
 
 

Delft University of Technology

Deep-reinforcement-learning-based separation control in a two-dimensional airfoil

Garcia, Xavier; Miró, Arnau; Suárez, Pol; Alcántara-Ávila, Francisco; Rabault, Jean; Font, Bernat;
Lehmkuhl, Oriol; Vinuesa, Ricardo
DOI
10.1016/j.ijheatfluidflow.2025.109913
Publication date
2025
Document Version
Final published version
Published in
International Journal of Heat and Fluid Flow

Citation (APA)
Garcia, X., Miró, A., Suárez, P., Alcántara-Ávila, F., Rabault, J., Font, B., Lehmkuhl, O., & Vinuesa, R.
(2025). Deep-reinforcement-learning-based separation control in a two-dimensional airfoil. International
Journal of Heat and Fluid Flow, 116, Article 109913. https://doi.org/10.1016/j.ijheatfluidflow.2025.109913

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijheatfluidflow.2025.109913
https://doi.org/10.1016/j.ijheatfluidflow.2025.109913


D
a
X
B
a

b

c

d

e

A

K
D
A
D
F
C
F
A
E

1

o
r
t
g
o
f
a

d
A
u
r

b
d
n
e

h
R

International Journal of Heat and Fluid Flow 116 (2025) 109913 

A
0

 

Contents lists available at ScienceDirect

International Journal of Heat and Fluid Flow

journal homepage: www.elsevier.com/locate/ijhff  

eep-reinforcement-learning-based separation control in a two-dimensional 
irfoil
avier Garcia a ,∗, Arnau Miró c,b, Pol Suárez a, Francisco Alcántara-Ávila a, Jean Rabault d, 
ernat Font e, Oriol Lehmkuhl b, Ricardo Vinuesa a
FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
Barcelona Supercomputing Center, Barcelona, Spain
Universitat Politecnica de Catalunya, Barcelona, Spain
Independent Researcher, Oslo, Norway
Faculty of Mechanical Engineering, Technische Universiteit Delft, The Netherlands

 R T I C L E  I N F O

eywords:
eep reinforcement learning
ctive flow control
rag Reduction
low Separation Control
omputational fluid dynamics
luid Mechanics
irfoil
nergy Efficiency

 A B S T R A C T

The aim of this study is to discover new active-flow-control (AFC) techniques for separation mitigation 
in a two-dimensional NACA 0012 airfoil at a Reynolds number of 3000. To find these AFC strategies, a 
framework consisting of a deep-reinforcement-learning (DRL) agent has been used to determine the action 
strategies to apply to the flow. The actions involve blowing and suction through jets at the airfoil surface. 
The flow is simulated with the numerical code Alya, which is a low-dissipation finite-element code, on a 
high-performance computing system. Various control strategies obtained through DRL led to 43.9% drag 
reduction, while others yielded an increase in aerodynamic efficiency of 58.6%. In comparison, periodic-
control strategies demonstrated lower energy efficiency while failing to achieve the same level of aerodynamic 
improvements as the DRL-based approach. These gains have been attained through the implementation of a 
dynamic, closed-loop, time-dependent, active control mechanism over the airfoil.
. Introduction

Active flow control (AFC) research is crucial not only for the devel-
pment of aerodynamics and aircraft design but also for all transport-
elated systems. This is primarily due to the critical relationship be-
ween drag reduction and overall system efficiency. Flow control strate-
ies, whether passive (implemented through geometric modifications 
r additions) or active (utilizing devices that dynamically alter the 
low over time), enable the manipulation of flow behavior to enhance 
erodynamic performance.
Active flow control facilitates key aerodynamic benefits such as 

rag reduction, fuel consumption minimization, and noise reduction. 
dditionally, AFC can enhance lift, improve maneuverability — partic-
larly in low-speed vehicles — and even contribute to radar signature 
eduction by strategically disturbing the flow.
Over the past decades, various passive flow control techniques have 

een developed. The earliest advancements in this field, including those 
uring World War II, are reviewed by McLellan and Ladson (1988). A 
otable example is the surface-roughness technique studied by Beratlis 
t al. (2017), where different surface textures alter the boundary layer, 
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delaying flow separation and thereby reducing drag. Another signifi-
cant contribution is the work of Bechert and Bartenwerfer (1989), who 
investigated the aerodynamic effects of fine longitudinal ribs in viscous 
flows.

Following the exploration of passive methods, the field moved to-
ward active techniques. The first significant approach involved periodic 
excitations, as demonstrated by Amitay et al. (1998). Later, Green-
blatt and Wygnanski (2000) extended these efforts to prevent flow 
separation using similar excitation strategies. A major breakthrough 
was the implementation of closed-loop controllers, as demonstrated 
by Muddada and Patnaik (2010), who used simple actuators to reduce 
drag in a low Reynolds number (𝑅𝑒) cylinder flow, achieving a 53% 
drag reduction.

More relevant to the present study, blowing and suction techniques 
have been widely explored for boundary layer control. Kametani and 
Fukagata (2011) investigated their effects on flow stability, while Vo-
evodin et al. (2019) and Yousefi and Saleh (2015) studied suction and 
ejection mechanisms for drag reduction and flow control optimization.

In recent years, modern AFC strategies have increasingly incor-
porated deep reinforcement learning (DRL), utilizing artificial neural 
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networks (ANNs) for autonomous control strategy discovery. DRL has 
been recognized for its ability to optimize flow control problems in 
a computationally efficient manner. The first demonstration of DRL 
in AFC was provided by Rabault et al. (2019), where a DRL agent 
controlled the 2D flow around a cylinder at 𝑅𝑒 = 100, achieving an 8% 
drag reduction using a proximal-policy-optimization (PPO) algorithm. 
Later, Rabault and Kuhnle (2019) enhanced the framework through 
parallelization, significantly accelerating training efficiency. Tang et al. 
(2020) extended DRL-based AFC to higher Reynolds numbers using a 
more complex setup involving four synthetic jets.

Building on these early advancements, an increasing amount of re-
search has confirmed the effectiveness of DRL for AFC applications. Ren 
et al. (2021) explored weakly turbulent 2D cylinder flows, while Varela 
et al. (2022) expanded these findings to higher Reynolds number 
cylinders. Cavallazzi et al. (2024) applied DRL to Couette flow, show-
casing its versatility across different flow types. Font et al. (2025) 
further demonstrated DRL’s adaptability in controlling turbulent sep-
aration bubbles. Additionally, DRL applications have been extended 
to Rayleigh–Bénard convection cases, as examined by Vignon et al. 
(2023a) and Vasanth et al. (2024).

Given the rapid progress in this field, interested readers may refer to 
broader review articles such as Vignon et al. (2023b) for an extensive 
overview of DRL-based AFC.

Among the most relevant prior studies, Suárez et al. (2024b) ex-
plored the first DRL-controlled three-dimensional (3D) cylinder flow, 
addressing transitional turbulent regimes in cylinder wakes by incor-
porating multiple control jets in the spanwise direction and manag-
ing complex flow structures. Building on this, Suárez et al. (2024a) 
extended the study to higher Reynolds numbers, where turbulence 
becomes even more intricate, further increasing the complexity of the 
active flow control (AFC) problem.

