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Abstract

To reduce the weight of aerospace structures, composite materials are used more and more
often. These composite structures have complicated fracture patterns and the fracture prop-
erties show a large influence by the manufacturing process. This is mainly caused by the
defects that can develop during the manufacturing of the composites. To know the effect of
the defects on the fracture properties of the composite is of vital importance. This project was
carried out to determine the effect of sub-ply voids on the macroscopic fracture properties.
For this, a comprehensive parametric study on the different microscopic void parameters is
performed using a multiscale method.

The multiscale method as developed by Turteltaub et al. [53] was adapted to determine the
effect of sub-ply voids on the macroscopic fracture properties. The defects are discretely
modeled on the microscale. The microscopic information is determined using numerical simu-
lations of a 2-Dimensional (2D) volume element. A computational homogenization technique
is then applied to determine the effect of the sub-ply voids on the macroscopic fracture. The
macroscopic fracture is defined using an effective traction separation law.

The fracture in the volume element is modeled using zero thickness cohesive interface elements.
These cohesive elements are embedded between the continuum elements throughout the whole
computational domain. The volume element contains random distributed carbon fibers and
voids in an epoxy. A random mesh is applied to this volume element to reduce the mesh
dependency of the cohesive elements on the fracture. Periodic boundary conditions are applied
to ensure the volume element is part of a larger structure. This geometry and the boundary
conditions are inserted into a Abaqus R© input file. The input file is executed on the Delft
University of Technology computational cluster.

Due to the computational limitations a Microstructural Volume Element (MVE) size of 75×
75µm was used in this research. It was assumed that the trends that are found at this MVE
size are similar to that of the Representative Volume Element (RVE) size. Three different
void cases were studied. Firstly a baseline case was selected of matrix voids with nearly
constant diameter. Secondly the microstructure contained both interfiber voids, which are
gaps between fibers, and matrix voids. These gabs between fibers are created due to the
resin being unable to flow between the fibers. This case was used to determine the effect of
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the different type of voids on the effective properties. Lastly a microstructure with a large
deviation in the matrix void diameter was studied. Using this case and the constant diameter
void case, the size effect of the matrix voids was investigated.

For each void case the void content is increased from 0 to 8 %. In all three void cases for a pure
shear and mixed mode loading case, both the effective tangential fracture energy and strength
decrease with increasing void content. A critical value can be observed for these tangential
properties, at which below this critical void content no effect of the effective properties is
found. For the constraint extension case only the effective energy decreases and no critical
value is observed.

When comparing the three void cases, the effective properties were within standard deviation
of each other with increasing void content. It is concluded that the void content is the main
variable when determining the effect of sub-ply voids on the effective properties. The type of
voids and the size of the voids show to be only a second order effect on the effective properties.
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Chapter 1

Introduction

In the aerospace industry, there is an increasing interest in composite structures. As composite
materials enable significant weight savings compared to the conventional metals. This is
mainly attributed to their high specific strength and stiffness. These weight savings result in
fuel savings and thus more efficient structures and lower cost. Both Boeing and Airbus are
currently developing high end composite airplanes, with for instance the Airbus A350 XWB.
Over 50% of the complete aircraft structural weight is made of composite material. This
shows the importance of the fiber reinforced composites and their potential. The Carbon
Fiber Reinforced Plastic (CFRP) is the mainly used composite. This composite consists
of two materials, the carbon fibers and an epoxy. The combination of these two materials
exploits the strong points of each constituent. The carbon fiber ensures the strength and
stiffness of the material and the epoxy ensures the toughness, protection and support for
the fibers. Due to the combination of the two components, the failure mechanisms are more
complicated when comparing them to conventional metals. The complex failure mechanisms
are often caused by the difference in properties of the two constituents such as fiber/matrix
interface.

The properties of the composite show a large influence on the manufacturing parameters.
This is caused by the difficulty and uncertainty which is caused by manufacturing the two
constituents together. In this case, random and undesired defects can form. These defects
can range from large dry spots on the composite to microvoids in the matrix. The influence
of these defects on the macroscopic response, and especially the failure of the composite is
important to know. Currently, this is mainly determined using extensive and expensive testing
procedures. However, due to the computational possibilities of today, an increasing focus is on
the computational modeling and prediction of failure. To model the complete model with both
the macro and micro structure modeled discretely is computationally expensive and requires
multiple processes to take the fiber distribution and defects into account. The multiscale
concept couples the macro and micro structure using a homogenization technique, which
uses the effective behavior of the fine scale for the response of the larger scale. This concept
enables the development for a failure prediction based on the micromechanical behavior of the
composite. Research of advanced multiscale methods that allow fracture have been proposed.
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However, these new methods are often only able to simulate simple loading cases and defects
are often neglected.

A new multiscale approach was developed in Turteltaub et al. [53]. In this research the
Effective Traction Separation Law (ETSL) is determined from the microscale fracture using
a computational homogenization technique with a Representative Volume Element (RVE).
Using this method, there are no restrictions to the loading conditions or formation of the
crack. This thesis will apply this method and adapt it further to take microscopic defects
into account. The objective is formulated as followed:

The objective of this MSc. Thesis it to determine the influence of sub-ply defects and its pa-
rameters to a micromechanically derived Traction-Separation Law (TSL), by using multiscale
modeling with a computational homogenization technique and a cohesive zone damage model.

To complete this objective, the multiscale framework that is used contains a Cohesive Zone
Model (CZM) with embedded zero-thickness interface elements on the microscale, from which
the effective fracture properties can be determined. The microscopic analysis is using a RVE,
which definition is explained later in this thesis. The objective can be divided into four
sub-objectives:

• Create the Microstructural Volume Element (MVE), which captures the composite mi-
crostructure in the transverse plane containing the representative microvoids in a Finite
Element (FE) model

• Adapt the current multiscale method to take microvoids into account

• Determine the RVE size by using a convergence study

• Determine the ETSL properties as a function of the microvoid parameters

The structure of the reports is as follows: In Chapter 2 a comprehensive literature review is
given and the summary of the literature study [15]. Three theories that are relevant to this
project are discussed here, which are the microvoids, CZM and multiscale analysis. The theory
that is used throughout this project is presented in Chapter 3. The numerical implementation
of this theory is discussed in Chapter 4. This numerical implementation is verified and the
RVE convergence is done in Chapter 5. The results of the study on the influence of the void
parameters on the ETSL are presented and discussed in Chapter 6. Finally, the conclusion
and recommendations are presented in Chapter 7.



Chapter 2

Literature Review

In this chapter the literature review is discussed. It covers all the aspects that are of interest
for this thesis and summarizes the literature study [15]. First the defects that are present on
the sub-ply level of a fiber-reinforced composite are discussed in Section 2.1. The Cohesive
Zone Model (CZM) is elaborated on in Section 2.2. The multiscale analysis which is required
for this study is discussed in Section 2.3. Finally a conclusion of the literature is discussed in
Section 2.4.

2.1 Defects in composites

There are several types of defects present on the microscopic sub-ply level of a fiber-reinforced
composite. In this study only microvoids or porosities are evaluated and discussed. The
issue with microvoids is that they are still hard to investigate using the current experimental
methods. The two main methods used to determine properties of the microvoids are Scanning
Electron Microscope (SEM) and Micro-CT. The effect of voids on the macroscopic properties
of a fiber-reinforced composite has been extensively researched and has been established that
the voids have a large effect on the fracture properties. Although this effect is often only
found after the void content exceeds a critical value, this critical value is still a debated
value. For instance Tang et al. [51] states that the critical void content is around 3 - 4 % for
the compressive and shear properties, while Jeong [30] using a fracture mechanics approach
suggests it is 1 %.

2.1.1 Void morphology and distribution

In Figure 2.1 and Figure 2.2 examples of the microstructure of fiber reinforced composites
can be found [13, 50]. Although Figure 2.2 is a CAS/Sic-carbon composite, the voids between
the fibers are similar to that of a carbon fiber with an epoxy matrix. Another example can be
found by in Figure 2.3. Similar to Figure 2.2 voids trapped between the fibers can be found.
This is caused by the fibers blocking the resin to flow properly between the fibers [59, 57].
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The type of voids that are thus present on a microscale level are matrix voids and gaps
between the fibers, which are called interfiber voids throughout this study.

Figure 2.1: Voids found in a 0 and 90 ply using SEM image analysis. Here, the voids are white,
the fibres are gray and the matrix is black [13]

Figure 2.2: Typical micro-voids found using optical micrograph, it can be seen here that two
dominate type of voids are present: voids between fibres and voids in the matrix [50]

For a parametric determination of the void property distributions, three studies have been
used. The research of Chambers et al. [8] inspected several aerospace quality composites
using image analysis. Here, a distribution of the transverse parameters have been made. This
distribution has been divided into four different groups of void areas, as is shown in Table 2.1.
An example of type 1 and 2 voids are shown in Figure 2.4. Type 1 voids are the most common,
with around 65 % of the total void content. The contribution of the void type decreases with
increasing of size. Type 1 voids have a lower bound due to the fact that voids of a lower area
are assumed to not have an influence on the properties [8]. Although, voids of a smaller cross
sectional area are in fact present in the composite.
Not only the size was investigated in Chambers et al. [8], also the distribution of the aspect
ratio was determined as is shown in Table 2.2.
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(a) (b)

Figure 2.3: SEM image of a Glass fibre/epoxy laminate done. Here the two typical voids can be
found [56]

Table 2.1: Void areas split into groups in an uni-directional laminate [8]

Type Cross sectional area
1 8 · 10−6 < V < 0.004 mm2

2 0.004 < V < 0.01 mm2

3 0.01 < V < 0.03 mm2

4 V > 0.03 mm2

Figure 2.4: Void distribution of type 1 and type 2 in a high quality laminate [8]

The research as presented in Maragoni et al. [36] assumes that in the transverse direction,
all the voids are circular. This results in the distribution of the void properties as shown in
Figure 2.5. In this figure it can be found that the voids are ’cigar shaped’ with the ellipse
shape of the void in the longitudinal direction. It can be clearly seen that the void diameter
has a Weibull distribution.

Hamidi et al. [24] looked at the correlation between the shape of the voids and the size of the
voids. Small voids have an equivalent diameter lower than 50µm, medium voids 50 to 100µm,
and large voids above 100µm. The void shape is also dependant on the void size. Irregular
shaped voids are the most common on the small scale, with both cirular and elliptical voids
also being present.

From these three researches it can be found that there is actually no universal characterization
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Table 2.2: Distribution of aspect ratio’s independent of void content [8]

Aspect Ratio Percentage [%]
AR < 1 0 - 5

1 < AR < 2 70 - 80
2 < AR < 4 15 - 20

AR > 4 0 - 2

Figure 2.5: Void Characteristics according to Maragoni et al. [36] using a 45 degree ply

Figure 2.6: Void shape with respect to the size of the voids [24]

of the void parameters on the microscale due to the difficulty in investigating this scale. In
this research the focus will lie on the ’type 1’ voids, as presented by Chambers et al. [8], as
these are on the microscale. The focus will lie on voids with an area equal or lower to that
of the fiber present in the composite. The transverse aspect ratio is assumed to be low as is
presented by both Chambers et al. [8] and Maragoni et al. [36], resulting in a range between
1 and 1.4. The orientation of these voids are random. In aerospace graded composites a void
content below 1−2% is required, while for other applications such as the automotive industry
a void content up to 5% is acceptable [22]. In order to determine the detrimental effect of the
voids on the microscale, even higher void contents can be investigated.

2.1.2 Numerical examples

Most numerical researches have the voids models on a mesoscale. On this scale the individual
fibers are often not modeled [35, 66, 29]. The assumptions for the void characteristics made
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for these models can be useful for this study.
Lin et al. [35] uses three different parameters to model the voids: the auto-correlation length,
the roughness factor and the variance. The influence of these parameters can be found in
Figure 2.7. These three parameters enable the possibility to create completely random void
shapes. Computationally, these random shapes are difficult to model and result in very fine
meshes and hard to converge models when using conventional Finite Element Method (FEM).

(a) (b) (c)

Figure 2.7: Voids in blue, composite in Green. (a) High aspect ratio (autocorrelation length)
(b) standard settings (c) high roughness factor [35]

Other research assumed circular voids, as is for instance presented by Yu et al. [66]. It
was found that the void distribution had a effect on the material properties on the meso
scale. In Huang and Talreja [29] it was assumed that the voids are periodically distributed
in the material, resulting in the model as shown in Figure 2.8 which uses a unit cell to do a
3-Dimensional (3D) parametric study on the voids parameters.

Figure 2.8: Periodic volume cell with a void. Here, a parametric study is done on the geometry
of the void [29]

Voids on the micro structure were investigated by Vajari et al. [59, 58]. Here, both the fibers
and voids were explicitly modeled. Both studies consisted of a model that contained randomly
distributed circular matrix voids and interfiber voids, as was observed previously. The model
can be found in Figure 2.9.
This study found that the microscopic voids have a large influence on both the macroscopic
strength and propagation of damage. Small microvoids mainly have an influence on the crack
path, while large microvoids are decisive for crack initiation [59].

2.2 Cohesive zone model

The fracture mechanics that is used here is the CZM. The CZM is created to overcome some
of the issues of the Linear Elastic Fracture Mechanics (LEFM), which are discussed below.
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Figure 2.9: Voids modeled in the microscale, containing both voids in the matrix and voids
entrapped by fibres [59]

LEFM is a suitable method when the material is brittle and the fracture process zone is small
while the global bulk material behaves elastic. However, when the process zone is large, the
theory is not valid anymore. Also, when complex failure processes occur, it is difficult to do a
parametric study on this. This results in the fact that this method is not valid for this study
[46] and the CZM is suitable.

The cohesive zone model overcomes the issue at the process zone. This method can be applied
to various materials and structures and enables the combination of both the crack initiation
and propagation [17]. Another advantage is its easy incorporation in FEM. The following
section will discuss the general theory of the CZM, and its implementation in the FEM.

