
Ant Routing, Searching and Topology
Estimation algorithms for Ad Hoc

Networks

Ant Routing, Searching and Topology
Estimation algorithms for Ad Hoc

Networks

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 2 september 2008 om 10.00 uur

door

Santpal Singh DHILLON

Master of Science Duke University, Durham, USA
geboren te Nathana, Punjab, India.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. P.F.A. Van Mieghem

Samenstelling promotiecommissie:

Rector Magnificus, Voorzitter
Prof.dr.ir. P.F.A. Van Mieghem, Technische Universiteit Delft, promotor
Prof.dr.ir. I.G.M.M. Niemegeers, Technische Universiteit Delft
Prof.dr.ir. S.M. Heemstra de Groot, Technische Universiteit Delft
Prof.dr.ir. N.H.G. Baken, Technische Universiteit Delft
Prof.dr. J.L. van den Berg, University of Twente and TNO Netherlands
Prof.dr.ir. M.R. van Steen, Vrije Universiteit, Amsterdam

Copyright c° 2008 by Santpal Singh Dhillon and IOS Press

This research was supported by the Dutch Ministry of Economic Affairs under the
Innovation Oriented Research Program (IOP GenCom, QoS for Personal Networks @
Home).

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, without prior permission from
the publisher.

ISBN 978-1-58603-901-1

Keywords: Ant routing, random walks, ad hoc networks

Published and distributed by IOS Press under the imprint Delft University Press

Publisher
IOS Press
Nieuwe Hemweg 6b
1013 BG Amsterdam
The Netherlands
tel: +31-20-688 3355
fax: +31-20-687 0019
email: info@iospress.nl
www.iospress.nl
www.dupress.nl

LEGAL NOTICE
The publisher is not responsible for the use which might be made of the following in-
formation.

PRINTED IN THE NETHERLANDS

to the silent winds, dark earth and monday morning rain.

vi

Contents

I Introduction 1

1 Networks and Technologies 3
1.1 Wireless Communication . 3
1.2 Wireless Networks and Technologies . 6

1.2.1 Cellular Systems . 6
1.2.2 Wireless Local Area Networks 6
1.2.3 Broadband Wireless Access Technology 7

1.3 Mobile Ad hoc Wireless Networks . 8
1.3.1 Low Cost and Low Power Radio technologies 8
1.3.2 Personal Networks . 8
1.3.3 Sensor Networks . 9
1.3.4 Mesh Networks . 10

1.4 Peer-to-peer Networks . 11

2 Network Modelling 13
2.1 Graph Definitions . 13
2.2 Graph Models . 14
2.3 Routing Algorithms and Protocols . 17

2.3.1 Dijkstra’s algorithm . 19
2.3.2 QoS Routing Protocols and Algorithms 20
2.3.3 Routing in Wireless Networks 21

3 Survey of Ad hoc Routing Protocols 23
3.1 Classification of Ad hoc Routing Protocols 23

3.1.1 Power-saving routing protocols 25
3.1.2 Cross-Layer Design . 26

3.2 Destination-Sequenced Distance-Vector Routing 27
3.3 Dynamic Source Routing . 27
3.4 Ad Hoc On-Demand Distance Vector Routing 28
3.5 Summary . 30

vii

viii CONTENTS

II Ant Routing 31

4 Introduction to ant routing 33
4.1 Overview of ANTRAL implementations 35
4.2 Performance of Ant Routing Algorithms 38

5 Ant Routing in Wired Networks 39
5.1 Network Model . 39

5.1.1 Data Structures at Nodes . 41
5.2 AntNet Algorithm . 42

5.2.1 Description of the AntNet algorithm 42
5.2.2 Complexity Analysis of the AntNet algorithm 48
5.2.3 AntNet Implementation . 49

5.3 Results . 51
5.3.1 Simulation Parameters . 51
5.3.2 Static Implementation of the AntNet algorithm 52
5.3.3 Dynamic Implementation of the AntNet algorithm 54
5.3.4 Traffic Measurements . 64

5.4 Conclusions . 66

6 Ant Routing in Mobile Ad hoc Networks 69
6.1 W_AntNet algorithm . 70
6.2 Performance Analysis of W_AntNet 70

6.2.1 NS-2 simulations . 73
6.3 Conclusions . 77

III Searching 79

7 Introduction 81
7.1 Overview . 83
7.2 Definitions and Random Walk properties 83

8 Searching with single query 85
8.1 Random Walks . 85

8.1.1 Random Walk with memory M 85
8.1.2 Random Walk with look-ahead 86
8.1.3 Random Walk using highest degree 87
8.1.4 Random Walk proportional to the degree 88
8.1.5 Random Walk using minimum link weight 88
8.1.6 Random walk proportional to the link weight 88

8.2 Analysis of Searching with single query 88

CONTENTS ix

8.3 Simulation Results . 94
8.3.1 RW with lookahead j . 94
8.3.2 Comparison of RW strategies 95

8.4 Conclusion . 96

9 Searching with multiple queries 101
9.1 Analysis of searching with multiple RW queries 102
9.2 Conclusions . 107

IV Topology Analysis 109

10 Topology of Ad hoc wireless networks 111
10.1 Signal Propagation Models Topology Modeling of Wireless Ad hoc Net-

works . 112
10.2 Average node degree in ad hoc wireless networks 113
10.3 Shortest Path Routing and Load Balancing 115
10.4 Lifetime of Ad hoc Wireless Network 116
10.5 Conclusions . 119

11 Estimation of Topology 121
11.1 Introduction . 121
11.2 Topology Estimation . 122

11.2.1 Estimation when both p and N are unknown 122
11.2.2 Results . 124
11.2.3 A subgraph and average degree are known 124
11.2.4 Influence of m and Z . 125

11.3 Conclusions . 126

12 Conclusions 127

A Average number of neighbors 131

Abbreviations 135

Bibliography 137

Acknowledgements 147

Curriculum Vitae 149

x CONTENTS

Summary

Title : Ant Routing, Searching and Topology Estimation algorithms for Ad Hoc Net-
works.
The complexity of networks is increasing to cope with the network model of providing

connectivity anywhere and anytime. The idea of universal connectivity has to lead the
concept of ad hoc networks. The word ad hoc comes from Latin meaning "to this". Ad
hoc networks are self-configuring, self-organizing networks that are formed on the fly.
The dynamic and self-configuring behavior of ad hoc networks provides new challenges.
Ad hoc networks have to deal with the inherent difficulties in the wireless medium as
well as node mobility. Integration of multiple networks, architectures and technologies
introduces further complexity for the paradigm of universal connectivity.
Developing novel algorithms and protocols and analyzing their performance is essen-

tial for the development of next generation networks. In this thesis, we aim to analyze
the performance of dynamic routing and searching algorithms.
The main aims of this thesis are:

1. Studying the performance of a dynamic, self-adaptive routing paradigm known
as ant routing.

2. Analyzing the behavior of searching and how it performs on graph topologies.

3. Understanding the topology of wireless ad hoc networks and its effects on per-
formance of different algorithms in ad hoc networks.

4. Estimation of topology to build topology dependant algorithms.

This thesis is divided into four parts.
The first section is an introduction to the ad hoc networks. This section is divided

into three chapters. Chapter 1 discusses different network technologies and architec-
tures. In the second chapter, we describe how the communication networks can be
modelled as graph. In this chapter, we also describe OSI layer architecture of Internet
and different routing algorithms and protocols. The last chapter in this section presents
a survey of routing protocols for ad hoc wireless networks.

xi

xii SUMMARY

The second part of thesis deals with ant routing. Ant routing is a probabilistic
routing scheme inspired by real life ant colonies. Ant routing algorithms adapt to
changes in network topology and traffic and aim to provide quality of service routing. In
chapter 4.2, we study the performance of ant routing algorithms for wired networks. We
study the convergence of ant routing algorithm to shortest path for static topology. We
also analyze the effect of different parameters and network topology on the performance
of ant routing algorithms.
Ant routing algorithms can handle limited dynamic behavior in networks. When the

topology of networks changes quickly due to mobility in mobile ad hoc networks, the
performance of ant routing algorithms needs to be analyzed. In chapter 6, we study ant
routing in ad hoc wireless networks. We also compare the performance of ant routing
algorithm with mobile ad hoc wireless routing protocols AODV and DSR.
Searching algorithms are building blocks for many different network algorithms,

protocols and services. For example, web search engines and P2P networks need to
search for webpages and data respectively. In chapter 8, we study the performance of
searching with a single query based on random walk. We also define different searching
techniques such as random walk with no repetition of steps, random walk with look-
ahead etc. A number of results and conclusions about different searching techniques
are presented.
Multiple random walk queries or flooding could be employed for searching. Cur-

rently, new versions of P2P networks such as Gnutella are using multiple random walk
queries. However, the TTL for random walk queries and the number of queries is set
heuristically. In chapter 9, we analyze the optimization of random walk queries based
on the number of queries and the TTL for different graph topologies.
The last section of this thesis is divided into two chapters. The topology of ad

hoc networks determines important parameters of the network such as the load on
different nodes, performance of routing algorithms, overhead of searching algorithms
and the lifetime of these networks. In chapter 10, we study the effect of different signal
propagation models on the topology for ad hoc wireless networks. Chapter 11 studies
the estimation of graph topology based on node degree information.

Part I

Introduction

1

Chapter 1

Networks and Technologies

Wireless networks and technologies have become ubiquitous in today’s world. Cellu-
lar systems and wireless local area networks (WLANs) are typical examples of widely
used wireless networks. We present a brief overview of different wireless networks and
technologies in this chapter.
Communication over wireless channel is the basis for building wireless networks and

technologies. Design of wireless networks is a challenging issue due to the nature of
wireless channel. The wireless channel is unpredictable and a difficult communication
medium. As a signal propagates through a wireless channel, it experiences random fluc-
tuations in time. Thus, the characteristics of a channel appear to change randomly with
time, which makes it difficult to design reliable systems with guaranteed performance.
Moreover, the radio spectrum is a scarce resource that must be allocated to many dif-
ferent applications and systems. We explain the basics of wireless communication in
more detail in section 1.1.
While most of the current wireless networks use infrastructure, it is increasingly

common to see ad hoc networks. In infrastructure-based wireless networks each node,
a processor with a radio transceiver (transmitter and receiver), communicates directly
with a base station or a central station. On the other hand, in ad hoc wireless networks
nodes communicate directly with each other without using any infrastructure. Section
1.2 describes various infrastructure based wireless networks and technologies. In section
1.3, we describe mobile ad hoc wireless networks.

1.1 Wireless Communication

The early wireless systems used analog signals. Today most wireless systems use digital
signals composed of binary bits, where the bits are obtained directly from a data signal
or digitizing an analog signal. Digital systems have higher capacity than analog sys-
tems since they can use more spectrally-efficient digital modulation and more efficient

3

4 CHAPTER 1. NETWORKS AND TECHNOLOGIES

techniques to share the spectrum.
Digital modulation and detection consist of transferring information in the form of

bits over a communication channel. Digital modulation consist of mapping the infor-
mation bits into an analog signal for transmission over the channel. Detection consists
of determining the original bit sequence based on the signal received over the channel.
There are two main categories of digital modulation: amplitude/phase modulation and
frequency modulation. The amplitude and phase modulations embed the information
bits into the amplitude and phase of the transmitted signal respectively.
Most of the current wireless systems also use spread spectrum. Spread spectrum is

a modulation method applied to digitally modulated signals that increases the transmit
signal bandwidth to a value larger than is needed to transmit the underlying information
bits. The spread spectrum modulation is done using a spreading code that is indepen-
dent of the data in the signal. Spread spectrum is typically implemented in one of
two forms: direct sequence (DS) or frequency hopping (FH). In direct sequence spread
spectrum (DSSS) modulation, the modulated data signal is multiplied by a wideband
spreading signal.
In multiuser systems the system resources must be divided among multiple users.

The signals of bandwidth B and time duration T occupy a signal space of dimension
2BT . In order to support multiple users, the signal space dimensions of a multiuser
system must be allocated to the different users. When dedicated channels are allo-
cated to users, the system allocation is termed as multiple access. Applications with
continuous transmission and delay constraints, such as voice or video, typically require
dedicated channels for good performance to insure their transmission is not interrupted.
Dedicated channels are obtained from the system signal space using a channelization
method such as time-division, frequency-division, code-division, or a hybrid combi-
nation of these techniques. In frequency division multiple access (FDMA), the total
system bandwidth is divided into orthogonal frequency channels. In time division mul-
tiple access (TDMA), time is divided orthogonally and each channel occupies the entire
frequency band over its assigned timeslot. Because signaling dimensions can be allocate
to different users in an infinite number of ways, multiuser channel capacity is defined
by rate region rather than a single number. Allocation of signaling dimensions for users
with bursty transmissions generally use a form of random channel allocation which does
not guarantee channel access. Bandwidth sharing using random channel allocation is
called random multiple access or random access.
In general, the choice of whether to use multiple access or random access, and

which specific multiple technique to apply depends on the system applications, the
traffic characteristics of the users in the system, the performance requirements, and
the characteristics of the channel and other interfering systems operating in the same
bandwidth.
Most wireless applications reside in the radio spectrum between 30MHz and 30 GHz.

The radio spectrum is controlled by regulatory bodies both regionally and globally. A

1.1. WIRELESS COMMUNICATION 5

Table 1.1: Spectrum allocation for various wireless systems.

AM radio 536-1605 KHz
FM radio 88-108 MHz
Broadcast TV (UHF) 470-806 MHz
3G Broadband Wireless 746-764 MHz, 776-794 MHz
3G Broadband Wireless 1.7-1.85 MHz, 2.5-2.69 MHz
1G and 2G Digital Cellular Phones 806-902 MHz
Personal Communication Services
(2G Cell Phones)

1.85-1.99 GHz

Wireless Communications Service 2.305-2.32 GHz, 2.345-2.36 GHz
Satellite Digital Radio 2.32-2.325 GHz
Digital Broadcast Satellite (Satellite
TV)

12.2-12.7 GHz

Fixed Wireless Services 38.6-40 GHz

Table 1.2: Unlicensed Spectrum

ISM Band I (Cordless phones, IG WLANs) 902-928 MHz
ISM Band II (Bluetooth, IG WLANs) 2.4-2.4835 GHz
ISM Band III (Wireless PBX) 5.725-5.85 GHz
NII Band I (Indoor systems, 802.11a WLANs) 5.15-5.25 GHz
NII Band II (short outdoor and campus applications) 5.25-5.35 GHz
NII Band III (long outdoor and point-to-point links) 5.725-5.825 GHz

regional or global system operating in a given frequency band must obey the restrictions
for that band set forth by the regulatory body. The spectrum is allocated in licensed
bands, which regulatory bodies assign to specific operators, or in unlicensed bands,
which can be used by any system subject to certain operational requirements. Table 1.1,
taken from Goldsmith [53], shows the licensed spectrum allocated to major commercial
wireless systems in the U.S.A. today.

Unlicensed spectrum is allocated by the governing body within a given country. In
general, countries try to match their frequency allocation for unlicensed spectrum so
that the technology developed for this spectrum is compatible world-wide. Table 1.2
shows the unlicensed spectrum allocations in the U.S.A. [53, 87].

6 CHAPTER 1. NETWORKS AND TECHNOLOGIES

1.2 Wireless Networks and Technologies

The design and development of mobile wireless networks poses significant challenges
compared to traditional wired networks. In contrast to the stable link capacity of
wired networks, wireless link capacity continually varies because of the impacts from
transmission power, receiver sensitivity, noise, fading and interference. Additionally,
wireless mobile networks have a high error rate, power restrictions and bandwidth
limitations. In mobile networks, node mobility may cause frequent network topology
changes which are rare in wired networks.
In this section, we describe wireless networks based on infrastructure. Wireless

networks based on infrastructure are single-hop networks with direct communication
between a node and base station. Most control issues in these networks such as mobility
and scheduling are handled by the central base station or access point. The next
subsections present an overview of cellular systems and WLANs.

1.2.1 Cellular Systems

The basic idea behind cellular systems is frequency reuse, which exploits the fact that
the signal power falls off with distance so that the same frequency spectrum can be
used at spatially separated locations. The coverage area of a cellular system is divided
into nonoverlapping cells where some set of channels is assigned to each cell. Operation
within a cell is controlled by a base station.
All base stations in a geographical area are connected via a high speed communica-

tion link to a mobile telephone switching office (MTSO). The MTSO acts as a central
controller for the network, allocating channels within each cell, coordinating handoffs
between cells when a node traverses a cell boundary, and routing calls to and from mo-
bile users. The MTSO can route voice messages through the public switched telephone
network or provide Internet access (Figure 1.1).
The first generation cellular systems were analog while the second and third gen-

eration cellular systems are digital. A prominent example of second generation digital
system is Groupe Spéciale Mobile (GSM). The GSM system, used primarily in Europe,
uses a combination of TDMA and slow frequency hopping with frequency-shift keying
for the voice modulation. The third generation (3G) cellular systems are based on wide-
band code division multiple access (WCDMA) standard developed within the auspices
of the International Telecommunication Union (ITU).

1.2.2 Wireless Local Area Networks

Wireless local area networks (WLANs) provide high speed data within a small region as
users move from place to place. Wireless devices that access these LANs are typically
stationary or moving at pedestrian speeds. All wireless LAN standards in USA operate

1.2. WIRELESS NETWORKS AND TECHNOLOGIES 7

Mobile
Telephone
Switching

Office

Internet

Local
Exchange

Long-
distance
Network

Base Station

Figure 1.1: Architecture of a Cellular Network

in the unlicensed frequency bands. The primary unlicensed bands are the ISM bands at
900 megahertz (MHz), 2.4 gigahertz (GHz) and 5.8 GHz, and the unlicensed national
information infrastructure (U-NII) band at 5 GHz. The wireless LAN standard IEEE
802.11b operates with 80 MHz of spectrum in the 2.4 GHz ISM band1. The standard
specifies DSSS with data rates of around 1.6 megabit per second (Mbps) and a range
of approximately 150 metres (m).
The IEEE 802.11a wireless LAN standard operates with 300 MHz spectrum in the

5 GHz U-NII band. The 802.11a standard is based on multicarrier modulation and
provides 20-70 Mbps data rates. Another standard 802.11g uses multicarrier modulation
and can be used in either the 2.4 GHz and 5 GHz bands with speeds of up to 54 Mbps.
In Europe wireless LAN standard HIPERLAN (high performance radio LAN) standard
has been developed. The HIPERLAN Type 1 has data rate of 20 Mbps at a range of
50 m.

1.2.3 Broadband Wireless Access Technology

Broadband wireless access provides high-rate wireless communication between a fixed
access point and multiple terminals. Worldwide Interoperability for Microwave Access
(WiMAX) is a broadband wireless technology based on IEEE 802.16 standard2. The
802.16 specification is a standard for broadband wireless access systems operating at
radio frequencies between 10 GHz and 66 GHz. WiMAX standard supports data rates of
40 Mbps for fixed users and 15 Mbps for mobile users with a range of several kilometers.

1http://www.ieee802.org/11/
2http://www.wimaxforum.org

8 CHAPTER 1. NETWORKS AND TECHNOLOGIES

WiMAX competes with wireless technologies such as WLANs, 3G cellular services, and
wired technologies such as cable.

1.3 Mobile Ad hoc Wireless Networks

Mobile ad hoc networks have attracted significant amount of interest in recent years
because of their flexibility, robustness and reduced costs. Mobile ad hoc networks are
multihop wireless networks, where each node not only generates its own data but also
forwards the data of other nodes. Some of the ad hoc wireless networks such as personal
networks, sensor networks and mesh networks are described in next subsections.
The lack of infrastructure adds additional complexity in mobile ad hoc networks.

In these networks, all processing and control must be done by the network nodes in a
distributed fashion. An important aspect of lack of infrastructure in ad hoc networks
is that network topology changes have also to be handled by nodes.

1.3.1 Low Cost and Low Power Radio technologies

Bluetooth3 and Zigbee4 are examples of radio technologies, which due to their low
cost and power consumption can be embedded in a variety of devices to create ad hoc
networks (smart homes, sensor networks) etc. Bluetooth’s range of operation is 10
m (at 1mW transmit power) and this range can be increased to 100 m by increasing
the transmission power to 100 mW. The system operates in the unlicensed 2.4 GHz
frequency band and provides 1 asynchronous data channel at 723.2 Kbps. Bluetooth
uses frequency-hopping for multiple access with a carrier spacing of 1 MHz. Typically,
up to 80 different frequencies are used for total bandwidth of 80 MHz.
The Zigbee radio specification is designed for lower cost and power consumption

than Bluetooth. The specification is based on the IEEE 802.15.4 standard and radio is
capable of connecting 255 devices per network. The specification supports data rates
of 255 Kbps at a range of about 30 m. Zigbee is designed to provide radio operation
for months or years without recharging.

1.3.2 Personal Networks

Personal Network (PN) is a concept proposed by Niemegeers and Heemstra de Groot [78]
related to the field of pervasive computing that extends the concept of a Personal Area
Network (PAN). The latter refers to a space of small coverage (less than 10 m) around
a person where ad hoc communication occurs, typically between portable and mobile
computing devices such as laptops, personal digital assistants (PDAs), cell phones,

3http://www.bluetooth.com
4http://www.zigbee.org

1.3. MOBILE AD HOC WIRELESS NETWORKS 9

Figure 1.2: Personal Network

headsets and digital gadgets. A PN has a core consisting of a PAN, which is extended
on-demand and in an ad hoc fashion with personal resources or resources belonging to
others. This extension is made physically via infrastructure-based networks, e.g., the
Internet, an organization’s intranet, or a PN belonging to another person, a vehicle area
network, or a home network. The resources, which can become part of a PN, are very
diverse. These resources can be private or may have to be shared with other people.
Figure 1.2 shows an example of a PN.

1.3.3 Sensor Networks

Awireless sensor network (WSN) is a wireless network consisting of spatially distributed
autonomous devices using sensors to cooperatively monitor physical or environmental
conditions, such as temperature, sound, pressure or motion [60]. In addition to one or
more sensors, each node in a sensor network is typically equipped with a radio trans-
ceiver, a small microcontroller, and an energy source usually a battery. The individ-
ual devices in WSN are inherently resource constrained. They have limited processing
speed, storage capacity, and communication bandwidth. These devices have substantial
processing capability in the aggregate, but not individually.
Area monitoring is a typical application of WSNs [32]. In area monitoring, the

WSN is deployed over a region where some phenomenon is to be monitored. As an
example, a large quantity of sensor nodes could be deployed over a battlefield to detect
enemy intrusion instead of using landmines. When the sensors detect the event being
monitored, the event is reported to one of the base stations, which takes appropriate

10 CHAPTER 1. NETWORKS AND TECHNOLOGIES

Figure 1.3: Hybrid Mesh Network (This figure is taken from Akyildiz [3])

action (e.g., send a message on the Internet). Communication in sensor networks could
be both single hop and multiple hop. Depending on the need of applications such as
real-time response, redundancy of the data, security etc., different data propagation
strategies could be employed.

1.3.4 Mesh Networks

Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh
routers have minimal mobility and form the backbone of WMNs. They provide network
access for both mesh and conventional clients. Both the mesh clients and routers have
the capability to forward data packets from other nodes, thus acting as hosts and
routers. Mesh clients can access the network through mesh routers as well as directly
meshing with other mesh clients. While the infrastructure provides connectivity to
other networks such as the Internet, Wi-Fi, WiMAX, cellular, and sensor networks; the
routing capabilities of clients provides improved connectivity and coverage inside the
WMN.
WMN is a promising wireless technology for numerous applications [3], e.g., broad-

band home networking, community and neighborhood networks, enterprise networking,
building automation, etc.
The architecture of WMNs can be classified into three main groups based on the

functionality of the nodes: infrastructure/backbone WMNs, client WMNs and hybrid
WMNs. Figure 1.3 gives an example of a hybrid WMN [3].

1.4. PEER-TO-PEER NETWORKS 11

1.4 Peer-to-peer Networks

Peer-to-peer (P2P) networks can be considered an example of ad hoc networks because
of the dynamic topology. P2P networks are overlay networks that can be formed over
wired or wireless network. A pure P2P network does not have the notion of clients
or servers, but only equal peer nodes that simultaneously function as both clients and
servers to the other nodes on the network. This model of network arrangement differs
from the client-server model where communication is usually to and from a central
server. A typical example for a non peer-to-peer file transfer is a file transfer protocol
(FTP) server where the client and server programs are quite distinct, and the clients
initiate the download/uploads and the servers react to and satisfy these requests.
Peer-to-peer networks are typically used for connecting nodes via largely ad hoc

connections. Such networks are useful for many purposes. Sharing content files con-
taining audio, video, data or anything in digital format is very common, and real-time
data, such as telephony traffic, is also passed using P2P technology.
The P2P overlay network consists of all the participating peers as network nodes.