For AFC applications on airfoils, Zong et al. (2024) applied Q-
learning to regulate plasma synthetic jets at an airfoil’s trailing edge, 
aiming to suppress flow separation. Additionally, Wang et al. (2022) 
explored DRL-based synthetic jet control on a NACA 0012 airfoil at 
𝑅𝑒𝐷 = 3000, employing three jets on the upper surface. Their results 
demonstrated a 27% drag reduction and a 27.7% lift enhancement. 
However, their strategy utilized a static jet intensity, lacking real-time 
adaptability as they use an open-loop structure.

This study aims to control the recirculation bubble that forms at 
the trailing edge of a two-dimensional NACA 0012 airfoil using a DRL-
based computational framework. The methodology builds upon the 
approaches of Rabault et al. (2019), Suárez et al. (2024b), and Suárez 
et al. (2024a), integrating a proximal-policy-optimization (PPO) algo-
rithm (Schulman et al. (2017)) for active flow control. The computa-
tional experiments are conducted at 𝑅𝑒𝐷 = 3000 using three synthetic 
jets placed on the upper airfoil surface. These jets are dynamically 
controlled by a DRL agent to optimize aerodynamic performance by 
reducing drag and increasing aerodynamic efficiency.
The simulations are executed on the Nord 3 Supercomputer at the 
Barcelona Supercomputing Center (BSC-CNS) using Alya, a high-
performance computational fluid dynamics (CFD) solver optimized for 
large-scale simulations (Vazquez et al., 2014). 

The present work focuses on demonstrating DRL-based control effi-
cacy in a consistent numerical framework, rather than absolute agree-
ment with other datasets in the literature.

The remainder of this paper is organized as follows. Section 2 
presents the methodology, detailing the deep reinforcement learning 
(DRL) framework, the numerical setup, and the validation of the Alya 
solver. Section 3 discusses the DRL training results for active flow 
control (AFC) on a two-dimensional airfoil. Finally, Section 4 summa-
rizes the key findings and provides concluding remarks on the study’s 
contributions and potential future directions.
2 
2. Methodology

2.1. Domain, mesh, and numerical method

This study investigates DRL-based active flow control in a NACA 
0012 airfoil immersed in a two-dimensional channel flow. The selected 
configuration facilitates both validation and direct comparison with the 
findings of Wang et al. (2022). All geometric parameters are normalized 
with respect to the airfoil chord length (𝐷),1 which serves as the 
reference scale throughout the study.

The computational domain, depicted in Fig.  1, extends 6𝐷 in the 
streamwise direction and 1.4𝐷 in the perpendicular direction (𝑦). The 
coordinate system’s origin is located at the leading edge of the air-
foil, positioned at (𝑥 = 1.5𝐷, 𝑦 = 0). The airfoil is oriented at an 
angle of attack of 10◦, achieved through the appropriate rotational 
transformation.

The inlet boundary condition 𝛤in is defined by a parabolic velocity 
profile, given by 

𝑈in(𝑦) =
4𝑈𝑚(0.7𝐷 − 𝑦)(0.7𝐷 + 𝑦)

1.4𝐷2
, (1)

where 𝑈𝑚 = 0.45 represents the maximum velocity at the profile’s 
center. The Reynolds number is defined as 

𝑅𝑒𝐷 = 𝑈̄𝐷
𝜈

, (2)

where 𝜈 is the kinematic viscosity, and 𝑈̄ represents the mean velocity, 
computed as 

𝑈̄ = ∫

+0.7𝐷

−0.7𝐷
𝑈in(𝑦) d𝑦 = 2

3
𝑈m. (3)

From this, the mean velocity at the inlet is determined to be 𝑈̄ = 0.3.
A no-slip condition is applied at the airfoil surface and channel walls 

𝛤wall. At the outlet boundary 𝛤out , a zero-gradient condition is enforced 
on velocity, while maintaining a constant pressure.

To enhance numerical stability, a buffer zone is incorporated near 
the outlet, wherein the fluid viscosity is artificially increased by an or-
der of magnitude. This technique, adapted from Ferziger et al. (2020), 
effectively dissipates vortices, prevents recirculation instabilities, and 
ensures mass conservation. The absence of this stabilization mechanism 
could lead to numerical divergence and simulation failure due to 
unphysical recirculation effects at the outflow boundary.

The mesh used in the simulations is an unstructured triangular mesh 
with refinement near the airfoil, around the control jets, and in the 
wake region.

Three active control jets are positioned on the upper surface of the 
airfoil at 𝑥∕𝐷 = 0.2, 0.3, and 0.4, respectively. The actuators, labeled 
as jet1, jet2, and jet3, are configured to ensure that actuation occurs 
perpendicular to the local airfoil surface. This setup ensures that any 
observed improvements in aerodynamic performance are due to active 
control rather than direct streamwise momentum injection. The jets 
produce a parabolic velocity profile, which ensures zero velocity at both 
edges.

The mass flow rate profile of each jet is defined by the following 
equation: 

𝑄𝑖(𝑥) = 𝑄𝑎𝑖 sin

(

𝜋(𝑥 − 𝑥2𝑖 )
𝑥1𝑖 − 𝑥2𝑖

)

, (4)

where 𝑖 = 1, 2, 3 corresponds to the three jets. Here, 𝑄𝑖 represents the 
mass flow rate profile of each jet, 𝑄𝑎𝑖  is the value selected by the agent 
for each jet, and 𝑥1𝑖  and 𝑥2𝑖  denote the initial and final streamwise 
coordinates of each jet, respectively.

1 To maintain consistency with Wang et al. (2022), we use 𝐷 to represent 
the airfoil chord length. This differs from the common convention where 𝑐 is 
used to represent the chord.
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Fig. 1. Computational domain dimensions, normalized by the airfoil chord length 𝐷. The angle of attack 𝛼 is illustrated, with boundary conditions represented by 𝛤 . The buffer 
zone is highlighted in dark blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Jets location with respect to the leading edge of the airfoil.

To ensure that blowing or suction always occurs perpendicular to 
the local airfoil surface, each jet is oriented normally to the surface by 
applying a rotation angle 𝜃, given by: 

𝜃 = 2 tan−1
(

𝑥1 − 𝑥2
(𝑦2 − 𝑦1) +

√

(𝑦2 − 𝑦1)2 + (𝑥1 − 𝑥2)2

)

. (5)

Thus, the velocity components in the streamwise and perpendicular 
directions are expressed as:
𝑄𝑥 = 𝑄 cos(𝜃), (6)

𝑄𝑦 = 𝑄 sin(𝜃). (7)

The numerical method used by Alya to compute the forces on the 
airfoil surface solves the incompressible viscous Navier–Stokes equa-
tions. These equations are formulated for the entire domain (𝛺) as 
follows:

𝜕𝑡𝑢 + (𝑢 ⋅ ∇)𝑢 − ∇ ⋅ (2𝜈𝜖) + ∇𝑝 = 𝑓, (8)

∇ ⋅ 𝑢 = 0, (9)

where 𝑢 represents the velocity field, and 𝜖 denotes the velocity strain-
rate tensor, which is defined as a function of the velocity 𝐮 by 

𝜖 = 1
2
(∇𝐮 + ∇𝑇 𝐮). (10)

The term 𝑓 corresponds to the external body force acting on the 
flow, which in the present study is set to zero since no external body 
forces are applied.