2.2.1 General Theory

In the classical LEFM, a crack singularity occurs near the crack tip. If the cohesive zone near
the crack tip becomes larger than the characteristic length, the assumptions of LEFM do not
hold anymore. The equation for the characteristic can be found in Equation (2.1). Here, Γ
is the fracture toughness, E is the characteristic elastic modulus. If this is thus larger than
the characteristic length, a cohesive zone can then be used to replace the singularity region
by introducing a lateral region with non-linear phenomena [2].

l∗ = EΓ
σ2
c

(2.1)

The theory of the CZM was first introduced by Dugdale [16] and Barenblatt [4]. Dugdale
[16] developed the method for materials with yielding near the crack tip and Barenblatt [4]
developed a method for brittle materials. Both use the CZM to describe the damage near
and ahead of the crack tip. Here the assumptions is that voids form ahead of the crack tip,
as is shown in Figure 2.10 at the top left [12]. This void formation ahead of the crack tip
results in that less stress can be transferred ahead of the crack tip. This traction ahead of the
crack tip is idealized using a cohesive law or Traction-Separation Law (TSL), which is shown
in the left bottom image in Figure 2.10. The TSL is explained in greater detail in the next
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section, where the shape of the TSL is different as is shown in the right side of Figure 2.10.
The numerical implementation, as shown in the middle of Figure 2.10, is discussed after the
TSL.

Figure 2.10: The basic concept of the CZM: first on the left the idealization of the real physical
problem by the cohesive zone is shown, after which the different modes in FEM models in the
middle and on the right some possible cohesive laws [12].

2.2.2 Traction Separation Laws

The TSL is the constitutive relation of the CZM and is used to describe the separation
mechanics of the CZM. Different shapes of the TSL are possible. The TSL can be divided
into potential based and non-potential based models. The non-potential based methods are
dependent on the effective displacement and are relatively simply defined. For the potential
based model the TSL is derived from the potential of the fracture energy and its derivatives.
This results in a more complicated function but does overcome some limitations of the non-
potential based models.

Another difference in the TSL is whether is it an intrinsic or extrinsic model. Here the intrinsic
models have an initial traction of zero and because of this have an initial elastic loading. The
extrinsic models have an initial traction which is non-zero.

Examples of both intrinsic and extrinsic TSLs can be found in Figure 2.11. The shape of the
TSL has to be selected to ensure the proper idealization of the damage model in front of the
crack.

A problem of the non-potential based models are that non-physical behavior can occur in
Abaqus R© since often no negative tangential stiffness within the linear softening region is
provided in the model [44]. It is advised that the traction-separation relations have to be
selected with care when dealing with mixed-mode failure.
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(a) Cubic polynomial [54] (b) Trapezoidal [55] (c) Smoothed trapezoidal [49]

(d) Exponential [41] (e) Linear softening [20, 7, 18]
(f) Bilinear softening
(extrinsic)[45, 65]

Figure 2.11: Different shape of the TSL[43]

2.2.3 Numerical Implementations

The numerical implementation of the CZM in an FEM is usually done using cohesive elements.
These cohesive elements have zero thickness and are placed between the continuum elements
[39]. The implications and influence of this are discussed below.

Cohesive Element

The cohesive element which is used for the numerical implementation of the CZM is presented
in this section. Here, the method of the cohesive element in FEM is mainly discussed. The
governing equations of the finite element formulation including the equilibrium equation,
natural and essential boundary conditions and the traction continuity are defined as [39]

∇ · σ + b = 0 x ∈ Ω (2.2a)
n · σ = t̄ x ∈ Γt (2.2b)
u = ū x ∈ Γu (2.2c)

n+
d · σ = t+c ; n−d · σ = t−c ; t+c = −tc = −t−c x ∈ Γd (2.2d)

where σ is the Cauchy stress tensor, u the displacement field and b the body force vector.
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The weak formulation of these governing equations is found as[5].

δW ext = δW int + δW coh (2.3a)

δW ext =
∫

Ω
= δu · b dΩ +

∫
Γt
δu · t̃ dΓt (2.3b)

δW int =
∫

Ω
∇sδu : σ dΩ (2.3c)

δW coh =
∫

Γd
δ[[u]] · tc dΓd (2.3d)

where [[u]] is the displacement jump of the cohesive crack. The external work is a function
of the internal work and the cohesive work. The solid that contains a cohesive crack can
be found in Figure 2.12. For the discretization of the bulk, 2-Dimensional (2D) standard
continuum elements are used. The crack is discretized using 1-Dimensional (1D) interface
elements of zero thickness. This is visualized in Figure 2.13 [38].

Figure 2.12: A 2D solid that contains a cohesive crack [39]

Figure 2.13: Discretization of the solid into continuum elements and zero-thickness interface
elements [39]
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The displacements of the interface element can be split for the nodes 1-2 (lower bound) and
node 3-4 (upper bound) and are as

u+ = N intu+ (2.4a)
u+ = N intu+ (2.4b)

where N int is the matrix of the shape functions for a 4-node element as

N int =
[
N1 0 N2 0
0 N1 0 N2

]
. (2.5)

Using the displacement of the upper and lower bound of the interface element, the displace-
ment jump of the element can be computed as

[[u]] = u+ − u− = N int
(
u+ − u−

)
. (2.6)

The displacement of the continuum elements and the virtual displacement are given by

u = Nu (2.7a)
δu = Nδu. (2.7b)

Using Equation (2.7), Equation (2.6) and substituting these equations into the weak form as
found in Equation (2.3), the relation between the forces follows as

f ext = f int + f coh (2.8)

where f ext, f int and f coh are the external, internal and cohesive force respectively. The
internal and external force are computed using the continuum elements of the bulk material,
which are denoted using the subscript xe, and can be found as

f int
e =

∫
Ωe
BTσ dΩe (2.9a)

f ext
e =

∫
Ωe
NTb dΩe +

∫
Γet
NT tdΓet . (2.9b)

For the cohesive force vector, the subscript xie is used, since the interface elements are used
to determine this force. This cohesive force is a combination of the upper and lower bound
as

f coh
ie,+ =

∫
Γd

(
N int

)T
tc dΓd (2.10a)

f coh
ie,− = −

∫
Γd

(
N int

)T
tc dΓd. (2.10b)
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It is assumed in this case, that the nonlinear process is concentrated only on the cohesive
crack and thus the bulk is a linear elastic material. The cohesive crack is modeled with a
TSL of which the constitutive equations in rate form as

σ̇ = Dε̇ (2.11a)
ṫc = T [[u̇]] (2.11b)

where D is the elasticity matrix and T is the cohesive tangent matrix, which is dependent on
the shape of the TSL, as explained previously. Then, by linearization of the internal force, as
presented in Equation (2.9a), the tangent stiffness matrix is found as

Kc =
∫

Ω
BT
c DBe dΩ. (2.12)

Substituting the displacement jump, as shown in Equation (2.6), into the constitutive equation
of the cohesive zone in Equation (2.11b), results in

ṫc = TN int
(
u̇+ − u̇−

)
. (2.13)

The traction is then transformed to the global coordinate system by

ṫc = QTQTN int
(
u̇+ − u̇−

)
(2.14)

where the tangent matrix T is transformed using the orthogonal transformation matrix as

Q =
[
n s t

]
. (2.15)

The linearization of the cohesive force, as is shown in Equation (2.10), is done by determining
the differentiation of the cohesive force of the upper and lower bound of the interface element,
resulting in

∂fcoh
ie,+
∂u

∂fcoh
ie,−
∂u

 =

∂fcoh
ie,+

∂u+
∂fcoh
ie,+

∂u−
∂fcoh
ie,−

∂u+
∂fcoh
ie,−

∂u−

[δu+

δu−

]
. (2.16)

From this the cohesive element tangent stiffness matrix can derived as

Kcoh
ie =

[ ∫
ΓdN

TQTQTN dΓd −
∫

ΓdN
TQTQTN dΓd

−
∫
ΓdN

TQTQTN dΓd
∫

ΓdN
TQTQTN dΓd

]
(2.17)
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Difference Intrinsic and Extrinsic numerical methods

The application of the intrinsic and extrinsic TSL is different due to different initial traction
value, as has been explained previously.
The intrinsic method has the cohesive elements inserted into the model before the simulation.
The TSL is always activated in the cohesive elements. The initial elastic slope of this TSL
creates an artificial compliance [67]. This artificial compliance can be a large issue when the
cohesive elements are implemented on the whole domain. The artificial compliance results in
a difference in the elastic stress waves in the continuum [38]. A solution for this is to increase
the initial elastic slope of the TSL, although this decreases the stability of the model. The
implementation of the cohesive element over the complete domain also results in the fact that
there is a large increase in Degree of Freedom (DOF), and thus computational time.
With the extrinsic method, only the softening part of the TSL is present. This ensures that no
artificial compliance is present in the model [67]. Using the extrinsic method, the cohesive law
is added to the mesh when the maximum traction is reached. This decreases the DOF of the
model, but does require an additional criterion for the elements [38]. Another disadvantage
of the extrinsic models is that there is no possibility of parallelization anymore, resulting in
a computationally expensive model.

Mesh Dependency

Often, the cohesive elements are used when the crack path is known a priori, for example
when investigating interface debonding or delamination problems. When the crack path is
unknown, the cohesive elements can be embedded over the whole domain [3]. This results
in the mesh dependency of the crack path and artificial compliance. The cohesive interface
elements enable the damage propagation only on the interface of the continuum elements. As
a result the fracture energy is larger than that of a straight crack when the interface is not
aligned with the crack path [48].

Figure 2.14: Shortest path from left to right with a random mesh [48]

The influence of the mesh on the crack length is shown in Figure 2.14. The difference between
the shortest distance from two points is compared to the shortest distance over the mesh
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boundary. The increase in length of the crack results in that more energy is required. The
error between the direct route and over the mesh boundary is defined as

ε = Lg
Le
− 1 (2.18)

where ε is the error, Lg is the length over the mesh (as shown as the red line in Figure 2.14),
and Le is the blue line in Figure 2.14 and is the shortest path. Rimoli and Rojas [48] found
a correlation between the fracture process and the crack path length. If the mesh causes the
crack to be unable to follow the physically correct path, more energy dissipation is required
compared to a continuum crack. This is called mesh-induced toughness [48].

Another effect observer by Rimoli and Rojas [48], is the meshed-induced anisotropy. This
occurs when looking at, for example, a structured meshed. If the mesh is aligned with the
crack, a lower energy dissipation is observed, but when the crack is in between the orientation
of the mesh, the error is maximized.

Several meshing techniques have been researched to determine the mesh dependance of these
meshes [48, 34]. Here, it is found that isotropic behavior was found for unstructured meshes,
and high anisotropy is found for structures (4K) meshes. For the meshing technique named
conjugate directions mesh [48], the anisotropy is completely removed and the mesh-induced
toughness is halved compared to an unstructured mesh. However, the quality of the elements
decreases significantly.

2.3 Multiscale Analysis

Multiscale analysis is a popular field at the moment, due to the increase of computational
power and with it the increase of the possibilities when using the multiscale analysis. In this
section first the multiscale concept is discussed. Afterwards, an example of computational
homogenization of fracture is shown. Finally, the Representative Volume Element (RVE) and
periodicity of the volume element will be discussed.

2.3.1 Multiscale concept

The macroscopic response of a material is often heavily reliant on the microscopic structure,
where for instance the size, distribution and properties of the different constituents on the
microscale have a significant influence. Also the boundary conditions on the macroscale can
have an influence on the microscopic response, such as microscopic cracking [40].

There are different methods to couple the different scales. These multiscale methods are for
instance the concurrent, semi-concurrent or hierarchical method. The concurrent methods
apply the microscale directly to the larger scale and the computation is done simultaneously.
For the hierarchical method the two scales are simulated separately. Below the hierarchical
methods are researched further, since for this research it is required that the two scales are
separate.

The hierarchical methods require a homogenization of the fine scale to use on the coarse scale.
Homogenization methods determine the average behavior of the fine scale and couple it to
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Figure 2.15: The Schematic representation of the cohesive zone computational homogenization
technique [33]

a larger scale. Homogenization was first used with the Rule of Mixtures (RoM), developed
by Voigt [63], Reuss [47], where the multiphase properties were averaged. Homogenization
can be categorized into numerical and computational homogenization techniques. Numerical
homogenization uses the unit cell for the numerical solution. A disadvantage is that the unit
cell requires a lot of assumptions on the constitutive behavior of the macroscale, resulting
it to be less suitable for non-linear problems. The computational homogenization looks to
overcome these issues by describing the macroscopic constitutive behavior, using FEM and
a Microstructural Volume Element (MVE) [61]. The macroscopic constitutive relations are
characterized during the simulation [40]. This is further elaborated in the next section.

2.3.2 Computational Homogenization of fracture

Many different homogenization techniques have been developed. An example of the compu-
tational homogenization with microscale fracture is discussed below. In this research a 2D
macroscale solid body that has a given displacement field, as is shown in Figure 2.16, is in-
vestigated. The quasi-static equilibrium of the body, which is denoted by ΩM, can be written
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as [61]

div (σM ) = bM xM ∈ ΩM (2.19a)
σM · nM = tM (ũM) xM ∈ ΓM

d (2.19b)
σM · nM = t̄M xM ∈ ΓM

t̄ (2.19c)
uM = ūM xM ∈ ΓM

ū (2.19d)

where the cohesive crack is on ΓM
d , the applied traction on ΓM

t̄
and the boundary conditions

on ΓM
ū . The superscript M is to indicate that the variable is on the macroscale. For the

microscale the superscript m is used.

Figure 2.16: The schematic representation of the macroscopic model. The boundary ΓM
d is the

cohesive crack [61]

From this macroscopic body, the microscopic RVE is derived. This RVE needs to be consistend
with the macroscale in terms of failure models. The RVE and its definition are further
discussed in Section 2.3.3. The quasi-static equilibrium for the microscale model can be
described by

div (σm) = bm xm ∈ Ωm (2.20a)
σm · nm = tm(ũm) xm ∈ Γmd (2.20b)

um = ūm xm ∈ Γmū (2.20c)

.

The similarity to the macroscale equilibrium equation in Equation (2.19) can be seen. The
difference, however, is mainly in the Cauchy stress and microscale traction, as these are
described using analytical derived quantities. The equations of the traction are missing due
to the fact that the boundary conditions on the RVE are solely displacement driven boundary
conditions (including periodic boundary conditions).