Based on how the nodes in the overlay network are linked to each other, we can classify
the P2P networks as unstructured or structured [30].
An unstructured P2P network is formed when the overlay links are established

arbitrarily. Such networks can be easily constructed as a new peer that wants to join
the network can copy existing links of another node and then form its own links over
time. In an unstructured P2P network, if a peer wants to find a desired piece of data
in the network, the query has to be flooded through the network to find as many peers
as possible that share the data. The main disadvantage with such networks is that
the queries may not always be resolved. Most of the popular P2P networks such as
Gnutella5 are unstructured.
Structured P2P networks employ a globally consistent protocol to ensure that any

node can efficiently route a search to some peer that has the desired file, even if the file is
extremely rare [50]. Such a guarantee necessitates a more structured pattern of overlay
links. By far the most common type of structured P2P network is the distributed hash
table (DHT), in which a variant of consistent hashing is used to assign ownership of
each file to a particular peer, in a way analogous to a traditional hash table’s assignment
of each key to a particular array slot. Some well known DHTs are Chord [97], Pastry
[90] and CAN [88].

5http://www.gnutella.com

12 CHAPTER 1. NETWORKS AND TECHNOLOGIES

Chapter 2

Network Modelling

A communication network can be modeled as a graph. A network of N nodes and L
links can be represented as a graph with N vertices and L edges. Section 2.1 gives basic
graph definitions. Different graph models such as ER random graphs and power law
graphs are used for analysis of networks. Section 2.2 explains different graph models
and their unique features. The network architecture is described in section 2.3. This
section also explains the routing algorithms and protocols. The last section of this
chapter also gives an introduction to routing in wireless networks.

2.1 Graph Definitions

A graph is a data structure consisting of N vertices (nodes) joined together by L edges
(links). A link (u, v) ∈ L is said to be incident to nodes u and v, and vice versa.
If (u, v) ∈ L, then nodes u and v are said to be adjacent. The adjacency matrix
A [G] = auv corresponding to an undirected graph G is defined as:

auv = 1, if (u, v) ∈ L

= 0, otherwise. (2.1)

The adjacencies defining the graph can also be represented by an adjacency-list.
The adjacency-list contains for each node u ∈ V a list Adj [u] with pointers to all nodes
that are adjacent to u. Each link (u, v) ∈ L can also be assigned a weight w (u, v) and
the resulting graph is known as weighted graph. In network terminology, the weight of
a link is also termed as the cost of the link.

Definition 1 Walk: A walk from node u to node v is an alternating finite sequence
v0, l1, v1, ..., lk, vk of nodes vi and links li, where li is a link connecting vi−1 and vi, v0 = u
and vk = v.

13

14 CHAPTER 2. NETWORK MODELLING

Definition 2 Path: A path is a walk in which all nodes v0 to vk are distinct (vi 6= vj
for every index i 6= j).

Definition 3 Connected: A graph is connected if there exists a path between each pair
of nodes in the graph.

Definition 4 Cycle: A cycle is a walk for which all nodes except the first and last are
distinct. If the graph contains no cycles it is called acyclic.

Definition 5 Degree of Connected Graph: In a connected graph with no parallel links
and self loops, a degree degu of a node u represents the number of nodes adjacent to
node u,1 ≤ degu ≤ N − 1.

The degrees of the nodes in the graph must satisfy the following equality [105]:

NX
i=1

degi = 2L (2.2)

2.2 Graph Models

One of the simplest graph models used in network modelling is a full mesh or complete
graph. A complete graph KN consists of N nodes and each node is connected to every
other node in the graph. Thus, the number of links in a complete graph KN are given
by L = Lmax =

N(N−1)
2

links.
An example of an extremely regular topology is the class of lattice topologies. We

only consider a subclass of lattices, namely rectangular two-dimensional lattices with
size l1 and l2 and N = (l1 + 1) (l2 + 1). The shortest hop path between two diagonal
corner points in the rectangular two-dimensional lattice has l1 + l2 hops. Figure 2.1
gives an example of square lattice with N = 49 nodes.
The random graphs, first defined by Erdös and Rényi in 1959, is another commonly

used graph topology for network modelling [48]. Random graphs are also referred to as
Erdös-Rényi (ER) random graphs to distinguish them from power law random graphs.
The two most frequently occurring models for random graphs are Gp (N) and G (N,L).
The class of graphs denoted by Gp (N) consists of graphs with N nodes in which each
possible edge exists with probability p. Thus, the average number of links are given by
pLmax.
The degree distribution of node u in Gp (N) is Binomial [14]

Pr [degu = j] =

µ
N − 1

j

¶
pj (1− p)j (2.3)

2.2. GRAPH MODELS 15

Figure 2.1: An example of square lattice with N = 49 nodes.

and the average degree is p (N − 1). Erdös and Rényi [48] identified a phase transition
in random graphs. The probability that almost every graph Gp (N) is connected is
restricted from below by the critical threshold pc ∼ lnN

N
for N large [14, 48]. Thus,

if p > pc then almost all graphs Gp (N) are connected, else almost all graphs are
disconnected.
The class of Waxman graphs belongs to the class of random graphs, where the prob-

ability of existence of a link between two nodes decays exponentially with the geographic
distance between those two nodes [65, 106]. More formally, the Waxman graphs belong
to the class Gpuv (N) with puv = f (−→ru −−→rv), where the vector−→ru represents the position
of node u and all nodes are uniformly distributed in a hyper cube in the ω−dimension
space. The distance function f (−→r) = e−α|

−→r |, where −→r is a norm denoting the distance
from the origin.
Random geometric graphs (RGG) have gained new relevance with the advent of

ad-hoc and sensor networks as they are used to model these networks [11, 57, 58]. A
random geometric graph is a graph G(N, r) resulting from placing N points uniformly
at random on the unit square 1 and connecting two points iff their Euclidean distance
is at most r. Consider that wireless nodes forming a network are uniformly distributed
with certain density δ. The number of nodes within a circular area of radius r follows
a Poisson distribution with mean number of neighbors δπr2 [11, 58]. However, the
degree distribution of ad hoc wireless networks also depends on shadowing, fading and
interference [41, 57]. The modelling of ad hoc wireless networks is discussed in detail
in chapter 10 of this thesis.
The degree distribution in the Internet and peer-to-peer networks follows a power

law [49, 52]. Albert and Barabási [4] demonstrated via empirical results that the degree
distribution for many other networks such as World Wide Web (WWW), metabolic

16 CHAPTER 2. NETWORK MODELLING

networks, phone call graphs, movie actor collaboration networks also follow power laws.
These networks can be modeled as power law graphs. In power law graphs, the degree
distribution of node u is

Pr [degu = j] = cj−α (2.4)

where α is the power law exponent and c is the normalization constant such that
N−1P
j=1

Pr [degu = j] = 1. Measurements in the Internet [49] suggest that α ≈ 2.4.

Power law graphs can be generated using a variety of methods. The Barabási-Albert
(BA) model for generating power law graphs is defined in two steps [6]. Starting with a
small number (v0) of nodes, at every timestep, a new node is added with l (≤ v0) links.
A new node connects to nodes already in the graph with probability y = duX

v∈Z

dv

, where

du is the degree of node u and Z is the number of nodes in the graph at a particular
timestep.
After t timesteps the model leads to a random network with N = t+ v0 nodes and

lt links. It has been shown in [6] that Pr[deg ≤ j] = 1 − l2t
j2N
. Thus, the probability

that a node s has degree j in this model follows a power law [6],

Pr[degs = j] =
2l2t

N

1

j3
= cj−υ (2.5)

where the scaling exponent υ = 3 is independent of l.
The number of nodes with degree less than logN in the BA model is N · Pr[deg ≤

logN] = N
³
1− 4

(logN)2

´
and the number of nodes with a large degree is small. On

the other hand, in almost surely (a.s.) connected ER random graph where p ≥ logN
N
,

the average node degree is close to or greater than logN . Figure 2.2(a) shows the
degree distribution for ER random graphs. Figure 2.2(b) shows the degree distribution
of power law random graph generated using BA model on a log-log scale.
Many large-scale systems in communications, biology and sociology such as WWW,

the Internet, metabolic networks, phone call graphs, movie actor collaboration networks
are classified as complex networks [4, 100]. To understand complex networks, it is essen-
tial to know clustering coefficient [77]. The clustering coefficient of a vertex in a graph
quantifies how close the vertex and its neighbors are to being a clique (complete graph).
For instance, sparse random graphs have a vanishingly small clustering coefficient while
real world networks often have a coefficient significantly larger. Complex networks are
characterized by power law degree distribution, a high clustering coefficient, assortativ-
ity1 or disassortativity among vertices, and evidence of a hierarchical structure. This

1Assortativity refers to a preference for a network’s nodes to attach to others that are similar or
different in some way

2.3. ROUTING ALGORITHMS AND PROTOCOLS 17

(a) ER Random Graph (b) Power law Random Graph

0.0001

0.001

0.01

0.1

Pr
[d

 =
 j]

2 3 4 5 6 7 8 9
10

2 3 4 5 6 7 8 9
100

degree j

 N = 400
 N = 1600
 N = 100000

0.15

0.10

0.05

0.00

Pr
[d

 =
 j]

2015105
degree j

N = 400
p = 0.0125

(a) ER Random Graph (b) Power law Random Graph

0.0001

0.001

0.01

0.1

Pr
[d

 =
 j]

2 3 4 5 6 7 8 9
10

2 3 4 5 6 7 8 9
100

degree j

 N = 400
 N = 1600
 N = 100000

0.15

0.10

0.05

0.00

Pr
[d

 =
 j]

2015105
degree j

N = 400
p = 0.0125

Figure 2.2: Degree distribution for ER random graph and power law random graph.

is in contrast to lattice or random graphs which exhibit a high similarity.

2.3 Routing Algorithms and Protocols

We study the architecture of the Internet to understand the concepts of routing algo-
rithms and protocols and medium access layer protocols. The Internet is a collection
of interconnected networks that use packet switching [83]. The design of complex net-
works such as the Internet lead to the concept of layering. Figure 2.3 shows the Open
Systems Interconnection (OSI) layered architecture for the Internet. Though the OSI
architecture defines 7 layers, our focus in this thesis is on physical, data link, network
and application layers. Figure 2.3 also shows some of the common technologies used at
each layer.
The physical layer represents the physical medium through which the data is trans-

mitted. In case of wired networks, there are technologies such as coaxial cable, twisted
pair etc. that are use to make the physical connection. The data link layer (layer 2)
is the layer which transfers data between adjacent network nodes in a wide area net-
work or between nodes on the same local area network (LAN) segment. At this layer,
the frames are forwarded by nodes based on spanning tree algorithm. We do not into
details of the algorithm, however, the nodes using this algorithm do not need to know
the topology of the whole network. The layer 2 nodes forwarding packets are referred
to as bridges. In some networks, such as IEEE 802 LANs, the data link layer is split
into Medium Access Control (MAC) and Logical Link Control (LLC) sublayers. The
MAC layer specifies number of protocols (e.g. CSMA/CA, CSMA/CD) which deal with

18 CHAPTER 2. NETWORK MODELLING

D a ta L in k la y e r
(E th e rn e t , T o k e n r in g , A T M , IE E E 8 0 2 .1 1)

P h y s ic a l la y e r
(C o a x ia l c a b le , F ib e r , w ire le s s)

N e tw o rk la y e r
(IP , R IP , O S P F)

A p p l ic a t io n la y e r
(H T T P , F T P , T e ln e t)

T ra n s p o r t la y e r
(T C P , U D P)

S e s s io n la y e r
(R P C , S D P)

P re s e n ta t io n la y e r
(R D A)

D a ta L in k la y e r
(E th e rn e t , T o k e n r in g , A T M , IE E E 8 0 2 .1 1)

P h y s ic a l la y e r
(C o a x ia l c a b le , F ib e r , w ire le s s)

N e tw o rk la y e r
(IP , R IP , O S P F)

A p p l ic a t io n la y e r
(H T T P , F T P , T e ln e t)

T ra n s p o r t la y e r
(T C P , U D P)

S e s s io n la y e r
(R P C , S D P)

P re s e n ta t io n la y e r
(R D A)

Figure 2.3: OSI model

channel access control mechanisms.

The layer 3 involves interconnection of networks. At layer 3, the nodes forward-
ing data packets termed routers, use routing protocols to learn the topology of whole
network. The routing table stores the routes and in some cases, metrics associated
with those routes, to particular network destinations. Once the routers have topology
information, a routing algorithm is used to compute the path to the destination [107].

There are two types of routing protocols defined at layer 3 - Link State and Dis-
tance Vector [83]. In distance vector routing protocols, each node constructs a one-
dimensional array or vector containing the costs to all other nodes and distributes that
vector to its immediate neighbors. The routing information protocol (RIP) is an exam-
ple of distance vector routing protocol. The Bellman-Ford shortest path algorithm is
used in RIP to compute the shortest paths.

In link state routing, each node knows the link weight of its directly connected
neighbors. This information is flooded by the nodes through the entire network. Open
Shortest Path First (OSPF) is the most widely used link state routing protocol in the
Internet today. In OSPF, once a node knows the full network topology and link weight
information, it uses Dijkstra’s shortest path algorithm to compute paths to different
destinations. In the next section, we describe the Dijkstra’s algorithm in detail.

2.3. ROUTING ALGORITHMS AND PROTOCOLS 19

Initialize_single_source (G, s,z, π)
for each vertex v ∈ N

do z [v]←∞
π [v]← NIL

z [s]← 0

Figure 2.4: Initialization

Relax(u, v, w,z, π)
if z [v] > z [u] + w (u, v)
then z [v]← z [u] + w (u, v)

π [v]← u

Figure 2.5: Relaxation

2.3.1 Dijkstra’s algorithm

We first describe an important property of one-dimensional shortest paths and describe
the technique of relaxation used by Dijkstra’s shortest path algorithm

Property 6 Subpaths of shortest paths in one dimension are also shortest paths.

Property 1 is used in the technique of relaxation to obtain shortest path length
in a monotonically decreasing fashion. Each node u ∈ V maintains an estimate z [u]
of the shortest path distance from the source node s to node u. Based on the above
property we know that subpaths of shortest paths must also be shortest. Therefore, if
z [v] > z [u] + w (u, v) we can improve the "shortest" path to v found so far by going
via the node u to node v, using link (u, v). This process of checking whether we can
improve the distance estimate of a path to a node v by going via a different path to a
neighboring node u and taking the link (u, v), is called relaxing the link (u, v). Initially,
all estimates z [u]∀u ∈ V are set to infinity. In Figures 2.4 and 2.5 the meta code for
the initialization and the relaxation are given. Lines 1-3 of the Initialize routine in
Figure 2.4 set for all the nodes the estimates to infinity and the predecessors to NIL.
Only the estimates z [s] of the source node is set to 0 in line 4, since the search started
from source itself. Line 1 of the procedure Relax checks whether the distance z [v]
can be improved by going via the node u and link (u, v) to node v. If this is the case
then the estimate and predecessor of node v are updated in lines 2 and 3.
Dijkstra’s algorithm is used to compute the shortest path from a source to node on

a weighted directed graph G (N,L) for the case where all link weights are nonnegative
(Figure 2.6). Dijkstra’s algorithm maintains a set S of vertices whose final shortest-
path weights from the source s have already been determined. The algorithm repeatedly
selects the vertex u ∈ N − S with the minimum shortest-path estimate, adds u to S,

20 CHAPTER 2. NETWORK MODELLING

Dijkstra(G,w, s)
Initialize_single_source (G, s,z, π)
S ← ∅
Q← N [G]
while Q 6= ∅
do u←Extract_Min(Q)

S ← S ∪ {u}
for each vertex v ∈ Adj [u]

do Relax(u, v, w,z, π)

Figure 2.6: The Dijkstra algorithm

and relaxes all links leaving u. Line 1 performs an initialization of all nodes, and line
2 initializes the set S to the empty set. Line 3 initializes the min-priority queue Q to
contain all vertices in V . Each time through the while loop of lines 4-8, a vertex u is
extracted from Q = V − S and added to set S. Vertex u, therefore, has the smallest
shortest-path estimate of any vertex in V − S. Then, lines 7-8 relax each link (u, v)
leaving u, thus updating the estimate z [v] and the predecessor π [v] if the shortest path
to v can be improved by going through u.
The proof of correctness of Dijkstra’s algorithm is given in Cormen et al. [29]. The

worst-case complexity of the Dijkstra’s algorithm when the min-priority queue Q is
implemented as Fibonacci heap is O (N logN + L) [29].

2.3.2 QoS Routing Protocols and Algorithms

Quality of service, abbreviated as QoS, refers to resource reservation control mecha-
nisms. QoS can provide different priority to different users or data flows, or guarantee
a certain level of performance to a data flow in accordance with requests from the ap-
plication program. In soft-QoS, some traffic is given preference over other, however, no
guarantee is provided. On the other hand, hard QoS or guaranteed services involves
absolute reservation of networks resources for specific traffic.
To understand QoS algorithms, we use the formulation of Kuipers [65]. Each

link (u, v) ∈ L is characterized by an ω−dimensional link weight vector −→w (u, v) =
[w1 (u, v) , w2 (u, v) , ..., wω (u, v)], where wi (u, v) > 0∀ (u, v) ∈ L and the ω components
referred to as QoS measures such as delay, jitter, available bandwidth etc. Given ω
constraints Ui where 1 ≤ i ≤ ω, the multi-constrained problem is to find a path P from
a source node s to a destination node d such thatX

(u,v)∈P

wi (u, v) ≤ Ui∀1 ≤ i ≤ ω (2.6)

Note that the above formulation is valid only for additive link weights. Self-Adaptive

2.3. ROUTING ALGORITHMS AND PROTOCOLS 21

Multiple Constraints routing algorithm (SAMCRA) is an example of exact QoS algo-
rithm that finds the minimum cost path satisfying the required constraints [108].

2.3.3 Routing in Wireless Networks

As explained in the last section, routing in communication networks can be classified
into routing protocol and routing algorithm. The function of a routing protocol is
to spread the routing information while the routing algorithm computes the paths.
The boundary between routing protocols and algorithms is blurred in ad-hoc networks
where the nodes may not have enough topology information and paths are set up on
demand when the nodes have data to send [39]. Moreover, single hop networks such as
infrastructure based wireless networks do not need routing protocols and algorithms.
Layer 2 in wireless networks defines different MAC protocols to access the medium.

MAC protocols are needed to regulate communication between nodes through a shared
medium. A variety of MAC protocols have been developed for communication in wired
and wireless networks. For example, IEEE 802.3 (based on carrier sense multiple access
with collision detection (CSMA/CD) for wired Ethernet) and IEEE 802.11 for WLAN.
The IEEE 802.11 standard uses CSMA with collision avoidance.
Since each node in ad hoc wireless networks forwards packets of other nodes, it needs

to have functionality till layer 3 in the OSI model. Indeed, the first generation of routing
protocols such as dynamic source routing (DSR) can be considered purely to belong to
the network layer. Such routing protocols are designed independent of the lower level
layers i.e., physical layer and MAC layer. Since MAC protocols affect interference levels
and capacity in wireless networks, increasingly it has been observed that a cross layer
strategy may provide a better solution to routing in ad hoc networks. A detailed survey
of various routing protocols and cross-layer design for ad hoc networks is presented in
the next chapter.

22 CHAPTER 2. NETWORK MODELLING

Chapter 3

Survey of Ad hoc Routing Protocols

Most of the routing protocols for ad-hoc networks can be classified into three major cat-
egories (Figure 3.1) based on the routing information stored at the nodes, namely, pro-
active or table driven, reactive or on-demand and hybrid. Other classification schemes
categorize the protocols based on whether they are hierarchical, support multicast, or
are power aware [26].
The first section in this chapter shows how routing protocols are categorized. In

the remaining sections, we explain 3 ad hoc wireless routing protocols namely DSDV,
AODV and DSR in detail. We compare the performance of these routing protocols with
ant routing in chapter 6.

3.1 Classification of Ad hoc Routing Protocols

Table-driven routing protocols (e.g. DSDV [82], CGSR [21], OLSR [25]) attempt to
maintain consistent, up-to-date routing information from each node to every other
node in the network. These protocols require each node to maintain one or more tables
to store routing information, and they respond to changes in network topology by
propagating updates throughout the network in order to maintain a consistent network
view. The different table-driven protocols differ with respect to each other in terms
of number of routing-related tables and the methods by which changes in the network
structure are broadcast.
In reactive or on-demand protocols (e.g. AODV [81], DSR [62], ABR [102]), routes

are created only when desired by the source node. When any node requires a route to
the destination, it initiates a route discovery process within the network. This process is
completed once a route is formed or all possible route permutations have been examined.
Once a route has been established, it is maintained by a route maintenance procedure
until either the destination becomes inaccessible along every path from the source or
until the route is no longer desired. The routes in reactive protocols could be established

23

24 CHAPTER 3. SURVEY OF AD HOC ROUTING PROTOCOLS

Ad Hoc Routing Protocols

Table-Driven On-Demand

DSDV
AODV DSR TORA

Hybrid

ZRP

CGSR

WRP

Ad Hoc Routing Protocols

Table-Driven On-Demand

DSDV
AODV DSR TORA

Hybrid

ZRP

CGSR

WRP

Figure 3.1: Classification of Routing protocols for ad hoc networks

based on different parameters such as signal stability, battery power available to nodes
etc.
The advantage of the proactive schemes is that once a route is requested, there is

little delay until a route is determined. The disadvantage is that table-driven protocols
need to maintain up-to-date routing information at the nodes. Since in ad hoc network
nodes might move very fast, the changes in routing information may be more frequent
than the routing requests, leading to waste of the network capacity as much of the
routing information is never used.
Reactive protocols have significant advantages over table-driven protocols in terms

of reducing the overhead of routing protocols and ability of the routing protocols to
react quickly to topology changes in the network. They are better scalable than table
driven protocols in terms of memory overhead and topology changes but have a major
shortcoming as the delay in path discovery increases with the increase in the number
of the nodes in the network.
In order to overcome the disadvantages of pure table-driven or reactive protocols,

hybrid protocols such as the zone routing protocol (ZRP) have been proposed [55]. Hy-
brid protocols exhibit behavior that is a combination of proactive and reactive routing
schemes and aim to minimize the delay for route determination and optimize routing
table updates for better utilization of network capacity.
Routing protocols can also be classified based on whether the underlying architecture

is flat-routed or hierarchical. In flat-routed networks, all the nodes are alike and the
routing is done based on peer-to-peer connections, restricted only by the propagation
conditions. In hierarchical networks, there at least two layers. On the lower layer,
routing in geographical proximity is done based on peer-to-peer connections and at
least one of the nodes is designated as gateway to the higher layer. These gateway

3.1. CLASSIFICATION OF AD HOC ROUTING PROTOCOLS 25

nodes create the higher layer network. Thus, routing between nodes that belong to
the same lower-layer network is based on peer-to-peer routing and routing between
nodes that belong to different lower-layer networks is through the gateway nodes. The
major advantage of hierarchical protocols is scalability. Cluster head formation schemes
provide a very efficient and distributed solution for routing and thus scale well even for
large networks. On the other hand creation and maintenance of clusters leads to extra
overhead for routing protocol. Clusterhead Gateway Switch Routing (CGSR) is an
example of hierarchical routing [21].
The routing protocols for ad-hoc wireless networks can also be classified according

to distinct features that they implement. Location aided protocols use the location
information of intermediate nodes and destination node to make routing decisions.
Since nodes in ad hoc networks may move at any time, location aided protocols try
to efficiently use the location information and node movement information for routing
packets. Routing protocols can also be classified based on whether they support routing
of unicast or multicast packets. A number of on-demand and table-driven multicasting
routing protocols such as ODMRP [67], MCEDAR [95] etc. have been proposed for ad
hoc networks. Most of the on-demand multicast routing protocols rely on significant
periodic (non-on-demand) behavior within portions of the protocol. Routing proto-
cols which support multicast provide an efficient means of supporting group-oriented
applications.

3.1.1 Power-saving routing protocols

Power saving or energy efficient communication techniques are important in ad hoc
wireless networks as devices may be battery operated and hence power constrained.
The most common technique proposed is the power control scheme, in which a node
transmits data packets to its neighbor at minimum power level. Recent studies (e.g.
LAPAR [109], PAMAS [94]) have stressed the need for designing protocols both at
MAC and network layers to ensure longer battery life.
In wireless networks, the power of transmitted signal is attenuated at the rate of

r−α, where r is the distance between the sender and the receiver and α is the path
loss exponent between 2 and 6. Consequently, transmitting data packets directly to the
node may consume more energy that going through some intermediate nodes. Based
on this observation, most of the proposed energy-efficient routing protocols try to find
a path that has many short-range hops in order to consume the least amount of total
energy. These protocols can be classified into three main categories

• Minimum total transmission power protocols: These protocols set the link cost
to the transmission power and use a shortest path algorithm to search for the
minimum energy path.

26 CHAPTER 3. SURVEY OF AD HOC ROUTING PROTOCOLS

• Minimum total transceiving power protocols: As the intermediate nodes consume
energy not only when forwarding packets but also when receiving packets, these
protocols assign the transmission power and receiving power to the link cost met-
ric.