The convective component in the non-linear term, 𝐶nonc(𝐮) = (𝐮 ⋅
∇)𝐮, is formulated to ensure conservation of energy, momentum, and 
angular momentum, as detailed in Charnyi et al. (2017, 2019).

For time discretization, a semi-implicit Runge–Kutta scheme of sec-
ond order is employed for the convective term, while a Crank–Nicolson 
scheme is applied for the diffusive term. During time integration, Alya 
3 
utilizes an eigenvalue-based time-stepping method, as implemented 
by Trias and Lehmkuhl (2011).

At each time step, the numerical solution of these equations is 
obtained, and the drag force (𝐹𝐷) and lift force (𝐹𝐿) are computed by 
integrating over the entire surface (𝑆) of the airfoil: 

𝐅 = ∫ (𝜁 ⋅ 𝐧)𝐞𝑗 d𝑆, (11)

where 𝜁 represents the Cauchy stress tensor, 𝑛 is the unit normal 
vector to the surface, and 𝑒𝑗 is a unit vector aligned with the main 
flow velocity for drag computation, and perpendicular to it for lift 
computation. The aerodynamic coefficients are then determined as:

𝐶𝑑 =
2𝐹𝑑

𝜌𝑈̄2𝐷
, (12)

𝐶𝑙 =
2𝐹𝑙

𝜌𝑈̄2𝐷
. (13)

2.2. DRL characteristics

The DRL framework is illustrated in Fig.  3, which depicts each step 
in the training process. Initially, the solver, Alya, performs a simulation 
without any jet interaction. This reference simulation, referred to as the 
baseline, is executed from 0 to 200 time units (TU). Once the baseline 
simulation is completed, the episodes are executed sequentially, with 
each episode starting from the final step of the baseline.

Each episode consists of a sequence of actions (𝑎𝑡), corresponding to 
the actuation of the jets. The selection of these actions is performed by 
the agent, which makes decisions based on the received state (𝑠𝑡) and 
the corresponding reward (𝑟𝑡).

Once an episode is completed, the next episode begins. At the start 
of each new episode, the agent’s policy and networks retain their 
weights learned during the preceding episode, thus exploiting prior 
learning to accelerate convergence. Each new episode starts from the 
last time step of the baseline simulation. When all episodes have been 
simulated, a complete training cycle is concluded.

The DRL environment communicates with the agent through three 
distinct channels. The first channel is the observation state, 𝑠𝑡, which 
represents the pressure values at various predefined locations in the 
computational domain, referred to as probes or witness points. These 
points are strategically placed in critical areas around the airfoil and 
in the wake region, as illustrated in Fig.  4. The extracted pressure 
values are normalized to ensure that the data received by the agent 
remains within the range [−1, 1]. This approach follows Rabault et al. 
(2019), wherein a single heuristic scalar (based on prior knowledge 
of expected pressure magnitudes) is applied uniformly to all sensor 
readings to map the raw values into [−1, 1]. This uniform normalization 
(i) simplifies the interpretation of state fluctuations across different 
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Fig. 3. Schematic representation that illustrates the reinforcement-learning framework applied to a two-dimensional airfoil, showing communication channels between two main 
actors. In this case, the direction of the information is clockwise. At the top, we show the agent architecture featuring a shared neural network. At the bottom, the computational-
fluid-dynamics (CFD) environment is depicted, with the airfoil chord 𝐷 as the reference length.
Fig. 4. Schematic representation of the computational domain, where red dots indicate the locations of probes used to define the state 𝑠𝑡. The probes are strategically placed 
around the wing and in the wake region to capture relevant flow information.
sensors and (ii) conforms to Tensorforce recommendations, improving 
optimizer efficiency by reducing input precision.

The second communication channel is the action, 𝑎𝑡, which cor-
responds to the value determined by the agent and applied to the 
control jets for active flow manipulation. Although the action 𝑎𝑡 is 
initially bounded within [−1, 1] to suit the DRL algorithm, the actuation 
intensity 𝑄𝑡 is subsequently refined via Eqs. (6), (7), and (14), with the 
agent selecting 𝑄𝑡 through its policy 𝜋(𝑎𝑡 ∣ 𝑠𝑡), thus ensuring a smooth 
temporal transition. The selected value of 𝑄𝑡 is determined by the agent 
based on the policy function 𝜋 (

𝑎𝑡|𝑠𝑡
)

. 

𝑄(𝑡) = 𝑄𝑡 + 𝑔(𝑡)(𝑄𝑡+1 −𝑄𝑡), (14)

where 𝑡 = (𝑡 − 𝑡𝑡)∕(𝑡𝑡+1 − 𝑡𝑡), and the function 𝑔(𝑡) is defined as 

𝑔(𝑡) =
𝑓 (𝑡)

𝑓 (𝑡) + 𝑓 (1 − 𝑡)
, (15)

with 𝑓 (𝑡) given by an exponential function that ensures a smooth 
transition: 

𝑓 (𝑡) =

{

𝑒−
1
𝑡 , if 𝑡 > 0,

0, if 𝑡 ≤ 0.
(16)

Maintaining a smooth transition is crucial to facilitating the learning 
process for the agent while avoiding abrupt changes that could intro-
duce instability. Previous experiments have demonstrated that using 
4 
step or linear functions poses challenges for effective learning and 
computational burden.

The final communication channel between the environment and 
the agent is the reward, 𝑟𝑡, which serves as the primary criterion for 
the PPO agent to decide future actions. The reward function can be 
formulated based on different objectives, depending on the specific 
focus of each training scenario. In this study, a single reward function 
is used, integrating both drag reduction and lift modulation through 
tunable weights, and offset by 𝜎 to ensure the reward starts at zero: 

𝑟 = 𝜇
[

𝜎 + 𝑤𝑑
(

𝐶𝑑0 − 𝐶𝑑
)

+ 𝑤𝑙
(

𝐶𝑙 − 𝐶𝑙0

)

]

, (17)

where:

• 𝜇 is a scaling factor,
• 𝜎 is an offset constant chosen so that 𝑟 = 0 when (𝐶𝑑 , 𝐶𝑙) =
(𝐶𝑑0 , 𝐶𝑙0 ),

• 𝑤𝑑 and 𝑤𝑙 are the weights for drag and lift contributions, respec-
tively,

• 𝐶𝑑0  and 𝐶𝑙0  are the reference drag and lift coefficients.