The schematic representation of the RVE that is used for the homogenization, can be found
in Figure 2.17. Here, only one cohesive crack is shown, although multiple cohesive cracks are
possible. The homogenized engineering strain 〈εm〉Ωm can be found in Equation (2.21), which
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Figure 2.17: The schematic of the homogenization of the bulk properties [61]

is defined as a function of the nodal displacement of the corner nodes due to the periodic
boundary conditions resulting in that the integral over the boundary is zero. In order to
rewrite the volume integral to a boundary integral, the divergence theorem is used. The
engineering strain is defined by

〈εm〉Ωm = 1
wmhm

∫
Ωm
εm dΩm = 1

wma
m
II ⊗s nM + 1

hma
m
IV ⊗s sM (2.21)

where am
II and am

IV are the displacements at the node points II and IV, as is shown in Fig-
ure 2.17. Using the Hill-Mandel energy condition [27], the homogenized stress is as shown
in Equation (2.22). This is found using the divergence theorem to rewrite the volume inte-
gral to a boundary integral. Additionally, the anti-periodicity of the traction of the periodic
boundary conditions for the displacements is used. Resulting in the homogenized stress as

〈σm〉Ωm = 1
wmhm

∫
Ωm
σm dΩm = 1

wmf
m
B ⊗ nM + 1

hmf
m
C ⊗ sM. (2.22)

Using the homogenization scheme, as shown in Figure 2.18, the macroscopic TSL can be
derived. The effective traction can then be defined as

tM = σM · nM = 1
hmf

m
B . (2.23)

The macroscopic crack opening is related to the overall displacement of the nodes of the RVE,
and can be related to the microscale displacement using

ũM = um
II = am

II . (2.24)

Turteltaub et al. [53] has proposed a new multiscale method for the fracture process. This
method is used in this research and is further elaborated in Chapter 3.
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Figure 2.18: The schematic representation of the homogenization of the cohesive fracture [61]

2.3.3 Representative Volume Element

In the academic world the RVE has a lot of different definitions. The most important thing
to realize, is that the definition of the RVE is a function of the subject that is being investi-
gated. The overlap of the definitions, as presented in Gitman et al. [23], is apparent, and are
summarized below.

• The RVE should contain sufficient inclusions to be statistically representative of the
macroscopic response [25, 27]

• The RVE should be large enough to be able to have all the deformation processes, and
this remains the same when increasing the volume [52, 19].

• The RVE should be sufficiently smaller than the macroscopic body, also known as the
principle of separation of scales [25, 42].

The RVE is thus a relatively small sample of the macroscopic bulk material, which contains
sufficient information to be statistically representative. A method to determine the RVE size
is to make multiple models with different sizes of the volume element to do a convergence
study on the required outputs for the given study. Other methods look at, for instance, the
allowed scatter of the results [62].

2.3.4 Periodicity

For the RVE it is required that the boundaries should emulate the surrounding material
(although the material is not there), and reduce the effect of the non-physical edges of the
RVE [11]. Some commonly used boundary conditions for this are presented in Table 2.3.

In this research the effective stiffness has been compared. The periodic boundary conditions
show to have the best estimation for the effective stiffness, which is the case for both periodic
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Table 2.3: Often used boundary conditions for the RVE [10]

BC type Effective stiffness Localization band
Taylor strong overestimation Fully suppressed
Linear overestimation Constrained on the boundaries
Periodic good estimation Respecting periodicity

Minimal (traction) underestimation Sensitive to spurious localization

and random microstructures [10, 37]. This type of boundary condition is often used [31, 32,
33, 61, 3, 40, 10, 9] and is visualized in Figure 2.19. The periodic boundary condition results
in that the displacement on the boundary of the RVE equals that on the opposite side of the
RVE.

Figure 2.19: Periodic boundary conditions, where the displacement of on side is equal to the
displacement on the opposite side [23]

Next to the periodic boundary conditions, the material can also be periodic. This periodicity
is called the no-wall effect and enables inclusions to penetrate the wall and reappear on the
other side of the RVE. An example of this is shown in Figure 2.20. It ensures that the RVE
is part of a larger structure.

Using both the no-wall effect and the periodic boundary conditions, it is simulated that the
volume element is part of a larger structure, as is shown in Figure 2.21.

2.4 Concluding remarks

In this chapter three things have been discussed: voids in a Fiber Reinforced Plastic (FRP),
the CZM and multiscale analysis. From the investigation on the microscopic voids, two type
of microvoids were found: matrix voids and interfiber voids. The interfiber voids are caused
by the inability of resin to flow between multiple fibers, resulting in a void. For the matrix
voids it was found that, due to the manufacturing methods, in transverse direction the matrix
microvoids have a low aspect ratio.
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(a) The reappearing of the inclusions (b) Example of the material periodicity

Figure 2.20: Using the no-wall effect using the material periodicity [23]

Figure 2.21: The volume element (dark) being part of a larger surrounding structure, where the
fibers align due to the no-wall effect

To model the fracture mechanics of an FRP the CZM is very promising. The CZM can
describe both the damage initiation and propagation using a TSL. The implementation
in FEM can be done using cohesive elements. These cohesive elements are zero-thickness
interface elements. If the crack path is known a priori, these can be placed along the crack
path. If the crack path is not known before the simulation, the cohesive elements can be
placed throughout the domain, although this does cause some issues such as mesh dependency
and artificial compliance. Where the mesh dependancy is due to the crack only being able
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to propagate over the interface of the continuum elements and the artificial compliance is
created due to the initial stiffening of the cohesive elements cause by the extrinsic TSL.

Using multiscale modeling to determine the effective properties of a fiber reinforced composite
has been proposed. For this the computational homogenization technique is used to determine
the macroscopic TSL using the microscopic simulations. To perform this homogenization an
RVE is used that contains periodic boundary conditions and for the fibers a no-wall effect is
used.



Chapter 3

Methodology

The objective of this thesis is to determine the effect of sub-ply voids of a fiber-reinforced
composite, using a multiscale analysis. A multiscale method was developed by Turteltaub
et al. [53] to determine the macroscopic Traction-Separation Law (TSL) using a Hill-Mandel
homogenization scheme and a Representative Volume Element (RVE) on the microscale.

In this chapter, first the general idea of this theory is discussed in Section 3.1. The geometry
of the Microstructural Volume Element (MVE) is discussed in Section 3.2. In Section 3.3 the
microscale formulation is discussed. The Scale transition relations is discussed in Section 3.4.
Finally, some concluding remarks are made in Section 3.5.

3.1 General idea

As an output of this study the effect of sub-ply voids on the Effective Traction Separation
Law (ETSL) is determined. This ETSL that can be used in a macroscopic Cohesive Zone
Model (CZM). This is done for arbitrary loading conditions. For the microscale the Fiber
Reinforced Plastic (FRP) is assumed to contain defects such as porosities (microvoids) and
interfiber voids. The method as proposed by Turteltaub et al. [53] is a numerical discontinuous
homogenization method. This means that the microscale simulations and macroscale are done
separately. The fracture mechanics of a microstructural RVE are used to determine the TSL
on the macroscale. With a predefined macroscopic strain-loading, the microscopic RVE is used
to determine the macroscopic TSL and crack properties using a special averaging procedure.
From this, a parametric study can be done to see the effect on for instance material properties
and different strain-loading conditions.

3.2 Geometry of the Microstructural Volume Element

The definition of an RVE has already been discussed in Section 2.3.3. In this study the RVE is
considered representative if the ETSL has converged. This study focuses on a uni-directional
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(a) Glass fiber reinforced composite [6] (b) The MVE geometry without defects

Figure 3.1: Comparison between the micro structure of a composite (SEM image) and its volume
element

fiber reinforced composite that contains sub-ply microscopic defects. The defects considered
in this thesis are matrix voids and interfiber gaps caused by closely packed fiber that result
in the matrix being unable flow between the fibers. A 2-Dimensional (2D) volume element is
used, although the theory can be extended to be able to use 3-Dimensional (3D) models.

From Scanning Electron Microscope (SEM) experiments, a microstructure, as shown in Fig-
ure 3.1a, can be found. For the MVE a similar geometry is thus required, as shown in
Figure 3.1b.

3.3 Microscale formulation

The microstructural volume element is shown in Figure 3.2. This shows a random geometry
with an arbitrary crack. The nomenclature showed in this figure is used throughout the
study. The size of the MVE is defined as l1 × l2 and is defined as the volume/domain Ω.
The boundaries of this volume is ∂Ω, which is defined for each edge with ∂Ωi, i = 1, 2, 3, 4.
The boundary also contains an outwards unit vector ni, i = 1, 2, 3, 4. The crack is denoted as
Γ. The crack can be a combination of multiple different crack segments, which could contain
crack bifurcations. The vectorm is the normal vector of the crack. By convention, m = m−

and is pointing to the Γ+ side, m+ = −m− which is pointed towards the Γ− side. This sign
convention is chosen arbitrarily, but is used consistently throughout the theory. For the voids
present in the MVE, the uv is the displacement on a location on the boundary andmv is the
normal vector from the void boundary pointing inwards.

A detailed derivation of the boundary value problem for the MVE can be found in Turteltaub
et al. [53]. The crack growth is assumed to be a quasi-static process. Thus the MVE al-
ways fulfills the equilibrium conditions. With the absence of body forces, this results in the
equilibrium equation, as shown in Equation (3.1a). The continuity of the crack surface is de-
noted, as shown in Equation (3.1b). Equation (3.1c) and Equation (3.1d) show the periodic
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boundary conditions of the boundaries when no crack is going through the boundary. Since
the crack is allowed to move through the external boundary of the domain, Equation (3.1e)
and Equation (3.1f) are used to ensure that if the crack moves through the boundary, the
Periodic Boundary Conditions (PBC) on opposite sides of the crack are still ensured. The
full microscale boundary-value problem is as follows:

divσ(x, t) = 0 x in Ω \ Γ (3.1a)
t+(x+, t) = −t−(x−, t) x on Γ (3.1b)
u(x+ l1e1, t)− u(x, t) = l1ε̄(t)e1
t(x+ l1e1, t) = −t(x, t) x on ∂Ω3 \ Γ (3.1c)

u(x+ l2e2, t)− u(x, t) = l2ε̄(t)e2
t(x+ l2e2, t) = −t(x, t) x on ∂Ω4 \ Γ (3.1d)

u±(x± + l1e1, t)− u±(x±, t) = l1ε̄(t)e1
t±(x± + l1e1, t) = −t±(x±, t) x on ∂Ω3 ∩ Γ (3.1e)

u±(x± + l2e2, t)− u±(x±, t) = l2ε̄(t)e2
t±(x± + l2e2, t) = −t±(x±, t) x on ∂Ω4 ∩ Γ (3.1f)

where u is the displacement vector and ε̄ is the macroscopic strain tensor. This strain tensor
is dependent on time, as the applied macroscopic strain is increased over time. In most of
the equations throughout this chapter the time variable is suppressed for simplicity. t is the
traction vector acting on a given surface, which can be either the external boundary or the
crack. Ω\Γ stands for the bulk without a crack, ∂Ω\Γ is the external boundary without a
crack and ∂Ω ∩ Γ is location where the crack crosses the external boundary. The crossing of
the crack through the boundary, resulting in a periodic crack and the implications of this are
discussed in further detail in Section 3.4.3. For all random points that are not part of the
crack surface, the displacement and the strain field ε are related as

ε = 1
2
(
∇u+∇uT

)
. (3.2)

3.3.1 Constitutive relations

For the composite material, the constitutive relations and fracture behavior have to be defined.
The composite consists of a linear elastic phase and brittle solid phase. At all locations, except
the crack, the composite constitutive relation is given by

σ = Cε in Ω \ Γ (3.3)

where C is the stiffness tensor at a given point in the domain. This could be either a matrix
element or fiber element. For the modeling of the fracture behavior, and thus the crack
surface, the constitutive response is taken as

t = fcoh ([[u]],κ,m) x in Γ (3.4)
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Figure 3.2: The microstructural volume element and its nomenclature, here the domain Ω is
decomposed into multiple subdomains with the boundaries as indicated by the dashed lines. The
boundary of the subdomains are either the external boundary, the crack surface Γ, the boundary
of the voids or uncracked parts.

where the traction is defined using a microscale cohesive relation, fcoh, which in this case is
a cohesive relation that describes the fracture at a given point x. The cohesive relation is a
function of the local cohesive opening [[u]], the crack normalm and internal variables κ. The
crack opening is defined as the relative opening between the two sides of the crack, which is
shown in Figure 3.2, as

[[u]] = u+ − u− x in Γ. (3.5)

This crack opening relationship can also be related on the external boundary of the domain,
using both Equation (3.5) and Equation (3.1e)-Equation (3.1f). This results in the relation
as

[[u(x, t)]] = [[u(x+ l1e1, t)]] x on ∂Ω3 ∩ Γ (3.6a)
[[u(x, t)]] = [[u(x+ l2e2, t)]] x on ∂Ω4 ∩ Γ. (3.6b)
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3.4 Scale transition relations

The Hill-mandel condition is a scale transition requirement between the micro and macroscale
that uses the energy relations. The macroscale behavior can be extracted using the micro-
scopic information on the domain. The extraction of the ETSL is done with a separation
between the bulk material (Ω \ Γ) and actual microscopic crack (Γ).

3.4.1 Bulk and fracture strains

The domain (Ω) can be divided into the subdomains as seen in Figure 3.2 with the dashed
lines. This division is done to enable the use of the divergence theorem and a well-defined
strain field. Using the divergence theorem on each subdomain results in the microscopic strain
tensor as found in Equation (3.7). For the voids the sum of the integrals of the individual
parts of the void boundary is the same as the integral over the complete void boundary.
A summation of these integrals per void give the additional term to the strain tensor. No
distinction is made between voids that are part of the main crack (Γ) and voids that are not
part of the crack. This assumption is similar to the assumption made by Turteltaub et al.
[53] which assumes that all individual cracks in the MVE have a contribution to the main
crack. The microscopic strain tensor can now be expressed as

〈ε〉Ω := 1
|Ω|

∫
∂Ω

[u⊗ n]sym ds− 1
|Ω|

∫
Γ

[[[u]]⊗m]sym ds−
Nv∑
k=1

1
|Ω|

∫
∂vk

[u⊗mv]sym ds (3.7)

where ⊗ is the tensor product and the symmetric part of the tensor is [X]sym := 1
2(X+XT ),

the normal vector mv of the voids is pointed inwards from the boundary of the void. Using
Equation 3.7, the relation between the applied strain (ε) and the internal strain on the bulk,
crack and voids is found in Equation 3.8, and εv is defined as found in Equation 3.9. εv is
the summation of all the changes in size of the voids on the microscale. The applied strain is
equal to the strain in the volume element as

ε = 〈ε〉Ω + εf + εv (3.8)

where

εv =
Nv∑
k=1

1
|Ω|

∫
∂vk

[u⊗mv]sym ds (3.9)

and
εf := 1

|Ω|

∫
Γ

[[[u]]⊗m]sym ds. (3.10)

The volume-averaged stress is defined as

〈σ〉Ω := 1
|Ω|

∫
∂Ω
t⊗ x ds (3.11)
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where t = σn on boundary of the domain (∂Ω). This can be rewritten as

〈σ〉Ω =
2∑
i=1
t̄i ⊗ ei (3.12)

where

t̄1 := 1
|∂Ω1|

∫
∂Ω1

tds (3.13a)

t̄2 := 1
|∂Ω2|

∫
∂Ω2

tds. (3.13b)

The complete derivation can be found in Turteltaub et al. [53], where the derivation is based
on the use of Equation (3.1e)-(3.1f).