• Minimum total reliable transmission power protocols: In these protocols, link
cost is a function of both the energy required for a single transmission attempt
across the link and link error rate, which determines the number of retransmission
attempts needed for successful transmission.

Power aware multi-access protocol with signaling (PAMAS) is a multi-access MAC
layer protocol which is based on the original MACA protocol with addition of a sepa-
rate signaling channel [94]. PAMAS conserves battery power at nodes by intelligently
powering off nodes that are not actively transmitting or receiving packets. The man-
ner in which nodes power themselves off does not influence the delay or throughput
characteristics of the PAMAS protocol. PAMAS searches for the minimum energy path
by using Dijkstra’s shortest path algorithm. Location-aided power-aware routing (LA-
PAR) protocol [109] is a location-aided power-aware routing protocol that dynamically
makes local routing decisions so that a near-optimal power-efficient end-to-end route is
formed for forwarding data packets.

3.1.2 Cross-Layer Design

Cross-layer design is a joint design optimization across several layers (e.g. physical,
MAC and routing layers) under given resource constraints to improve network perfor-
mance [31, 72]. For example, in sensor networks, the average transmission distance is
in the order of a few meters. As a result, the circuit processing power becomes com-
parable to the transmission power. Therefore, for energy efficient network design, the
transmission power and the circuit processing power need to be jointly considered in
a cross-layer optimization problem. Cross-layer design involves information exchange
between different layers, adaptivity at each layer to this information, and diversity built
into each layer to insure robustness [53]. For example, the physical layer can deploy
adaptive modulation and coding to compensate for time-varying wireless channel. This
adaptivity could be used by higher layers to achieve better performance. The MAC
layer can assign a longer channel usage time to links with low-rate modulation schemes
to meet the throughput or energy constraints and the network or routing layer can
reroute traffic to links supporting high-rate modulation schemes to minimize conges-
tion. Though cross-layer optimization is beyond the scope of this thesis, we do consider
the effect of an adaptive power strategy on the lifetime of ad hoc wireless networks in
chapter 10.

3.2. DESTINATION-SEQUENCED DISTANCE-VECTOR ROUTING 27

3.2 Destination-Sequenced Distance-Vector Routing

The destination-sequenced distance-vector (DSDV) is a table-driven algorithm proposed
by Perkins and Bhagwat and is based on the classical Bellman-Ford routing mechanism
[82]. Every mobile node in the network implementing DSDV maintains a routing table.
In routing tables of DSDV, an entry contains the next hop towards a destination, the
cost metric for the routing path to the destination and a destination sequence number
that is created by the destination. Sequence numbers are used in DSDV to distinguish
stale routes from fresh ones and avoid formation of route loops.
The route updates of DSDV can be either time-driven or event-driven. Every node

periodically transmits updates including its routing information to its immediate neigh-
bors. While a significant change occurs from the last update, a node can transmit its
changed routing table in an event-triggered style. Moreover, the DSDV has two ways
when sending routing table updates. One is full dump update type and the full routing
table is included inside the update. A full dump update could span many packets.
An incremental update contains only those entries that with metric have been changed
since the last update is sent. Additionally, the incremental update fits in one packet.
Broch et al. [16] have shown that DSDV performs well when node mobility rate and

node movement speed are low, but has convergence problems when the node mobility
increases. Furthermore, the routing protocol overhead increases as the network diameter
and node mobility increase.

3.3 Dynamic Source Routing

The Dynamic Source Routing (DSR) is an on-demand routing protocol based on the
concept of source routing [62]. Source routing is a routing technique in which the sender
of a packet determines the complete sequence of nodes through which to forward the
packet. The key advantage of source routing is that intermediate nodes do not need
to maintain up-to-date routing information in order to route the packets they forward,
since the packets themselves already contain all the routing decisions. Mobile nodes
using DSR maintain route caches that contain source routes of which the node is aware.
There are two major phases in DSR, the route discovery phase and the route main-

tenance phase. When a source node wants to send a packet, it first consults its route
cache. If the required route is available, the source node includes the routing information
inside the data packet before sending it. Otherwise, the source node initiates a route
discovery operation by broadcasting route request (RT_REQ) packets. A RT_REQ
packet contains addresses of both the source and the destination and a unique num-
ber to identify the request. Receiving a RT_REQ packet, a node checks its route
cache. If the node doesn’t have routing information for the requested destination, it
appends its own address to the route record field of the RT_REQ packet. Then, the

28 CHAPTER 3. SURVEY OF AD HOC ROUTING PROTOCOLS

RT_REQ packet is forwarded to its neighbors. To limit the communication overhead
of RT_REQ packets, a node processes RT_REQ packets that it has not seen before
and its address is not present in the route record field. If the RT_REQ packet reaches
the destination or an intermediate node has routing information to the destination, a
route reply (RT_REP) packet is generated. When the RT_REP packet is generated by
the destination, it comprises addresses of nodes that have been traversed by the route
request packet. Otherwise, the RT_REP packet comprises the addresses of nodes the
RT_REQ packet has traversed concatenated with the route in the intermediate node’s
route cache.
After being created, either by the destination or an intermediate node, a RT_REP

packet needs a route back to the source. There are three possibilities to get a backward
route. The first one is that the node already has a route to the source. The second
possibility is that the network has symmetric (bidirectional) links. The route reply
packet is sent using the collected routing information in the route record field, but
in a reverse order as shown in Figure 3.2. In the last case, there are asymmetric
(unidirectional) links and a new route discovery procedure is initiated to the source.
The discovered route is piggybacked in the route request packet.
In DSR, when the data link layer detects a link disconnection, a route error (RT_ERR)

packet is sent backward to the source. After receiving the RT_ERR packet, the source
node initiates another route discovery operation. Additionally, all routes containing the
broken link should be removed from the route caches of the immediate nodes when the
RT_ERR packet is transmitted to the source.
Source routing protocols such as DSR face a scaling challenge as network diameter in

hops and mobility increase because the product of these two factors determines the rate
that end-to-end paths change. DSR must query longer routes as the network diameter
increases, and must do so more often as the mobility increases, and caching becomes
less effective.

3.4 Ad Hoc On-Demand Distance Vector Routing

AODV is an on-demand routing protocol proposed by Perkins et al. [81]. It is a
combination of DSR and DSDV protocols. It borrows the basic on-demand mechanism
of route discovery and route maintenance from DSR, plus the use of hop-by-hop routing,
sequence numbers and periodic beacons from DSDV. AODV is an improvement over
DSDV because it typically minimizes the number of required broadcasts by creating
routes on a demand basis, rather than maintaining the complete list of routes as in the
DSDV algorithm. As a reactive routing protocol, AODV only needs to maintain the
routing information about the active paths. In AODV, each mobile node keeps a next-
hop routing table, which contains the destinations to which it currently has a route.
A routing table entry expires if it has not been used or reactivated for a pre-specified

3.4. AD HOC ON-DEMAND DISTANCE VECTOR ROUTING 29

(a) (b)

7

91

5
8

2

6

3

4

source
destination

5
7

8

9

2

6

3
4

source
1 destination

(a) (b)

7

91

5
8

2

6

3

4

source
destination

5
7

8

9

2

6

3
4

source
1 destination

Figure 3.2: Route discovery in DSR (a) Route request (RT_REQ) packets (b) Route
reply (RT_REP) packet

expiration time. AODV differs from DSR since it does not use source routing, rather
relies on dynamically establishing route table entries at intermediate nodes.

In AODV, when a source node wants to send packets to the destination but no route
is available, it initiates a route discovery operation. In the route discovery operation,
the source broadcasts route request (RREQ) packets. A RREQ includes addresses of
the source and the destination, the broadcast identity, which is used as its identifier,
the last seen sequence number of the destination as well as the source node’s sequence
number. Sequence numbers are important to ensure loop-free and up-to-date routes.
To reduce the flooding overhead, a node discards RREQs that it has seen before and
the expanding ring search algorithm is used in route discovery operation. The RREQ
starts with a small time-to-live (TTL) value. If the destination is not found, the TTL
is increased in following RREQs.

Each node maintains a cache to keep track of RREQs it has received. The cache
also stores the path back to each RREQ originator. When the destination or a node
that has a route to the destination receives the RREQ, it checks the destination se-
quence numbers it currently knows and the one specified in the RREQ. To guarantee
the freshness of the routing information, a route reply (RREP) packet is created and
forwarded back to the source only if the destination sequence number is equal to or
greater than the one specified in RREQ. AODV uses only symmetric links and a RREP
follows the reverse path of the respective RREP. Upon receiving the RREP packet,
each intermediate node along the route updates its next-hop table entries with respect
to the destination node. The redundant RREP packets or RREP packets with lower
destination sequence number will be dropped.

A node uses hello messages to notify its existence to its neighbors. Therefore, the

30 CHAPTER 3. SURVEY OF AD HOC ROUTING PROTOCOLS

link status to the next hop in an active route can be monitored. When a node discovers
a link disconnection, it broadcasts a route error (RERR) packet to its neighbors, which
in turn propagates the RERR packet towards nodes whose routes may be affected by the
disconnected link. Then, the affected source can re-initiate a route discovery operation
if the route is still needed.

3.5 Summary

The above ad hoc routing approaches have introduced several paradigms such as ex-
ploiting user demand, and the use of location, power, and the association parameters.
Both table-driven and on-demand routing protocols have their advantages and disadvan-
tages and cannot be universally applied equally well to all networks. A flexible routing
approach could be the solution. A flexible routing protocol could invoke table-driven
and/or on-demand approaches based on situations and communication requirements.
Coexistence of both approaches may also exist in spatially clustered ad hoc groups, with
intracluster employing the table driven approach and intercluster employing demand
driven approach or vice versa.

Part II

Ant Routing

31

Chapter 4

Introduction to ant routing

Stigmergy (from the Greek stigma: sting and ergon: work) is a concept first introduced
by Paul Grasse in 1959 to explain the coordination and regulation of collective behavior
in insect colonies [101]. A formal definition used in Biology is: stigmergy is a class of
mechanisms that mediate animal-animal interactions. Most of the observations have
been about collective behavior of insects though there has been some recent work on
social interactions among higher species [101].
The basic principle of stigmergy is simple. Traces of chemicals left in the environ-

ment or modifications made by individuals in their environment are used as feedback.
The insect colony records its activity in a physical environment and uses it to organize
collective behavior. Various forms of storage include: gradients of chemical substance
known as pheromones, material structures, or spatial distribution of insect colony. Such
structures materialize the dynamics of the colony’s collective behavior and constrain the
behavior of individuals through a feedback loop. A simpler definition of stigmergy is
sufficient for this thesis: stigmergy is a form of indirect communication mediated by
modifications of the environment [101].
Stigmergy mechanisms have been classified into two categories. With quantitative

stigmergy, the stimulus-response sequence comprises stimuli that does not differ quali-
tatively, and only modify the probability of response of the individuals to this stimuli.
An example of quantitative stigmergy is the construction of pillars in termites studied
by Grasse [101]. Qualitative stigmergy is based on discrete set of stimulus types: For
example, an insect responds to type-1 stimulus with action A and responds to type-2
stimulus by action B. An example of the qualitative stigmergy is nest building in wasp
Polistes.
The foraging behavior of ant colonies is an example of quantitative stigmergy. While

walking from food sources to nest and vise versa, ants deposit pheromone on the ground,
forming in his way a pheromone trail. Ants can smell pheromone and the probability
of choosing paths marked by strong pheromone concentration increases. It has been
shown experimentally that the pheromone trail following behavior of a colony of ants

33

34 CHAPTER 4. INTRODUCTION TO ANT ROUTING

(a) (b)

100

80

60

40

20

0

%
 o

f p
as

sa
ge

s

2520151050

Time (minutes)

Food

BranchUpper

Lower Branch

Nest o60

cm15

(a) (b)

100

80

60

40

20

0

%
 o

f p
as

sa
ge

s

2520151050

Time (minutes)

Food

BranchUpper

Lower Branch

Nest o60

cm15

Figure 4.1: Foraging behavior of Argentine ant Iridomyrmex humilis. (a) Double bridge
experiment setup (b) Percentage of ants per 3-min period passing on the two branches
of the bridge. Colony of 1000 workers.

leads to the emergence of shortest paths [10, 36]. Deneubourg et al. [36] studied the
foraging behavior of a colony of the Argentine ant called Iridomyrmex humilis under
controlled conditions. The nest of the colony of ants was separated from the food source
by a double bridge in which each bridge has the same length. Ants were left to move
between the nest and food source. Initially both branches are chosen equally. However,
in marking, each ant that passes modifies the following ant’s probability of choosing
left or right, a positive-feedback system that, after initial fluctuation, rapidly leads to
one of the two bridges becoming preferred to the other. Thus, over a period of time the
ants tend to converge on one of the two paths (Figure 4.1).
The observation that real ants are able to find the shortest paths lead to the de-

velopment of ant routing algorithms [42, 92]. The idea behind ant routing algorithms
is to use a form of stigmergy to coordinate societies of artificial agents. The artificial
agents (mobile agents) or ants move through the network and are used to update the
routing tables. The mobile agents update the routing tables in an asynchronous manner
and independently of other mobile agents (Figure 4.2). Thus, ant routing combines the
routing algorithm and protocol into a single entity and the nodes do not need to directly
exchange routing information for updating the routing tables. This is in contrast to
the traditional approach to routing where the routing tables are updated by exchanging
routing information between the routers. For example, in OSPF the routers exchange
link-state information by flooding.
In this thesis, we collectively refer to various algorithms that use mobile agents as

ant routing algorithms (ANTRALs). The principles of ant colony and stigmergy have
been applied to numerous other optimization problems besides routing and have been

4.1. OVERVIEW OF ANTRAL IMPLEMENTATIONS 35

2

1 3

4

Routing Table
at Node 1

After update by Y
backward ants.

0.9 0.1

0.7 0.3

0.1 0.9

2

3

2 4Next Node

D
es

tin
at

io
n

N
od

e

4

Routing Table
at Node 1 at
t=0

0.5 0.5

0.5 0.5

0.5 0.5

2

3

2 4Next Node

D
es

tin
at

io
n

N
od

e

4

2

1 3

4

2

1 3

4

Routing Table
at Node 1

After update by Y
backward ants.

0.9 0.1

0.7 0.3

0.1 0.9

2

3

2 4Next Node

D
es

tin
at

io
n

N
od

e

4

0.9 0.1

0.7 0.3

0.1 0.9

2

3

2 4Next Node

D
es

tin
at

io
n

N
od

e

4

Routing Table
at Node 1 at
t=0

0.5 0.5

0.5 0.5

0.5 0.5

2

3

2 4Next Node

D
es

tin
at

io
n

N
od

e

4

0.5 0.5

0.5 0.5

0.5 0.5

2

3

2 4Next Node

D
es

tin
at

io
n

N
od

e

4

Figure 4.2: Routing table update and maintainance in ant routing.

referred to as ant colony optimization in the literature [45].
There are a number of differences between the traditional routing algorithms and

ANTRALs. ANTRAL is a hop-by-hop routing approach. In an ANTRAL, traffic across
the network is continuously monitored by the mobile agents. Due to the probabilistic
routing in ANTRALs, the paths are not loop-free and oscillations might occur. The hop-
by-hop nature of routing in ANTRALs cannot reserve paths that satisfy QoS constraints
[39]. However, in ANTRALs, different paths are continuously monitored and quality
of paths is reflected in the routing table values. In OSPF, traffic fluctuations and the
end-to-end delay are not measured. The main advantage of ANTRALs over traditional
routing protocols is that ANTRALs perform load balancing, i.e. distribute traffic along
multiple paths, and automatic adaptation to node or link failure [92, 42, 37].

4.1 Overview of ANTRAL implementations

A number of routing algorithms inspired by the ant-colony metaphor and using mo-
bile agents have been proposed for both wired and wireless networks. We summarize
different ant routing algorithms in this section.
AntNet proposed by Di Caro and Dorigo [42] is a routing algorithm proposed for

wired datagram networks based on the principle of ant colony optimization. In AntNet,
each node maintains a routing table and an additional table containing statistics about
the traffic distribution over the network. The routing table maintains for each destina-

36 CHAPTER 4. INTRODUCTION TO ANT ROUTING

tion and for each next hop a measure of the goodness of using the next hop to forward
data packets to the destination. These goodness measures, called pheromone variables,
are normalized to one in order to be used by a stochastic routing policy. AntNet uses
two sets of homogeneous mobile agents called forward ants and backward ants to up-
date the routing tables. The forward ants use heuristics based on the routing table to
move between a given pair of nodes and are used to collect information about the traffic
distribution over the network. The backward ants retrace the paths of forward ants in
the opposite direction. At each node, the backward ants update the routing table and
the additional table containing statistics about the traffic distribution over the network.
Ant-Based Control (ABC) is an algorithm proposed by Schoonderwoerd et al. [92]

for load balancing in circuit-switched networks. In ABC, the calls are routed using
probabilistic routing tables that consist of next hop probabilities for each destination.
The link costs are assumed to be symmetric and hence, only one-directional mobile
agents are used for updating and maintaining the routing tables. The mobile agents
use heuristics based on the routing tables to move across the network between arbitrary
pairs of nodes. At each node along the path, the mobile agents update the routing tables
based on their distance from the source node and the current state of the routing table.
Another ANTRAL for wired networks has been proposed by Kuntz et al. [59]. The

proposed algorithm differs from AntNet in terms of different loop detection behavior,
simpler backward mobile agent and different routing table update procedure. The
authors also propose another routing protocol called Co-operative Asymmetric Forward
(CAF) routing. CAF is similar to ABC but it works for asymmetric networks where
the link costs are not identical in opposite directions. CAF has been shown to perform
as well as AntNet and is able to cope with changing bandwidth and network topology
[59].
AntHocNet is a hybrid routing protocol proposed by Ducatelle et al. [47] for mobile

ad hoc networks. AntHocNet consists of both the reactive and proactive components.
In AntHocNet, nodes do not maintain routes to all possible destinations at all the times,
rather the nodes generate mobile agents only at the beginning of a data session. The
mobile agents search for multiple paths to the destination and these paths are set up
in the form of pheromone tables indicating their respective quality. During the course
of the data session, the paths are continuously monitored and improved in a proactive
manner. AntHocNet has been shown to outperform AODV in terms of end-to-end delay
and delivery ratio [47].
Ad hoc Networking with Swarm Intelligence (ANSI) is a reactive routing protocol

proposed by Rajagopalan and Shen [86] for mobile ad hoc networks. ANSI protocol
uses two sets of mobile agents called forward reactive ants and backward reactive ants.
The routing tables in ANSI contains an entry for each reachable node and next best
hop while the ant decision table stores the pheromone values. In ANSI, the forward
reactive ants are generated on demand i.e., the forward reactive ants are generated
only when a node needs to transmit data to another node. The forward reactive ants

4.1. OVERVIEW OF ANTRAL IMPLEMENTATIONS 37

are broadcast while the backward reactive ant retrace the path of forward reactive ant
and update the pheromone values at the nodes. The data packets choose the next hop
deterministically i.e., the hop which contains the largest pheromone value is chosen as
the next hop. ANSI has been shown to perform either better or comparable with AODV
with respect to packet delivery, end-to-end delay and delay jitter [86].

A number of routing protocols in which the mobile agents do not update the rout-
ing tables directly have also been proposed (e.g. Termite [89], Global Positioning
System/Ant-Like Routing Algorithm (GPSAL) [18]). Termite, a routing protocol pro-
posed by Roth and Wicker [89] for mobile ad hoc networks, is one such example. In
Termite, the size of the routing table at each node varies and depends on the number of
nodes that have been discovered by the particular node and the number of neighbors.
The routing table entries in Termite contain pheromone values for choosing a neigh-
bor as the next hop for each destination. The pheromone values decay exponentially
with time and the corresponding entries are removed from the routing tables, if all the
pheromone for a particular destination decays. Thus, the routing tables in Termite
maintain entries for only the destinations from which packets have been received dur-
ing recent times. Termite does not use mobile agents for updating the routing tables
instead node discovery and route discovery and maintenance are performed by a set of
four control packets: route request packets, route reply packets, hello packets and seed
packets. Both data packets and control packets (except route request packets) are used
for updating the routing tables.

Ant-Colony-Based Routing Algorithm (ARA) is a routing protocol proposed by
Güneş and Spaniol [54] for mobile ad hoc networks. The routing table entries in ARA
contain pheromone values for choosing a neighbor as the next hop for each destination.
In ARA, the pheromone values in the routing tables decay with time and the nodes
enter a sleep mode if the pheromone in the routing table has reached a lower threshold.
Route discovery in ARA is performed on demand and by a set of two mobile agents
- forward ants and backward ants. During route discovery, the forward and backward
ant packets having unique sequence numbers, to prevent duplicate packets, are flooded
through the network by the source and destination nodes respectively. The forward
and backward ants update the pheromone tables at the nodes along the path for the
source and destination nodes respectively. Once the route discovery for a particular
destination has been performed, the source node does not generate new mobile agents
for the destination instead the route maintenance is performed by the data packets.

Uniform ant routing algorithms are a class of ANTRALs in which the mobile agents
choose the next node uniformly among the neighbors of the node [98]. Thus, in uniform
ANTRALs, the mobile agents move independently of the routing tables and perform a
random walk with memory on the network graph while searching for the destination.
This feature of uniform ANTRALs reduces the complexity of the ant routing algorithm
and leads to exploration of all the paths with equal probabilities.

38 CHAPTER 4. INTRODUCTION TO ANT ROUTING

4.2 Performance of Ant Routing Algorithms

There are two critical components that determine the performance of an ANTRAL.
First, the performance depends on how the mobile agents search for the shortest path,
which is referred to as network exploration. The mobile agents could either use heuristics
based on the routing tables or the routing table values without any modifications to
move to the next node. The mobile agents could also search independently of the
routing tables. We introduce an example of such algorithm in chapter 5.
The second critical step determining the performance of ANTRALs is the routing

table update. The mobile agents have to update the routing tables based on the paths
that have been searched.
There has been very little work in studying the performance of ANTRALs. To our

knowledge, the only work is by Bean and Costa [9], Yoo et al. [110] and recently by
Purkayastha and Baras [85]. Bean and Costa [9, 30] have conducted analytic modelling
of ANTRALs and have shown that since ANTRALs employ the same policy for network
exploration and decision-making, it leads to sub-optimal routing decisions. Indeed, they
have conjectured that a majority of the ants choose shortest paths while some of the
ants choose sub-optimal paths. Furthermore, they propose algorithms for de-coupling
of network exploration and routing table updates when there is no data traffic and for
varying traffic.
The exact convergence of ANTRAL to shortest path routing for static topology and

link weights has been studied analytically by Yoo et al. [110]. However, the results
are only for a two node network with multiple links. Recently, Purkayastha and Baras
[85] have used ordinary differential equations (ODE) to analyze the performance of
ANTRALs.
We study the performance of ANTRALs in the next couple of chapters. In chapter

5, we analyze the performance of AntNet, an ANTRAL proposed by Di Caro and Dorigo
[42]. In chapter 6, we study the performance of ANTRALs for ad hoc wireless networks.
We compare the performance of W_AntNet, a modification of the AntNet algorithm,
with ad hoc routing protocols AODV and DSR.

Chapter 5

Ant Routing in Wired Networks

In this chapter, we study the convergence of AntNet to shortest path for static link
weights and fixed topologies. We compare the performance of AntNet with Dijkstra’s
shortest path algorithm. Although AntNet has been shown by Di Caro and Dorigo to
perform load balancing1, a study of whether AntNet is able to find paths close to the
shortest path is missing. Such an analysis is essential for widespread deployment of
ANTRALs.
In all the ANTRALs proposed so far, the algorithm parameters have been chosen

heuristically. There has been little work on studying the robustness of ANTRALs to
the variations in different parameter values. Furthermore, the performance analysis of
ANTRALs has been limited to a few network topologies. We study the effect of different
parameters used for network exploration and routing table updates on the performance
of AntNet algorithm. We also study the impact of topology on the performance of
AntNet algorithm.
The rest of this chapter is organized as follows. The next section presents the

network model and section 5.2 presents the details of AntNet algorithm. Section 5.3
presents the simulation results. Finally, section 5.4 presents the conclusions.

5.1 Network Model

We model the network as a graph G(N ,L) consisting of N nodes and L links. All
the links in the network are considered bidirectional and specified by a transmission
capacity and a transmission delay. Each node is considered a communication end-point
(host) and a forwarding unit (router).
As illustrated in Figure 5.1, every node in the network maintains an input buffer

composed of a single queue and an output buffer composed of a high priority queue
and a low priority queue for each neighbor or outgoing link. The high priority queue is

1Schoonderwoerd [92] showed load balancing for another ANTRAL.