Finally, Table  1 provides a summary of all the parameters con-
sidered, highlighting the key characteristics of the two main cases 
examined in this study.
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Fig. 5. Baseline aerodynamic coefficients for drag and lift.
Table 1
Comparison of parameters used in the simulations and DRL framework for the two 
cases: (1) 𝐶𝑑 reduction and (2) 𝐶𝑙∕𝐶𝑑 enhancement. Shared parameters apply to both 
cases, while case-specific parameters differ between the two configurations.
 Shared Parameters
 Mesh Cells 184 790
 Witness Points 178
 𝑄norm 1.25
 Time per Action 0.275
 Actions per Episode 300
 Batch Size 33
 CPUs - Environment 16
 Environments 33
 Total CPUs 544
 Network {[Dense, 512], [Dense, 512]}
 Update Frequency 1.0
 Learning Rate 0.001
 Multi-Step 25
 Subsampling Fraction 0.2
 Likelihood Ratio Clipping 0.2
 Discount 0.99
 Optimizer Steps 5
 Optimizer Type Adam
 Optimizer Learning Rate 0.001

 Case-Specific Parameters
 Parameter Case 1 Case 2  
 𝐶𝑑 Reduction 𝐶𝑙∕𝐶𝑑 Enhancement 
 𝜇 1.0 1.2  
 𝜆 0.3 N/A  
 𝜎 0.0 −3.88  
 𝑤1 N/A 0.3  
 𝑤2 N/A 0.7  
 𝑄max ±0.5 ±1.5  
 Number of Episodes 957 1188  

2.3. CFD validation

The framework has been previously validated for flow control 
around cylinders in studies such as Varela et al. (2022) and Suárez 
et al. (2024b). To extend this validation to an airfoil configuration, it 
is necessary to perform a baseline simulation without actuation. This 
baseline allows for a direct comparison with the results of Wang et al. 
(2022) in terms of lift and drag coefficients.

The baseline results are presented in Figs.  5(a) and 5(b). The com-
puted average drag coefficient is 𝐶𝑑 = 0.376, while the average lift 
coefficient is 𝐶𝑙 = 1.822, yielding an aerodynamic efficiency of 𝐶𝑙∕𝐶𝑑 =
4.846.

When compared to the results reported by Wang et al. (2022), our 
baseline drag coefficient differs by approximately 15%, while the lift 
coefficient shows a larger variation of about 45%. This increased lift is 
5 
a well-known consequence of channel (ground-effect) confinement: the 
proximity of the lower wall accelerates flow beneath the airfoil, adding 
a ‘‘virtual’’ lift component (Vinuesa et al., 2015). As illustrated in Figs. 
6(a) and 6(b), the compression of streamlines near the leading edge and 
beneath the airfoil (Fig.  6(a)) and the upstream symmetry loss before 
airfoil interaction (Fig.  6(b)) vividly demonstrate this ground-effect 
phenomenon.

To verify that our results accurately capture this effect and are not 
artifacts of mesh or solver settings, we conducted a mesh-convergence 
study using three graded meshes. Across these meshes, both 𝐶𝐷 and 
𝐶𝐿 varied by less than ±2%, demonstrating mesh independence. Fur-
thermore, we performed an open-domain (unconfined) simulation at 
𝑅𝑒𝐷 = 3000 using the same solver settings; the resulting coefficients 
agree within 3% of established benchmarks (Swanson and Langer, 
2016), confirming the solver’s accuracy. These consistency checks sub-
stantiate the reliability of our present simulations and isolate channel 
confinement as the source of the lift increase.

3. Results and discussion

This section is divided into two parts. The first part illustrates 
the results obtained from intensity-fixed solutions following the same 
approach as the study conducted by Wang et al. (2022). The final part 
discusses the outcomes of applying deep reinforcement learning (DRL) 
for synthetic jet control in airfoil training.

3.1. Application of fixed-intensity control in synthetic jets

This subsection presents the results obtained by applying a fixed-
intensity control strategy, following the approach described in Wang 
et al. (2022). The primary objective is to validate state-of-the-art 
techniques and assess variations in intensity magnitude to determine 
whether different values lead to improved performance.

To establish a direct comparison, it is necessary to translate the mass 
flow rate values from Wang et al. (2022) into the framework used in 
this study. Their work employs a dimensionless parameter, 𝑄∗, defined 
based on a reference mass flow rate, 𝑄ref = 0.3, which can be expressed 
in terms of the normal mass flow rate as follows: 
𝑄jet𝑖 = 𝑄∗ 𝑄ref . (18)

The numerical framework in this study allows for tuning the values 
selected by the agent, which must be appropriately translated for use 
in the computational fluid dynamics (CFD) solver. This transformation 
is achieved using Eq. (19): 
𝑄 = 𝑄 𝑄(𝑥), (19)
jet𝑖 agent
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Fig. 6. Representation of the ground effect: (a) Flow streamlines and (b) velocity profile in the 𝑥-direction at selected locations. 
Table 2
Jet intensities used in Wang et al. (2022) translated 
into this study’s framework.
 𝑄jet1 𝑄jet2 𝑄jet3  
 −1.25 1.25 −0.125 

where 𝑄(𝑥) is given by:

𝑄(𝑥) = ∫

𝑥2

𝑥1
sin

[

𝜋
𝑥 − 𝑥2
𝑥1 − 𝑥2

]

× cos

[

2 arctan

(

𝑥1 − 𝑥2
(𝑦2 − 𝑦1) +

√

(𝑦2 − 𝑦1)2 + (𝑥1 − 𝑥2)2

)]

d𝑥,

(20)

where 𝑥1 and 𝑥2 correspond to the start and end coordinates of the 
jet in the 𝑥-direction, while 𝑦1 and 𝑦2 represent the corresponding 
coordinates in the 𝑦-direction.

The values of 𝑄agent corresponding to the same mass flow rate as 
in Wang et al. (2022) are presented in Table  2.

The results of the simulation, after reaching convergence, are shown 
in Table  3. The evolution of the flow behavior and the aerodynamic 
coefficients can be observed in Figs.  7 and 8. The baseline averages 
are computed from 𝑡 = 50 to 200 because the uncontrolled simulation 
attains a statistically stationary state only after 𝑡 = 50, excluding 
initial transients. The sudden decline in both coefficients at 𝑡 = 200
corresponds to the instant when actuation is activated, demonstrating 
the control effect.

We first apply the exact same fixed-intensity control inputs (jet 
positions and amplitudes) as in Wang et al. (2022) to both benchmark 
our solver fidelity and isolate numerical effects. A comparison between 
actuated and non-actuated flows reveals that vortex shedding gener-
ates a recirculation bubble near the trailing edge, causing localized 
separation and increased skin friction. The achieved drag reduction 
is approximately 28%, closely matching the 27% reduction reported 
by Wang et al. (2022). However, the lift coefficient exhibits a −3%
change in this study compared to a +27% increase in their results, 
primarily due to channel (ground)-effect confinement. Despite this, 
aerodynamic efficiency improves by approximately 34%, indicating a 
significant gain even in the absence of lift augmentation. In this section, 
we then manually vary the steady jet intensities to assess potential 
further improvements; time-varying control via reinforcement learning 
is introduced in Section 5.2.