3.4.2 Rate of work relations

For the Hill-Mandel conditions, the rate of work of the different parts are used. The specific
rate of work done on the boundary can be found in Equation (3.14). The stress power in
the material can be found in Equation (3.15). The rate of work done on the voids can be
defined as the dot product of the traction and opening rate of the void boundary, as is shown
in Equation (3.16). The three powers are defined as

P ext := 1
|Ω|

∫
∂Ω
t · u̇ ds (3.14)

P b := 1
|Ω|

∫
Ω
σ · ε̇ dv (3.15)

P v := 1
|Ω|

Nv∑
k=1

∫
∂vk
t · u̇ds. (3.16)

Using the subdomains as shown in Figure 3.2, the relation between the rate of works follows
as

P ext = P b + P f − P v (3.17)

where

P f := 1
|Ω|

∫
Γ
t · [[u̇]] ds. (3.18)

The rate of work of the fracture is shown in Equation (3.18). The rate of work on the voids
is negative in Equation (3.17), which follows from the divergence theorem. Another way to
determine the sign is by realizing the voids are similar to the external boundary, and should
thus be positive on the left side of the equation, and thus it is a negative contribution to
internal rate of work.
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(a) Two parallel cracks (b) Three parallel cracks

Figure 3.3: Examples of two type of parallel cracks that are made into one continuous crack
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Figure 3.4: The macroscopic crack length. Here the value r is determined using a ratio between
the maximum crack length and minimum crack length present in the MVE

3.4.3 Periodic crack

The boundary value problem, as discussed previously, enables the crack to propagate through
the boundary of the MVE. Two examples of a possible periodic crack can be found in
Figure 3.3 [53]. For simplicity, bifurcations are ignored. The dark gray areas are the original
domain and the light gray areas are the parts of the initial domain that have been rearranged
to form a single crack. The dark line is the crack, with the thinner lines indicating the parallel
cracks to the main crack. Figure 3.3a shows an example which has two parallel cracks. In
Figure 3.3b three parallel cracks can be seen. Due to the Boundary Value Problem (BVP),
these parallel cracks are actually connected and can be interpreted as one crack, the main
crack.

In order to determine the macroscopic crack length, a nominal length is used. The method
used can be found in Figure 3.4. The equivalent crack length is estimated using the macro-
scopic crack normal and the possible amount of crossings through the domain Ω. The equation
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for the effective crack Γf can be found as

∣∣∣Γf
∣∣∣ =

{
|Γ0| ifr > rmax

r |Γ0| otherwise
(3.19)

where

|Γ0| = min
(

l1
|n2 ·mf |

,
l2

|n2 ·mf |

)
(3.20)

and

r =
max

(
l1

|n2·mf | ,
l2

|n2·mf |

)
Γ0

. (3.21)

Using this method, only the effective crack normal and the size of the MVE are required to
determine the effective crack length. The void properties are not required to determine the
macroscopic crack length.

3.4.4 Hill-Mandel condition

The homogenization is schematically visualized in Figure 3.5. Here the microscale properties
of the crack are homogenized using a Hill-Mandel condition. The effective crack normal is
determined using a singular value decomposition as follows

mf :=

2∑
i=1

µimi∥∥∥∥ 2∑
i=1

µimi

∥∥∥∥ (3.22)

where i are the unit vectors as shown in Figure 3.2. Now that both the effective crack normal
and crack length are determined, the effective (macroscopic) crack opening can be determined
as well. This is done using a rank-one approximation of the crack averaged tensor as

∣∣∣Γf
∣∣∣ [[u̇]]f = |Γ| 〈[[u̇]]〉 . (3.23)

There is no contribution of the voids in this equation, which will be elaborated on later in
this section.
The Hill-Mandel condition for the crack itself is required. From Equation (3.8) and Equation
(3.17) the external power done on the volume element can be found in Equation (3.24). The
internal power of the voids is the traction that acts on the boundary of the voids, as

〈σ〉Ω ·ε̇ = 〈σ〉Ω ·〈ε̇〉Ω+〈σ〉Ω ·ε̇
f +〈σ〉Ω ·ε̇

v = 1
|Ω|

∫
Ω
σ·ε̇dv+ 1

|Ω|

∫
Γ
t·[[u̇]]ds− 1

|Ω|

Nv∑
k=1

∫
∂vk
t·u̇ds.

(3.24)
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Figure 3.5: Homogenization of the crack using the Hill-Mandel condition.

From Equation (3.24), the Hill-Mandel condition on the crack can be determined as follows

〈σ〉Ω · ε̇
f + 〈σ〉Ω · ε̇

v = 1
|Ω|

∫
Γ
t · [[u̇]]ds− 1

|Ω|

Nv∑
k=1

∫
∂vk
t · u̇ds. (3.25)

By making the equation independent on the size of the volume element, both sides of the
equation are multiplied by |Ω| / |Γ|, such that

1
|Γ|

∫
Γ
〈σ〉Ω·[[[u̇]]⊗m]sym ds+ 1

|Γ|

∫
∂vk
〈σ〉Ω·[u̇

v⊗mv]ds = 1
|Γ|

∫
Γ
σ·[[[u̇]]⊗m]sym ds− 1

|Γ|

Nv∑
k=1

∫
∂vk
t·u̇ds.

(3.26)

When using the relation between the traction and stress (t = σu) and the fact that 〈x〉Γ =
1
|Γ|
∫

Γ xds, Equation 3.26 can be expressed such that

〈
(〈σ〉Ω − σ) · [[[u̇]]⊗m]sym

〉
Γ

+
(

1
|Γ|

Nv∑
k=1

∫
∂vk
〈σ〉Ω · [u̇

v ⊗mv]ds+ 1
|Γ|

Nv∑
k=1

∫
∂vk
t · u̇ds

)
= 0.

(3.27)

In the theory as presented by Turteltaub et al. [53], the Hill-mandel condition as presented
above is the same although the part of the voids is not present, namely

∣∣∣Γf
∣∣∣ tf · [[u̇]]f ≈ |Γ| 〈t · [[u̇]]〉Γ (3.28)∣∣∣Γf
∣∣∣ tf · [[u̇]]f ≈ |Γ| 〈〈σ〉Ωm · [[u̇]]〉Γ . (3.29)

In the case with voids present, the void parameters are seen as another separate requirement,
such that
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(
1
|Γ|

Nv∑
k=1

∫
∂vk
〈σ〉Ω · [u̇

v ⊗mv]ds+ 1
|Γ|

Nv∑
k=1

∫
∂vk
t · u̇ds

)
= 0. (3.30)

The reason for this separation is explained below. This results in the now three different
requirements in Equation (3.28),(3.29) and (3.30). For this thesis it is assumed that the
internal pressure of the voids is zero, so that the traction on the void boundary is zero,
resulting in that the second term is zero. This implies that the first term of Equation 3.30
has to be equal to zero. From numerical simulations, as is also shown in the verification, it is
found that this is approximately the case.

From the fact that the power of the voids is zero, as shown above, it can be assumed that the
voids, even when they are part of the main crack, have no effect on the equivalent macroscopic
crack. These can then be separated from the requirements as shown in Equation (3.28)-
Equation (3.29). Since they have no effect on the equivalent macroscopic crack, it is found
that the voids also have no effect on the macroscopic crack opening. From this, it can be
concluded that there is also no contribution of the voids in the crack-average tensor, as shown
in Equation (3.23).

Since the void contribution in Equation (3.27) is zero, the two separate Hill-Mandel require-
ments remain the same as in the theory as presented by Turteltaub et al. [53], and can be
seen again in Equation (3.28) and Equation (3.29). Using these two requirements, a combi-
nation of the effective bulk-averaged traction and crack-averaged traction is used to equal the
microscopic traction. From a rate of work view this is

αP f
Γ + (1− α)P f

Ω ≈ P f (3.31)

where

P f
Γ = 1

Ω

∣∣∣Γf
∣∣∣ tfΓ · [[u̇]]f (3.32a)

P f
Ω = 1

Ω

∣∣∣Γf
∣∣∣ tfΩ · [[u̇]]f (3.32b)

P f = 1
Ω

∫
Γ
t · [[u̇]] dΓ. (3.32c)

The tractions are defined as

tfΓ = |Γ|
|Γf |
〈t⊗m〉Γm

f (3.33a)

tfΩ = 〈σ〉Ωm
f (3.33b)

Using the alpha as determined in Equation (3.31), the effective traction can be then be
determined using the relation between the crack averaged and bulk averaged traction as

tf = αtfΓ + (1− α)tfΩ. (3.34)
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3.5 Remarks

In this chapter the methodology of the numerical homogenization of the MVE has been
presented. The theory as presented by Turteltaub et al. [53] was adapted to include voids on
the microscale. The verification of this adaptation is discussed in Chapter 5. The method
proposed, uses the Hill-Mandel condition to determine the ETSL of a material. This is done
using both the bulk and crack averaged properties. The additional term that is added due
to the voids, has the added advantages that this enables the possibility to add an internal
pressure to the voids which can be caused during the manufacturing. In this study this was
assumed to be negligible. In this chapter the theory for a 2D problem was presented, although
with minor changes, this method can also be used for 3D cases.

The numerical implementation of this theory is presented in Chapter 4. Here some equations
of the theory change due to an adaptation by Hirch [28] which solves an issue which is
created by the use of the cohesive elements in the numerical application and ensures that for
the effective crack normal no Singular Value Decomposition (SVD) is required. More on this
is discussed in Section 4.2.
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Chapter 4

Numerical Implementation

In this chapter the numerical implementation of the theory presented in Chapter 3 is imple-
mented. First the pre-processing is discussed in Section 4.1. The Microstructural Volume
Element (MVE) is created and implemented into Abaqus R©. After this the post-processing is
discussed in Section 4.2, at which the data extraction, processing and homogenization of the
microscopic fracture process is performed, which has been simulated in Abaqus R©.

4.1 Pre-Processing

The pre-processing can be divided into the model generation, which determines the geometry
of the MVE, from which the mesh can be made. After this the boundary conditions can be
applied to finally insert these properties in an Abaqus R© input file.

4.1.1 Model generation

The python code to generate the model that is used in Abaqus R© is split into multiple steps.
These steps have been visualized in Figure 4.1. In this flow chart the four dashed lines stand
for the different Python scripts. Each block of the model generation is discussed in detail in
the next sections.

Create random

(inter) �ber 

distribution 
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bulk mesh using
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Submit job(s) 
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pickle

.inp

.pbs

.inpInput parameters

reuse previous geometry 

and mesh (yes/no) 

No

Yes

Figure 4.1: Flow chart of the preprocessing computational activities
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Input parameters

Before the input parameters are determined, a previously generated geometry can be used
and the mesh can be reused, but with different material properties or boundary conditions.
This is used to model the same fiber and void distribution but with different loading cases
such as constraint extension, biaxial extension-compression (which is the same as a pure shear
loading case) and mixed loading of both the constraint extension and pure shear loading case.

The input parameters can be divided into several parts, which are the material properties of
the fiber, matrix and interface between the fiber and matrix, but also the properties of the
matrix voids and interfiber voids. In this study, the material properties are held constant
while the void properties are changed. The material properties that are selected are of the
fiber: HexTow R© IM7 and matrix: CYCOM R© 5230-2 [26, 14]. These properties can be found
in Table 4.1. The elasticity modulus of the fiber is that of the transverse direction of the
fiber, which is considerably lower than that of the fiber direction. For these two materials the
fracture properties were selected using the values as presented by Turteltaub et al. [53]. The
fiber-matrix interface has been assumed to be a weak interface.

Table 4.1: Material Properties of the fiber, matrix and the interface [26, 14]

Fiber Matrix Fiber-matrix interface Unit
Density 1.8 · 10−6 1.31 · 10−6 - [kg/mm3]

Elasticity modulus 19 3.52 - [GPa]
Poisson’s ratio 0.23 0.35 - [-]

Ultimate traction 100 50 25 [MPa]
Fracture energy 0.1 0.05 0.025 [N/mm]

The input parameters for the defects are divided into the input parameters for the matrix
voids and for the interfiber voids and are shown below.

Matrix Voids The matrix voids are randomly distributed over the MVE. The input param-
eters for these matrix voids are shown in Table 4.2.

Table 4.2: Input parameters for matrix voids

Input Parameter Range
Void content 0− 8%

Number of voids -
Deviation size (Sd) 0− 95%

Aspect ratio 1− 1.4

The number of voids depends on the desired area or diameter of the individual voids for that
given model. The deviation in size of the different voids is determined using a random value
generator that has a range from [1 − Sd, 1 + Sd]. Here, Sd is the deviation size of the voids.
The individual void size is then calculated as,

Av = Vd∑
Vd · VC · wh

(4.1)
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where Vd are the values created by the random value generator as explained previously. VC is
the void content and w,h are the dimensions of the MVE. The aspect ratio of the voids is also
determined by a random value generator between the lower and upper bound or the aspect
ratio. In the literature study it was found that generally, due to the manufacturing methods,
the voids have a circular rod like shape, and thus the aspect ratio in transverse direction
is generally rather low, resulting in an aspect ratio between 1 and 1.4. Void orientation is
another parameter although it does not require a input parameters as it is a random value
between 0 and 180 degrees.
The same fiber distribution is used with increasing void content. This is done in order to
decrease the scatter that the fiber distribution has on the final results. Two examples with
increasing void content are shown in Figure 4.2 and Figure 4.3. First, with a (nearly) constant
deviation of the size (Sd = 1%) as is shown in Figure 4.2. Secondly, in Figure 4.3 with large
deviation in the size (Sd = 80%). Here, the volume element size is 62.5 by 62.5mm and the
aspect ratio is between 1 and 1.4. In these images it can be seen that by using the constant
fiber distribution, purely the void parameters will have an effect on the output properties.
The difference between the large and small deviation shows a clear difference in void geometry.