39

40 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

Input
Buffer

Output
Buffer

Low priority queue

High priority queue

Outgoing
linksService process

Incoming
links

Figure 5.1: Buffers at a Node. The input buffer consists of a single queue and the output
buffer consists of a low priority queue and a high priority queue for each outgoing link.

served before the low priority queue. All the packets within the network can be divided
into two different classes:

• Data packets: represent the information that the end-users exchange with each
other. In ant-routing, data packets do not maintain any routing information but
use the information stored at routing tables for travelling from the source to the
destination node.

• Mobile agents (Forward ants and Backward ants): are used to update the routing
tables and distribute information about the traffic load in the network.

Backward ant packets have a higher priority than the data and forward ant packets
and are thus stored in the high priority queue, while data and forward ant packets are
stored in the low priority queue. We assume that all the packets in the low priority queue
and the high priority queue in the output buffer are served in FIFO order. Further,
the maximum number of packets stored in the input buffer or output buffer is limited
by the size of the buffer. However, we have assumed that the buffer size is sufficiently
large to neglect buffer overflow.

5.1. NETWORK MODEL 41

When a node receives a packet from a neighbor, the packet is first stored in the
input buffer. The packet in the input buffer is served in FIFO order. After the packet
has been served, the packet is sent to the output buffer. Within the output buffer, the
packet goes to a particular queue for a particular outgoing link based on the type of
the packet and the next node.

5.1.1 Data Structures at Nodes

Mobile agents communicate in an indirect way, through the information they concur-
rently read and write in two data structures stored at each network node k:

1. A routing table Rk, organized as a matrix with probabilistic entries as shown
in Figure 5.2. Each row in the routing table corresponds to one destination in
the network and each column corresponds to a neighbor of the current node.
The routing table Rk defines the probabilistic routing policy currently adopted at
node k: for each possible destination d and for each neighbor node n, Rk stores
a probability value pnd expressing the probability of choosing n as the next node
when the destination is d such that:X

n∈Nk

pnd = 1

where d ∈ [1, N] and Nk = {neighbors (k)}

2. A table Bk(μd, σ2d,Wd) containing statistics about the network topology and the
traffic distribution over the network as seen by the local node k. For each destina-
tion d in the network, the table Bk contains a moving observation windowWd, an
estimated mean μd and an estimated variance σ

2
d. The moving observation window

Wd, of size Wmax, represents an array containing the trip times of the last Wmax

forward ants that travel from node k to destination d. The moving observation
window Wd is used to compute the best trip time tbestd i.e., the best trip time
experienced by a forward ant travelling from node k to destination d among the
last Wmax forward ants that travel from node k to destination d. The mean μd
and variance σ2d represent the mean and variance of the trip times experienced by
the forward ants to move from node k to destination node d and are calculated
using the exponential model:

μd ←− μd + η (tk−→d − μd) (5.1)

σ2d ←− σ2d + η
¡
(tk−→d − μd)

2 − σ2d
¢

(5.2)

42 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

R o u tin g ta b l e

L o c a l T ra ffi c
S ta tis t ic s

N e tw o r k N o d e

…µ 1 ; σ 1 ; W 1

N. ...21
N e tw o rk n o d e s

N
et

w
or

k
no

de
s

N e ig h b o r n o d e s
x

y

z

Rk =
…

B k =

(a) R o u tin g ta b le : F o r a n y d e st in a tio n n o d e i , p x i + p y i + p zi = 1 (b) S ta t is tic T ab le :
T h e m e an µi an d v a ria n ce s i re p r e s e n t th e e s t im a te d m ea n a n d v a rian c e o f th e e n d -
to -e n d d e lay to th e n o d e i. T h e m o v in g o b s e r v a t io n w in d o w W i is an a rr ay
c o n ta in in g th e en d - to -en d d e la y fo r n o d e i .

p x 1

µ 2 ; σ 2 ; W 2 µ N ; σ N ; W N

p y 1 p z 1

p x 2 p y 2 p z 2

p x N p y N p z N

R o u tin g ta b l e

L o c a l T ra ffi c
S ta tis t ic s

N e tw o r k N o d e

…µ 1 ; σ 1 ; W 1

N. ...21
N e tw o rk n o d e s

N
et

w
or

k
no

de
s

N e ig h b o r n o d e s
x

y

z

Rk =
…

B k =

(a) R o u tin g ta b le : F o r a n y d e st in a tio n n o d e i , p x i + p y i + p zi = 1 (b) S ta t is tic T ab le :
T h e m e an µi an d v a ria n ce s i re p r e s e n t th e e s t im a te d m ea n a n d v a rian c e o f th e e n d -
to -e n d d e lay to th e n o d e i. T h e m o v in g o b s e r v a t io n w in d o w W i is an a rr ay
c o n ta in in g th e en d - to -en d d e la y fo r n o d e i .

p x 1

µ 2 ; σ 2 ; W 2 µ N ; σ N ; W N

p y 1 p z 1

p x 2 p y 2 p z 2

p x N p y N p z N

Figure 5.2: The data structures for a node with neighbors x, y and z and a network
with N nodes: Routing table (Rk) and Statistics Table (Bk).

In (5.1) and (5.2), tk−→d represents the newly observed forward ant’s trip time to
travel from node k to destination node d and η ∈ (0, 1] is a factor that weighs
the number of recent samples that will affect the mean μd and the variance σ

2
d.

Di Caro & Dorigo [42] relate η to the maximum size of the observation window
Wmax by

Wmax =
5c

η
where c < 1 (5.3)

Di Caro & Dorigo [42] calculated that 5
η
samples affect the mean so (5.3) has

been used to ensure that the mean and the best trip time are calculated over the
same moving observation window. We choose the maximum size of the moving
observation windowWmax to be sufficiently large i.e.,Wmax >

5
η
but independently

of the parameter η.

5.2 AntNet Algorithm

5.2.1 Description of the AntNet algorithm

The AntNet algorithm [42] can be described as follows:

1. At regular intervals, from every network node s, a forward ant Fs−→d is launched

5.2. ANTNET ALGORITHM 43

with a randomly selected destination node d. Destinations are chosen to match
the current traffic patterns i.e., if fsd is a measure (in bits or in the number of
packets) of the data flow s −→ d, then the probability yd of creating at node s a
forward ant with node d as destination is:

yd =
fsdPN
d0=1 fsd0

(5.4)

2. While travelling towards their destination nodes, the forward ants store their
paths and the traffic conditions. The identifier of every visited node k and the
time elapsed since the launching time of the forward ant to arrive at this k-th node
are pushed onto a memory stack Ss−→d stored in the data field of the forward ant2.
Forward ants share the same queues as data packets, so they experience the same
traffic delays as data packets.

3. At each node k, each forward ant chooses the next node as follows:

• If not all the neighboring nodes have been visited, then the next neighbor is
chosen among the nodes that have not yet been visited as:

p0nd =
pnd + αbn

1 + α (|Nk|− 1)
(5.5)

In (5.5), Nk represents the set of neighbors of node k and |Nk| the cardinality
of that set, i.e., the number of neighbors while the heuristic correction bn is
a normalized value [0, 1] such that 1− bn is proportional to the length qn of
the queue of the link connecting the node k with its neighbor n:

bn = 1−
qnP|Nk|

n0=1 qn0
(5.6)

The value of α in (5.5) weighs the importance of the instantaneous state of
the node’s queue with respect to the probability values stored in the routing
table.

• If all the neighboring nodes have been visited previously, then the next node
is chosen uniformly among all the neighbors. In this case, since all the
neighbors have been visited previously the forward ant is forced to return to
a previously visited node. Thus, irrespective of which neighbor is chosen as
the next node, the forward ant is in a loop (cycle).

2The accuracy of time stored by forward ant depends on clock synchronization in the network. We
assume that network is synchronized with accuracy of few ms.

44 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

• With a small probability ε, the next node may be chosen uniformly among
all the neighboring nodes. The parameter ε is deliberately incorporated in
the ANTRAL to overcome the problem where one of the entries in the rout-
ing table is almost unity, while the other are vanishingly small. In such a
situation, the forward ants always choose the same link and thus stop explor-
ing the network for other routes. The parameter ε ensures that the network
is being constantly explored, though it introduces an element of inefficiency
in the algorithm. The use of parameter ε to introduce randomness in the
algorithm is referred to as ε-greedy policy in reinforcement learning litera-
ture [99]. Thus, due to the ε-greedy policy there are no restrictions on the
routing table values and some of the routing table entries may be zero. In
AntNet implementation [42, 43], the value of parameter ε is chosen as zero.
In the special case, when ε = 1, the AntNet algorithm is a uniform ANTRAL
(unfNet).

4. If a cycle is detected, that is, if the ant is forced to return to an already visited
node, the cycle’s nodes are popped from the ant’s stack and all memory about
the cycle is destroyed. If the cycle lasted longer than the lifetime of the forward
ant before entering the cycle, the ant is destroyed (Figure 5.3). The lifetime of a
forward ant is defined as the total time since the forward ant was generated.

5. When the destination node d is reached, the forward ant Fs−→d generates a back-
ward ant Bd−→s. The forward ant transfers all the memory contained in the stack
Ss−→d to the backward ant, and dies.

6. The backward ant takes the same path as the corresponding forward ant, but in
the opposite direction. At each node k, the backward ant pops the stack Ss−→d

to move to the next node. Backward ants do not share the same queues as data
packets and forward ants; they use high priority queues to quickly propagate to
the routing tables the information collected by the forward ants.

7. Arriving at a node k coming from a neighbor node s0, the backward ant updates
the two main data structures of the node, the local model of the traffic Bk and the
routing table Rk, for all the entries corresponding to the destination node d. The
update of routing tables at each node along the path as the backward ant travels
from the destination to the source node is known as sub-path update method3.

• The mean μd and variance σ2d entries in the local model of traffic Bk are
modified using (5.1) and (5.2). The best value tbestd of the forward ants

3If the cycles are not removed from the forward ant’s path, then the sub-path update will lead to
statistical bias [30]. Thus, the sub-path update should be used only if the cycles are removed from the
forward ant’s path.

5.2. ANTNET ALGORITHM 45

5

3

2

1 4

Node id

 1 t1

 2 t2

 3 t3

 4 t4

 2 t5

 (i) (ii) (iii)

time of
arrival

time of
arrival

S1 5

Node id

S1 5 S1 5

time of
arrival

Node id

1 t1

 2 t2

 3 t3

 4 t4

 2 t5

1 t1

2 t2

Figure 5.3: (i) A cycle (2 → 3 → 4 → 2) in the forward ant’s F1−→5 path is detected.
(ii) All the memory about the cycle (2 → 3 → 4 → 2) is destroyed. (iii) The stack
S1−→5 maintained by forward ant F1−→5 after the removal of cycle. Further if the time
spent in cycle (t5 − t2) is greater than the lifetime of the ant before the cycle (t2 − t1),
the forward ant F1−→5 is destroyed.

46 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

trip time from node k to the destination d stored in the moving observation
window Wd is also updated by the backward ant. If the newly observed
forward ant’s trip time tk−→d from node k to destination d is less then tbestd,
then tbestd is replaced by tk−→d.

• The routing table Rk is changed by incrementing the probability ps0d0 (i.e.,
the probability of choosing neighbor s0 when the destination is d0) and decre-
menting, by normalization, the other probabilities pnd0 .The probability ps0d0
is increased by the reinforcement value r as:

ps0d0 ←− ps0d0 + (1− ps0d0) (5.7)

The probabilities pnd0 of the other neighboring nodes n for destination d0 are
decreased by the negative reinforcement as:

pnd0 ←− pnd0 − pnd0 , ∀ n 6= s0, n ∈ Nk (5.8)

Thus, in AntNet, every path found by the forward ants receives a positive
reinforcement.

• The reinforcement value used in (5.7) and (5.8) is a dimensionless constant
(0, 1] and is calculated as:

= c1
tbestd
tk−→d

+ c2
tsup − tbestd

(tsup − tbestd) + (tk−→d − tbestd)
(5.9)

In (5.9), tk−→d is the newly observed forward ant’s trip time from node k to
the destination d and tbestd is the best trip time experienced by the forward
ants traveling towards the destination d over the observation window Wd.
The value of tsup is calculated as:

tsup = μd +
σd√

1− γ
p
|Wmax|

(5.10)

where γ is the confidence level4. Equation (5.10) represents the upper limit
of the confidence interval for the mean μd, assuming that the mean μd and
the variance σ2d are estimated over Wmax samples [68]. There is some level
of arbitrariness in choosing the confidence interval in (5.10) since the confi-
dence interval is asymmetric and the mean μd and the variance σd are not
arithmetic estimates [45]. The first term in (5.9) evaluates the ratio between

4Consider a sample of observations X = (X1,,Xn). For any parameter δ defined for X, find an
interval [l(X), u(X)] such that P [l(X) ≤ δ ≤ u(X)] = 1 − φ i.e., the interval contains the true value
of the parameter δ with probability 1− φ. In such a case the interval [l(X), u(X)] is a (1− φ)× 100%
confidence interval and 1− φ is the confidence level [68].

5.2. ANTNET ALGORITHM 47

the current trip time and the best trip time observed over the moving obser-
vation window. The second term is a correction factor and indicates how far
the value of tk−→d is from tbestd in relation to the extension of the confidence
interval [45]. The values of c1and c2 indicate the relative importance of each
term. It is logical to assume that the first term in (5.9) is more important
than the second term. Hence, the value of c1 should be chosen larger than
the value of c2.

The value calculated in (5.9) is finally transformed by means of a squash
function s(x) defined by:

s(x) =
1

1 + exp
³

a
x|Nk|

´ , where x ∈ (0, 1], a ∈ R+ (5.11)

←− s()

s(1)
(5.12)

The squash function s(x) is introduced in the AntNet algorithm so that small
values of would have negligible effect in updating the routing tables [42].
Due to the squash function s(x), the low values of are reduced further, and
therefore do not contribute in the update of routing tables5. The coefficient
a
Nk
determines the dependence of squash function s(x) on the number of

neighbors Nk of the node k. Figure 5.4 shows the effect of coefficient a
Nk
on

the squash function s(x). Figure 5.4 shows that if the value of coefficient a
Nk

is less than 1, then even low values of get incremented due to the squash
function s(x). Thus, the value of parameter a should be chosen such that
the coefficient a

Nk
is greater than 1.

Data packets use different routing tables than the forward ants for travelling from
the source node to the destination node. The routing table values for data packets are
obtained by re-mapping the routing table entries used by forward ants by means of a
power function g(v) and re-normalizing these entries.

g(v) = vβ, β > 1 (5.13)

The power function g(v) emphasizes the high probability values and reduces lower
ones, and thus prevents the data packets from choosing links with very low probability.
The data packets have a fixed TTL; if the data packets do not arrive at the destination
within the TTL, they are dropped.

5Low values of r indicate sub-optimal paths.

48 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

1.0

0.8

0.6

0.4

0.2

0.0

s(
ϖ

)/s
(1

)

1.00.80.60.40.20.0
ϖ

a/N k = 0.5

a/N k = 1

a/N k = 2

a/N k = 4

a/N k = 8

a/N k=16

a/N k=32
a/N k=64

Figure 5.4: The squash function s(x) for different values of the coefficient a
Nk

5.2.2 Complexity Analysis of the AntNet algorithm

We first calculate the complexity, defined as number of elementary operations, of a
single forward ant to travel between a given source node and a given destination node
in the AntNet algorithm. At every node along the path between a given source and
destination node, the forward ant needs to search through the stack it maintains in the
memory to find whether to use (5.5) for choosing the next node or to choose the next
node uniformly among the neighbors. The worst-case complexity of searching through
the stack is O(1), if the stack is implemented as a combination of linked list and an
additional array or an hash table. Further, the complexity of (5.5) is O(Nk) since the
probability values have to be calculated for each of the Nk neighbors. In unfNet, the
forward ants choose the next node uniformly among the neighbors of the node, and
therefore the above operations are not required. There are other computations that a
forward ant performs at each node: the forward ant needs to push the identifier of the
current node and the time at which it arrived onto the stack which is O(1), the forward
ant goes to the queue for one of the outgoing links which is O(1). Let the maximum
hopcount of the forward ant be h. In the worst case, the forward ant has to do all
the computations at each of the h nodes. Thus, the worst-case complexity for a single
forward ant to travel between a given source node and a destination node in AntNet is
O(hNk), while in unfNet it is O(h).
The worst-case complexity for a single backward ant to travel between a given source

node and a destination node is also O(hNk). This can be calculated as follows. The
backward ant performs three operations at each node along the path it travels between

5.2. ANTNET ALGORITHM 49

a given source node and a given destination node. First, the backward ant needs to
pop the stack to find the next node to travel to. The pop operation in the stack is
O(1). Second, the backward ant goes to the queue for one of the outgoing links which
is O(1). The backward ant updates the routing table for each of the neighbors Nk for
the destination d which is O(Nk). Furthermore, in the worst case the backward ant has
to do all the computations at each of the h nodes.
We calculate the worst-case complexity of AntNet when the total number of forward

or backward ants generated is given by ρ > 1. Since the worst-case complexity of a
single forward or backward ant to travel between a given pair of nodes is O(hNk), the
worst-case complexity of AntNet when ρ forward or backward ants are generated is
O(ρhNk). Furthermore, we know that the worst-case complexity for Dijkstra’s shortest
path algorithm using a Fibonacci heap is O(N logN +L). This analysis shows that the
complexity of AntNet algorithm is comparable to Dijkstra’s’ shortest path algorithm
when h and Nk are small as compared to N .
We now calculate the worst-case complexity of AntNet for finding the shortest

path. Let us assume that one forward ant searches for one distinct path and one
forward/backward ant pair updates only the routing tables at the source node for the
given destination node. In the worst case, at any given node there is an equal probabil-
ity of creating a forward ant with any one of the N − 1 nodes as the destination. Thus,
only one out of N − 1 forward ants is used to search for the shortest path between a
given source and destination. Let us denote the number of paths between a source and
a destination in G(N ,L) by p. Adding the contributions yields a worst-case complexity
to search for the shortest path in AntNet with p = pmax of O(shNkN), where pmax is
the upper bound on the maximum number of paths between a source and destination
node in G(N ,L). The upper bound pmax on the total number of paths between a source
and destination node in G(N ,L) is [105],

pmax = [e(N − 2)!] (5.14)

In case of a random graph Gp(N), with a fixed link density p and N nodes, the
following upper-bound for the average number of paths applies [106],

pmax =
h
pN−1e

1
p (N − 2)!

i
(5.15)

Equation (5.15) shows that the number of paths between a given pair of nodes decreases
as the link density p in the random graph Gp(N) is decreased.

5.2.3 AntNet Implementation

The time Tu−→v for a data packet or ant packet (forward ant or backward ant) to travel
from a node u to a node v is calculated as:

50 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

Tu−→v =
qv + sizePacket

Cu−→v
+Du−→v (5.16)

where qv is the length of the low priority queue at node u for the link u −→ v, sizePacket
is the size of the packet, Cu−→v is the available capacity of the link between node u and
node v and Du−→v is the propagation delay of the link u −→ v. The term sizePacket

Cu−→v

represents the transmission delay for the packet and the term qv
Cu−→v

represents the
queuing delay experienced by the packet while waiting at node u for the link u −→ v.
The term propagation delay and link weight have been used interchangeably in the text.
We have simplified the model shown in Figure 5.1 for our implementation of the

AntNet algorithm. We assume that the packets go directly to the outgoing buffer
and the outgoing buffer consists of a low priority and a high priority queue for all
the outgoing links. But the queuing delay in (5.16) and parameter bn in (5.5) are still
calculated using the number of packets waiting in the low priority queue for a particular
link6. Further, we assume that each node is able to remove one packet from its high
priority queue and low priority queue in the output buffer (for any outgoing link) at a
rate of 0.01 milliseconds (ms). This assumption makes the queueing delays negligible
in most of our simulations.
We implement the AntNet algorithm under static and dynamic conditions. In the

static implementation of AntNet, we assume that the forward ants use only the prop-
agation delays for network exploration and routing table updates. Thus, no queueing
or transmission delays that depend on the packet size and capacity of the links are
taken into account during the static implementation of AntNet. In this case, the equa-
tion (5.5) reduces to p0nd = pnd and equation (5.16) for forward ant packets reduces to
Tu−→v = Du−→v. In the dynamic implementation of AntNet, both the queueing and
transmission delays as well as the propagation delays are used for choosing the next
node and updating the routing tables.
We compare the results of AntNet with Dijkstra’s shortest path algorithm. However,

under dynamic implementation, there is an important distinction for comparison of
AntNet to Dijkstra’s shortest path algorithm. In Dijkstra’s shortest path algorithm,
the cost of the shortest path is the sum of individual link weights (propagation delays)
along the path. However in AntNet, the cost of the shortest path used for updating
the routing tables is assumed to be the sum of link weights along the path and the
transmission and queuing delays. The delay in the queues is included in the AntNet
algorithm to account for the traffic conditions in the network. Thus, there is no static
shortest path in the AntNet algorithm. However, for the comparison of AntNet to
Dijkstra’s shortest path algorithm, we plot the weight of the paths in the AntNet
algorithm excluding the transmission and queuing delays.

To validate our simulations, in addition to plotting the pdf of the hopcount for the

6The packets in the high priority queue and low priority queue are served in FIFO order.

5.3. RESULTS 51

shortest path and the paths in the AntNet algorithm, we also plot the values for pdf of
hopcount of the shortest path obtained by using theory. It has been demonstrated by
van der Hofstad et al. [104] that for a fixed link density p and sufficiently large N , the
shortest path tree in a random graph Gp(N) with uniformly distributed link weights
is a uniform recursive tree (URT). The probability density function of the hopcount in
the URT with N nodes is:

Pr[HN = j] =
(−1)N−(j+1)S(j+1)N

(N − 1) (N − 1)! (5.17)

where S(j)N is the Stirling number of the first kind [1].

5.3 Results

5.3.1 Simulation Parameters

The simulations are performed on random graphs of the class Gp(N) consisting of N
nodes and independently chosen links with probability p. The link weights reflecting
the propagation delays are uniformly distributed in (0, 1] ms and the capacity of each
link is 8.192 Mbit/s for all our simulations. For each random graph of the type Gp(N),
we used Dijkstra’s algorithm to compute the shortest path between the source node
and the destination node based on the link weights. On the other hand, in AntNet,
the data packets travel between a given pair of nodes using the probabilistic routing
tables. Indeed, there could be a number of paths that the data packets choose which
might be the shortest path, the second shortest path etc. For AntNet, we find the
average link weight (or end-to-end delay) and the average hopcount of the paths that
the data packets use to travel between the source and the destination node over the
entire simulation period. Furthermore, each simulation consists of a large number (105

or 104) of random graphs of the type Gp(N). The source (node 1) and destination (node
N) are chosen to be fixed in our simulations.
In our implementation of the AntNet algorithm, the simulation period (S.P.) consists

of the training period (T.P.) and the test period (TE.P.). During T.P., only ant packets
are generated while during TE.P., both the data and ant packets are generated. We
have chosen the simulation period (S.P.) to be 104 ms. The training period (T.P.) has
been chosen to be 103 ms. Each node generates data packets according to a Poisson
process with mean interarrival time of 12.5 ms. The destination for data packets is
chosen randomly. The size of data packets generated follows a negative exponential
distribution with mean of 4096 bits. The size of forward ant packet is assumed to be
192 bits at the time the forward ant packet is generated and the size increases by 64
bits for each hop the forward ant travels. The size of backward ant is assumed to be 500

52 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

bits. The average number of neighbors of a node in a random graph Gp(N) is p(N−1),
the default value of parameter a is chosen as p ∗N in our simulations.

Table 5.1: Various parameters and their default values used in the simulations.

Name, Symbol Value
Link Capacity Ci−→j 8.192 Mbit/s
Link Weight (Propagation delay) uniformly distributed (0,1] ms
Simulation period (S.P.) 104 ms
Test period (TE.P.) 9.103 ms
Training period (T.P.) 103 ms
Backward ant size 500 bits
Initial forward ant size 192 bits
α used in (5) 0.2
ε 0.1
c1 used in (9) 0.7
c2 used in (9) 0.3
a used in (11) p ∗N
β used in (13) 3
Confidence interval (γ) used in (10) 0.95
Output buffer size 109 bits
Mean interarrival time for data packets 12.5 ms
Data packets TTL 10 ms
Mean data packet size 4096 bits

The maximum size of the output buffer, which is assumed to be the sum of the sizes
of all low priority queues in the output buffer, is 109 bits. Table 5.1 lists the various
parameters and their default values that we have chosen for our simulations. The values
of parameters α, c1, c2, a, confidence interval (γ) and the size of forward ant packet
have been replicated from [45]. The values of the parameter η, the maximum size of
the observation window Wmax and the ant generation rate have been varied extensively
and therefore are not listed in Table 5.1.