An analysis of the flow dynamics reveals that once the jets are 
activated using a fixed-intensity control strategy, the flow stabilizes 
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Table 3
Results obtained using the jet intensities from Table  2 and comparison with baseline 
coefficients. Values marked with an asterisk (𝐶∗

𝐷 , 𝐶∗
𝐿) correspond to results reported 

by Wang et al. (2022).
 𝐶𝑑 𝐶𝑙 𝐶𝑙∕𝐶𝑑 𝛥𝐶𝑙 𝛥𝐶𝑑 𝛥𝐶𝑙∕𝐶𝑑 𝐶𝑑 ∗ 𝐶𝑙 ∗ 𝐶𝑙∕𝐶𝑑 ∗ 
 0.27 1.77 6.5 −28.23% −2.89% +34.18% 0.23 1.27 5.45  

Table 4
Definition of cases for the fixed-policy implementation, ranging from low to high mass 
flow rate intensities.
 Case 𝑄jet1 𝑄jet2 𝑄jet3  
 #1 −0.625 0.7 −0.075 
 #2 −0.8 0.9 −0.1  
 #3 −0.9 0.9 −0.09  
 #4 −1 1.1 −0.1  
 #5 −1.2 1.2 −0.12  
 #6 −1.25 1.25 −0.125 
 #7 −1.35 1.5 −0.15  
 #8 −1.5 1.35 −0.15  
 #9 −1.65 1.5 −0.15  
 #10 −1.8 2 −0.2  
 #11 −2.25 2.5 −0.225 

completely beyond 115 𝑇𝑈 , where 𝑇𝑈 = 𝑡𝑈∞∕𝐷. Beyond this point, 
vortex shedding ceases to occur. The ability to achieve such flow 
stabilization and predictability using a simple and adaptable policy 
highlights the potential of this approach.

Once the strategy has been reproduced, an additional objective of 
this study is to explore alternative fixed-intensity control policies and 
evaluate their outcomes. To ensure a comprehensive analysis, a range 
of intensities from low to high has been examined. In total, 11 cases, 
including the reference case, have been simulated. These cases are 
summarized in Table  4.

The aerodynamic coefficients resulting from these implementations 
are shown in Fig.  9. The trends observed indicate that increasing 
the intensity while maintaining the same policy leads to an increase 
in both the drag coefficient 𝐶𝑑 and the lift coefficient 𝐶𝑙, while the 
aerodynamic efficiency remains relatively constant. This suggests that 
the selection of a particular control policy should depend on the 
specific optimization objective. For instance, if the primary goal is to 
reduce drag while maintaining lift, case #5 would be a suitable choice. 
Conversely, if the objective is to maximize lift, case #10 appears to be 
the optimal strategy.
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Fig. 7. Evolution of drag and lift coefficients when applying the fixed-intensity strategy from Wang et al. (2022) compared to baseline values. Baseline averages are taken over 
𝑡 = 50–200 once stationarity is reached; the sharp drop at 𝑡 = 200 marks the onset of actuation.
Fig. 8. Comparison of flow conditions between baseline, onset of actuation, and stabilized flow using the fixed-intensity policy strategy from Wang et al. (2022). Actuator positions 
(jet1, jet2, and jet3) are defined in Fig.  2 and shown in the computational-domain overview (Fig.  3); they are omitted here to preserve the resolution of the depicted flow features.
 

A critical issue with excessive mass flow rate injection is the abrupt 
and unpredictable drop in aerodynamic performance. When the in-
jected mass flow rate becomes too large, it disrupts the aerodynamic 
structures, leading to a loss of lift generation.

As shown in Fig.  9, the case achieving the greatest drag reduction is 
#1, with a reduction of 38.1%. The highest increase in lift is observed 
in case #10, with a 42.7% increase. The most efficient overall case is 
#8, yielding a 40.1% improvement in aerodynamic efficiency.

To further illustrate the flow behavior under different fixed-intensity
actuation strategies, Fig.  10 presents a comparison of the stabilized flow 
fields for low, medium, and high intensity cases. In the low-intensity 
case, vortex shedding persists, though with a significantly reduced 
amplitude. In the medium-intensity case, the flow stabilizes completely, 
and no vortex shedding is observed. In the high-intensity case, the flow 
over the upper surface of the airfoil accelerates, leading to increased lift 
generation due to a higher pressure gradient.
7 
3.2. DRL training results of a 2D airfoil at 𝑅𝑒𝐷 3000 using synthetic jets

This section presents the main findings of the study, where the 
complete implementation of the framework is utilized to identify opti-
mal strategies for flow control in two distinct directions. As previously 
explained, the objectives are to achieve drag reduction on one side and 
efficiency enhancement on the other.

3.2.1. Drag reduction strategy case
In the first case, focusing on drag reduction, a total of 957 episodes 

were used to train the agent. The evolution of the training process is 
presented in Fig.  11. The final deterministic case obtained from this 
training is depicted in Figs.  12(a) and 12(b). Here, ‘‘deterministic’’ 
refers to the evaluation mode of the DRL agent: after training with 
exploration noise to discover optimal control policies, all exploration 
is disabled and the policy’s mean action is applied at each time step, 
yielding a repeatable control law.
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Fig. 9. Aerodynamic coefficients resulting from the fixed-intensity policies listed in Table  4, compared to the baseline values (represented by the dashed line).
Fig. 10. Comparison of flow behavior for low, medium, and high-intensity actuation 
cases using the fixed-intensity policy.

By implementing the control actions illustrated in Fig.  13(a), with 
further details provided in Fig.  13(b), the results indicate an aver-
age drag reduction of 43.89% and a lift reduction of 35.89% dur-
ing the actuated phase. Compared to the best drag reduction case 
from Section 3.1, the DRL-based strategy achieves a 6% greater drag 
reduction.

The control actions employed by the agent exhibit a distinct pattern 
rather than remaining constant. The jets alternate between blowing 
(adding momentum) and suction (reducing momentum) throughout 
the control process. Jets 1 and 2 exhibit similar actuation patterns, 
indicating that they perform nearly identical actions. In contrast, Jet 
3 consistently executes the opposite action to Jets 1 and 2, ensuring 
that the net mass flow rate remains zero.

This result can be further analyzed by examining Fig.  14, which 
presents the pressure coefficient distribution along the airfoil for both 
the actuated drag reduction case and the baseline. The figure illustrates 
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how the jets decelerate the flow over the upper surface, leading to a 
reduction in lift. Additionally, it is important to highlight that the small 
oscillations near the trailing edge diminish in magnitude and smoothly 
converge with the lower surface, thereby forming a weaker wake. This 
process effectively reduces the primary source of drag.