(a) Void content = 2.0 % (b) Void content = 4.0 % (c) Void content = 6.0 %

Figure 4.2: Increasing void content from 2 % (a) to 6 % in (c). Here, the void aspect ratio has
a distribution of 1 to 1.4 and a size deviation of 1%

(a) Void content = 2.0 % (b) Void content = 4.0 % (c) Void content = 6.0 %

Figure 4.3: Increasing void content from 2 % (a) to 6 % in (c). Here, the void aspect ratio has
a distribution of 1 to 1.4 and a size deviation of 80%

Interfiber Voids Only two input parameters are required for the interfiber void. The first is
the amount of fibers, which is either three or four fibers. The second is whether the interfiber
void is actually a void or whether the space between the fibers is filled with matrix. This
creates the possibility to have a fiber distribution with multiple interfiber void locations that
can have a range of void contents. Using this the effects of the interfiber void content can be
determined. In Table 4.3 an overview of the input parameters and the parameters that are
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randomly generated can be found. The offset parameter, which is used for interfiber voids
with four fibers is schematically represented in Figure 4.4, here α is the offset which ranges
from 10 to 20 degrees.

Table 4.3: Input parameters and randomly generated parameters for interfiber void

Input Parameter Range
Type of interfiber voids 3 or 4
Void between fibers True of False

Randomly generated parameter Range
Orientation 0− 180◦

Offset (only for four fibers) 10− 20◦

α

Figure 4.4: Schematic representation of the offset parameter for a interfiber void containing four
fibers

In both types of interfiber void, there is still a small opening between the individual fibers.
This offset is created to remove the bad aspect ratio mesh at the location where the two fibers
would meet without this offset. Another advantage of this opening is that now both interface
cohesive elements and matrix cohesive elements are at the weakest location of the interfiber
voids. This results in a more accurate representation of the possible cracks that can form
at the void boundary. The mesh of the interfiber voids with three fibers and four fibers are
shown in Figure 4.5a and Figure 4.5b respectively.

The interfiber voids have a discrete void content. For the interfiber void with three fibers,
the method of calculating the void content is by first determining the area of the equilateral
triangle which connects the three fibers. Then the area of the fibers that is inside the triangle
have to be subtracted, as

Agap = A∆ − 3 ·Afib (4.2)

where

A∆ =
√

3
4 (2l)2 (4.3)

Afib = a2π

6 (4.4)

l = 1.05 cos π6 2a
√

3
3 (4.5)
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(a) Interfiber void with three fibers
in a simulation

(b) Interfiber void with four fibers
in a simulation

Figure 4.5: General shape and mesh of the interfiber voids

and where the distance l is the increased distance between the fibers which is required to
ensure the proper mesh and can be found in Equation (4.5). Here for both the four and three
interfiber void, the distance from the center of the triangle/parallelogram to the fiber origins
is increased by 5%.

For the interfiber void with four fibers a similar approach is taken, where instead of the
triangle a parallelogram has to be used. The offset angle α, as shown in Figure 4.4, also has
an influence on the area, resulting in the calculation of the area as

Agap = Aparal − 2 ∗Afib1 − 2 ∗Afib2 (4.6)

where

Aparal = l2 sin π2 − α (4.7)

Afib1 = πa2 (π2 − α)
2π (4.8)

Afib2 = πa2 (π2 − α)
2π (4.9)

l =
1.05

2

√
(2a)2 + (2a)2 − 6a2 cos π2 + α

cos
π
2−α

2

. (4.10)

As an example with a MVE of 62.5 × 62.5µm, the void content for a interfiber void created
by three fibers is 0.15 %. For the interfiber void containing four fibers, the void content
ranges from 0.3 to 0.45 %, which is not constant due to the offset range. An example of these
interfiber voids in the MVE can be found in Figure 4.6. Here the void content ranges from 0
to 1.5 % .

4.1.2 Fiber and void distribution

For the distribution of the fibers, matrix voids and interfiber voids, the same method as
presented in Westbroek [64] for the fibers is used. In that case, only fibers were present. The
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(a) Void content = 0.2 % (b) Void content = 0.4 % (c) Void content = 1.0 %

Figure 4.6: Increasing void content from 0 % (a) to 1.0 % in (c). Here, two three fiber interfiber
voids are used and one four fiber interfiber void

method for a case at which only fibers are present. a grid is created on which the fibers are
consecutively placed. When a fiber is placed, the grid locations that have a given distance
from the fiber are excluded from the grid for the next fibers. This distance is the fiber radius
plus a constant, which is dependent on the mesh size. This is done in order to always have
a matrix element between the fibers with a proper aspect ratio. With the exclusion of these
grid points for the next fiber, it is ensured that no fibers overlap. The boundaries of this grid
for the fiber exceeds the size of the MVE in order to have the no wall effect, resulting in the
boundaries of −a− w/2 to a+ w/2 and −a− h/2 and a+ h/2.

This method has been adapted for the matrix voids and interfiber voids as well. This resulted
in three separate grids for each item. The grid boundaries of the matrix and interfiber void
are different compared to that of the fiber due to the fact the voids will not be able to cross
the boundary due to the complications with the periodic boundary conditions and applied
loading.

In order to decrease the computational time of the placing of the random distribution of the
fibers and voids, first the largest objects are placed. This results in that first the interfiber
voids are placed, followed by the fibers and finally the matrix voids.

4.1.3 Mesh generation

Once the fiber and void distribution is known, the mesh has to be generated. This is done
by using the random mesh generator of gmsh [21]. This mesh generator uses the Delaunay
method to create a non structured mesh of triangular elements. As all meshing algorithms,
first a 1D Delaunay mesh is constructed on the edges of all the contours using a divide-
and-conquer algorithm. Using this algorithm, at the largest adimensional circumradius, new
points are added sequentially. In order to reconnect the mesh, the anisotropic Delaunay
criterion is used [21]. Once this mesh has been placed, a mesh smoothing of 5 steps is applied
as well as a mesh optimizer. The mesh optimizer is used here due to the difficulty of the
meshing of the voids. This mesh optimizer ensures that the mesh quality is sufficient at these
locations. This will increase the amount of elements with a proper aspect ratio. It is found
that with relatively small mesh sizes, such as that of 1e− 3 mm, the mesh optimization does
not have any influence, yet when using larger meshes it does ensure elements of high quality.

The mesh generator also takes the periodic boundary conditions into account by ensuring
that the nodes on opposite sides are aligned, for instance for the nodes on the left and right
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edge: xleft = xright + l, yleft = yright. These boundary conditions are discussed in detail
in the next section. The mesh generator of gmsh only created the bulk elements and nodes.
Two examples of a mesh generator by gmsh can be found in Figure 4.7. Here, VC is the void
content, Rf is the fiber radius and Vf the fiber content.

(a) Mesh size = 1 ∗ 10−3mm (b) Mesh size = 2 ∗ 10−3mm

Figure 4.7: Two examples of a mesh created by gmsh with a Vf = 0.5, VC = 3%, w = h =
5 · 10−2mm,Rf = 5 ∗ 10−3mm

In order to create the cohesive elements, a python script is used as shown in Figure 4.1. First
all the nodes are duplicated in order to have multiple unique nodes at each node location and
thus the possibility for separation between two bulk elements at that node is enabled. Using
these nodes and the common faces between elements, the cohesive elements between the bulk
elements are placed.

4.1.4 Boundary conditions

The boundary conditions to ensure the periodicity and apply the displacement gradient on
the MVE have been combined. Here first the periodic boundary conditions are discussed.
After which the applied displacement boundary conditions are discussed.

The periodic nodes, as created by gmsh, have to be given a relation with respect to each other
for the Abaqus R© to process. These periodic boundary conditions ensure that the displacement
field on the left side of the MVE is equal to that of the right side, and for the top side equal
to the bottom side. This is represented by

∆uL = ∆uR (4.11)
∆uT = ∆uB. (4.12)

This method is straight forward without any cohesive elements present, yet in this study
cohesive elements are required to have a progressive damage model with the crack being able
to pass through the boundary, consequently the nodes on the boundary have to be duplicated.
As it is possible that the same node is duplicated four times on one side while for example
only three times on the other side, the duplication is not as straight forward anymore. van
Hoorn [60] has proposed a solution for this, as is shown in Figure 4.8. In this Figure it can
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be seen that only two nodes at each node location are coupled, as is indicated in red. These
nodes are part of the elements that have a face on the boundary of the MVE. This method
with the coupling of the duplicated nodes, ensures that the crack is able to penetrate the
boundary and propagate on the other side of the MVE. For the Abaqus R© input file this is
implemented using a coupling equation between the specific nodes for the displacement.

Figure 4.8: Method used to define the nodes pairs, on the left the top and bottom part of the
MVE can be found, and on the right the node pairs can be seen in detail in red [60, 53].

For the mechanical boundary conditions, two dummy nodes have been added. The displace-
ment of all the node pairs, as discussed above, is related to the applied displacement of these
dummy nodes. For the top and bottom boundary this is related to the dummy node: D-TB
and for the left and right boundary the dummy node: D-LR. This has been visualized in
Figure 4.9 and is presented for a random node pair on the left and right boundary as

uR − uL −
[
ε11w
ε21w

]
= 0. (4.13)

Three distinct loading cases are used in this study, which are the constraint extension, bi-axial
extension-compression (pure shear) and a mixed loading. The strain tensor of these loading
cases can be found in Table 4.4. The strain tensor that is used to describe these loading cases
is decribed as

ε =
[
ε11 ε12
ε21 ε22

]
. (4.14)

4.1.5 Abaqus input file

As is mentioned previously, the Abaqus R© solver is used for the microscale simulations. The
Abaqus R© input file is created by using python. In this section some important parts of the
input file are discussed in detail.
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Figure 4.9: An Illustration of the boundary conditions. In the simulations two dummy nodes and
the four corner nodes are used to apply the boundary conditions.

Table 4.4: Loading cases and their deformation gradient commonly used in this study.

Loading Case Deformation Gradient

Constraint Extension
[
γ 0
0 0

]

Pure Shear
[
γ 0
0 −γ

]

Mixed mode
[
2γ 0
0 −γ

]

Elements The bulk elements that are used for these simulations are the 3-Node (triangular)
full-integration plane strain elements, which is the CPE3 element. For the cohesive elements
the element COH2D4 is used. The orientation and numbering of these elements can be seen
in Figure 4.10. For the cohesive element it can be seen that the number of the nodes of
this element is counterclockwise. More on the numbering of this element is discussed at the
post processing section. For the cohesive elements, element control is added which contains a
viscosity of 0.0001. This viscosity is required to ensure the convergence of the models. These
convergence issues mainly arise due to the sudden change of stiffness in the cohesive elements
created by the bilinear cohesive law.

Solver Settings In the input file also the solver settings can be adapted in order to improve
the convergence of the model significantly. Here, for the static load step, an automatic
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(a) CPE3 (b) COH2D4

Figure 4.10: Abaqus elements that are used in the simulations [1]

stabilization option is required. This stabilization gives the Abaqus R© solver the ability to
dissipate energy to cope with sudden loss of stiffness which results in a local instability. The
maximum ratio of the stabilization energy with respect to the strain energy is 5%. However,
the maximum ratio of 5% is not a boundary for the simulation, and if the simulation requires
it, the ratio is increased. If this ratio becomes too large, the simulation loses its physical
value, resulting in that for the post-processing this ratio has to always be checked and taken
into account.

4.2 Post-Processing

The goal of the computational post processing activities is to determine the effect traction
separation. This is determined by using the steps as shown in Figure 4.11. An an output
from the Abaqus R© solver, the .odb file is obtained. This .odb file contains all the information
from the simulation of the model. In this section the activities in order to get the Effective
Traction Separation Law (ETSL) and its properties.

Extract .odb,

process data 

Determine α from

Hill-Mandel 

condition

Determine 

TSL

.odb pickle
pickle Plot relevant 

e"ective data 

Figure 4.11: Flow chart of the post-processing computational activities

4.2.1 Extract odb and process data

The extraction of the data from the .odb file is done by using a python script. It is possible to
use python to read that data from the Abaqus R©.odb file. This is done by using the Abaqus
scripting package available in python.

The theory of the homogenization has been discussed in detail in Chapter 3. In this section
the focus will lie on the implementation of this theory. First, the last increment has to be
determined, since the information of the last increment is required for the other time steps.
This is done by having the loop run backwards, and thus processing the data from the last
increment to the first. In this loop over the time, both the bulk elements and cohesive elements
are looped over individually.
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Failed cohesive elements First, the failed elements on the microscopic model have to be
determined. From a theoretical point of view, a cohesive element has fully failed when the
final effective opening (δf ) has been reached. The selection method in Abaqus R© the output
variable, SDEG. This output variable shows the damage variable of the cohesive element, and
is ranged between 0 at which the cohesive element if fully intact and 1 at which the element
has completely failed. Since the value 1 might not get reached due to convergence issues
and numerical inaccuracies, a cut off value is used which is based on the residual strength.
The cut off value was defined as the point when the cohesive element was unable to carry a
maximum traction of 20% of an undamaged cohesive element.
The cohesive element that have failed are stored and later used for the crack averaged prop-
erties. Here, as stated previously, both the main crack, its bifurcations and isolated parts are
taken into account for the crack averaged properties.

Data from failed cohesive elements For the opening of the cohesive element the difference
of displacement between the two sides of the cohesive element are used, and is defined as

[[u]] = u4 + u3 − u2 − u1 (4.15)

where the numbering 1 to 4 stands for the four different nodes as shown in Figure 4.10.
The singular value decomposition, as was previously required to determine the data from the
cohesive element, resulted in loss of information and thus also energy. A solution has been
proposed in Hirch [28] which has been slightly altered to increase its readability and for a
better understanding of the equations.
The reason why a singular value decomposition was required for the cohesive elements was that
the orientation and numbering of the elements could be different for each cohesive element,
as has been visualized in Figure 4.12. This resulted in that the normal and opening of the
cohesive element could be in opposite directions. When doing the integral over these elements
the opening and normal would then cancel each other. At first, to counter-act this, the tensor
product was used and because of that also a singular value decomposition of the tensor.

