well operation (t = 20d). The major contribution to this difference
in vertical displacement can be attributed to the varying stiffness heterogeneities specified for different
grid resolutions. Additionally, this difference can be partly explained by the difference in pressures ob-
tained for different grid resolutions. Indeed, the pressure spike around the injection well is localized
in a narrower region on the finer grids compared to the coarser grid. Besides, the narrower pressure
spike around the injection well for finer grids explains the shorter propagation of water saturation and
temperature fronts.

Efficient modeling of THMC processes in realistic settings requires a scalable computational frame-
work. Figure 7 presents the results of the scalability study of the implemented block-partitioned precon-
ditioner. It shows the number of linear and nonlinear iterations needed to obtain convergent solutions
in 20 timesteps for various grid resolutions. The model heterogeneities are upscaled from the original
SPE10 dataset provided at the finest grid resolution. The results indicate a linear increase in the number
of linear iterations with increasing grid size, which suggests weak scalability of the linear solver.

For the same model runs, Fig. 8 presents the cummulative runtime of the block-partitioned precondi-
tioner. Additionally, the runtime of the setup and solve calls are specified. Both setup and solve calls are
executed at every iteration of the linear solver (GMRES). The setup call performs the approximation of
Schur complement S̃ps, including the setup of AMG preconditioners for pressure Jpp and displacement
Juu subsystems. Note, that under linear thermo-poroelastic assumption and the boundary conditions of

European Conference on the Mathematics of Geological Reservoirs 2024
2–5 September 2024, Oslo, Norway



Figure 7: Scalability study of the block-partitioned preconditioner. The cumulative number of linear
(left axis) and nonlinear (right axis) iterations required to achieve convergent solutions in 20 timesteps
is plotted against multiple grid resolutions.

Figure 8: Cummulative runtime of the block-partitioned preconditioner to achieve convergent solutions
in 20 timesteps. Timings of setup and solve calls are provided.

the same type, the latter is not needed as Juu remains constant over iterations and timesteps. The solve
call performs the solution of flow and, subsequently, displacement subsystems. Although, the setup
includes redundant setup of AMG preconditioner for displacement subsystem, it constitutes a small
part (<15%) of preconditioner’s runtime. Most of the runtime is taken by solve call, specifically solve
of displacement subsystem. The increase in the preconditioner’s runtime is almost linear which again
indicates weak scalability of the preconditioner.

Heat conduction terms introduce additional elliptic terms that are not treated efficiently at the CPR stage
of the block-partitioned preconditioner. Fig. 9 demonstrates the sensitivity of solving performance to
the magnitude of heat conduction term. It shows the number of linear and nonlinear iterations needed to
obtain convergent solutions in 20 timesteps for multiple values of effective heat conduction coefficient.
The figure shows an insignificant increase in linear iterations with higher heat conduction coefficient, for
the values of heat conduction between 10−4λ0 and 102λ0. This almost flat behavior might be explained
by an already high number of iterations spent by the block-partitioned preconditioner. In the case of
extremely high heat conduction, we observe a significant increase in the number of linear iterations, as
anticipated.
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Figure 9: Sensitivity of linear (left axis) and nonlinear (right axis) iterations to the effective thermal
conductivity. Calculations are performed using 24×104×40 grid with thermal two-phase fluid physics.

Conclusion

In this paper, we have introduced a novel cell-centered collocated fully implicit scheme of the Finite Vol-
ume Method (FVM) for the coupled modeling of thermo-hydro-mechanical-compositional processes in
thermoporoelastic rocks. The scheme benefits from the vectorized form of mass, energy and momentum
fluxes, obtained with multi-point approximations, that simplifies multiphysical simulation within FVM.
Furthermore, the use of collocated FVM for momentum balance enables the natural integration of ther-
mal composition flow with geomechanics within a single computational grid and engine. Additionally,
we implemented a block-partitioned preconditioning strategy that alleviates the costs of fully implicit
coupling and enables efficient modeling of large realistic setups.

The proposed framework has been validated using a simplified version of the physics which allows us
to use an analytic convergence benchmark. We show that in the poroelastic case, the displacements
exhibit a nearly quadratic convergence rate while pressure demonstrates a super-linear convergence. In
the thermo-poroelastic case, the convergence rate changes from quadratic to lower orders depending on
the thermal Peclet number. We also demonstrate how the performance of the full multiphase THMC
model depends on the grid resolution using the mechanical extension of the SPE10 model. Future work
would include better tuning of the preconditioner, offloading assembly and solvers to GPU to further
minimize computational costs of modeling, and the support of faults with frictional contacts to enable
modeling of fault reactivation.
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Nomenclature

Physical variables

AAA – rank-two rock thermal dilation tensor,
αφ – volumetric thermal dilation coefficient related to porosity
BBB – rank-two Biot tensor,
C – rank-four stiffness tensor of skeleton,
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C – 6×6 matrix of stiffness coefficients,
cα – heat capacity of fluid phase α ,
cs – rock heat capacity,
εεε – rank-two infinitesimal strain tensor,
E – Young’s modulus,
fff – traction vector,
fN ,fffT – normal and tangential projections of traction vector,
G – shear modulus,
g – gravity constant,
h f – fluid enthalpy,
III – identity matrix,
KKK – rank-two tensor of permeability,
kx,ky,kz – diagonal components of permeability tensor,
krα – relative permeability of fluid phase f,
Kr – bulk modulus of the solid phase,
ΛΛΛ – rank-two effective heat conductivity tensor,
µα – fluid viscosity of fluid phase α ,
nnn – unit normal vector,
ν – Poisson’s ratio,
p – pore pressure,
qqq(f)α – Darcy’s velocity of fluid phase f,
qqq(θ)α – heat conduction vector fluid constituent α (fluid phase of rock),
rα – sources (or sinks) of fluid mass of phase α ,
ρα – density of constituent α ,
sα – saturation of fluid phase α ,
σσσ – rank-two total stress tensor,
T – temperature,
t – time,
U f – fluid internal energy,
Ur – rock internal energy,
uuu = [ux uy uz]

T – vector of displacements,
(∇uuu)T – Jacobian matrix of uuu,
φ – porosity,
φ̃ = φ0 +(p− p0)(ψ −φ0)/Kr,
ψ = (BBB : III)/3 – one-third of the trace of tensor BBB,
xiα – molar fraction of component i in fluid phase α ,
z – depth.

Numerical variables

∆t – time step,
δ j – area of jth interface,
H – vector of residuals,
J – Jacobian matrix,
δδδp,δδδ s, δδδuuu – unknown increments of pressures,
δδδ s – unknown increments of compositions (and temperatures for non-isothermal systems),
δδδuuu – unknown increments of displacements.
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