The primary mechanism responsible for drag reduction is the con-
trol of vortex shedding and the associated recirculation bubble. From 
the perspective of vortex shedding, Fig.  15(a) presents the pressure 
signal recorded at a witness point located at [𝑥∕𝐷, 𝑦∕𝐷] = [2, 0] in the 
wake region. The results indicate that the jet-induced strategy reduces 
the amplitude of oscillatory shedding. The magnitude of these oscilla-
tions is decreased by approximately 62.5%, allowing the dissipation of 
discontinuities at a faster rate and preventing the formation of strong 
eddies in the wake, which are otherwise observed in the non-actuated 
flow field.

Another major contributor to drag is the boundary layer and the 
resulting skin friction Örlü and Vinuesa (2020). It is essential to assess 
whether the boundary layer remains attached or detaches and whether 
the jets exert sufficient control authority to influence its behavior. This 
is illustrated in Fig.  15(b), which shows the streamwise shear stresses 
around the airfoil. The figure highlights how the jets energize the 
boundary layer, with the first jet actively injecting momentum. Beyond 
the jet region, the oscillatory patterns seen in the 𝐶𝑝 plot are also 
visible in the shear stress distribution, indicating multiple instances 
of detachment and reattachment before reaching the trailing edge. A 
comparison between actuated and non-actuated flows reveals that in 
the uncontrolled (baseline) case, vortex shedding generates a recircu-
lation bubble near the trailing edge, causing localized separation and 
increased skin friction. The clearest visualization of the recirculation 
bubble is provided in Fig.  14, where the non-actuated velocity field is 
depicted.

By analyzing the Reynolds stresses at different streamwise locations, 
valuable insights into the turbulent structures and flow characteristics 
can be obtained. Fig.  16a presents the Reynolds stresses along the 
streamwise direction, where the oscillations in both the baseline and ac-
tuated flows exhibit noticeably smaller magnitudes. At 𝑥∕𝐷 = 2.5, in the 
middle of the wake, the expected streamwise turbulence is observed, as 
the inflow follows a parabolic profile. This suggests that the actuated 
wake more closely resembles the inflow compared to the baseline case, 
reinforcing the drag reduction mechanism through improved pressure 
distribution. A similar trend is observed in Figs.  16b and 16c, where 
wake positions exhibit lower stress values. When turbulence-related 
stresses are captured, they are primarily concentrated in the middle of 
the wake, as expected.

In Fig.  16b, the effects of jet actuation are evident, leading to sig-
nificant turbulence mixing in the wall-normal direction. However, this 
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Fig. 11. Comparison of the evolution of the drag coefficient (𝐶𝑑 ) and normalized rewards during training. The left subplot illustrates drag values with a moving average and 
standard deviation, highlighting the trend and variability over episodes. The right subplot presents the rewards, showing progress and fluctuations in the reward signal. The shaded 
regions indicate the standard deviation for each metric.
Fig. 12. Evolution of drag and lift coefficients throughout the deterministic case, with actuation commencing at 200 TU.
Fig. 13. Comparison of jet actions during the deterministic case for drag reduction, including a detailed analysis of a specific time range.
influence results in a smaller turbulent region along the upper surface 
of the airfoil compared to the non-actuated case. While turbulence 
mixing persists, its intensity is reduced to half the magnitude observed 
in the non-actuated flow, with this reduction becoming even more 
pronounced when analyzing turbulence in the wake region.
9 
Fig.  16c exhibits a similar behavior along the airfoil. The first 
notable discrepancies arise around 𝑥∕𝐷 = 1, indicating that the non-
actuated flow field experiences interaction between the streamwise 
and wall-normal directions due to the recirculation bubble formed in 
that region on both the upper and lower surfaces. In contrast, for the 
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Fig. 14. Comparison of 𝐶𝑝 along the airfoil for the baseline (right) and actuated (left) cases. Velocity contours for the instants used to extract the 𝐶𝑝 distribution are also shown.
Fig. 15. Comparison of frequency spectrum (left) and streamwise shear stress (right) for non-actuated and actuated cases, demonstrating the effect of actuation on wake dynamics 
and boundary layer behavior.
actuated case, turbulence mixing and eddy generation are restricted 
to a single peak, suggesting the absence of a recirculation bubble, as 
the flow field predominantly mixes in a single direction. Beyond this 
region, in the wake, the interaction between turbulent eddies and the 
main stream flow decays significantly in the actuated case compared to 
the non-actuated flow, indicating a weaker and more stable wake.

3.2.2. Efficiency enhancement strategy case
For the second case, different training strategies have been em-

ployed to optimize the agent’s performance. As described in Section 2.2, 
two distinct reward formulations have been utilized. In the presented 
deterministic case, the agent is trained using the third reward function, 
which separates lift and drag while assigning different weights to each 
parameter. Specifically, weights of 0.3 and 0.7 were applied to drag 
and lift, respectively, following Eq. (17).
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A total of 1188 episodes were required for training, with the evo-
lution of the training process illustrated in Fig.  17. Fig.  17 summarizes 
the agent’s learning progress over training episodes. Aerodynamic ef-
ficiency increases along the episodes starting from the baseline value 
(4.846), demonstrating that the control policy yields progressively bet-
ter performance. The normalized reward, although negative in absolute 
value, rises towards zero (becoming less negative) indicating continual 
improvement of the learned strategy until stabilization. Note that the 
absolute sign of the reward is less important than its upward trend, 
which confirms convergence to an optimal policy.

The results of the deterministic strategy are presented in Figs.  18(a), 
18(b), and 19, depicting the evolution of drag, lift, and aerodynamic 
efficiency, respectively. The final outcome yields an 11.97% reduction 
in drag, a 39.63% increase in lift, and an overall efficiency improve-
ment of 58.64%. When compared to the best fixed-intensity case from 
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Fig. 16. Comparison of Reynolds stresses (𝑢𝑢, 𝑢𝑣, and 𝑣𝑣) along the 𝑌 -coordinate at different streamwise locations (𝑥∕𝐷). The dashed orange lines represent the actuated case, 
while the solid gray lines correspond to the baseline flow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
Section 3.1, the DRL agent achieves an additional 18% improvement in 
aerodynamic efficiency.

As observed in Fig.  20, the control actions remain nearly con-
stant throughout the actuation phase. This trend has been consistently 
identified in all efficiency-driven cases. Regardless of the specific re-
ward function or parameter adjustments, the agent converges toward a 
steady-state strategy, with a transition phase lasting no longer than 15 
to 20 actions.

Notably, the control actions in this case have peak actuation intensi-
ties approximately ten times greater in magnitude than those employed 
in the drag-reduction case discussed in Section 3.2.1. By employing 
a higher mass flow rate, the agent and jets effectively transform the 
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baseline dynamic state, characterized by vortex shedding and a recir-
culation bubble, into a completely steady-state flow, controlled by the 
induced jet structure. As illustrated in Figs.  20 and 21, jet1 and jet2
primarily function to counteract the mass flow introduced by jet3. This 
interaction is particularly significant and warrants deeper investigation.