1
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3

2

2

3

[[u]] 
[[u]] 

m

m

Figure 4.12: Two Cohesive elements with different orientation of the opening and normal, which
is created due to the different configuration of the nodes (1-4)

A solution that involves the projection of the opening or normal per element on a reference
frame was found. An example of this projection for the element opening is as follows

[[u]]∗ = m · e1
|m · e1|

[[u]] (4.16)
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where m is the element normal, and e1 is a reference vector, which is in this case the global
vector e1 = [1, 0]. [[u]] is the current opening of the element and [[u]]∗ is the element opening
with the correct ’global’ orientation. It should be noted that special configurations can occur
where the dot product of these vectors is zero. If this is the case, a different reference vector
is selected, e2 = [0, 1]. The value of the fraction in Equation 4.16 is always either 1 or -1. It
is -1 if the vector has to be flipped to ensure the alignment with the other elements in the
direction of the reference vector. In this study the crack will most likely be either vertical or
at an angle of ±45◦, resulting in that this reference vector is sufficient. If a horizontal crack
is expected, this reference vector should be changed to for instance the e2 vector. The same
method can be applied for the element opening, as is found Equation (4.16), can also be done
to flip the element normal vector and traction in the correct direction as follows

m∗ = m · e1
|m · e1|

m (4.17)

t∗ = m · e1
|m · e1|

t. (4.18)

Microscopic properties The microscopic traction on the crack is determined as follows,

PΓ = 1
Ω

∫
Γ
t∗ · [[u̇∗]] (4.19)

where only the cohesive elements that have failed will be used, as have been determined
previously. The integral of this equation is calculated in the python script, which consist of
a summation over the elements, i.e.,

∫
Γ
x =

NΓ
coh∑
i=1

x · li (4.20)

where lcoh is the length of that cohesive element and NΓ
coh are all the cohesive elements that

have failed. This method has been used for all the integrals over the crack surface. For the
bulk elements a similar approach is used as for the cohesive elements.

Effective properties For the effective properties, both the crack normal and crack averaged
traction (tfΓ) are calculated using the normal or traction of the failed cohesive elements and
determining the average from that

mf := 1
|Γ|

∫
Γ
m∗dΓ (4.21)

tfΓ := 1
|Γ|

∫
Γ
t∗dΓ. (4.22)

The effective crack opening vector [[u]]f is defined as
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|Γ|f [[u]]f := |Γ| 〈[[u]]〉Γ (4.23)

where it should be noted that this is different to the theory as presented in Chapter 3 as
rank-one approximation is not necessary anymore, resulting in that by definition the left and
right side should be equal.

4.2.2 Determine Hill-Mandel condition and ETSL

From the effective traction, opening and crack length, the effective rate of work can be deter-
mined. As stated previously, a combination of the crack averaged and bulk averaged rate of
work has to match the microscopic rate of work. The equations for the microscopic rate of
work, crack averaged, bulk averaged and void boundary rate of work can be found in Equa-
tion 4.24. The comparison between these stress powers can be found in Figure 4.13. Here the
magenta line is the combination between the crack averaged and bulk averaged stress power.
The black dotted line is the influence of the voids, as shown in Equation 4.24d. In this figure
it is required to look at two things. First, the magenta line should coincide with the brown
line. The magenta line is a combination of the blue and red line with the value α. Second,
the rate of work of the voids should be approximately zero. The microscopic and macroscopic
powers are defined as

PΓ = 1
Ω

∫
Γ
t · [[u̇]]dΓ (4.24a)

P f
Γ = 1

Ω

∣∣∣Γf
∣∣∣ tfΓ · [[u̇]]f (4.24b)

P f
Ω = 1

Ω

∣∣∣Γf
∣∣∣ 〈σ〉Ωmf · [[u̇]]f (4.24c)

Pv =
Nv∑
k=1

1
|Γ|

∫
∂vk
〈σ〉Ω · [u̇

v ⊗mv]ds. (4.24d)

From Figure 4.13 the value of α can be determined, which in this example is 0.6. This is
determined by using a combination of the crack averaged properties (blue line) and bulk
averaged properties (red line). However it can be seen that the brown line after t = 0.1s,
does not coincide with the magenta line anymore. When looking at both the energy plot and
deformation plot of the model, it can be found that the crack has already fully propagated in
the MVE and the regulatiztion is above its threshold.

As explained in the Section 4.1, stabilization is required in the models, in Figure 4.14a it can
be checked whether this energy does not exceed the maximum of 5%. The crack formation
occurs at t = 0 to t = 0.12, as seen at the rate of work plot. At these this it can be seen that
it does not exceed the 5%.

Using the value of α as determined from using the stress power, the effective traction sepa-
ration law can be determined. For this, the macroscopic traction is plotted with respect to
the macroscopic opening, as are presented above. For this, both a tangential traction (mode
II) and normal (mode I) traction with respect to the macroscopic crack orientation can be
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Figure 4.13: The stress power of a simulation.
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Figure 4.14: The energy and ETSL a simulation

plotted. In Figure 4.14b an example of the in normal direction ETSL is shown. Since a con-
straint extension force was applied, the tangential traction is negligible. It can be seen that
the final ETSL is a combination of the crack averaged and bulk averaged Traction-Separation
Law (TSL).



Chapter 5

Verification and Convergence Studies

In this chapter the verification of the theory, mesh convergence and Representative Volume
Element (RVE) convergence are discussed. Two verifications are performed in this chapter.
First the verification of the rate of work of the voids is done in Section 5.1. Followed by the
verification of the vector decomposition as presented in the previous chapter in Section 5.2.
After this the mesh convergence study for each Microstructural Volume Element (MVE) size
is done. A small mesh convergence is done for the interfiber voids to determine the effect of
the mesh size and interfiber orientation. Finally the mesh converged MVE sizes are used to
determine the RVE size.

5.1 Verification of the Hill-Mandel condition in the presence of
voids

For the verification of the voids that have been added on the microstructural volume element,
two numerical models have been created. These numerical models have large, critical voids
in the assumed crack path, as is shown in Figure 5.1. Here, Figure 5.1a has a constraint
extension boundary condition and will thus have a vertical crack. Figure 5.1b has a biaxial
extension-contraction (pure shear) boundary condition, which results in the crack at 45◦.
These three large voids ensure a crack path in which it is expected that the voids have a large
impact on the properties. For simplicity in the models, no fibers are modeled in order to keep
the voids the primary parameter.
For the constraint extension load case, two extra voids are modeled which are expected to
not be part of the main crack. This is done to see the effect of these voids on the properties
while they are not part of the main crack. The deformation for the constraint extension and
pure shear cases can be seen in Figure 5.2a and Figure 5.2b respectively.
For the verification, it has to be determined whether the rate of work on the void boundary
is approximately zero. This ensures that the assumptions done in Chapter 3 are valid. The
rate of work plot, is shown in Figure 5.3a for constraint extension and in Figure 5.3b for pure
shear.
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Figure 5.1: Verification cases voids, geometry
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Figure 5.2: Verification cases voids, deformation of the numerical models. Here, the red dots
are the failed cohesive elements
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Figure 5.3: Verification cases voids, rate of work of the numerical models

The dashed line is the first part of Equation 3.30. In the constraint extension case, it can
be found that it is approximately zero. For the shear case it can be found that when the
other powers go to infinity, the rate of work on the voids also increases, yet in comparison
to the power of the microstructure, this can be neglected. It can be concluded that in both
the constraint extension and pure shear mode the rate of work of the voids is approximately
zero. This results in that there is no effect of the voids on the crack, from which it can be
found that the change of theory and assumptions as discussed in Chapter 3 are valid.
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5.2 Verification of the Vector decomposition

The verification of the vector decomposition will look at the rate of work (power) of the model
and it will show how the Hill-Mandel condition is satisfied. The effective traction separation
law is also shown to see the effect of the change on the effective properties. This is done for
constraint extension, pure shear and a mixed mode loading case. The three loading cases are
shown in Table 5.1. For the pure shear loading, the boundary condition is chosen so that
the deformation of the volume element is pure shear under 45◦. The MVE geometry is fiber
reinforced composite without any defects.

Table 5.1: Loading cases and their deformation gradient for the verification of the first adaptation.

Loading Case Deformation Gradient

Constraint Extension
[
γ 0
0 0

]

Pure Shear
[
γ 0
0 −γ

]

Mixed mode
[
2γ 0
0 −γ

]

Constraint Extension loading case

In order to verify the vector decomposition method, and its difference to the previous method
using an Singular Value Decomposition (SVD), the rate of work of both methods are shown.
These type of plots show the macroscopic effective rate of work using either the crack averaged
properties or the bulk averaged properties and the microscopic rate of work. It is required
that a combination of the macroscopic crack averaged (P fΓ ) and bulk averaged (P fΩ) rate of
work equals the microscopic rate of work.
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Figure 5.4: Crack averaged, bulk averaged and microstructural rate of work for a constraint
extension loading case

In Figure 5.4 it is found that with the initial methodology the rate of work of the bulk-
averaged effective rate of work (P fΩ) is found to coincide with the microscopic rate of work
of the crack. For the crack-averaged effective power this is not the case. With the vector



52 Verification and Convergence Studies

decomposition it can be found that there is a clear improvement as now also the P fΓ coincides
with the microscopic rate of work.
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Figure 5.5: Normal traction separation law in case of a constraint extension load case

For the effective traction, as is shown in Figure 5.5, it can be found that both the crack-
averaged effective traction (tfΓ) and bulk-averaged effective traction (tfΩ) decrease. In Fig-
ure 5.5 the microscopic rate of work and the macroscopic rate of works coincided with the
vector decomposition method. In models which have crack bifurcations, these do not coincide,
but with the new theory the macroscopic rate of works do converge to the microscopic rate
of power and thus the overall method is improved.

Shear loading case

In case of the pure shear (biaxial extension-compression) the rate of work is shown in Figure
5.6. In these figures it can be seen that the rate of works of the macroscale properties do not
coincide with the microscopic rate of work such as in the constraint extension case. However,
it does converge towards the microscopic rate of work. The overall traction decreases as is
found in Figure 5.7
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Figure 5.6: Crack averaged, bulk averaged and microstructural rate of work for a pure shear
loading case

Mixed Mode loading case

It can be found in Figure 5.8, that for the mixed mode loading case the microscale rate of
work gets outside of the two averaged rate of works. For this loading case, in the first part
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Figure 5.7: Transverse traction separation law in case of a shear load

of the numerical model (until t = 0.15), the vector decomposition method shows that the
macroscale rate of work was closer to the microscale. However, at the large peak of the rate
of work the SVD method is more accurate. The numerical model showed that after t = 0.15
the volume element already has a complete crack and numerical errors occur such as mesh
overlapping and since a high viscous regulation is required. From this it can be concluded
that the first part of the rate of work is the most important and the vector decomposition
method works better at this location for the mixed mode loading.
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Figure 5.8: Crack averaged, bulk averaged and microstructural rate of work for a mixed mode
loading case
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Figure 5.9: Transverse traction separation law in case of a mixed loading for both methods



54 Verification and Convergence Studies

5.3 Mesh Convergence

The mesh convergence is performed for each loading case at each volume element size. For
each mesh size at each loading case, five realizations are made. The volume element sizes
that are modeled are 25× 25µm, 37.5× 37.5µm, 50× 50µm, 62.5× 62.5µm, 75× 75µm and
100× 100µm. In the mesh convergence, not only the effect of the different loading, but also
the effect of the voids is an important aspect. It is assumed that the void area and void type
do not have impact on the convergence study. It is chosen that the void content, void area
and distribution of void aspect ratio remains constant, with a void content of 3%. This results
in an increasing number of voids with respect to the volume element. For the smaller volume
elements (25× 25,37.5× 37.5 and 50× 50) the mesh sizes of 3µm, 2µm, 1µm and 0.5µm are
used. For the three larger volume elements, due to the increase in computation time the mesh
size of 0.5µm is not modeled. Example of the mesh sizes of 25×25µm, 50×50µm, 75×75µm
and 100× 100µm can be found in Figure 5.10, 5.11, 5.12 and 5.13 respectively. It can be seen
that due to the mesh optimization, a mesh refinement near the voids occurs.
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Figure 5.10: Example of volume element of 25X25 µm, using finer meshes with a constant fiber
and void distribution
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Figure 5.11: Example of volume element of 50X50 µm, using finer meshes with a constant fiber
and void distribution

For the mesh convergence, the Effective Traction Separation Law (ETSL) and the crack
content is used. The crack content is used to determine the fraction of the crack, which could
be in the matrix of the composite or on the interface between the fiber and matrix. The
crack content is evaluated here as the mesh size can negatively impact the crack content and
should thus be converged. For the ETSL the convergence is determined using the scatter of
the smallest mesh. It is assumed that is the ETSL of a larger mesh size is within this scatter,
that mesh size will be the converged mesh size. Here NR is the amount of realizations used.
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Figure 5.12: Example of volume element of 75X75 µm, using finer meshes with a constant fiber
and void distribution
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Figure 5.13: Example of volume element of 100X100 µm, using finer meshes with a constant
fiber and void distribution

The effect of the mesh sizes is determined for each loading case and for each MVE size. For
each loading case the mesh convergence is discussed below.

5.3.1 Constraint Extension loading case

With the constraint extension case, the crack mainly opens in a normal direction, and thus
for the convergence, this direction is used. The ETSL for each volume element can be found
increasing order in Figure 5.14 to Figure 5.19. In each ETSL a dot can be found where the
line is thinner afterward, this indicates the location at which the viscous energy is too large.

Table 5.2: The converged mesh size for each MVE size for the constraint extension loading case

MVE size [µm] Converged Mesh Size
25× 25 3

37.5× 37.5 2
50× 50 1

62.5× 62.5 3
75× 75 3

100× 100 3

The table of the converged mesh sizes can be found in Table 5.2. The crack content seemed
to have converged for all cases although at the MVE size of 62.5 × 62.5µm and 75 × 75µm
the crack content seems to diverge with increasing mesh density.
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Figure 5.14: Constraint extension with a volume element size of 25x25µm
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Figure 5.15: Constraint extension with a volume element size of 37.5x37.5 µm
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Figure 5.16: Constraint extension with a volume element size of 50x50 µm
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Figure 5.17: Constraint extension with a volume element size of 62.5x62.5 µm
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Figure 5.18: Constraint extension with a volume element size of 75x75 µm
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Figure 5.19: Constraint extension with a volume element size of 100x100 µm
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5.3.2 Pure Shear loading case

For the pure shear case, the tangential ETSL with respect to the crack normal is the most
critical, which is denoted in the figures as mode II. The ETSL and crack content for increasing
MVE size can be seen in Figure 5.20 to Figure 5.25.

In Table 5.3 the converged mesh sizes can be found for each MVE size in a pure shear loading
case. It can be seen that with increasing MVE size on average the mesh size can also be
larger.