5.3.2 Static Implementation of the AntNet algorithm

In this section, we study the AntNet algorithm under static conditions i.e., the forward
ants use only the propagation delays for network exploration and routing table updates.
Under these conditions, a direct comparison between the static shortest path calculated
by using Dijkstra’s algorithm and the AntNet algorithm paths can be made. The ant

5.3. RESULTS 53

(a) (b)

1.5

1.0

0.5

0.0

f W
N
(x

)

6543210
path weight x (ms)

N = 50
 AntNet E[AntNet] = 2.46, var[AntNet] = 1.9
 Dijkstra E[Dijkstra] = 0.45, var[Dijkstra] = 0.04

N = 25
 Dijkstra E[Dijkstra] = 0.74, var[Dijkstra] = 0.2
 AntNet E[AntNet] = 2.0, var[AntNet] = 1.5

ε = 0.1
AntNet E[AntNet] = 1.26, var[AntNet] = 0.5
 unfNet E[unfNet] = 1.19, var[unfNet] = 0.4

p = 0.2

0.3

0.2

0.1

0.0

Pr
 [H

 =
 k

]

1412108642
hop k

N = 50
 AntNet E[AntNet] = 5.28, var[AntNet] = 7.3
 Dijkstra E[Dijkstra] = 3.54, var[Dijkstra] = 2.6

N = 25
 AntNet E[AntNet] = 4.31, var[AntNet] = 5.3
 Dijkstra E[Dijkstra] = 2.95, var[Dijkstra] = 1.9

ε = 0.1
 AntNet E[AntNet] = 3.18, var[AntNet] = 2.0
 unfNet E[unfNet] = 2.7, var[unfNet] = 1.4

p = 0.2

(a) (b)

1.5

1.0

0.5

0.0

f W
N
(x

)

6543210
path weight x (ms)

N = 50
 AntNet E[AntNet] = 2.46, var[AntNet] = 1.9
 Dijkstra E[Dijkstra] = 0.45, var[Dijkstra] = 0.04

N = 25
 Dijkstra E[Dijkstra] = 0.74, var[Dijkstra] = 0.2
 AntNet E[AntNet] = 2.0, var[AntNet] = 1.5

ε = 0.1
AntNet E[AntNet] = 1.26, var[AntNet] = 0.5
 unfNet E[unfNet] = 1.19, var[unfNet] = 0.4

p = 0.2

0.3

0.2

0.1

0.0

Pr
 [H

 =
 k

]

1412108642
hop k

N = 50
 AntNet E[AntNet] = 5.28, var[AntNet] = 7.3
 Dijkstra E[Dijkstra] = 3.54, var[Dijkstra] = 2.6

N = 25
 AntNet E[AntNet] = 4.31, var[AntNet] = 5.3
 Dijkstra E[Dijkstra] = 2.95, var[Dijkstra] = 1.9

ε = 0.1
 AntNet E[AntNet] = 3.18, var[AntNet] = 2.0
 unfNet E[unfNet] = 2.7, var[unfNet] = 1.4

p = 0.2

Figure 5.5: The pdf of the (a) weight and the (b) hopcount of the Dijkstra’s shortest
path, unfNet algorithm paths and the AntNet algorithm paths for N = 25 and N = 50
for p = 0.2. The ant generation interval during the T.P. is 4 ms. Each simulation
consists of 104 iterations. (η = 0.1, Wmax = 50)

generation interval is 4 ms during T.P. and 40 ms during TE.P. The TTL of data packets
is assumed to be 20.0 ms. The value of parameters η = 0.1 and Wmax = 50. Figure
5.5 shows the simulation results comparing the pdf of the hopcount and the weight for
the shortest path and the AntNet algorithm paths7 for N = 25, 50 and p = 0.2 (The
default value of parameter ε is chosen as 0.)

Figure 5.5 shows that the AntNet algorithm converges to a good solution. Further-
more, the performance of AntNet improves when the value of parameter ε is chosen
greater than 0. Since no queuing delays are considered, the network exploration in
AntNet is restricted by the routing tables and many paths are not explored (The value
of p0nd in equation (5.5) is equal to pnd). With ε = 0.1, the probability of exploring
different paths increases leading to an improvement in the performance of AntNet. In-
deed for static implementation, unfNet performs better than AntNet using ε < 1 since
all the paths are explored with equal probabilities in unfNet.

7The probability density function (pdf) of the hopcount and the weight for the AntNet algorithm
paths and the shortest path are computed over (104) random graphs of the type Gp(N). In AntNet,
for each random graph of the type Gp(N), the path weight and hopcount represent the "average path
weight" and "average hopcount" for all the packets to travel between the source and destination node
during the entire simulation period.

54 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

5.3.3 Dynamic Implementation of the AntNet algorithm

In this section, the AntNet algorithm implementation is dynamic but we compare the
results with Dijkstra’s shortest path algorithm. We also study the effect of different
parameters, such as ant generation rate, squash function s(x), parameter β etc., on the
performance of AntNet. The performance comparison between AntNet and Dijkstra’s
algorithm and the optimization of various parameters for AntNet is still valid since the
transmission delays are very small for forward ant packets. Furthermore, the queue-
ing delays are also small since packets are removed from nodes at a very fast rate as
compared to the rate at which packets are generated. Thus, the total delay experi-
enced by forward ant packets is still dominated by the propagation delays. The TTL
of data packets is assumed to be 10.0 ms and the value of parameter ε is 0.1 in all the
simulations in this section8.

The effect of the ant-generation rate and the link density p

We first compare the performance of AntNet with Dijkstra’s shortest path algorithm
for different ant-generation rates and different values of the link density p for a 25 node
network.
The values of T.P. and TE.P. are assumed to be constant in our simulations as shown

in Table 1. To study the effect of the ant generation rate on the AntNet algorithm, we
assume a fixed ant generation rate during the TE.P., varying the ant generation rates
only during the T.P. We consider three different cases of the ant generation during the
T.P., namely 40, 4, 0.4 ms9. The corresponding results for the pdf of the hopcount and
the weight for N = 25 and different values of the link density p are shown in Figures
5.6-5.8.
Figures 5.6, 5.7 and 5.8 show that the AntNet algorithm gives a near optimal solution

for a 25 node network at low values of the link density p (p = 0.2 and p = 0.1). The
performance of AntNet algorithm decreases as the value of the link density p in the
random graph Gp(N) is increased. Additional simulations for N = 50 show similar
trends as the link density p is varied. Moreover, the comparison of AntNet for N = 25
and N = 50 shows that the performance of AntNet degrades as the network size N is
increased. Figure 5.7 shows the validity of our comparison between AntNet and the
Dijkstra’s algorithm since the results for AntNet are similar to the results of AntNet
under static implementation (Figure 5.5).
Comparison of Figure 5.6 with Figures 5.7 and 5.8 show that the AntNet algorithm

converges to a good solution even at low ant generation rates. In Figure 5.6, the ant
generation interval is 40 ms during both the T.P. and the TE.P. Thus, only 25 forward

8In dynamic implementation of AntNet, there is negligible difference between the performance of
AntNet for ε = 0 and ε = 0.1.

9η = 0.1,Wmax = 50 for all the simulations in this sub-section.

5.3. RESULTS 55

a(i) b(i)

a(ii) b(ii)

4

3

2

1

0

f W
N(x

)

1.51.00.50.0
path weight x (ms)

p=0.8
 AntNet E[AntNet]=0.703, var[AntNet]=0.11
 Dijkstra E[Dijkstra]=0.19, var[Dijkstra]=0.0095

p=0.6
 AntNet E[AntNet]=0.684, var[AntNet]=0.11
 Dijkstra E[Dijkstra]=0.25, var[Dijkstra]=0.0166

N = 25

0.4

0.3

0.2

0.1

0.0

Pr
 [H

=
k]

108642
hop k

 Theory
p=0.8

 AntNet E[AntNet]=1.998, var[AntNet]=0.35
 Dijkstra E[Dijkstra]=2.87, var[Dijkstra]=1.90

p=0.6
 AntNet E[AntNet]=1.986, var[AntNet]=0.407
 Dijkstra E[Dijkstra]=2.864, var[Dijkstra]=1.88

N = 25

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Pr
[H

 =
 k

]

12108642
hop k

 Theory
p = 0.2

 AntNet E[AntNet] = 3.08, var[AntNet] = 1.50
 Dijkstra E[Dijkstra] = 2.96, var[Dijkstra] = 1.93

p = 0.1
 AntNet E[AntNet] = 3.71, var[AntNet] = 3.05
 Dijkstra E[Dijkstra] = 3.52, var[Dijkstra] = 2.9

N = 25

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

6543210
path weight x (ms)

p = 0.2
 AntNet E[AntNet] = 1.32, var[AntNet] = 0.43
 Dijkstra E[Dijkstra] = 0.75, var[Dijkstra] = 0.155

p = 0.1
 AntNet E[AntNet] = 1.7, var[AntNet] = 0.90
 Dijkstra E[Dijkstra] = 1.39, var[Dijkstra] = 0.62

N = 25

a(i) b(i)

a(ii) b(ii)

4

3

2

1

0

f W
N(x

)

1.51.00.50.0
path weight x (ms)

p=0.8
 AntNet E[AntNet]=0.703, var[AntNet]=0.11
 Dijkstra E[Dijkstra]=0.19, var[Dijkstra]=0.0095

p=0.6
 AntNet E[AntNet]=0.684, var[AntNet]=0.11
 Dijkstra E[Dijkstra]=0.25, var[Dijkstra]=0.0166

N = 25

0.4

0.3

0.2

0.1

0.0

Pr
 [H

=
k]

108642
hop k

 Theory
p=0.8

 AntNet E[AntNet]=1.998, var[AntNet]=0.35
 Dijkstra E[Dijkstra]=2.87, var[Dijkstra]=1.90

p=0.6
 AntNet E[AntNet]=1.986, var[AntNet]=0.407
 Dijkstra E[Dijkstra]=2.864, var[Dijkstra]=1.88

N = 25

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Pr
[H

 =
 k

]

12108642
hop k

 Theory
p = 0.2

 AntNet E[AntNet] = 3.08, var[AntNet] = 1.50
 Dijkstra E[Dijkstra] = 2.96, var[Dijkstra] = 1.93

p = 0.1
 AntNet E[AntNet] = 3.71, var[AntNet] = 3.05
 Dijkstra E[Dijkstra] = 3.52, var[Dijkstra] = 2.9

N = 25

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

6543210
path weight x (ms)

p = 0.2
 AntNet E[AntNet] = 1.32, var[AntNet] = 0.43
 Dijkstra E[Dijkstra] = 0.75, var[Dijkstra] = 0.155

p = 0.1
 AntNet E[AntNet] = 1.7, var[AntNet] = 0.90
 Dijkstra E[Dijkstra] = 1.39, var[Dijkstra] = 0.62

N = 25

Figure 5.6: (a) The pdf of the weight of the Dijkstra’s shortest path and the AntNet
algorithm paths (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and p = 0.1 (b) The pdf of
the hopcount of the Dijsktra’s shortest path, AntNet algorithm paths and obtained by
theory (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and p = 0.1. The ant generation interval
during T.P. is 40 ms. (Each simulation consists of 105 iterations.)

56 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

a(i) b(i)

a(ii) b(ii)

4

3

2

1

0

f W
N
(x

)

2.01.51.00.50.0
path weight x (ms)

p = 0.8
 AntNet E[AntNet] = 0.62, var[AntNet] = 0.09
 Dijkstra E[Dijkstra] = 0.19, var[Dijkstra] = 0.01

p = 0.6
 AntNet E[AntNet] = 0.58, var[AntNet] = 0.1
 Dijkstra E[Dijkstra] = 0.25, var[Dijkstra] = 0.02

N = 25

0.5

0.4

0.3

0.2

0.1

0.0

Pr
 [H

 =
 k

]

108642
hop k

 Theory
p = 0.8

 AntNet E[AntNet] = 1.88, var[AntNet] = 0.33
 Dijkstra E[Dijkstra] = 2.88, var[Dijkstra] = 1.88

p = 0.6
 AntNet E[AntNet] = 1.88, var[AntNet] = 0.38
 Dijkstra E[Dijkstra] = 2.86, var[Dijkstra] = 1.87

N = 25

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

43210
path weight x (ms)

p = 0.2
 AntNet E[AntNet] = 1.25, var[AntNet] = 0.42
 Dijkstra E[Dijkstra] = 0.75, var[Dijkstra] = 0.15

p = 0.1
 AntNet E[AntNet] = 1.64, var[AntNet] = 0.86
 Dijkstra E[Dijkstra] = 1.39, var[Dijkstra] = 0.62

N = 25

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Pr
 [H

 =
 k

]

108642
hop k

 Theory
p = 0.2

 AntNet E[AntNet] = 2.99, var[AntNet] = 1.45
 Dijkstra E[Dijkstra] = 2.95, var[Dijkstra] = 1.93

p = 0.1
 AntNet E[AntNet] = 3.63, var[AntNet] = 2.91
 Dijkstra E[Dijkstra] = 3.54, var[Dijkstra] = 2.90

N = 25

a(i) b(i)

a(ii) b(ii)

4

3

2

1

0

f W
N
(x

)

2.01.51.00.50.0
path weight x (ms)

p = 0.8
 AntNet E[AntNet] = 0.62, var[AntNet] = 0.09
 Dijkstra E[Dijkstra] = 0.19, var[Dijkstra] = 0.01

p = 0.6
 AntNet E[AntNet] = 0.58, var[AntNet] = 0.1
 Dijkstra E[Dijkstra] = 0.25, var[Dijkstra] = 0.02

N = 25

0.5

0.4

0.3

0.2

0.1

0.0

Pr
 [H

 =
 k

]

108642
hop k

 Theory
p = 0.8

 AntNet E[AntNet] = 1.88, var[AntNet] = 0.33
 Dijkstra E[Dijkstra] = 2.88, var[Dijkstra] = 1.88

p = 0.6
 AntNet E[AntNet] = 1.88, var[AntNet] = 0.38
 Dijkstra E[Dijkstra] = 2.86, var[Dijkstra] = 1.87

N = 25

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

43210
path weight x (ms)

p = 0.2
 AntNet E[AntNet] = 1.25, var[AntNet] = 0.42
 Dijkstra E[Dijkstra] = 0.75, var[Dijkstra] = 0.15

p = 0.1
 AntNet E[AntNet] = 1.64, var[AntNet] = 0.86
 Dijkstra E[Dijkstra] = 1.39, var[Dijkstra] = 0.62

N = 25

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Pr
 [H

 =
 k

]

108642
hop k

 Theory
p = 0.2

 AntNet E[AntNet] = 2.99, var[AntNet] = 1.45
 Dijkstra E[Dijkstra] = 2.95, var[Dijkstra] = 1.93

p = 0.1
 AntNet E[AntNet] = 3.63, var[AntNet] = 2.91
 Dijkstra E[Dijkstra] = 3.54, var[Dijkstra] = 2.90

N = 25

Figure 5.7: (a) The pdf of the weight of the Dijkstra’s shortest path and the AntNet
algorithm paths (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and p = 0.1 (b) The pdf of
the hopcount of the Dijsktra’s shortest path, AntNet algorithm paths and obtained by
theory (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and p = 0.1. Same scenario as in Fig. 5 but
with an ant generation interval of 4 ms during the T.P.

5.3. RESULTS 57

a(i) b(i)

a(ii) b(ii)

4

3

2

1

0

f W
N
(x

)

1.51.00.50.0
path weight x (ms)

p=0.8
 AntNet E[AntNet] = 0.622, var[AntNet] = 0.1
 Dijkstra E[Dijkstra] = 0.19 ,var[Dijkstra] = 0.01

p=0.6
 AntNet E[AntNet] = 0.577, var[AntNet] = 0.1
 Dijkstra E[Dijkstra] = 0.25, var[Dijkstra] = 0.02

N = 25

0.5

0.4

0.3

0.2

0.1

0.0

Pr
[H

 =
 k

]

108642
hop k

 Theory
p = 0.8

 AntNet E[AntNet] = 1.88, var[AntNet] = 0.33
 Dijkstra E[Dijkstra] = 2.86, var[Dijkstra] = 1.88

p = 0.6
 AntNet E[AntNet] = 1.87, var[AntNet] = 0.38
 Dijkstra E[Dijkstra] = 2.858, var[Dijkstra] = 1.87

N = 25

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

43210
path weight x (ms)

p = 0.2
 AntNet E[AntNet] = 1.257, var[AntNet] = 0 .419
 Di jkstra E[Dijkstra] = 0 .752, var[Dijkstra] = 0.156

p = 0.1
 AntNet E[AntNet] = 1.636, var[AntNet] = 0 .868
 Di jkstra E[Dijkstra] = 1 .387, var[Dijkstra] = 0.628

N = 25

0 .30

0.25

0.20

0.15

0.10

0.05

0.00

Pr
 [H

 =
 k

]

108642
hop k

p = 0.2
 AntNet E[AntNet] = 2.999, var[AntNet] = 1.46
 Dijkstra E[Dijkstra] = 2.95, var[Dijks tra] = 1.93

p = 0.1
 AntNet E[AntNet] = 3.62, var[AntNet] = 2.92
 Dijkstra E[Dijkstra] = 3.525, var[Dijkstra] = 2.92

N = 25

a(i) b(i)

a(ii) b(ii)

4

3

2

1

0

f W
N
(x

)

1.51.00.50.0
path weight x (ms)

p=0.8
 AntNet E[AntNet] = 0.622, var[AntNet] = 0.1
 Dijkstra E[Dijkstra] = 0.19 ,var[Dijkstra] = 0.01

p=0.6
 AntNet E[AntNet] = 0.577, var[AntNet] = 0.1
 Dijkstra E[Dijkstra] = 0.25, var[Dijkstra] = 0.02

N = 25

0.5

0.4

0.3

0.2

0.1

0.0

Pr
[H

 =
 k

]

108642
hop k

 Theory
p = 0.8

 AntNet E[AntNet] = 1.88, var[AntNet] = 0.33
 Dijkstra E[Dijkstra] = 2.86, var[Dijkstra] = 1.88

p = 0.6
 AntNet E[AntNet] = 1.87, var[AntNet] = 0.38
 Dijkstra E[Dijkstra] = 2.858, var[Dijkstra] = 1.87

N = 25

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

43210
path weight x (ms)

p = 0.2
 AntNet E[AntNet] = 1.257, var[AntNet] = 0 .419
 Di jkstra E[Dijkstra] = 0 .752, var[Dijkstra] = 0.156

p = 0.1
 AntNet E[AntNet] = 1.636, var[AntNet] = 0 .868
 Di jkstra E[Dijkstra] = 1 .387, var[Dijkstra] = 0.628

N = 25

0 .30

0.25

0.20

0.15

0.10

0.05

0.00

Pr
 [H

 =
 k

]

108642
hop k

p = 0.2
 AntNet E[AntNet] = 2.999, var[AntNet] = 1.46
 Dijkstra E[Dijkstra] = 2.95, var[Dijks tra] = 1.93

p = 0.1
 AntNet E[AntNet] = 3.62, var[AntNet] = 2.92
 Dijkstra E[Dijkstra] = 3.525, var[Dijkstra] = 2.92

N = 25

Figure 5.8: (a) The pdf of the weight of the Dijkstra’s shortest path and the AntNet
algorithm paths (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and p = 0.1 (b) The pdf of
the hopcount of the Dijsktra’s shortest path, AntNet algorithm paths and obtained by
theory (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and p = 0.1. Same scenario as in Fig. 5 but
with an ant generation interval of 0.40 ms during the T.P.

58 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

Table 5.2: The mean hopcount and weight for the unfNet algorithm for N = 25.
(p = 0.2 and 0.8. η = 0.1 and Wmax = 50)

Link density p Ant generation inter-
val during T.P.

E[Path weight] E[Hopcount]

0.8 40 ms 0.75 ms 1.82
0.8 4 ms 0.63 ms 1.62
0.8 0.4 ms 0.59 ms 1.55
0.2 40 ms 1.38 ms 2.96
0.2 4 ms 1.2 ms 2.67
0.2 0.4 ms 1.16 ms 2.61

ants are generated by each node during the T.P. to search for the shortest paths to all
other nodes in the network. The number of forward ants searching for the shortest path
increases as the ant generation interval is decreased from 40 ms to 4 ms during the T.P..
This leads to an improvement in the performance of AntNet. As the ant generation
interval is decreased from 4 ms to 0.4 ms, the performance of AntNet remains the same.
This can be attributed to the fact that the variations in the ant generation rate are
related to the size of the moving observation window Wmax and the parameter η. The
size of the moving observation window Wmax in the above simulations is large enough
to distinguish between ant generation intervals of 40 ms and 4 ms during T.P. But
since the size of the moving observation window is small, it can store only the times
of the last 50 forward ants generated from a given source to a given destination. This
indicates that even if the ant generation rate is increased with a small window size, the
performance of AntNet remains the same or may even go down. Additional simulations
show that the AntNet algorithm performs better at η = 0.02 and Wmax = 200 than at
η = 0.1 andWmax = 50 for different ant generation rates and different values of the link
density p.
We also performed simulations for the unfNet algorithm under identical conditions,

as above. Table 5.2 lists the simulation results for the unfNet algorithm for N = 25 and
different values of the link density p (p = 0.2 and 0.8). The results show that unfNet
performs worse than AntNet for low ant generation rates (or large values of the ant
generation interval). In unfNet, all the paths are continuously searched independently
of the routing tables. While in AntNet, the probability that future forward ants choose
paths with large delays is decreased by each forward ant. Therefore, in AntNet, mainly
low delay paths contribute to routing table updates and the AntNet algorithm performs
well even with a low ant generation rate10. When the ant generation rate is high, the

10All paths searched by the forward ants lead to positive reinforcement.

5.3. RESULTS 59

performance of unfNet is comparable to the AntNet algorithm. This can be attributed
to the fact that the data traffic is small and the variations in delays along different
paths is negligible.

Lattice Topologies

In this section, we investigate the performance of AntNet for Lattice topologies. We
compare the performance of AntNet with Dijkstra’s shortest path algorithm for the
lattice topology shown in Figure 5.9. The source and destination nodes D1 and D2 are
assumed to be fixed. The ant generation interval is 4 ms during T.P. and 40 ms during
TE.P. (η = 0.1,Wmax = 50. The value of parameter a is chosen as 5.) Figure 5.10 shows
the simulation results comparing the pdf of the hopcount and the weight for the shortest
path and the AntNet algorithm paths. Figure 5.10 shows that the AntNet algorithm
performs well for Lattice topologies. Also, the performance of AntNet degrades as the
number of nodes in the network is increased.

0 1 2 43 5 6

7 98 1 0 1 1 1 2 1 3

1 4 1 5 16

2 2

1 7

2 1

2 01 91 8

2 72 62 52 42 3

2 9

4 2

3 5

2 8 3 23 0

4 3

3 6

3 1 3 43 3

4 03 93 83 7

4 4 4 5

4 1

4 74 6 4 8

49 N ode Lattice

Source

D estination
D 1

D estination
D 2

Figure 5.9: The 49-node lattice topology used for our simulations. The source node
and the destination nodes D1 and D2 are assumed to be fixed as indicated

The effect of the moving observation window size Wmax and the parameter η

In AntNet, the moving observation window is used to store the cost of the shortest
path from a given source node to a given destination node. Furthermore, the moving
observation window is also used to improve the accuracy of the mean μd as shown
in (5.10). The optimal size of the moving observation window is hard to determine

60 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

86420
path weight x (ms)

Destination-D1
 AntNet E[AntNet] = 2.68, var[AntNet] = 0.40
 Dijkstra E[Dijkstra] = 1.95, var[Dijkstra] = 0.23

Destination-D2
 AntNet E[AntNet] = 5.72, var[AntNet] = 0.7
 Dijkstra E[Dijkstra] = 3.58, var[Dijkstra] = 0.38

N = 49
Lattice Topology

0.8

0.6

0.4

0.2

0.0

Pr
 [H

 =
 k

]

20181614121086
hop k

Destination-D1
 AntNet E[AntNet] = 6.3, var[AntNet] = 0.17
 Dijkstra E[Dijkstra] = 6.2, var[Dijkstra] = 0.49

Destination-D2
 AntNet E[AntNet] = 12.9, var[AntNet] = 0.56
 Dijkstra E[Dijkstra] = 12.2, var[Dijkstra] = 0.37

N = 49
Lattice Topology

(i) (ii)

Figure 5.10: The pdf of the (i) weight and the (ii) hopcount of the Dijkstra’s shortest
path and the AntNet algorithm paths for a 49 node lattice topology. The source node
and destination nodes D1 and D2 are fixed as shown in Figure 5.9. Each simulation
consists of 105 iterations.

because it is linked to the ant generation rate and the parameter η. For determining the
optimal value of Wmax it is not sufficient to calculate the number of forward/backward
ants alone. This is due to two reasons. First, each forward ant does not search for
a distinct path. Second, the backward ants update the routing tables at each of the
nodes along the path for the given destination as they travel from the destination node
to the source node. Under ideal conditions, if each ant searches for one distinct path,
the size of the moving observation window should be equal to or greater than the
number of paths between any pair of nodes in the network. Thus, at any instant of
time the moving observation window would contain the shortest path. Indeed, the size
of the moving observation window can be effectively chosen in small networks where
the number of paths between a pair of nodes in the network is small. Our simulations
show that increasing the value of Wmax without changing other parameters such as the
ant generation rate and η leads to a small improvement in the performance of AntNet.