The resulting flow structure closely resembles that identified in 
Wang et al. (2022), though with a key difference: in their study, jet 
2 was responsible for adding mass flow, while jet 1 facilitated the 
formation of a circular flow structure. In contrast, in the present study, 
the generated recirculation bubble slightly modifies the upper region of 
this structure, leading to an elliptical rather than a circular shape. This 
elliptical flow pattern accelerates in the direction of the airfoil before 
realigning with the main flow.
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Fig. 17. Comparison of the evolution of aerodynamic efficiency (𝐶𝑙∕𝐶𝑑 ) and normalized rewards during training. The left subplot illustrates efficiency values with a moving 
average and standard deviation, capturing trends and variability over episodes. The right subplot presents the reward evolution, highlighting progress and fluctuations. The shaded 
regions indicate standard deviation for each metric.
Fig. 18. Time evolution of aerodynamic coefficients under DRL-based active flow control: (a) Drag coefficient (𝐶𝑑 ), showing steady-state reduction; (b) Lift coefficient (𝐶𝑙), 
highlighting stabilization at higher values.
Fig. 19. Aerodynamic efficiency (𝐶𝑙∕𝐶𝑑 ) over time, illustrating the improvement 
achieved through DRL-based active flow control. The shaded region represents time-
averaged steady-state values with standard deviation.

A detailed examination of Fig.  21 reveals that, prior to jet ac-
tuation, the region of highest flow acceleration creates a near-zero 
velocity zone, effectively forming a void. The jets mitigate this effect 
12 
Fig. 20. Time evolution of the mass flow rate 𝑄 for the three jets, illustrating the 
transition from the baseline to the steady-state actuation phase.

by generating a continuous flow structure that not only accelerates 
the flow in the initial region but also decelerates it downstream, as 
the last jet counteracts the main flow direction. This process reduces 
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Fig. 21. Comparison of 𝐶𝑝 along the airfoil for the baseline (right) and actuated (left) cases. Velocity contours are displayed for the instants used to extract the 𝐶𝑝 distribution.
velocity variations and shear-layer roll-up, minimizing separation and 
eliminating abrupt velocity gradients (flow discontinuities) that the 
uncontrolled flow would otherwise exhibit as it converges toward the 
leading edge.

As a result, the flow acceleration leads to a substantial increase 
in the pressure differential between the front and rear sections of the 
airfoil, generating a significant lift enhancement. Simultaneously, the 
controlled deceleration downstream prevents excessive drag penalties, 
optimizing overall aerodynamic efficiency.

The specific scenario where the third jet is the primary blowing 
jet, while the other two jets counteract its effect with equal intensity, 
provides insight into why this strategy avoids discontinuities at high 
mass flow rates. Unlike the fixed-intensity cases analyzed in Section 3.1, 
where abrupt variations in flow properties were observed, the present 
DRL-based strategy achieves a smooth transition and maintains stability 
even under aggressive actuation conditions.

Fig.  21 illustrates the pressure coefficient distribution along the 
airfoil, highlighting the impact of jet actuation on the flow field. The 
results indicate that the jets accelerate the flow between positions 
0.2 and 0.3, followed by a reduction in velocity and a corresponding 
increase in pressure. However, this pressure increase is short-lived, and 
the flow quickly stabilizes without discontinuities. At the leading edge, 
both the upper and lower surfaces converge with nearly identical pres-
sures, ensuring a smooth wake formation. This behavior is facilitated 
by the presence of two distinct layers on the upper surface: a thin 
low-velocity layer adjacent to the surface and a higher-velocity layer 
above it. As a result, the trailing edge encounter remains smooth, with 
the thicker layer slightly separating from the surface. However, the 
increased velocity at the airfoil’s trailing edge relative to the inflow 
parabolic profile leads to an associated increase in pressure drag.

The frequency spectrum confirms the absence of oscillations or 
dynamic behavior in the wake, reinforcing the steady nature of the 
flow. This can also be observed through the Reynolds stresses, as 
depicted in Fig.  22.
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Fig.  22a reveals how the streamwise Reynolds stresses capture 
the two layers on the upper surface. The peak of the thicker layer 
begins after the jet region and extends into the wake. These peaks 
do not indicate a high-turbulence or separation region but rather an 
amplification of turbulence energy caused by external disturbances, in 
this case, the jets.

Fig.  22b further illustrates the influence of jet actuation on the 
flow, as indicated by increased momentum transfer in the wall-normal 
direction. The previously mentioned flow layers are also visible here. 
When comparing the baseline separation region around 𝑋 = 0.8 with 
the steady actuated case, the wall-normal turbulence is significantly 
reduced and controlled. Additionally, at the trailing edge, no recir-
culation bubble is observed, as there are no signs of separation or 
discontinuities. This is further supported by the minimal stress levels 
at 𝑋 = 1, where both upper and lower surface flows merge smoothly. 
In the wake region, turbulence mixing in the wall-normal direction is 
absent at 𝑋 = 2.5, indicating the suppression of eddies.

Fig.  22c depicts the Reynolds shear stresses, which highlight the 
formation of the recirculation bubble induced by the jets. The presence 
of this bubble is particularly noticeable at 𝑋 = 0.4, where substantial 
turbulence mixing and momentum transfer between the streamwise 
and wall-normal directions occur. The negative sign of the Reynolds 
shear stress suggests that this mixing is directed towards the wall, a 
phenomenon also observed in Fig.  21. Finally, at the wake profiles, no 
discernible eddies or discontinuities are present, indicating a signifi-
cantly weaker wake compared to the baseline scenario. This can also 
be confirmed by examining Fig.  23, where the wake is notably smoother 
compared to both the non-actuated and drag reduction cases.

3.2.3. Comparison of the DRL results with periodic action strategies
Various periodic-control jet flow strategies have been tested and 

compared against the optimized DRL-based strategies. Among these, 
the best-performing periodic case has been selected for direct compar-
ison.
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Fig. 22. Comparison of Reynolds stresses (𝑢𝑢, 𝑢𝑣, and 𝑣𝑣) along the 𝑌 -coordinate at different streamwise locations (𝑥∕𝐷). The dashed orange lines represent the actuated case, 
while the solid gray lines correspond to the baseline flow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
The results indicate that the optimal periodic strategy occurs when 
jet1 and jet2 operate in phase, while jet3 is phase-shifted by 180◦. This 
strategy closely resembles the DRL-optimized strategy, as illustrated 
in Fig.  24, with the key distinction being that, in this case, the con-
trol actions follow a strictly periodic modulation at a frequency of 
0.54 Hz—three times the vortex shedding frequency. Among all tested 
periodic strategies, this approach has proven to be the most effec-
tive for drag reduction, achieving a 42% decrease in drag. However, 
the DRL-optimized strategy outperforms it, yielding a 43.9% reduc-
tion.