Table 5.3: The converged mesh size for each MVE size for the pure shear loading case

MVE size [µm] Converged Mesh Size [µm]
25× 25 1

37.5× 37.5 0.5
50× 50 0.5

62.5× 62.5 2
75× 75 1

100× 100 1
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Figure 5.20: Shear loading with a volume element size of 25x25 µm
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Figure 5.21: Shear loading with a volume element size of 37.5x37.5 µm
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Figure 5.22: Shear loading with a volume element size of 50x50 µm
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Figure 5.23: Shear loading with a volume element size of 62.5x62.5 µm
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Figure 5.24: Shear loading with a volume element size of 75x75 µm



60 Verification and Convergence Studies

0.0 0.5 1.0 1.5 2.0

δf
II [µm]

0

5

10

15

20

25

30

35

tf I
I

[M
P

a]

Mesh size: 3.0µm, NR = 5
Mesh size: 2.0µm, NR = 5
Mesh size: 1.0µm, NR = 3

(a) ETSL transverse to the crack (mode II)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

grid size [µm]

0.0

0.2

0.4

0.6

0.8

1.0

Γ
m

at
Γ

[-]

Matrix
Interface

(b) Crack content

Figure 5.25: Shear loading with a volume element size of 100x100 µm

5.3.3 Mixed Mode loading case

For the mixed mode loading both the tangential component and normal component are sig-
nificant. For the convergence study only the tangential component is evaluated to ensure
consistency. The ETSL and crack content for increasing MVE size can be seen in Figure 5.26
to Figure 5.31.

Table 5.4: The converged mesh size for each MVE size for the mixed mode loading case

MVE size [µm] Converged Mesh Size [µm]
25× 25 2

37.5× 37.5 2
50× 50 0.5

62.5× 62.5 2
75× 75 1

100× 100 1
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Figure 5.26: Mixed mode loading with a volume element size of 25x25 µm
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Figure 5.27: Mixed mode loading with a volume element size of 37.5x37.5 µm
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Figure 5.28: Mixed mode loading with a volume element size of 50x50 µm
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Figure 5.29: Mixed mode loading with a volume element size of 62.5x62.5 µm
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Figure 5.30: Mixed mode loading with a volume element size of 75x75 µm
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Figure 5.31: Mixed mode loading with a volume element size of 100x100 µm

5.3.4 Mesh Convergence Remarks

In conclusion, it can be found that with increasing MVE size, the mesh size can become large,
as the details become less prominent. For the pure shear and mixed mode loading case, a
much smaller mesh size is required than for the constraint extension loading case. This is
mainly attributed to the difficulty of the pure shear and mixed mode crack to grow.

Table 5.5: The converged mesh size for each MVE size and for each loading case

Constraint Extension Pure Shear Mixed Mode
25× 25µm 3 1 2

37.5× 37.5µm 2 0.5 2
50× 50µm 1 0.5 0.5

62.5× 62.5µm 3 2 2
75× 75µm 3 1 1

100× 100µm 3 1 1
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5.4 Interfiber Void Mesh Convergence

In order to determine the effect of the mesh size on the interfiber voids, a small mesh conver-
gence study has been performed. It consists of a single interfiber void with three fibers. The
loading condition both the constraint extension and pure shear case have been investigated.
The mixed mode case has not been investigated as the effect of the mixed mode is assumed
to be similar to a combination of the two other loading conditions. Both the effect of the
mesh and the effect of the angle of the interfiber void will be investigated for each loading
condition. The mesh of the three cases can be found in Figure 5.32.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.32: The mesh of the interfiber voids used to determine the convergence mesh size.
From left to right the mesh size are 3 · 10−3µm, 2 · 10−3µm to 1 · 10−3µm. From top to bottom
the orientation θ of the interfiber void is θ = 0 rad, π4 rad and π

2 rad. These geometries are used
for both the constraint extension and pure shear loading condition.

5.4.1 Constraint Extension loading case

For the three orientations the ETSL can be found in Figure 5.33. No clear convergence can
be found when looking at the individual orientations. However, the influence of the angle of
the interfiber void can be evaluated. When looking at different orientations, it can be seen
that in the case of a mesh size of both 1µm and 2 · µm , the ETSL remains constant over
the orientations. From this it is assumed that interfiber void mesh in the case of a constraint
extension loading is converge red from a mesh size of 2µm.
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Figure 5.33: The ETSL for a single Interfiber void at different angles with a constraint extension
boundary condition. The effect of the mesh size for each orientation is shown.

5.4.2 Pure Shear loading case

For the pure shear, the three orientations can be found in Figure 5.34. For both the interfiber
void with orientation of 0◦ and 90◦ the mesh size of 1µm the simulation crashed before the
crack was properly formed. From this no conclusion can be made for the mesh convergence.
Resulting in the assumption that the mesh size as found in the MVE mesh convergence study
is sufficient for the interfiber voids.
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Figure 5.34: The ETSL for a single interfiber void at different angles with a pure shear boundary
condition. The effect of the mesh size for each orientation is shown.

5.5 RVE Convergence

For the RVE convergence the method as presented by Gitman et al. [23] is used. The voids
in the MVE influence the ETSL properties. Since these voids are randomly placed in the
MVE, to determine the RVE the scatter on the ETSL properties is important. In the RVE
convergence study, both the ETSL and the scatter of the ETSL properties are evaluated.
The effective fracture (ultimate) strength and effective fracture energy are used to show the
scatter. The MVEs with the converged mesh as presented previously in this chapter is used.

5.5.1 Constraint Extension

In the constraint extension case, the ETSL seems to have converged at a low volume element
size. However, when looking at the individual parameters of the ETSL, the effective fracture
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strength converges at a rather low MVE size. The fracture energy requires a larger MVE size
to converge. From this it is assumed that in the case of a constraint extension loading case,
the volume element can be assumed to be representative at a size of 50× 50 µm with a mesh
size of 1µm.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

δf
I [µm]

−5

0

5

10

15

20

25

30

35

tf I
[M

P
a]

Size: 25.0×25.0µm, Mesh: 1.0µm,
NR = 5

Size: 37.5×37.5µm, Mesh: 0.5µm,
NR = 5

Size: 50.0×50.0µm, Mesh: 1.0µm,
NR = 5

Size: 62.5×62.5µm, Mesh: 2.0µm,
NR = 5

Size: 75.0×75.0µm, Mesh: 3.0µm,
NR = 5

Size: 100.0×100.0µm, Mesh: 3.0µm,
NR = 5

(a) The ETSL

20 40 60 80 100

w,h [µm]

25

26

27

28

29

30

31

32

33

34

tf I
[M

P
a]

(b) The effective normal strength

20 40 60 80 100

w,h [µm]

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

G
f

[-]

(c) The effective fracture energy

Figure 5.35: The RVE convergence study for a constraint extension loading case.

5.5.2 Pure Shear

In Figure 5.36a it can be found that there is a large deviation between the MVE size of
100 × 100µm and the other MVE sizes. Because of this the MVE size of 100 × 100µm is
discarded in the convergence study.

For pure shear the scatter in the case of an MVE with the size of 62.5 µm or 75 µm, the
standard deviation of the fracture energy is very large, as can be found in Figure 5.36c. This
can mainly be explained by the fact that the convergence of these simulations is difficult,
which results in the fact that some simulations can be cut early and the fracture energy is
arbitrarily lower than expected. For the fracture strength little convergence can be found.

5.5.3 Mixed Mode

For the mixed mode again, similar to the pure shear loading case, the volume element of
100× 100µm is discarded. When comparing the smaller MVE sizes, no clear convergence can
be found. This can be seen in Figure 5.37
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(c) The effective fracture energy

Figure 5.36: The RVE convergence study for a pure shear loading case.
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Figure 5.37: The RVE convergence study for a mixed mode loading case.
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5.5.4 RVE Convergence Remarks

In both the pure shear and mixed mode loading case, the tangential properties at a volume
element size of 100× 100µm was found to deviate too much and was thus discarded.

Both the pure shear and mixed mode loading case show no clear convergence in the effective
properties. It is assumed that the convergence will occur at larger MVE sizes than investigated
here. No larger MVE sizes have been investigated due to the computational limitations of
this project. In this study the MVE size of 75 × 75µm will be used. Yet further research is
required on the RVE size. It is assumed here that the trends that are found using this MVE
size are similar to that of the larger RVE.

For the constraint extension case. a clear convergence is found. Although it is convenient
to take the same volume element size for all the load cases. In this case the same geometry
can be used, resulting in less scatter between the different loading cases and speeds up the
pre-processing. For all three loading cases a volume element of 75× 75µm is used. The mesh
size will also remain constant over the different loading cases to ensure that the mesh influence
on the crack is equal on all loading cases, and is thus a mesh size of 1µm is used.
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Chapter 6

Investigation of the different void
parameters

In this chapter the investigation of the effect of the void parameters on the effective properties
is discussed. First, the general idea behind the different studies are discussed in Section 6.1,
and the three void cases are presented here. Using these three void cases the effect of the void
parameter is determined. The results for each separate void case is discussed in Section 6.2
to Section 6.4. These three void cases are compared in Section 6.5. The concluding remarks
are made in Section 6.6.

6.1 General Idea

In order to determine the effect of the sub-ply defects on the effective traction separation
properties on the macroscale, three studies have been performed. All studies determine the
effect of an increasing void content with different input parameters. The void contents that
have been investigated are 0, 1, 2, 4, 6 and 8 %. For each study eight models with the same
fiber distribution have been evaluated with increasing void content. These fiber distributions
are unique for each loading case and are done to reduce the scatter per case. Examples of
this can be found in the individual sections below.

The first study has matrix voids with nearly constant diameters. This is done to see the
general effect of the matrix voids and to have a baseline for the two other studies. The second
study aims to look at what the effect of the interfiber voids are on the effective properties.
The third study aims to determine what the effect is of large matrix voids on the microscale.
This is simulated by having a large deviation in the diameter of the voids. As presented
in the previous chapter, all simulations will have a Microstructural Volume Element (MVE)
size of 75 × 75µm. For both the pure shear and mixed mode, no Representative Volume
Element (RVE) convergence was found. Due to computational limitations, this MVE size
has been selected. As explained previously, it is assumed that the trends that are found with
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Table 6.1: Loading cases and their deformation gradient

Loading Case Deformation Gradient

Constraint Extension
[
γ 0
0 0

]

Pure Shear
[
γ 0
0 −γ

]

Mixed mode
[
2γ 0
0 −γ

]

this MVE size are similar to that of the trends with the larger RVE size. For each study the
geometry is discussed in greater detail in each respective section.
For all the void cases, the three loading cases, as also done for the convergence study, are
used. These are summarized in Table 6.1. For each loading case eight fiber distributions are
made with increasing void content from 0 to 8 %. These eight realizations per void content
ensure that sufficient realizations are available for the comparison.
For the output the Effective Traction Separation Law (ETSL) and their respective effective
fracture strength and energy are shown. A relation between the fracture strength and energy
is made using a second order polynomial fit for the energy and a linear fit for the effective
fracture strength. These type of fits have been selected as they proved to be the most suitable
for results of the specific parameters. Here, the fitting of the effective properties is mainly
used to see the trend of the properties due to the increase in void content, while not looking
for a true relation between the void content and effective properties. The color of the effective
properties per void case is chosen to have the same color when comparing the different three
void cases.

6.2 Constant diameter matrix voids

For the constant diameter matrix voids, the size of the voids has a small deviation of 0.1% and
the aspect ratio ranges from 1 to 1.4. The average void size is calculated by dividing the total
void content by the amount of voids present in the RVE, as is shown in Section 4.1.1. The
number of voids is equal to six times the percentage of void content (2% results in 12 voids).
Eight fibre distributions with each the six possible void content properties are created, and
thus in total 48 models. Examples of the geometry with increasing void content are shown in
Figure 6.1.

6.2.1 Constraint Extension

For the constraint extension case the ETSL, as is found in Figure 6.2a, are determined. The
scatter of both the effective fracture strength and energy can be found in Figure 6.2b and
Figure 6.2c respectively. From this, it is found that the effective fracture strength does not
change with increasing void content. However, the effective fracture energy does show a clear
decreasing trend with respect to the void content.
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(a) Void content = 0.0 % (b) Void content = 1.0 % (c) Void content = 2.0 %

(d) Void content = 4.0 % (e) Void content = 6.0 % (f) Void content = 8.0 %

Figure 6.1: Increasing void content from 0 % (a) to 8 % in (e), here the void aspect ratio has
a distribution of 1 to 1.4 and the size deviation is 1%
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Figure 6.2: The TSL and its fracture properties with respect to the void content for constant
diameter voids with a constraint extension loading case. Here the properties are normal to the
crack.

6.2.2 Pure Shear

For the pure shear loading case, the ETSL for each void content can be found in Figure 6.3a.
First thing to notice here is that the number of realizations (NR) is very low for the void
content of 8%. This is due to the fact that either the model crashed before a periodic crack
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could fully form, or that the Hill-Mandel condition did not hold.
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Figure 6.3: The TSL and its fracture properties with respect to the void content for constant
diameter voids with a pure shear loading case. Here the properties are tangential taken normal
to the crack.

The effective fracture strength and energy can be found in Figure 6.3b and Figure 6.3c re-
spectively. For both effective properties it can clearly be seen that there is a declining trend
with increasing void content. Although at a void content of 1% the properties have barely
decreased and are still within the standard deviation of the models without voids. From which
it can be concluded to not have a significant effect on the properties at low void content, and
a critical value is present. The effective properties also seem to flatten with increasing void
content, which could be explained by the fact that at such high void contents, the crack can
already form at such ease.

6.2.3 Mixed Mode

The mixed mode loading case shows a rather complicated crack path. The orientation of the
crack is shown in Figure 6.4d. Here, it can be found that the crack angle has a small, yet not
significant decrease. From the scatter it can be found that at low void contents the scatter is
high, yet decreases with increasing void content.

The tangential ETSL and its properties can be found in Figure 6.4. For the tangential a clear
decrease of the properties can be found, with a flattening of the fracture energy. Again, a
critical value can be seen at a void content of 1%.
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Figure 6.4: The ETSL, its fracture properties and crack orientation with respect to the void
content for constant diameter voids with a mixed mode loading case. Here the properties are
tangential to the crack.

6.3 Interfiber voids

The interfiber voids have a discreet void content. In order to compare the results with the
previous case, similar void contents are required. To ensure this matrix voids are added to
the simulations of the interfiber void to reach the void content required. The percentage of
interfiber voids to the total void content is around 25%. The parameters used are shown in
Table 6.2.