The parameter η is used to estimate the mean μd and the variance σ2d by using
the exponential model as shown in (5.1) and (5.2). The parameter η represents how
many of the previous forward ant’s trip times affect the mean or average value. In the
exponential model, the weight of the current forward ant’s trip time to a destination tz
after m forward ants for the particular destination have been received is η(1− η)m−z.
The smaller values of η indicate that the mean value is calculated over a large number
of forward ant trip time samples. Our simulations show that changing η from 0.1 to
0.02 does not effect the performance of AntNet significantly. This indicates that at
light traffic loads, the paths between pair of nodes in the AntNet algorithm quickly

5.3. RESULTS 61

converge to the mean value for that path making the second term in (5.1) redundant.
The variations in parameter η might effect the performance of AntNet, if the traffic
conditions or topology of the network varies. Under such conditions, the path between
a pair of nodes will deviate significantly from the mean value. Thus, for a static topology
with low traffic loads, the AntNet algorithm is very robust to changes in the parameter
η.
Finally, to study the combined effect of the parameters η, Wmax and the ant genera-

tion rates on the performance of AntNet, we set the ant generation to a very high value
i.e., the ant generation interval is 0.4 ms during the T.P. and 4 ms during the TE.P.
We also choose a very large size of the moving observation window i.e., Wmax = 16000.
The value of Wmax is sufficient to store the trip times of all forward ants generated by
the given node as well as the trip times of forward ants received due to the sub-update
method. Furthermore, the value of parameter η is chosen as very small i.e., η = 0.001
so that large number of sample trip times of forward ants are used to calculate the
mean and variance in (5.1) and (5.2). Figure 5.11 presents the simulation results com-
paring the pdf of the hopcount and the weight for the shortest path, and the unfNet
and AntNet algorithm paths for different values of Wmax for N = 25 and p = 0.8.

4

3

2

1

0

f W
N
(x

)

1.41.21.00.80.60.40.20.0
path weight x (ms)

 AntNet 1
 Dijkstra
 unfNet

E[AntNet] = 0.54, var[AntNet] = 0.07
E[Dijkstra] = 0.19, var[Dijkstra] = 0.01
E[unfNet] = 0.55, var[unfNet] = 0.08

N = 25
p = 0.8

0.6

0.4

0.2

0.0

Pr
[H

 =
 k

]

87654321
hop k

 AntNet
 Dijkstra
 unfNet

E[AntNet] = 1.69, var[AntNet] = 0.21
E[Dijkstra] = 2.85, var[Dijkstra] = 1.89
E[unfNet] = 1.45, var[unfNet] = 0.2

N = 25
p = 0.8

(a) (b)

Figure 5.11: The pdf of the (a) weight and the (b) hopcount of the Dijkstra’s shortest
path, unfNet algorithm paths and the AntNet algorithm paths for N = 25 and p = 0.8.
(η = 0.001, Wmax = 16000). Each simulation consists of 104 iterations.

Figure 5.11 shows that the performance of AntNet can be improved by varying the
parameters η, Wmax and the ant generation rates in conjunction with each other. Thus,
the inherent coupling between ant generation rate and the parameters η and Wmax

contributes to the complexity and robustness of the AntNet algorithm. Figure 5.11
also shows that the performance of unfNet is worse than AntNet, even though the data
traffic is small. In unfNet, the forward ants move independently of the routing tables

62 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

and all the paths are searched with equal probabilities. In AntNet, if the path is found
to incur a large delay, the probability of choosing the particular path by the future
forward ants becomes less. But since every path found receives a positive reinforcement
(in both unfNet and AntNet), the number of non-optimal paths updating the routing
tables in unfNet is more.

The effect of the confidence interval, squash function s(x) and the parameter
β

We first study the effect of the confidence interval on the performance of AntNet. The
second term in (5.10) i.e., σd√

1−γ
√
|Wmax|

is used to improve the accuracy in estimating

the mean μd but introduces additional complexity in the AntNet algorithm. Figure
5.12 shows the simulation results comparing the pdf of the hopcount and the weight for
Dijkstra’s shortest path and the AntNet algorithm paths, when the term σd√

1−γ
√
|Wmax|

is not used in the estimation of tsup. This case is shown as tsup = μd in Figure 5.12.
The simulations are performed for N = 25 and p = 0.2. Also, the value of parameter
a is chosen as 20 such that the average value of the coefficient a

Nk
is 4. (The ant

generation interval is 40 ms during T.P. and TE.P. The value of parameters η = 0.1
and Wmax = 50.)

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

3.53.02.52.01.51.00.50.0
path weight x (ms)

 Ant-Net E[Ant-Net] = 0.968, var[Ant-Net] = 0.25
 Dijkstra E[Dijkstra] = 0.75, var[Dijkstra] = 0.155

tsup=μd
 Ant-Net E[Ant-Net] = 0.96, var[Ant-Net] = 0.24
 Dijkstra E[Dijkstra] = 0.75, var[Dijkstra] = 0.15

N = 25
p = 0.2

0.4

0.3

0.2

0.1

0.0

Pr
 [H

=k
]

108642
hop k

 Dijkstra E[Dijkstra] = 2.95, var[Dijkstra] = 1.93
 Ant-Net E[Ant-Net] = 2.58, var[Ant-Net] = 1.04

tsup=μd
 Ant-Net E[Ant-Net] = 2.58, var[Ant-Net] = 1.04

N = 25
p = 0.2

(a) (b)

Figure 5.12: The pdf of the (a) weight and the (b) hopcount of the Dijkstra’s shortest
path and the AntNet algorithm paths for N = 25 and p = 0.2 for tsup = μd and tsup
calculated using (11) (η = 0.1, Wmax = 50, a = 20). The ant generation interval is 40
ms during the T.P. and TE.P. Each simulation consists of 105 iterations.

Comparison of Figure 5.12 and Figure 5.6 shows that choosing a large value of pa-
rameter a improves the performance of AntNet. Furthermore, under the simulation

5.3. RESULTS 63

0.5

0.4

0.3

0.2

0.1

0.0

f W
N
(x

)

6543210
path weight x (ms)

β = 1
 Ant-Net E[Ant-Net] = 1.74, var[Ant-Net] = 0.93
 Dijkstra E[Dijkstra] = 1.39, var[Dijkstra] = 0.62

β = 100
 Ant-Net E[Ant-Net] = 1.69, var[Ant-Net] = 0.89

N = 25
p = 0.1

0.20

0.15

0.10

0.05

0.00

Pr
 [H

=k
]

1412108642
hop k

β = 1
 Ant-Net E[Ant-Net] = 3.79, var[Ant-Net] = 3.19
 Dijkstra E[Dijkstra] = 3.52, var[Dijkstra] = 2.92

β = 100
 Ant-Net E[Ant-Net] = 3.67, var[Ant-Net] = 3.01

N = 25
p = 0.1

(a) (b)

Figure 5.13: The pdf of the (a) weight and the (b) hopcount of the Dijkstra’s shortest
path and the AntNet algorithm paths for β = 1 and β = 100 for N = 25 and p = 0.1.
The ant generation interval is 40 ms during the T.P. and TE.P. Each simulation consists
of 105 iterations. (η = 0.1 and Wmax = 50.)

parameters considered, the removal of the term σd√
1−γ
√
|Wmax|

does not change the per-

formance of AntNet. Thus, equation (5.10) could be simplified to reduce the complexity
of AntNet.
The parameter β determines whether single or multi-path routing is followed by the

data packets. The value of parameter β needs to be greater than 1 to prevent the data
packets from choosing links with very low probabilities. A large value of β (β >> 1)
indicates that the data packets follow only single-path routing. On the other hand
β = 1 indicates that the data packets follow the routing tables and may even choose
links with very low probabilities. Thus, β = 1 corresponds to multi-path routing. We
compare the performance of AntNet algorithm for β = 1 and β = 100. When β = 100,
the data packets are effectively following a single-path routing. Figure 5.13 shows the
simulation results comparing the pdf of the hopcount and the weight for the shortest
path and the AntNet algorithm paths for p = 0.1 for β = 1 and β = 100 for a 25 node
network11.
Figure 5.13 shows that the performance of AntNet improves as β is increased for

p = 0.1. This shows that there is a greater probability that the shortest path has been
correctly identified in the AntNet algorithm at lower values of p. Thus, making β = 1
prevents the data packets from choosing the path with the highest probability and leads
to data packets following sub-optimal paths. On the other hand, β = 100 improves the
performance of AntNet since the data packets follow only a single-path routing which

11The ant generation interval is 40 ms during the T.P. and the TE.P. The value of parameter η = 0.1
and Wmax = 50.

64 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

has a greater probability of being the shortest path also.

5.3.4 Traffic Measurements

In this section, we compare the end-to-end delays for AntNet and Dijkstra’s shortest
path algorithm. A set of randomly chosen nodes are congested during each iteration and
have an additional queueing delay of 10 ms for every packet. To make a fair comparison
between the algorithms, we assume that the size of all data packets is same i.e., 4096
bits and the TTL for data packets is set to infinity. In addition to the normal data,
we send a small number of data packets along the shortest path from the source to
the destination node12 (source routing or src_rt). Figure 5.14 shows the simulation
results comparing the pdf of the hopcount and the end-to-end delay (weight) for the
Dijkstra’s shortest path and the AntNet algorithm paths for N = 50 and p = 0.1
(The ant generation interval is 4 ms during T.P. and 40 ms during TE.P. The value of
parameter η = 0.1 and Wmax = 50.)

(a) (b)

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

2520151050
path weight/delay (ms)

end-to-end path delay (ms)
 AntNet E[AntNet] = 5.1 var[AntNet] = 13
 src_rt E[src_rt] = 7.2, var[src_rt] = 48

path weight (ms)
 AntNet E[AntNet] = 2.1, var[AntNet] = 1.1
 src_rt E[src_rt] = 0.89, var[src_rt] = 0.17
 Dijkstra E[Dijkstra] = 0.89, var[Dijkstra] = 0.17

N = 50
p = 0.1

0.20

0.15

0.10

0.05

0.00

Pr
[H

 =
 k

]

2015105
hop k

 AntNet E[AntNet] = 4.5, var[AntNet] = 4.4
 src_rt E[src_rt] = 3.6, var[src_rt] = 2.6
 Dijkstra E[Dijkstra] = 3.6, var[Dijkstra] = 2.6

N = 50
p = 0.1

(a) (b)

1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

2520151050
path weight/delay (ms)

end-to-end path delay (ms)
 AntNet E[AntNet] = 5.1 var[AntNet] = 13
 src_rt E[src_rt] = 7.2, var[src_rt] = 48

path weight (ms)
 AntNet E[AntNet] = 2.1, var[AntNet] = 1.1
 src_rt E[src_rt] = 0.89, var[src_rt] = 0.17
 Dijkstra E[Dijkstra] = 0.89, var[Dijkstra] = 0.17

N = 50
p = 0.1

0.20

0.15

0.10

0.05

0.00

Pr
[H

 =
 k

]

2015105
hop k

 AntNet E[AntNet] = 4.5, var[AntNet] = 4.4
 src_rt E[src_rt] = 3.6, var[src_rt] = 2.6
 Dijkstra E[Dijkstra] = 3.6, var[Dijkstra] = 2.6

N = 50
p = 0.1

Figure 5.14: The pdf of the (a) end-to-delay/weight and the (b) hopcount of the Dijk-
stra’s shortest path, AntNet algorithm paths and the source routing path for N = 50
and p = 0.1. The ant generation interval is 4 ms during the T.P. and 40 ms during the
TE.P. (η = 0.1, Wmax = 50.) Each simulation consists of 104 iterations.

Figure 5.14 shows that the AntNet algorithm performs better than single shortest
path routing in terms of end-to-end delay. In src_rt, since Dijkstra’s algorithm is used
to compute the shortest path from the source to the destination, the queueing delays

12Node 1 is the source node and node 25 is the destination node. In AntNet, the data packets are
generated at a uniform interval of 5 ms, while in src_rt, the data packets are generated at a uniform
interval of 100 ms.

5.3. RESULTS 65

are not considered. During the iterations when there are no congested nodes along the
shortest path, the end-to-end delays for the data packets using src_rt and AntNet are
comparable. However, when there are one or more congested nodes along the shortest
path, the data packets using src_rt incur queueing delays along the congested nodes.
On the other hand, the AntNet algorithm performs load balancing and reduces the
probability of data packets choosing the paths with congested nodes.
Table 5.3 lists the simulation results for the AntNet, unfNet and the src_rt algo-

rithms forN = 50 andN = 25 (p = 0.2, 0.1). We consider different number of congested
nodes and ant generation rates. Table 5.3 shows that unfNet generally performs worse
than AntNet under varying traffic loads. The performance of unfNet becomes worse as
compared to the AntNet algorithm, when the ant generation rate is low and the size
of the network is increased. In AntNet, the network exploration is restricted to paths
that incur low delays and only these paths are used to update the routing tables. In
unfNet, the forward ants move independently of the routing tables. Thus, even the
large delay paths are used to update the routing tables leading to a poor performance
of the unfNet algorithm. This shows that the unfNet algorithm reduces the complexity
but, in general, leads to a decrease in the performance.

Table 5.3: The expected hopcount/weight for the unfNet, AntNet, and the src_rt
algorithms for N = 25, 50 (p = 0.2, 0.1) with different number of congested nodes and
different ant generation rates (η = 0.1 and Wmax = 50).

Routing
Proto-
col

Network
size (N)

Link
density
p

Ant genera-
tion interval
T.P. TE.P.

Congested
Nodes

E[path de-
lay]

E[Hop-
count]

unfNet 50 0.1 4 ms 40 ms 8 5.6 ms 3.8
AntNet 50 0.1 40 ms 40 ms 8 5.8 ms 4.7
unfNet 50 0.1 40 ms 40 ms 8 12.7 ms 6.2
AntNet 25 0.2 4 ms 40 ms 4 3.4 ms 3.2
src_rt 25 0.2 4 ms 40 ms 4 5.8 ms 2.9
unfNet 25 0.2 4 ms 40 ms 4 3.5 ms 2.8
AntNet 25 0.2 40 ms 40 ms 4 3.7 ms 3.4
unfNet 25 0.2 40 ms 40 ms 4 5.5 ms 3.3
AntNet 25 0.2 4 ms 4 ms 4 3.36 ms 3.3
unfNet 25 0.2 4 ms 4 ms 4 3.1 ms 2.8
AntNet 50 0.2 4 ms 40 ms 4 3.1 ms 3.3
src_rt 50 0.2 4 ms 40 ms 4 4.3 ms 3.5

To further study the load balancing capabilities of AntNet, we assume that during

66 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

each iteration, a set of five randomly chosen nodes are congested after 5000 ms of
the S.P. For each iteration, we compute the packet delay and the hopcount averaged
over 250 ms moving windows. Figure 5.15 shows the simulation results for the packet
delay and hopcount for N = 50 and p = 0.1 averaged over 104 iterations (The ant
generation interval is 4 ms during T.P. and TE.P. The value of parameters η = 0.02 and
Wmax = 200). Figure 5.15 shows how AntNet adapts to the introduction of congested
nodes. Before 5000 ms there is small data traffic, and the average end-to-end delay and
hopcount for the AntNet algorithm are constant. After the nodes become congested,
there is a sudden increase in the end-to-end delay. However, the AntNet algorithm
adjusts to the changing traffic leading to a decrease in the end-to-to-end delay. On the
other hand in src_rt, a single shortest path is used for routing throughout the S.P. As
a result when the nodes become congested, the average end-to-end delay increases.

5.5

5.0

4.5

4.0

3.5

3.0

Pa
th

 d
el

ay
 (m

s)
/H

op
co

un
t

100008000600040002000
time (ms)

Path delay (ms)
 AntNet
 src_rt

Hopcount
 src_rt
 AntNet

Figure 5.15: Transient analysis of AntNet for N = 50 and p = 0.1. The path weight and
delay are averaged over 250 ms moving windows and 104 iterations. The ant generation
interval is 4 ms during the T.P. and TE.P. (η = 0.02, Wmax = 200.).

5.4 Conclusions

The AntNet algorithm performs well for random graphs and lattice topologies. The
AntNet algorithm gives a near optimal solution at p = 0.2 and p = 0.1 for a 25 node
network. This can be attributed to the fact that the number of paths between any
given pair of nodes in the network at p = 0.2 and p = 0.1 is small. Since the AntNet
algorithm starts searching for the shortest path in a random fashion, the smaller the

5.4. CONCLUSIONS 67

number of paths between a pair of nodes the greater is the probability that the algorithm
converges to a near optimal solution. The performance of AntNet algorithm degrades
as the network size or the link density p is increased.
The AntNet algorithm is robust to changes in the training of the network and

converges to a good solution even at low ant generation rates. Further increasing the
ant generation rates leads to an improvement in the performance but this is related
to choice of other parameters such as Wmax and η. Indeed, the coupling of various
parameters is the inherent cause of complexity in the AntNet algorithm and changing
one parameter favorably may not lead to an improvement in performance until the other
parameters are also changed. The performance of AntNet can be improved by using a
large value of the parameter a in the squash function s(x). In this case, only the near
optimal paths update the routing tables. The complexity of AntNet can be reduced by
a number of methods, such as choosing parameter β = 1 and simplifying the calculation
of parameter , but this generally comes at the expense of performance.
Due to inherent load balancing, AntNet performs better than shortest path routing

under varying traffic loads. For small networks, when the traffic loads are small and the
ant generation is sufficiently high, a modified version of the AntNet algorithm (unfNet)
can be used. This reduces the complexity of the AntNet algorithm. The robustness
and near optimal performance of the AntNet algorithm makes it an attractive solution
for routing in wired networks.

68 CHAPTER 5. ANT ROUTING IN WIRED NETWORKS

Chapter 6

Ant Routing in Mobile Ad hoc
Networks

A variety of ANTRALs have been proposed for ad hoc and mesh networks. Among the
traditional routing protocols for ad hoc wireless networks, on-demand protocols perform
better than table-driven protocols [16].
The performance of ANTRAL for mobile ad hoc networks is an open issue. ANTRAL

algorithms do not take into account the mobility of the nodes. Moreover, load balanc-
ing for frequently changing topologies is a challenging issue. Load balancing involves
distributing traffic along multiple paths depending on the traffic conditions such that
the congested nodes or the unavailable links are by-passed. With node mobility, the
paths are not stable making load balancing difficult. Furthermore, characteristics of
traffic in ad hoc networks is not known. In this chapter, our aim is to study whether
ANTRAL algorithms can be applied for routing in mobile ad hoc networks.
ANTRAL algorithms for ad hoc networks, such as AntHocNet [47], Ad hoc Net-

working with Swarm Intelligence (ANSI) [86], Ant-Colony-Based Routing Algorithm
(ARA) [54], Ant-AODV [74] and Termite [89], use on-demand mobile agents for discov-
ering routes. The on-demand flooding of mobile agents is similar to flooding of route
request (RREQ) packets in on-demand protocols AODV and DSR. In ANSI, ARA and
Termite, the pheromone decays and as a result after a certain period the routing tables
are empty. The decay of routing table values is similar to AODV where the paths are
valid for a certain duration of time. Thus, the paths obtained by using AODV or ANSI,
ARA and Termite are identical. In addition, if a link breaks in ANSI, AntHocNet,
Ant-AODV and ARA routing protocols inject route error packets similar to on-demand
protocols. Indeed, the performance of ANSI, ARA and Ant-AODV is similar to AODV
and DSR [54, 74, 86]. In our view, these algorithms are a variation of the on-demand
protocols and deviate from the original idea of ANTRAL algorithms in which routing
tables are sufficient for routing data packets. We do not consider the performance of
ANTRAL algorithms that use on-demand flooding of mobile agents.

69

70 CHAPTER 6. ANT ROUTING IN MOBILE AD HOC NETWORKS

6.1 W_AntNet algorithm

The W_AntNet algorithm is based on AntNet but uses neighbor discovery and added
functionality to deal with node mobility [39].

• Neighbor Discovery Protocol

At regular intervals, hello messages are exchanged between neighboring nodes.
When the neighbors are lost or new neighbors are added, the routing tables are up-
dated and the probability values are re-normalized. The forward ant packets and data
packets waiting in the buffer are rerouted if the next hop neighbor is lost. However, the
backward ant packets are dropped if the next hop neighbor is lost. This ensures that
only paths that are stable during a sufficiently long time interval, i.e. the time between
the creation of forward ant and the receipt of the backward ant appear in the routing
tables.

6.2 Performance Analysis of W_AntNet

The routing overhead for obtaining a path to any destination is O(N) in AODV and
DSR since both these protocols use controlled flooding or sequence numbers. To com-
pute the complexity of W_AntNet, we use the fact that ad-hoc wireless networks can
be modeled as a geometric random graph (or random graph) [58]. In W_AntNet,
the forward ants perform random walks to search for the destination. Therefore, the
worst-case routing overhead for a single update of the routing tables [5] is O(N logN).
Moreover, the number of updates required for routing table convergence, i.e. probabil-
ity for one of the entries in routing tables to be one, depends on the quality of different
paths, network topology and the routing table update function. We show that multiple
backward ants are needed for the routing tables to converge.
Consider a node k with Nk neighboring nodes. At t = 0, the probability of choosing

neighbor n as the next hop for destination d, pnd (0) = 1
Nk
. We assume that only the

routing table values for neighbor n i.e., pnd receive positive reinforcement. Under these
assumptions, the probability pnd (t+ 1) is,

pnd (t+ 1) = pnd(t) + cpnd(t) (6.1)

where c is a constant. After Y updates,

pnd (Y) = pnd(0) (1 + c)Y

Since the routing table converges when pnd (Y) −→ 1, the value of Y is :

Y = log (Nk)

log (1 + c)
(6.2)

6.2. PERFORMANCE ANALYSIS OF W_ANTNET 71

where Nk is the number of neighbors of node k. Thus, the overhead for routing tables to
converge in W_AntNet under the given assumptions is O(N logNk logN). The value
of Nk varies from N for a complete mesh to p (N − 1) for a random graph or geometric
random graph [58]. The geometric random graph is almost surely connected [58] if the
link density p > logN

N
when N is large and therefore, the minimum value of Nk = logN .

We performed extensive simulations of W_AntNet using our simulator written in C
and NS-2 simulator1. NS-2 is a discrete event simulator written in C++ and uses OTcl
as a command and configuration interface. Using NS-2, we compare the performance
of W_AntNet with AODV and DSR.
The simulations are performed for the benchmark scenario [16]: 50 nodes moving

over an area of 1500m× 300m for 900 s. In W_AntNet, there is training period (T.P.)
at beginning of simulations during which data packets are not generated. The values
of various parameters in W_AntNet are taken from [42, 37]. The mobility model in
the simulations is random waypoint [16]. A pause time of 0s corresponds to continuous
motion while a pause time of 900s corresponds to the static scenario. We assume a
transmission range of 250m for each node in our simulator. Using these parameters,
the average node degree is N

A
∗πr2 = 50∗π∗(250)2

1500∗300 ≈ 22 and the network diameter or worst
case hopcount is

√
15002+3002

250
≈ 6.

We first compare the performance of W_AntNet for static and dynamic topologies
using our simulator. The MAC layer is ignored in these simulations. Moreover, we
assume that each node is able to remove 1 packet/ms from the queue and no TTL is
set for data packets. The routing tables are updated based on the hopcount between
the source and destination nodes so that the performance is independent of the packet
size, capacity of the links and the queueing delays. Thus, instead of (5.5), p0nd = pnd+ε
is used for choosing the next hop. Figure 6.1 shows the probability distribution of
hopcount for W_AntNet with different pause times. To verify our analysis, we also
plot the number of connectivity changes in our simulation model and the model used
by Broch et al. [16] (insert in Figure 6.1).
The legend in Figure 6.1 shows expected hopcount for W_AntNet for different pause

times. Figure 6.1 shows that W_AntNet performs similar to Dijkstra’s algorithm in a
static topology. However, when mobility is introduced (pause time is less than 900s) the
expected hopcount increases which points to a significant amount of packets in loops.
Figure 6.2 shows the percentage of data packets with loops as a function of the pause
time. Figure 6.2 also shows results for W_AntNet with look-ahead2. The increase of
data packets in loops with increased mobility in W_AntNet is in sharp contrast to
AODV and DSR that are shown to be loop-free [62, 81]. Sequence numbers in AODV
excludes loops at all times while DSR uses source routing that is inherently loop-free.