Regarding lift reduction, the periodic strategy results in a 32% de-
crease, whereas the DRL strategy achieves a slightly greater reduction 
of 35%.
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A comprehensive summary of all control strategies — including 
the open-loop fixed case of Wang et al. (2022), the periodic forcing 
benchmark, the best fixed-intensity cases (cases 1 and 8), and our 
DRL-based policies — is presented in Table  5. This table collates 
the percentage changes in drag (𝛥𝐶𝑑), lift (𝛥𝐶𝑙), and aerodynamic 
efficiency (𝛥(𝐶𝑙∕𝐶𝑑 )) relative to the uncontrolled baseline, facilitating 
a direct performance comparison.

It is important to note that the periodic strategy is significantly 
less energy-efficient, requiring 19.8% higher mass flow rate to achieve 
slightly inferior drag reduction. By contrast, our DRL-based control 
not only matches (and in some metrics exceeds) the performance 
of periodic forcing but does so with substantially lower actuation 
effort, translating into dramatic energy savings. Moreover, none of 
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Fig. 23. Comparison of the flow field in terms of streamwise velocity (𝑈𝑥) for three different cases: (a) Baseline, showing natural flow behavior without actuation; (b) Drag reduction 
case, demonstrating the effects of DRL-based active flow control in minimizing drag, evidenced by reduced wake size and vortex shedding; and (c) Efficiency enhancement case, 
where actuation optimizes the flow for improved aerodynamic performance, resulting in a streamlined wake and enhanced boundary layer attachment. The color scale represents 
velocity magnitude in the 𝑥-direction.
Fig. 24. Comparison of the pressure coefficient (𝐶𝑝) along the airfoil for the baseline and periodic actuation cases.
the periodic strategies tested in prior work deliver efficiency gains 
comparable to those uncovered by our learned policy, underscoring the 
transformative potential of DRL for aerodynamic optimization.

4. Conclusions

This study has demonstrated the potential of deep reinforcement 
learning (DRL) for active flow control (AFC) in a two-dimensional 
NACA 0012 airfoil at a Reynolds number of 3000. The implemen-
tation of a DRL agent, capable of dynamic decision-making in real-
time simulations, underscores its effectiveness in identifying optimal 
AFC strategies for both drag reduction and aerodynamic efficiency 
enhancement.

Initially, the DRL approach was designed to achieve significant aero-
dynamic drag reduction while incorporating additional regularization 
to maintain lift performance. This resulted in a 43.4% decrease in 
drag; however, it also led to a 35.9% reduction in lift, highlighting the 
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Table 5
Percentage changes in drag (𝛥𝐶𝑑 ), lift (𝛥𝐶𝑙), and aerodynamic efficiency (𝛥(𝐶𝑙∕𝐶𝑑 )) 
relative to the uncontrolled baseline (𝐶𝑑 = 0.376, 𝐶𝑙 = 1.822, 𝐶𝑙∕𝐶𝑑 = 4.846) for various 
control strategies on a NACA0012 airfoil at 𝛼 ≈ 10◦, Re = 3000.
 Control case 𝛥𝐶𝑑 𝛥𝐶𝑙 𝛥(𝐶𝑙∕𝐶𝑑 ) 
 Wang et al. (2022) −27.0% +27.7% +11.5%  
 Periodic control −42.0% −32.0% +17.2%  
 DRL – drag focus −43.4% −35.9% +13.4%  
 DRL – efficiency focus −30.6% +10.0% +58.6%  
 Fixed-intensity (case 1 – best drag) −41.7% −24.7% +29.3%  
 Fixed-intensity (case 8 – best eff.) −19.4% +9.7% +36.3%  

inherent trade-off when prioritizing drag minimization. This outcome 
was primarily achieved through the suppression of vortex shedding 
and the mitigation of the recirculation bubble at the trailing edge. The 
DRL agent successfully identified dynamic strategies to weaken wake 
dynamics, resulting in a smoother downstream flow. The observed 
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drag reduction highlights the adaptability and efficiency of reinforce-
ment learning-based AFC. To achieve this reduction, the stabilization 
of the wake, characterized by decreased vortex shedding amplitudes, 
contributed to a reduction in pressure drag, while boundary layer 
modifications played a role in decreasing skin friction drag.

Conversely, when the focus shifted toward aerodynamic efficiency, 
the DRL agent exhibited its ability to optimally balance lift and drag, 
ultimately achieving a 58.6% improvement in aerodynamic efficiency. 
Unlike the drag-reduction strategy, the efficiency-enhancement ap-
proach relied on higher jet intensities. The DRL agent leveraged this 
increased actuation to dynamically transition the flow from an unactu-
ated vortex-shedding regime to a controlled, steady-state configuration. 
This efficiency improvement was driven by both an increase in lift and a 
reduction in drag, demonstrating that both performance metrics can be 
simultaneously optimized. The underlying physics involved the forma-
tion of a controlled closed recirculation bubble, which facilitated flow 
acceleration while simultaneously stabilizing the flow by smoothing the 
effective geometry encountered by the freestream.

When compared to fixed-intensity jet strategies, the DRL approach 
exhibited superior adaptability. While fixed policies were effective to 
some extent, they lacked the responsiveness necessary to optimize 
performance under dynamic conditions. In contrast, DRL-based strate-
gies dynamically modulated actuation intensities based on real-time 
feedback, ensuring sustained aerodynamic improvements. Even in the 
efficiency-enhancement case, where jet actuation eventually stabilized 
at constant intensities, the DRL approach optimized the transition phase 
to minimize the time required to reach a steady-state flow. Further-
more, in the best-performing drag reduction cases, the DRL strategy 
achieved an additional 6% drag reduction compared to fixed-intensity 
jets. Similarly, in efficiency-focused cases, DRL improved aerodynamic 
efficiency by 18% by leveraging all three jets instead of just two, as 
employed in the fixed-intensity strategy. These findings highlight the 
superior performance of DRL in optimizing complex AFC systems.

In comparison to periodic-control strategies, the DRL approach 
achieved both superior performance and efficiency. While the most 
effective periodic actuation strategy reduced drag by 42%, DRL fur-
ther improved this to 43.9%, requiring 19.8% less mass flow rate. 
This highlights DRL’s ability to optimize aerodynamic performance 
while minimizing energy consumption, in contrast to periodic actu-
ation strategies, which lack real-time adaptability to evolving flow 
conditions.

Despite these notable gains, the study encountered certain lim-
itations and challenges. First, the channel configuration introduced 
ground effects, which led to augmented lift, potentially influencing 
direct comparisons with baseline studies. Second, a mass flow rate 
constraint was imposed to ensure numerical stability in the computa-
tional fluid dynamics (CFD) framework, which may have restricted the 
exploration of more aggressive actuation strategies.

Future research will focus on extending the DRL framework to 
higher Reynolds numbers and three-dimensional domains. Addition-
ally, hybrid strategies combining DRL with traditional control method-
ologies will be investigated to enhance robustness. Further studies 
will also explore the scalability of DRL agents in optimizing flows 
with multiple objectives and complex constraints, aiming to refine AFC 
methodologies for practical aerodynamic applications.
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