Table 6.2: Input parameters for the interfiber void case

Void Content 0.0 % 1.0 % 2.0 % 4.0 % 6.0 % 8.0 %
InterFiber Voids [-] [3] [3, 3] [3, 3, 4] [3, 3, 4, 4] [3, 3, 4, 4, 4]
Number of voids - 5 10 20 29 39

Here, the interfiber voids indicate whether a three fiber or four fiber interfiber void is present.
The number of matrix voids is selected to ensure that the average matrix void size is equal to
that of the previous study with the constant diameter matrix voids, while having the same
void content. This is done to ensure the fact that the comparison between the constant
diamater matrix voids and interfiber voids only has one parameter different, which is that
25% of the total void content are interfiber voids. Examples of this study can be found in
Figure 6.5.
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(a) Void content = 0.0 % (b) Void content = 1.0 % (c) Void content = 2.0 %

(d) Void content = 4.0 % (e) Void content = 6.0 % (f) Void content = 8.0 %

Figure 6.5: Increasing void content from 0 % (a) to 8 % in (e), here the void aspect ratio has
a distribution of 1 to 1.4 and the size deviation of 1%

6.3.1 Constraint Extension

For the constraint extension loading case the ETSL and its properties can be found in Fig-
ure 6.6.
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Figure 6.6: The TSL and its fracture properties with respect to the void content for constant
diameter voids with a constraint extension loading case. Here the properties are normal to the
crack.
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The microscopic voids show to have little influence on the effective fracture strength , while
for the fracture strength a clear , fairly linear, decrease can be found, as can be found in
Figure 6.6b and Figure 6.6c.

6.3.2 Pure Shear

In the pure shear loading case for the interfiber voids both the fracture strength and fracture
energy decrease, as can be found in Figure 6.7b and Figure 6.7c respectively. In this case the
critical value of 1% is again obvious.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

δf
II [µm]

0

10

20

30

40

50

tf I
I

[M
P

a]

Vc = 0 % , NR = 8
Vc = 1 % , NR = 5
Vc = 2 % , NR = 7
Vc = 4 % , NR = 5
Vc = 6 % , NR = 6
Vc = 8 % , NR = 4

(a) The ETSL in tangential direction of
the crack

0.00 0.02 0.04 0.06 0.08

Void content [-]

15

20

25

30

35

40

tf I
I

[M
P

a]

y = −147.640V c+ 36.118, R2 = 0.939

tfult

(b) The effective fracture strength

0.00 0.02 0.04 0.06 0.08

Void content [-]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

G
f

[N
/m

m
]

y = 3.964V 2
C +−0.797VC + 0.050

Gf

(c) The effective fracture energy

Figure 6.7: For the interfiber void case TSL and its fracture properties with respect to the void
content for constant diameter voids with a shear loading case. Here the properties are normal to
the crack.

6.3.3 Mixed Mode

At a void content of 4% the interfiber void with four fibers is used first. When looking at the
orientation of the crack as shown in Figure 6.8d, the crack orientation decreases when these
four fiber interfiber voids are first used.

For the fracture strength and energy, as shown in Figure 6.8b and Figure 6.8c respectively,
both the strength and energy decrease with increasing void content.
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Figure 6.8: The ETSL, its fracture properties and crack orientation with respect to the void
content for constant diameter voids with a pure shear loading case. Here the properties are
tangential taken normal to the crack.

6.4 Large range in diameter of the matrix voids

In order to determine whether the size of the matrix voids have an influence on the size of
the voids is changed. A large deviation for the void diameter is used to have both small and
large voids.

(a) Void content = 0.0 % (b) Void content = 1.0 % (c) Void content = 2.0 %

(d) Void content = 4.0 % (e) Void content = 6.0 % (f) Void content = 8.0 %

Figure 6.9: Increasing void content from 0 % (a) to 8 % in (e), here the void aspect ratio has
a distribution of 1 to 1.4 and the size deviation is 83%
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The deviation in size is now 83%, while the possible aspect ratio is kept constant at the range
of 1 to 1.4. The number voids per void content is kept the same compared to the constant
diameter voids. Examples for this configuration can be found in Figure 6.9.

6.4.1 Constraint Extension

For the constraint extension loading case, the effective properties and their scatter are found
in Figure 6.10. From this it is found that there is no effect on the effective fracture strength
when increasing the void content. The effective fracture energy does show a clear decline with
increasing void content.
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Figure 6.10: The TSL and its fracture properties with respect to the void content for voids with
a large devaition in diameter with a constraint extension loading case. Here the properties are
normal to the crack.

6.4.2 Pure Shear

In the pure shear case that contains matrix voids with a large deviation in diameter, again
the decrease in both the effective strength and energy is found, as is shown in Figure 6.11. A
critical value can be seen for the fracture strength, at which until a void content of 2% the
voids have little influence on the fracture strength, after which a clear decline can be seen.

6.4.3 Mixed Mode

For the effective fracture properties the fracture strength seem to stay rather constant with
increasing void content while the fracture energy shows a clear decline, as is shown in Fig-
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ure 6.12.
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Figure 6.11: The TSL and its fracture properties with respect to the void content for voids with
a large deviation in diameter with a pure shear loading case. Here the properties are normal to
the crack.
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Figure 6.12: The ETSL, its fracture properties and crack orientation with respect to the void
content for constant diameter voids with a mixed mode loading case. Here the properties are
tangential taken normal to the crack.
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The orientation of the crack is found to be relatively constant with increasing void content,
as is shown in Figure 6.12d.

6.5 Comparison of the different void case

In the previous section the three studies of the constant diameter void, interfiber voids and
voids with a large deviation of diameter were presented separately. The comparion between
these three casesis done below. The effective fracture strength and energy are compared per
loading case.

6.5.1 Constraint Extension

The effective fracture strength can be found in Figure 6.13a. Here it can be seen that for
the interfiber void case, the fracture strength is significantly lower. This is explained by the
fact that the fibers in this case are forced into a fiber distribution with fiber rich and matrix
rich regions on the microscale. These fiber and matrix rich regions resulted in an overall
weaker volume element. During the RVE convergence, this was not taken into account. Since
at a void content of 0% the volume elements should be the same, for each effective fracture
property an average over all realizations is taken. This is indicated as the black marker
henceforth. The fitting have been adapted to use this new initial value, as this new initial
value is more representative than the individual initial values. The effective fracture energy
for the constraint extension case can be found in Figure 6.13b. In this case all three different
cases seem to be within the standard deviation of the other cases.
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Figure 6.13: For the constraint extension loading case the effective properties of the three
different studies

6.5.2 Pure Shear

When looking at the pure shear boundary condition, for the effective fracture strength, as
shown in Figure 6.14a, there is a much larger decrease in the strength when looking at the
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interfiber voids compared to the matrix voids cases. This is because the interfiber voids have
a larger influence on the initiation of the crack compared to these matrix voids, although
when looking at the scatter it is only a small influence.
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Figure 6.14: For the pure shear loading case the effective properties of the three different studies

In Figure 6.14b the effective fracture energy can be found. Here energy at a void content of
0% seem to be fairly similar. The fit of the interfiber void seems to deviate a lot from the
other cases, which is mainly caused by a large deviation at the 1% void content. At large
void contents the fracture energy converge to one another.

6.5.3 Mixed Mode

The effective fracture strength tangential to the macroscopic crack is shown in Figure 6.15a.
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Figure 6.15: For the mixed mode loading case the effective properties of the three different
studies

When comparing the three fracture strengths as a function of the void content, little difference
can be found when taken the scatter into account. For the fracture energy, as found in
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Figure 6.15b, the same can be found. Although for the fracture strength the interfiber void
properties are slightly lower due to the fiber distribution.

6.5.4 Discussion of the comparison

The difference between the three cases seems to be very minimal. Here in all three loading
cases the properties have been within each others standard deviation and show the same trend.
This shows that when looking at the influence of the sub-ply voids on the effective properties,
the most important constant is the void content and the other microscale parameters seem
to be second order.

When comparing the fracture energy of the pure shear loading case and constraint extension
loading case, it can be found that the pure shear fracture energy is almost twice as high as
the fracture energy for the constraint extension case. This can mainly be attributed to the
fact of increasing viscosity due to the high compressive stresses caused by sliding of the crack.

6.6 Concluding remarks

In this chapter the results of three different void cases were presented, which were voids with
nearly constant diameter, interfiber voids and large deviation of the diameter void.

For the constraint extension boundary condition all three cases show that the void content
has little effect on the effective fracture strength. The effective fracture energy does show a
significant decrease in its property. When comparing the three cases, it is found that there is
little difference in terms of fracture energy. For the fracture strength the interfiber void case
does show a significantly lower value compared to the other cases, which is mainly due to the
fact that the interfiber voids force the fiber distribution for the volume element to have fiber
rich and matrix rich regions.

For both the pure shear and mixed mode boundary condition it is found that the void content
has a significant effect on the effective properties, while there is little difference between the
different void cases. Because of this it can be concluded that when looking at sub-ply voids
the most important parameter is the void content and the individual void parameters are
only a second order parameter.
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Chapter 7

Conclusions

7.1 Conclusion

During the manufacturing of fiber reinforced composites, defects can be created. These defects
can often have a detrimental effect on the properties of the composite. In this project the
effect of sub-ply defects, mainly voids, on the failure properties of the composite have been
determined. The objective of the project is repeated below:

The objective of this MSc. Thesis it to determine the influence of sub-ply defects and its pa-
rameters to a micromechanically derived Traction-Separation Law (TSL), by using multiscale
modeling with a computational homogenization technique and a cohesive zone damage model.

For the multiscale analysis, the method of Turteltaub et al. [53] is used. However, this
method does not take defects on the microscale into account. Subsequently, this method had
to be adapted. The defects on the microvoids resulted in an additional discontinuity on the
microscale. This added an additional term in the strain tensor and finally in an additional
requirement in the Hill-Mandel condition. Since it is assumed that the void has no outward
pressure on the surrounding material i.e. the air inside the void has no influence on the
material. The rate of work done on the voids also has to be zero. From the verification it is
found that this rate of power is negligible.

The adapted theory had to be numerically implemented. The creation of the Microstructural
Volume Element (MVE) is done using python, where the random mesh is generated using
gmsh. The MVE created is able to generate the microstructure containing randomly dis-
tributed fibers, matrix voids and interfiber voids. The fracture mechanism is modeled using
cohesive elements. The Finite Element (FE) model was then implemented into Abaqus R©.
Then Abaqus R© is used to simulate the fracture in the microstructure. The microstructural
fracture information is extracted from Abaqus R© and used for the further processing and de-
termination Effective Traction Separation Law (ETSL) for various configurations.

The Representative Volume Element (RVE) size was determined using the method as proposed
by Gitman et al. [23]. The MVE size was increased until the fracture behavior was converged.
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Both the RVE and mesh convergence was done for the three loading cases at a void content
of 3%. For the pure shear and mixed mode loading case no RVE convergence was found. Due
to the computational limitations the MVE size of 75 × 75µm was used for further research.
It was assumed that the trends found at this MVE size are similar to that of the larger RVE.

Using this MVE size the effect of different void parameters was investigated. To do this three
different void cases were simulated. Each void case is tested for a void content in the range
of 0% to 8% for the three loading cases. To reduce the scatter for each void content eight
volume elements are used. This resulted in 48 simulations per void case. The initial void case
is a benchmark case containing nearly constant diameter matrix voids. The second void case
is with 25% of the total void content being interfiber voids, where the effect of the interfiber
voids on the fracture properties were investigated. Finally, the third case contains matrix
voids with a large deviation in the diameter of the voids to investigate the effect of the larger
voids in the microstructural volume element.

Overall, for the constraint extension loading case it can be found that the effective fracture
strength remains constant with increasing void content. However, for the interfiber void case,
the fracture strength is lower. This is mainly contributed to the fact that the interfiber voids
have an arbitrary distribution of the fibers, resulting in fiber rich and matrix rich regions,
which show an influence on the effective fracture strength. This effect was not taken into
account during the RVE convergence. The fracture energy for the different void cases show a
similar decline within the standard deviation of each other.

For the pure shear loading case for all three cases, the fracture strength shows a critical value
at which the voids start to have an influence on the fracture strength after a void content
of 1%. The fracture energy does not show this critical value. The interfiber void shows a
sharper decline in the fracture strength which can be contributed due to the interfiber voids
having a larger influence on the failure initiation.

The mixed mode loading cases shows a similar effect for the fracture strength with the inter-
fiber void decreasing more compared to the other cases. In the mixed mode the critical value
is also present.

From these three loading cases it can be concluded that the type of void does not have a
significant influence on the effective properties and the main parameter is the void content,
where the effective properties decrease significantly with increasing void content. The critical
value seems to be mainly present in the tangential component (with respect to the macroscopic
crack). The type of voids present on the sub-ply do not have a mayor influence on the effective
fracture properties and can be seen as a second order variable.

7.2 Recommendations

The objective to determine the effect of sub-ply voids on the effective fracture properties
has been achieved. The voids show the expected result of decreasing the effective fracture
properties. To further improve the method, the following recommendations are made:

• Currently, the effective traction is defined using a best fit of the Hill-Mandel condition
of the bulk averaged and crack averaged properties. This fitted value, α, is constant
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over the simulation. To further improve the method, in future research a more flexible
method should be investigated, which results in a perfect fit between the macroscopic
and microscopic properties over time.

• In a lot of the simulations, the viscous energy that is added by the automatic stabiliza-
tion exceeds the threshold of 5%. As a result, the energy is dissipated in order to have
a stable simulation. Removing this automatic stabilization results in the divergence
and reducing the stabilization results in a very high computational cost. This has to
be taken into account for further research or an advanced method to incorporate this
effect in the homogenization could be researched.

• In this thesis, the MVE is on a 2-Dimensional (2D) plane. In order to model all the
possible failure mechanisms and have a more accurate representation of the defects, a
3-Dimensional (3D) model could be developed. The presented theory is applicable to
3D with only minor changes.

• In this research to ensure the direction of the properties of the cohesive element, a
reference vector is used. To properly select this reference vector, an initial guess of the
crack normal has to be made. This dependency of the input on the output should be
investigated and if possible be decoupled.

Different manufacturing defects can occur in a fiber reinforced composite. Currently, only the
sub-ply voids have been investigated. To further investigate the effect of the manufacturing
defects on the composite structure, further research can be done on the effect on the effective
properties by for instance the following defects:

• Imperfect bonding between the fibers and matrix. From the literature study it was
found that parts of a fiber can be improperly bonded to the matrix due the fiber not
being processed correctly before combining the fiber and matrix [15].

• Fiber weaving or misalignment of the fibers, in this case the longitudinal plane on the
microscale will have to be used.

• The effect of the bonding between two plies and possible defects on this interface.
Currently this effect of the bonding between two plies is being investigated using a 2D
model.

In this research it has been assumed that the internal pressure of the voids is negligible. The
theory that was developed is however able to model this effect. Further research can be done
on the effect of this internal pressure on the failure mechanisms on the microscale. As this
internal pressure can be possible for specific manufacturing techniques.
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