1NS-2 Network Simulator, http://www.isi.edu/nsnam/ns, 2005.
2Look-ahead means that if the destination is among the neighbors, then the destination is chosen

as the next hop

72 CHAPTER 6. ANT ROUTING IN MOBILE AD HOC NETWORKS

0.20

0.15

0.10

0.05

0.00

Pr
[H

 =
 k

]

252015105
hop k

W_AntNet
 pause_time = 0 E[H] = 22.2
 pause_time = 30 E[H] = 21.0
 pause_time = 60 E[H] = 22.6
 pause_time = 120 E[H] = 19.3
 pause_time = 300 E[H] = 12.8
 pause_time = 600 E[H] = 7.3

Static Topology
 W_AntNet E[H] = 4.3
 Dijkstra's algorithm E[H] = 2.9

N = 50

12x10 3

10

8

6

4

2

0

N
um

be
r

of
 c

on
ne

ct
iv

it
y

ch
an

ge
s

8006004002000
pause time (sec)

 our Simulation model
 Broch et al. [5] model

N = 50

0.20

0.15

0.10

0.05

0.00

Pr
[H

 =
 k

]

252015105
hop k

W_AntNet
 pause_time = 0 E[H] = 22.2
 pause_time = 30 E[H] = 21.0
 pause_time = 60 E[H] = 22.6
 pause_time = 120 E[H] = 19.3
 pause_time = 300 E[H] = 12.8
 pause_time = 600 E[H] = 7.3

Static Topology
 W_AntNet E[H] = 4.3
 Dijkstra's algorithm E[H] = 2.9

N = 50

12x10 3

10

8

6

4

2

0

N
um

be
r

of
 c

on
ne

ct
iv

it
y

ch
an

ge
s

8006004002000
pause time (sec)

 our Simulation model
 Broch et al. [5] model

N = 50

Figure 6.1: The probability distribution of hopcount for W_AntNet algorithm as a
function of pause time. The legend shows the expected hopcount for different values of
pause times.

6.2. PERFORMANCE ANALYSIS OF W_ANTNET 73

Figure 6.2 also shows that look-ahead reduces the percentage of data packets in loops
at increased mobility.

40

30

20

10

0

Pe
rc

en
ta

ge
 o

f d
at

a
pa

ck
et

s i
n

lo
op

s

8006004002000
pause time (s)

 W_AntNet
 look_W_AntNet

4

5

6

7

8

9

10

2

E[
H

]

8006004002000
pause time (s)

 look_W_AntNet
 W_AntNet

N = 50

40

30

20

10

0

Pe
rc

en
ta

ge
 o

f d
at

a
pa

ck
et

s i
n

lo
op

s

8006004002000
pause time (s)

 W_AntNet
 look_W_AntNet

4

5

6

7

8

9

10

2

E[
H

]

8006004002000
pause time (s)

 look_W_AntNet
 W_AntNet

N = 50

Figure 6.2: Percentage of data packets with a loop in their path as a function of pause
time for W_AntNet (look_W_AntNet). The insert shows the expected hopcount in
W_AntNet for different pause times.

6.2.1 NS-2 simulations

The default settings for all the experiments and the simulation code and parameters for
AODV, DSR are taken from the CMU/Monarch extensions for NS-2 [16]. The MAC
layer is 802.11 and the interface queue size is assumed to be 100 packets. The number
of CBR sources is 10 and the data rate is 4 packets/sec. The capacity of links is 2
Mbps. In W_AntNet, we assume that each node can store 50 packets in the low and
high priority queues.

Case Study 1: Static Network

We compare the packet delivery ratio (PDR) and the end-to-end delay for AODV, DSR
and W_AntNet for a static scenario. The size of data packets is varied from 64 bytes
to1024 bytes. We also show results for W_AntNet when the forward ants are generated
only during the T.P. (W_AntNet_antsTP). This reduces the number of control packets

74 CHAPTER 6. ANT ROUTING IN MOBILE AD HOC NETWORKS

in the network. Since the topology is static and the amount of data traffic is small,
the generation of forward ants only during T.P. is sufficient for routing under these
conditions.

Figure 6.3: The PDR and end-to-end delay for W_AntNet, AODV and DSR for static
topology.

The PDR and end-to-end delay in Figure 6.3 show that W_AntNet performs similar
to AODV and DSR when forward ants are generated only during the T.P. However, as
the forward ant generation rate is increased from 0 (W_AntNet_onlyTP) to 2 forward
ants/s, the routing overhead causes congestion in the queues. Thus, W_AntNet causes
a dual problem in ad hoc networks. A large number of forward ants cause congestion in
the network. However, with increasing mobility, more forward ants need to be generated
to account for frequent changes in the topology.

Case Study 2: Mobile Scenario

We study the performance of different routing protocols with mobility. The packet
size is assumed to be 64 bytes. Figure 6.4 shows the PDR, end-to-end delay and
the routing overhead (measured in number of bytes since the size of control packets
varies in W_AntNet) for AODV, DSR, W_AntNet and W_AntNet with look-ahead
(W_AntNet_look). We also reduce the routing overhead in W_AntNet by generat-
ing forward ants only from source-destination pairs that have data packets to send
(W_AntNet_onlysrc). Thus, the remaining nodes in the network do not maintain
up-to-date routing tables.
Figure 6.4 shows that with high node degree, AODV and DSR perform well in terms

of PDR and end-to-end delay. Figure 6.4 shows that using optimizations such as look-

6.2. PERFORMANCE ANALYSIS OF W_ANTNET 75

Figure 6.4: The PDR, end-to-end delay and routing overhead for W_AntNet, AODV
and DSR for mobile network of 50 nodes moving in an area 1500×300m2.

76 CHAPTER 6. ANT ROUTING IN MOBILE AD HOC NETWORKS

(a) (b)(a) (b)

Figure 6.5: The (a) PDR and (b) end-to-end delay for W_AntNet, AODV and DSR
for different values of the pause time. Nodes are moving in an area 2000m×2000m.

ahead and generating ants only from source-destination pairs reduces the overhead in
W_AntNet. However, the routing overhead is still more than in AODV and DSR.
As a result, the PDR for W_AntNet_look and W_AntNet_onlysrc is still lower than
AODV and DSR.

Case Study 3: Large Area Network (Sparse Graph Topology)

In this case, we compare the performance of different protocols in a larger area with the
same number of nodes (N = 50). The area over which the nodes move is 2000×2000m2.
Under these conditions, the average node degree is 2.5 and the worst case hopcount is
given by 11. The number of CBR sources is also increased to 20. Figure 6.5 shows
the PDR and end-to-end delay for AODV, DSR and W_AntNet. The packet size is
assumed to be 64 bytes.

This scenario leads to a sparse graph topology and an increase in network diam-
eter. As a result, the performance of all three protocols degrades considerably. The
simulations show that all three protocols have scalability problems. To improve the
scalability of routing protocols, additional schemes such as clustering need to be imple-
mented [107]. Figure 6.5 also shows that the use of look-ahead does not improve the
performance of W_AntNet since the average node degree is small.

6.3. CONCLUSIONS 77

6.3 Conclusions

The performance of W_AntNet is comparable to the shortest path algorithm for static
topology but is dependent on the buffer size at the nodes. Since forward ants share the
same queue as data packets inW_AntNet, a high ant generation rate leads to congestion
in the network. This causes W_AntNet to perform poorly compared to AODV and
DSR when the size of the buffer is small. In a dynamic topology, a significant amount
of packets in W_AntNet have loops. This can be attributed to the non-convergence of
routing tables in W_AntNet. Therefore, with mobility, the performance of W_AntNet
deteriorates in comparison to AODV and DSR that are loop-free.

78 CHAPTER 6. ANT ROUTING IN MOBILE AD HOC NETWORKS

Part III

Searching

79

Chapter 7

Introduction

Searching for resources or services efficiently is an important issue in various networks.
There are two common algorithms employed for searching - flooding and random walks
(RW). In flooding, each node forwards the packet to all its neighbors. In RW, the
packet is forwarded to a single node, chosen uniformly among the neighbors of a node.
Variations of RW that could be employed for searching include RW strategy where the
next hop is chosen as the node with maximum degree, RW with no retracing of steps
etc. We use the term RW using highest degree even though the next node is chosen
deterministically and not according to uniform distribution. The term local search
algorithm or path finding strategies is also used for such algorithms [64, 100].
There are numerous applications of searching algorithms in different networks. OSPF

uses flooding to distributed and synchronize the link-state routing tables between nodes.
In wireless ad-hoc networks, reactive protocols such as AODV and DSR use flooding
to locate the destination [34]. In web-graphs, search engines use breadth first search to
perform a complete search of the web. However, to reduce the overhead of searching,
agents or spiders based on RW, or variations of the RW such as the RW strategy where
the next hop is chosen as the node with maximum degree, and the RW strategy where
the probability of choosing the next node is proportional to the nodal degree are widely
used [27].
In the context of routing, RWs can be considered an extreme case of routing algo-

rithms that are used when the topology and the link weight structure of the graph are
not known. Variations of RW can be considered routing algorithms that use partial
topology information. Dijkstra’s shortest path algorithm can be used when both the
topology and the link weight structure of the entire graph are known. However, the
dynamic nature of ad hoc and overlay networks does not always allow to collect in-
formation concerning the current topology of the network. An attempt to collect such
information will often result in outdated information. Under the conditions that neither
the graph topology nor the link weight structure is known, the only possible routing
algorithms are flooding or RWs [38, 40].

81

82 CHAPTER 7. INTRODUCTION

Hot-potato routing, also called deflection routing, is a term first introduced by Baran
[7]. In hot-potato routing, the nodes in the network have no buffers to store packets
and the packets are forwarded to another node immediately [7, 17]. Hot-potato routing
algorithms are well suited for optical networks since it is difficult to buffer optical
messages. Hot potato routing algorithms have also been used in parallel machines such
as the HEP multiprocessor, the Connection machine, and the Caltech Mosaic C, as well
as in high speed communication networks [17]. The term hot-potato routing used in
this context is exactly the same as a RW.

In mobile agent based routing, the mobile agents perform a RW or a variant of
RW while searching for the destination. In Ant-Net, loop-erased RWs are used by the
mobile agents. Mobile agents using RW have been proposed for providing membership
services for ad-hoc networks by Dolev et al. [44]. As a sampling technique, RWs have
been used for providing membership services in ad hoc networks [44, 8] that provide
the nodes in the network with a view of the other nodes in network and that are used
by various applications such as location services, peer sampling services and random
overlay constructions [8]. In [8], Bar-Yossef et al. develop a membership service for
ad hoc networks based on RW using highest degree. They show that the performance
of such membership service is superior to other existing membership services based on
gossiping or flooding [8].

Unstructured overlay networks such as Gia proposed by Chawathe et al. [20] and
Gnutella build a random graph and use flooding or RWs to discover data stored at
different nodes. RWs have been shown to induce lower overhead than constrained
flooding used by the current versions of Gnutella [71, 51]. In the original Gia [20], the
RWs were biased to prefer nodes with higher capacity but Castro et al. [19] have shown
that preferring nodes with higher degree leads to a higher success rate and a lower
delay. Thus, further improvements have been proposed to Gia in which RWs are biased
towards the higher degree nodes [19]. Also, variations of RWs have been proposed in
which there are no loops [19].

Multiple RWs have been proposed for searching on unstructured peer-to-peer net-
works by Lv et al. [71]. However, the optimization of multiple RWs has not been
analyzed. Adaptive techniques based on RWs have been proposed for searching by Bis-
nik and Abouzeid [13]. In the searching technique proposed in [13], the number of RW
queries used for searching are varied depending on the previous performance of search-
ing. Our work differs from this approach since we study the optimization between the
number of queries and the TTL of queries for different graph topologies.

The analysis of RWs has been an active topic of research [28, 63, 70]. Lovász [70]
presents a detailed survey of RWs. An exact analysis of RWs on graph topologies such
as lattice and torus has been studied in [15]. A detailed mathematical analysis of RWs
is given in Chung [24]. Different search algorithms for scale-free and power law graphs
have been analyzed in [2, 64, 100].

7.1. OVERVIEW 83

7.1 Overview

While most RW strategies have been studied in specific scenarios, a general analysis of
performance of searching with RW strategies is missing. In this section, we analyze the
performance of searching with different RW strategies on ER random graphs and power
law graphs generated using preferential attachment. Both these graph topologies are of
fundamental important since ad-hoc wireless networks can be modeled as ER random
graphs while the web graphs and peer-to-peer networks can be modeled as power law
random graphs [51, 58]. We study both a single query and multiple queries to search
for the destination. We do not consider dynamic topologies in our analysis.
In [64] and [100], RW strategies where the next hop is chosen as the node with the

highest degree and with no retracing of steps have been analyzed in terms of expected
hopcount and weight. We show that strategies such as RW using highest degree and
RW with no retracing of steps can lead to infinite loops. Therefore, the comparison of
different RW strategies should also include an analysis of infinite loops, in addition, to
the expected hopcount comparison.
In case of multiple RW queries, we study the optimization of number of queries

and the TTL of queries for ER random graphs and preferential attachment power law
graphs. We also show an efficient way of searching graphs using RWs with no repetition
of steps (memory). Our analysis shows that searching with RW with memory performs
better than RW. In addition, the optimized value of memoryM depends on the topology
of the network.

7.2 Definitions and Random Walk properties

A random walk is a finite Markov chain that is time-reversible. The access or hitting
time Huv is the expected number of hops before node v is visited, starting from node
u. The sum J (u, v) = Huv+Hvu is called the commute time. The cover time (starting
from a given distribution) is the expected number of hops to reach every node in the
graph. If no starting node starting distribution is specified we mean the worst case, i.e.,
the node from which the cover time is maximum.
A RW can be described as a finite Markov chain that is time-reversible [70]. The

stochastic matrix P = ∆−1A, where∆ = diag (deg1, deg2, ..., degN) is the degree matrix
and A is the adjacency matrix, represents the transition matrix of the RW. It is known
[70] that the RW has a unique stationary distribution κ, such that κP = κ, with
κi =

degi
2L
. Let the RW start at node v0. The node v0 could be drawn from some

initial distribution Y0. Denote the sequence of random nodes by vt (t = 0, 1...). If we
denote by Yt the distribution of vt i.e., Yt (i) = Pr [vt = i], the RW can be expressed as
Yt+1 = P TYt and hence, Yt =

¡
P T
¢t
Y0. Thus, the probability that RW starting at u

reaches node v in t steps is given by (u, v) entry of the matrix P t [70].

84 CHAPTER 7. INTRODUCTION

It is known that a symmetric P matrix has n real eigenvectors with corresponding
eigenvalues 1 = y1 ≥ y2 ≥ ... ≥ yn ≥ −1 . Moreover, if we exclude bipartite graphs or
reducible Markov chains, then | yi |< 1, for i > 1. Cover time is the expected number
of steps for RW to visit all nodes at least once. Let CN be the cover time for the RW,
then the cover time is [8],

CN = O

µ
κ−1min logN

1− y2

¶
= O

µ
N logN

1− y2

¶
, where κmin =

degmin
2L

(7.1)

Jonasson [63] has shown that when p ≥ logN
N
, w.h.p a random graph has the same

cover time as the complete graph KN i.e., the cover time is N logN . Similarly, for
power law graphs generated using BA model, it has been shown by Cooper and Frieze
[28] that if l ≥ 2, then w.h.p. the cover time CN ≤

§
2l
l−1N logN

¨
+ o

¡§
2l
l−1N logN

¨¢
.

Chapter 8

Searching with single query

In this chapter, we investigate the performance of searching with a single query based on
RW or variation of RW.We investigate the expected hopcount obtained by different RW
strategies and the probability of finding the short paths. A general expression for the
expected hopcount of a RW is computed. The performance of different RW strategies
is compared on different graph topologies such as a complete graph, ER random graphs
Gp(N) and power law graphs generated using the BA model.
The rest of this chapter is organized as follows. Section 8.1 gives a description of

different RW strategies. Sections 8.2 and 8.3 give an analysis and simulation results for
searching with different RW strategies. The last section presents the conclusions.

8.1 Random Walks

The topology and link weight structure are essential for characterizing the network.
Therefore, we study the RW strategies under two distinct regimes. In the first case, we
assume that all the link weights are 1. Thus, the RW strategies use only topological
information such as degree for choosing one of the neighbors as the next hop.
In the second case, we investigate different RW strategies on weighted random

graphs. The weighted graphs offer a more realistic view of the network. For example,
Internet traffic [100] and link capacities in overlay networks [19, 71] can be represented
as weighted edges. In weighted graphs, RW strategies can use link weights, in addition
to any topological information, for choosing the next hop.

8.1.1 Random Walk with memory M

A first-in first-out (FIFO) list, called the memory listM, is maintained. The memory
list M contains the node identifiers nj of the last M nodes visited during the RW,
i.e. M = {n1, n2, .., nM}, where M =| M | represents the number of elements in the

85

86 CHAPTER 8. SEARCHING WITH SINGLE QUERY

memory list M. The next hop is chosen uniformly among the neighbors of the node
that are not in the memory list M. In our implementation of the RW strategy with
memoryM (RWM), the node identifier of the current node is not stored in the memory
listM and no self-loops are allowed (The next hop cannot be chosen as the node itself.)
The idea of using RWM on a graph is similar to the RW with unbounded memory in
a continuous 3-dimensional space which has been referred to as a self-avoiding RW
[66, 93]. The RWM strategy is equivalent to the search queries proposed for overlay
networks where the structure is used to ensure that nodes are visited only once during
a query and to control the number of nodes that are visited accurately [19].
From the routing point of view, the major shortcoming of RWs on graphs is the

existence of loops in the path while travelling from the source to the destination node.
To prevent loops, the simplest method is to introduce memory in the RWs. The one
hop loops can be prevented by using M = 1, both the two hop and one hop loops can
be prevented by using M = 2 and so on. Thus, a complete memory M = N − 1 totally
eliminates loops in the RWs. But the introduction of memory (M ≥ 1) in RWs leads
to a deadlock. Figure 8.1 explains the concept of deadlock in a RW with memory. Let
us assume that the RW has a memory M = 3 represented asM = {n1 n2 n3} where
n3 represents the last node visited. Consider the situation where the RW enters the
cluster B at node 1. Suppose that the RW leads to a path 1 −→ 2 −→ 3 −→ 4 in
the cluster B. At node 2, the memory listM contains {1} and at node 3 the memory
listM contains {1, 2}. At node 4, the memory listM contains {1, 2, 3} and since all
the neighbors of node 4 are in the memory list M and no self loops are allowed, the
RW cannot move forward nor backward. Therefore, a deadlock prevents the RW from
ever reaching the destination. Keeping the memory M equal to the degree of nodes is
not sufficient to prevent loops. Consider the same situation as above but with memory
equal to the degree of node 4, i.e. M = 2. At node 4, the memory list M contains
{2, 3} and the next hop can be chosen as node 1. Thus, introducing memory removes
the loops in the RW but induces deadlocks. In the implementation of Gia, Castro et al.
[19] have used a query in RWs which consists of all the previously visited hops. This is
similar to using complete memory in our analysis. The above analysis shows that there
are two distinct regimes possible for RWs. Without memory, i.e. M = 0, the RWs can
have loops but no deadlocks. For complete memory, the RWs can only have deadlocks
and no loops. When the value of the memoryM is such that 0 < M < N − 1, the RWs
can have loops and deadlocks.

8.1.2 Random Walk with look-ahead

The RW with look-ahead (RWLA) is a RW that uses information about the neighbors
[52, 73]. In RWLA = 1, the destination is chosen as the next node if it is among the
neighbors of the node, else the next hop is chosen uniformly among all the neighbors of
the node. The use of look-ahead 1 has been assumed in recent work [2, 64] in searching

8.1. RANDOM WALKS 87

1

4

3

2

n3

n4 n1 n2

cluster A

cluster B
cluster C

1

4

3

2

n3

n4 n1 n2

cluster A

cluster B
cluster C

Figure 8.1: Explanation of deadlock in (a) RWwith memory: The path 1→ 2→ 3→ 4
is shown by arrows. At node 4, the dashed lines indicate the links that cannot be used
with memory M ≥ 3. (b) RW using highest degree: Node n1 chooses node 1 as next
hop and node 1 chooses node n1 as next hop leading to an infinite loop.

on graphs. In RWLA = 1, there are no deadlocks. The RWLA = 1 can also be used in
combination with memory M (see Table 1).

8.1.3 Random Walk using highest degree

In RW using highest degree (RWHD), the next hop is chosen as the node with highest
degree until the destination is reached. Thus, at node u the next node v is chosen such
that degv = max

s Nu

degs, whereNu is the set of neighbors of u. The RWHD strategy can end

in a deadlock. Deadlocks occurring in RWM and RWHD have different characteristics.
In deadlocks in RWM, the node can terminate the RW because it cannot choose any
of the neighbors as the next hop. In deadlocks in RWHD, the node can always choose
a neighboring node with highest degree as the next hop but this process may repeat.
Figure 8.1 illustrates the concept of deadlock in RWHD. At node n1, node 1 is chosen as
the next node since it has the highest degree among the neighbors of the node n1. At
node 1, node n1 is chosen as the next hop since node n1 has the highest degree among
the neighbors of the node 1. Thus, the RWHD ends in an infinite loop or a deadlock.
The RWHD can also be used in combination with different values of memory M and
look-ahead (see Table 1).

88 CHAPTER 8. SEARCHING WITH SINGLE QUERY

8.1.4 Random Walk proportional to the degree

We consider a general case of the RW proportional to the degree (RWPD) with a para-
meter ζ. The probability of choosing the next node is proportional to the degree of the
node with exponent ζ: At node u, quv ∝ degζv where quv is the probability of choosing
the neighbor v. By normalization, we obtain quv =

degζv

v Nu

degζv
. Using ζ = 1, we get the

RW strategy in which the probability of choosing the next node is proportional to the
degree of the node. There are no deadlocks in RWPD with parameter ζ = 1. On the
other hand, the RWPD strategy with ζ = 0 is same as RW.

8.1.5 Random Walk using minimum link weight

In RW using minimum link weight (RWW), the next hop is chosen as the link with
minimum weight. Thus, at node u the next node v is chosen such that wuv = min

s Nu

wus,

where wus is the weight of link between node u and node s. Deadlocks in RW using
minimum link weight are similar to the deadlocks occurring in RW using highest degree.
Indeed, the degree can be considered as a special kind of link weight.

8.1.6 Random walk proportional to the link weight

The probability of choosing the next node is proportional to the ζ-th power of the link
weight: At node u, yuv ∝ wζ

uv where yuv is the probability of choosing the neighbor v.
By normalization, we obtain yuv =

wζuv

v Nu

wζuv
. Using ζ = −1, we get the RW strategy

in which the probability of choosing the next node is inversely proportional to the link
weight.
Table 1 lists the various RW strategies and explanation of how the next hop is chosen

in different strategies.

8.2 Analysis of Searching with single query

The probability distribution of hopcount for a RW on a complete graph KN is a geo-
metric distribution [70, 38],

Pr[H = j] =
1

N − 1

µ
1− 1

N − 1

¶j−1
(8.1)

For multiple itemsm = q (N − 1) uniformly located overKN , the hopcount distribution
is

Pr[H = j] =
m

N − 1

µ
1− m

N − 1

¶j−1
(8.2)

8.2. ANALYSIS OF SEARCHING WITH SINGLE QUERY 89

Table 8.1: Explanation of different RW strategies.

RW strategy Next hop

RW uniformly among the neighbors.
RWM uniformly among the neighbors that are not in the memory listM.

RWLA = 1 destination, if it is a direct neighbor, else uniformly among the neighbors.
RWLA = 1; M destination, if it is a direct neighbor, else uniformly among the neighbors

that are not in the memory listM.

RWHD neighbor with the highest degree.
RWHD; M highest degree neighbor that is not in the memory listM.
RWHD; LA = 1 destination, if the destination is among the neighbors, else highest degree

neighbor.
RWHD; LA = 1; M destination, if the destination is among the neighbors, else highest degree

neighbor not in the memory listM.

RWPD probability of choosing the neighbor is proportional to the degree of neigh-
bor.

RWPD; M probability of choosing the node is proportional to the degree of the node
but nodes in the memory listM are not considered.

RWPD; LA = 1 destination, if the destination is among the neighbors, else probability of
choosing the node is proportional to the degree of the node.

RWPD; LA = 1; M destination, if the destination is among the neighbors, else probability of
choosing the node is proportional to the degree of the node but nodes in
the memory listM are not considered.

RWW link with minimum weight.
RWW; LA = 1; M destination, if it is among the neighbors, else neighbor with minimum

weight among the neighbors that are not in the memory listM.

RWPW probability of choosing the link is proportional to the link weight.
RWPW; LA = 1; M destination, if the destination is among the neighbors, else probability

of choosing the link is proportional to the link weight but nodes in the
memory listM are not considered.

90 CHAPTER 8. SEARCHING WITH SINGLE QUERY

and the expected hopcount is N−1
m
.

With memory M for RWM on a complete graph KN ,

Pr
h
Ĥ = j

i
=

1

N − 1 (8.3)

which means that the hopcount for RWM is a uniform random variable on [1, N − 1]
when 1 ≤ j ≤M . The probability distribution of RW with memory M for j ≥M + 1
is [38],

Pr [HM = j] =
1

N − 1

µ
N − (M + 2)

N − (M + 1)

¶j−M−1
(8.4)

Thus, the probability distribution for a RWM on the complete graph KN is a uniform
random variable on [1,M] and geometric variable on [M + 1, N − 1]. With multiple
data items uniformly located over KN , 1

N−1 is replaced by q in (8.3) and (8.4).
We now compute the probability of deadlocks and the hopcount distribution for

RWM. Let the RWM be at node ni after j − 1 hops. We have used ni instead of nj
since there may be loops in RWM and this node might have been visited before. In
the next step, the RWM has to choose one of the neighbors as the next hop (hop j).
Let Xj;ni represent the event that all neighbors of node ni have been visited before
hop j. Clearly, Pr [X1;ni] = 0 for all ni ∈ N . Let degni represent the degree of node
ni. Let Φj be the probability that there is a deadlock before making hop j and Φ
denote the probability that there is a deadlock in RWM. A deadlock can happen while
choosing hop j iff degni ≤M and all the neighbors of node ni have been visited before1.
In a complete graph since degree of any node ni is always greater than any M i.e.,
Pr
£
degni > M

¤
= 1, the probability of deadlock before making hop j is always zero. In

general,
Pr [Φj] = Pr

£
Xj;ni | degni ≤M

¤
· Pr

£
degni ≤M

¤
(8.5)

The probability of deadlock in RWM is

Pr [Φ] = Pr [deadlockhop1] + Pr [deadlockhop2] + Pr [deadlockhop3] + ... (8.6)

≤
∞X
j=1

Pr [Φj] =
∞X
j=1

Pr
£
Xj;ni | degni ≤M

¤
· Pr

£
degni ≤M

¤
The probability of deadlock (Pr [Φ]) is less than the sum of probabilities of deadlock at
each hop (

P
Pr [Φj]) since we did not consider the probability of finding the destination

at any hop while computing Pr [Φj].
In ER random graphs, the probability of deadlock in RWM tends to 0 when M <

(1− δ) · p(N − 1). For any fixed α, 0 < α < 1, let δ =
q

9
p(N−1) log

N
α
. By Chernoff

1If memory listM is not full, then M represents the number of elements in the memory list.

8.2. ANALYSIS OF SEARCHING WITH SINGLE QUERY 91

n1

n2

n0

n3

n1

n2

n0

n3

Figure 8.2: Diagram showing the progression of RW and RWM.

bounds [105],

Pr
£
| degni −p (N − 1) |> δ · p(N − 1)

¤
≤ 2 · exp

µ
−δ

2p (N − 1)
3

¶
(8.7)

Substituting the above value of δ

Pr
£
| degni −p (N − 1) |> δ · p(N − 1)

¤
≤ 2 · exp

µ
−2 log N

α

¶
≤
³ α
N

´2
(8.8)

Therefore, for M < (1− δ) · p(N − 1), Pr
£
degni ≤M

¤
≤
¡
α
N

¢2
. Hence using (8.5), the

probability of deadlock before making hop j, Pr [Φj] ≤
¡
α
N

¢2
. The general expression

for probability of deadlocks and the probability distribution of hopcount for RWM=N-1on
G (N,L) is computed below. Let n0 be the source node (Figure 8.2). Since Pr [Φ1] = 0,
the probability of deadlock before making first hop

Pr [deadlockhop1] = Pr [E0] · Pr [n0 6= v] · Pr [Φ1] = 0

Let E1 denote the event that RWM=N-1 has made 1 hop already and that node n1 is the
current node.

Pr [H = 1] = Pr [E1] · Pr [n1 = v] =
1

N − 1

Pr [deadlockhop2] = Pr [E1] · Pr [n1 6= v] · Pr [Φ2]

=

µ
1− 1

N − 1

¶
· Pr [Φ2]

Now a transition is made from node n1 to node n2. Let E2 denote the event that
RWM=N-1 has made a transition to node n2. Therefore, Pr [E2] = Pr [E1] ·Pr [n1 6= v]−

92 CHAPTER 8. SEARCHING WITH SINGLE QUERY

Pr [deadlockhop2]

Pr [H = 2] = Pr [E2] · Pr [n2 = v] =
1

N − 2 ·
µ
1− 1

N − 1

¶
· (1− Pr [Φ2])

=
1

N − 1 · (1− Pr [Φ2])

Pr [deadlockhop3] = Pr [E2] · Pr [n2 6= v] · Pr [Φ3]

=

µ
1− 1

N − 1

¶µ
1− 1

N − 2

¶
(1− Pr [Φ2]) Pr [Φ3]

Thus, the probability of deadlock and hopcount distribution for RWM=N-1 on graph
G (N,L) is

Pr [deadlockhopj] =
µ
N − j

N − 1

¶
(1− Pr [Φ2]) (1− Pr [Φ3]) ... (1− Pr [Φj−1]) Pr [Φj] (8.9)

Pr [H = j] =
1

N − 1 (1− Pr [Φ2]) (1− Pr [Φ3]) ... (1− Pr [Φj−1]) (1− Pr [Φj]) (8.10)

With multiple data items m = q (N − 1) uniformly located over the network, the hop-
count distribution is

Pr [H = j] =
m

N − j

µ
1− m

N − 1

¶
...

µ
1− m

N − j − 1

¶
(1− Pr [Φ2]) ... (1− Pr [Φj])

(8.11)
Since we know that in ER random graphs, whenM ≤ (1− δ) p (N − 1), Pr

£
degni ≤M

¤
is small and when M > (1 + δ) p (N − 1), Pr

£
degni < M

¤
is close to 1, the probability

of deadlock in RWM=N-1 can be approximated as

Pr [Φ] ≤
NX
j=1

Pr
£
Xj;ni | degni ≤M

¤
· Pr

£
degni ≤M

¤
≈

NX
j=(1+δ)p(N−1)

Pr [Xj;ni]

When the link density p is small, the probability of deadlocks is large. However, if p is
sufficiently large, then Pr [Φ] is close to 0. In power law graphs, since there are large
number of nodes with very small degree, the probability of deadlocks becomes large
even for small values of the memory M .
It is difficult to compute the exact expression for RWLA=1 because of the loops. We

compute the expression for probability of deadlocks and the probability distribution
of hopcount for RWLA=1;M=N-1 on ER random graphs. Let Sni represent the set of
neighbors of node ni that have not been seen before. Then,

Pr [H = 1] =

N−1X
j=0

j Pr [deg = j]

N − 1
= p

8.2. ANALYSIS OF SEARCHING WITH SINGLE QUERY 93

If the destination is not found at hop 1, then RWLA=1;M reaches node n1. Since node
n1 is connected to node n0 (n0, n1), the probability that node n1 has degree j is the
probability that node n1 has degree (j − 1) from the remaining N − 2 nodes.

Pr
£
degn1 = j | (n0, n1)

¤
= Pr

£
degn1 = j − 1 | (N − 2) nodes

¤
=

µ
N − 2
j − 1

¶
pj−1 (1− p)N−1−j

Each of neighbors of node n1 is connected to node n0 with probability p, thus

Pr [H = 2] =

N−2X
j=0

(j + 1)
¡
N−2
j

¢
pj (1− p)N−2−j − 1− p

N−2X
j=0

j
¡
N−2
j

¢
pj (1− p)N−2−j

N − 1
= p (1− p)

N − 2
N − 1

Pr [deadlockhop2] = Pr [E1] · Pr [v /∈ Sn1] · Pr [Φ2] = (1− p)

µ
1− p

N − 2
N − 1

¶
· Pr [Φ2]

Now a transition is made from node n1 to node n2. If node n2 is connected to node n1
and not n0 (n2, n1), then the probability that node n2 has degree j is

Pr
£
degn2 = j | (n2, n1)

¤
= Pr

£
degn2 = j − 1 | (N − 3) nodes

¤
=

µ
N − 3
j − 1

¶
pj−1 (1− p)N−2−j

If node n2 is connected to node n1 and n0 (n2, n1, n0), then the probability that node
n2 has degree j is

Pr
£
degn2 = j | (n2, n1, n0)

¤
= Pr

£
degn2 = j − 2 | (N − 3) nodes

¤
=

µ
N − 3
j − 2

¶
pj−2 (1− p)N−1−j

Using the above expressions, the probability that hopcount is 3 can be computed as

Pr [H = 3] = p (1− p)2
N − 3
N − 1 (1− Pr [Φ2])

Thus, the probability distribution of hopcount for RWLA=1;M=N-1 in ER random graph
is

Pr [H = j] = p (1− p)j−1
N − j

N − 1 (1− Pr [Φ2]) ... (1− Pr [Φj−1]) (8.12)

With multiple items m = q (N − 1) uniformly distributed over the network, the proba-
bility distribution of hopcount (neglecting the term N−j

N−1) can be approximated by

Pr [H = j] =
p

q

µ
1− p

q

¶j−1
(1− Pr [Φ2]) ... (1− Pr [Φj−1]) (8.13)

94 CHAPTER 8. SEARCHING WITH SINGLE QUERY

8.3 Simulation Results

This section is divided into three parts. The first part shows the simulation results for
RW strategy with lookahead j (j ≥ 1), which is generalization of RWLA strategy. In
the second part, simulation results comparing different RW strategies for ER random
graphs and BA power law graphs are presented. In each simulation, 106 random graphs
of the class Gp(N) are constructed. The source and destination are chosen uniformly.

8.3.1 RW with lookahead j

The RWwith lookahead j (RWLA = j) is a RW strategy in which each node has topology
information upto j hops, i.e. each node maintains a level set2 LN upto level j. If the
destination is located within the level set LN , a shortest path is chosen. However, if
the destination is not located within the level set LN , then the next node is chosen
uniformly among the neighbors of the node. In the extreme case, when each node
maintains topology information about the entire network, the RWLA = j strategy leads
to deterministic routing [103]. Indeed, it has been shown that there is a phase transition
in the performance of RWLA = j, when j is equal to the average path length [103].
Moreover, with look-ahead greater than the average path length, the performance of
RWLA = j is similar to the shortest path routing [103].
When look-ahead ≥ 2, the probabilities that the hopcount is one and two can be

calculated exactly for ER random graphs [105]:

Pr [HN = 1] = p

Pr [HN = 2] = (1− p)
³
1−

¡
1− p2

¢N−2´
(10)

As the link density p and the network sizeN are increased, Pr[HN > 2] = (1− p) [1− p2]
N−2

becomes negligible. Therefore, for large values of link density p, the performance of
RWLA = 2 is comparable to Dijkstra’s shortest path algorithm. Figure 8.3 shows the
comparison for RWLA = 2 and Dijkstra’s shortest path algorithm for N = 100 and dif-
ferent values of the link density p. The insert in Figure 8.3 shows the expected hopcount
for different values of look-ahead for N = 800 and p = 0.0084. As shown in [105], the
expected hopcount between any two nodes in ER random graphs can be approximated
by logN

log p(N−1) . Therefore, for look-ahead greater than
logN

log p(N−1) = 3.5, the expected hop-
count for RWLA = j is constant and equal to the expected hopcount obtained by using
Dijkstra’s algorithm (see insert Figure 8.3).

2Level set at level 1 is defined [105] as the set of nodes 1 hop away from the source node, level set
at level 2 is defined as the set of nodes 2 hops away from the source node and so on.

8.3. SIMULATION RESULTS 95

0.6

0.4

0.2

0.0

Pr
[H

 =
 k]

108642
hop k

N = 100, RWLA = 2
 p = 0.1 E[H] = 2.5, var[H] = 2.1
 p = 0.2 E[H] = 1.8, var[H] = 0.2

Dijkstra's algorithm
 p = 0.1 E[H] = 2.2, var[H] = 0.4
 p = 0.2 E[H] = 1.81, var[H] = 0.2

1000

800

600

400

200

0

E[
H

]

1086420
LA = k

N = 800
p = 0.0084

0.6

0.4

0.2

0.0

Pr
[H

 =
 k]

108642
hop k

N = 100, RWLA = 2
 p = 0.1 E[H] = 2.5, var[H] = 2.1
 p = 0.2 E[H] = 1.8, var[H] = 0.2

Dijkstra's algorithm
 p = 0.1 E[H] = 2.2, var[H] = 0.4
 p = 0.2 E[H] = 1.81, var[H] = 0.2

1000

800

600

400

200

0

E[
H

]

1086420
LA = k

N = 800
p = 0.0084

Figure 8.3: Comparison of the RWLA = 2 and the Dijkstra’s shortest path algorithm for
N = 100 and different values of the link density p. The insert shows expected hopcount
for different values of look-ahead for N = 800 and p = 0.0084.

8.3.2 Comparison of RW strategies

In ER random graphs, at large values of the link density p, E[HRW] ∼ N and therefore
E[HRWLA = 1] ∼ 1

p
. Moreover, Pr [Φ] −→ 0 for anyM for large values of the link density

p. Also, p (1− p)j−1 is a good approximation when p is large for RWLA=1;M=N-1 (Figure
8.4).Thus, when the link density p is large, the results for different RW strategies on a
random graph Gp(N) are similar to a complete graph KN .
We compare the performance of RW strategies in sparse graphs i.e., random graphs

with small link density p. The sparse graphs are particularly interesting since the
average degree for most real networks like Gnutella [71] and Internet [2] is known to be
small.
Figure 8.5 shows the simulation results for a sparse ER random graph. The Pr[success]

represents the probability that destination is found by the query. The simulations indi-
cate that the mean hopcount is linear in N for these strategies and the mean hopcount
for the RWLA = 1 and the RW strategies are related by the expression E[HRWLA = 1]

∼ E[HRW]
pN

. In RWM=N-1, the probability of deadlock Pr [Φ] −→ 1 as N is increased.
Figures 8.6 shows the simulation results for preferential attachment graphs generated

using the BA model. RWLA=1 and RWHD are not effective as might be expected since
there are large number of nodes with small degree in this model. It has been shown by
Mihail et al. [75] that in power law graphs, the expected number of hops for RWLA=1

96 CHAPTER 8. SEARCHING WITH SINGLE QUERY

0.0001

0.001

0.01

0.1

Pr
[H

 =
 k

]

40302010
hop k

 Simulation Results
N = 25

 p = 0.3 E[H] = 3.3, var[H] = 7.2
 p = 0.5 E[H] = 2.0, var[H] = 2.0
 p = 0.8 E[H] = 1.2, var[H] = 0.31

N = 100
 p = 0.1 E[H] = 9.9, var[H] = 86.1

Analytical Results
N = 25

 p = 0.3 E[H] = 3.3
 p = 0.5 E[H] = 2.0
 p = 0.8 E[H] = 1.2

N = 100
 p = 0.1 E[H] = 10

Figure 8.4: Comparison of the expression Pr [H = j] ∼= p (1− p)j−1 and simulation
results for RWLA = 1; M = N-1 on a random graph for N = 25, 100 and different values of
the link density p.

to discover Ω
³
N1− (12−ε)

´
nodes is O

³
N

1
2
+ε logN

´
where 0 < ε < 1

2
. This shows that

look-ahead is not effective for power law graphs. Using RWM=N-1, the probability that
there is a deadlock is close to 1 when N is large.
The RWHD; LA=1; M=N-1 strategy performs best in both graph topologies. The ex-

pected hopcount for certain RW strategies such as RWHD is similar for both the graph
topologies. However, the average hopcount does not accurately reflect the performance
of different search strategies since these strategies generally lead to infinite loops. Look-
ahead and memory both improve performance in power law graph and ER random
graphs. However, the performance with M = N − 1 and LA = 1 improves more in ER
graphs then the BA model. Moreover, in ER random graphs and power law graphs gen-
erated using the BA model, the performance of RWLA is close to shortest path routing
with small values of look-ahead. This is due to the small diameter (O (logN)) of these
graph topologies [22, 23].

8.4 Conclusion

The hopcount distribution for RW strategies based on memory and lookahead is close
to a geometric variable for random graphs. We also investigated the occurrence of dead-
locks in various RW strategies. Deadlocks have been neglected in most of the previous

8.4. CONCLUSION 97

(a)

(b)

7
8

10

2

3

4

5
6
7
8

100

2

3

4

5
6

E[
H

N
]

5 6 7 8 9
100

2 3 4

N

 RW
 RW LA = 1
 RW M = N-1
 RW LA = 1 ; M = N-1

 RW HD ; LA = 1 ; M = N-1
 RW PD ; LA = 1 ; M = N-1

 pN = 5

0.8

0.6

0.4

0.2

Pr
[s

uc
ce

ss
]

40035030025020015010050
N

 RWM = N-1
 RWM=N-1; LA = 1

 RWHD; M = N-1
 RWHD; LA = 1

 RWHD; LA = 1; M = N-1

 pN = 5

(a)

(b)

7
8

10

2

3

4

5
6
7
8

100

2

3

4

5
6

E[
H

N
]

5 6 7 8 9
100

2 3 4

N

 RW
 RW LA = 1
 RW M = N-1
 RW LA = 1 ; M = N-1

 RW HD ; LA = 1 ; M = N-1
 RW PD ; LA = 1 ; M = N-1

 pN = 5

0.8

0.6

0.4

0.2

Pr
[s

uc
ce

ss
]

40035030025020015010050
N

 RWM = N-1
 RWM=N-1; LA = 1

 RWHD; M = N-1
 RWHD; LA = 1

 RWHD; LA = 1; M = N-1

 pN = 5

Figure 8.5: (a) The mean hopcount for different RW strategies as a function of N with
constant number of neighbors (pN = 5) for ER graphs. (b) The Pr[success] for different
RW strategies for N = 200 and link density p = 0.025.

98 CHAPTER 8. SEARCHING WITH SINGLE QUERY

(a)

(b)

10

100

1000

E[
H

N
]

100
2 3 4 5 6 7 8 9

1000
N

 RW
 RW LA = 1
 RW M = N-1
 RW LA = 1; M = N-1
 RW HD; LA = 1; M = N-1
 RW HD; LA = 1
 RW HD; M = N-1

0.8

0.6

0.4

0.2

Pr
[s

uc
ce

ss
]

1600140012001000800600400200
N

 RWHD; LA =1; M = N-1

 RWLA =1; M = N-1
 RWM = N-1
 RWHD; LA = 1

 RWHD; M = N-1

(a)

(b)

10

100

1000

E[
H

N
]

100
2 3 4 5 6 7 8 9

1000
N

 RW
 RW LA = 1
 RW M = N-1
 RW LA = 1; M = N-1
 RW HD; LA = 1; M = N-1
 RW HD; LA = 1
 RW HD; M = N-1

0.8

0.6

0.4

0.2

Pr
[s

uc
ce

ss
]

1600140012001000800600400200
N

 RWHD; LA =1; M = N-1

 RWLA =1; M = N-1
 RWM = N-1
 RWHD; LA = 1

 RWHD; M = N-1

Figure 8.6: (a) The mean hopcount for different RW strategies as a function of N
for power law graph generated using BA model (b) The Pr[success] for different RW
strategies.

8.4. CONCLUSION 99

search strategy comparisons. A mere comparison of the expected hopcount or weight
of different RW strategies gives little insight into the performance of these strategies.
The simulations showed that for RW strategies using highest degree or minimum link
weight, the expected hopcount or weight is small but these strategies generally lead to
deadlocks. In conclusion, RW strategies using highest degree or minimum link weight
perform well when used in combination with memory or look-ahead. Also, for differ-
ent RW strategies, if the probability of finding the destination is large, the expected
hopcount for the particular strategy is also large and vice versa.

100 CHAPTER 8. SEARCHING WITH SINGLE QUERY

Chapter 9

Searching with multiple queries

Searching overhead or packet overhead is defined as the product of number of hops for
each query (packet) and number of queries (packets) i.e., the total number of packets
exchanged. Our work in this chapter shows that searching using multiple RW queries
reduces the overhead for searching as compared to flooding with sequence numbers.

It is known that the number of hops required for uniform sampling by RW can be
as low as the number of samples in independent uniform sampling [13, 51]. Thus, if
the RW starts at any node and makes h hops, and using each visited node as a sample
point, approximately the same statistical properties can be achieved as h independent
uniform samples. However, our simulations show that there are large differences in the
behavior of RW as compared to independent uniform sampling particularly when the
TTL is small.

A single RW query has an overhead and time to discover of O(N logN) for ER
random graphs and BA power law graphs [28, 63]. Since the time to discover is large
in RW, we split a single RW query into Q multiple queries each with a given TTL.
Each RW query stops when the TTL is reached or the destination is located (In RWM,
the query also stops if there is a deadlock). Since each RW query makes at most TTL
hops, the worst-case searching overhead is Q×TTL. The expected number of hops are
less since any query stops once the destination is found. However, there is a probability
that a destination is never located by the multiple queries. Thus, with multiple queries
we define the probability of success as the probability that the destination is located by
at least one query out of the Q queries generated. In flooding with sequence numbers,
the probability of success is defined as the probability that a destination is located with
a given TTL. We want to minimize TTL and Q and maximize Pr [success].

101

102 CHAPTER 9. SEARCHING WITH MULTIPLE QUERIES

9.1 Analysis of searching with multiple RW queries

To analyze the performance of multiple RW queries, we define the efficiency as the
inverse of expected packet overhead needed to discover the destination node. The
efficiency is normalized by multiplying by N . The gain of searching in one scheme over
another is defined as the ratio of efficiency for the corresponding schemes.

n =
Number of iterations (Pr [success])
Total number of packets exchanged

×N (9.1)

ga

µ
RWM

RW

¶
=
n (RWM)

n (RW)
(9.2)

Consider a single RW and RWM on a complete graph KN . The searching overhead
can be approximated by the product of expected hopcount to discover the destination
and the number of iterations. Since in RW and RWM, the expected hopcount is N − 1
and (N − 1) /2 respectively, the gain ga

¡
RWM
RW

¢
= 2 for a complete graph KN . In

flooding with TTL = 1, n is N/ (N − 1) and with TTL = 2, n is N/ (N − 1)2. Thus,
the efficiency of flooding depends on the value of TTL and the efficiency decreases with
TTL.
Table 9.1 and 9.2 show the efficiency for a single RW and RWM query and flooding

with sequence numbers for different values ofN and p. The results for flooding in Tables
9.1 and 9.2 are for optimized values of TTL such that Pr [success] is close to 1. The gain
obtained by using RW over flooding is significant, particularly, when the link density
p is large. In addition, RWM=N-1 is a more efficient way of searching than RW since
the expected number of hops required to find the destination or to reach a deadlock is
less. However, the probability of deadlocks is high when the link density p is small. As
the link density p is decreased, efficiency for both RW and RWM decreases. This is in
contrast to flooding where the efficiency increases as the link density is decreased.

Table 9.1: Efficiency of searching by using flooding, and a single RW or RWM query for
dense ER random graph (pN = 80) for different values of N

pN = 80

N n (RW) n (RWM) n (flooding) g
³

RW
flooding

´
g
¡
RWM
RW

¢
100 1.17 1.82 0.015 78 1.55
200 1.08 2.16 0.03 36 2
400 1.05 1.997 0.06 17.5 1.90
800 1.017 2.0 0.12 8.5 1.98

9.1. ANALYSIS OF SEARCHING WITH MULTIPLE RW QUERIES 103

Table 9.2: Efficiency of searching by using flooding, and a single RW and RWM query
for sparse ER random graph (pN = 10) for different values of N

pN = 10

N n (RW) n(RWM) Pr[success] (flooding) g
³

RW
flooding

´
g
¡
RWM
RW

¢
100 0.84 1.6 0.73 0.14 6 1.89
200 0.84 1.54 0.66 0.21 4 1.83
400 0.82 1.47 0.59 0.11 7.5 1.79
800 0.8 1.4 0.52 0.14 5.7 1.76

A single RW leads to lower overhead to locate a destination than flooding with
sequence numbers. However, the time to search for the destination is much larger than
in flooding. Since we want to maximize Pr [success] and minimize TTL, we split the
single RW or RWM into multiple queries with fixed TTL such that Q×TTL = N logN .
Table 9.3 and 9.4 show the results for multiple RW and RWM queries for ER random
graph with N = 400 and link density p = 0.015 and 0.2 respectively. In Table 9.4, since
the link density p is large, Pr [success] ' 1 and is not shown.
The probability of success is very low in RWM with only a single query when the

link density p is small. However, when split into multiple queries, Pr [success] increases.
As the TTL is decreased and Q is increased, the efficiency decreases for both RW and
RWM. The decrease in efficiency occurs with small TTL since most of the queries
search only the neighboring nodes which have been visited already by other queries.
There is also a decrease in efficiency because the number of queries and the TTL is
fixed. Thus, multiple queries might locate the destination. The terminating conditions
can be included which improve the efficiency but increases the complexity of searching
algorithms. For example, a scheme is proposed in [71], where the query checks with
the source node whether the destination is located. As shown by tables 9.3 and 9.4,
the efficiency decreases by a factor of 3 as the TTL is decreased from 2400 to 120.
Moreover, when the TTL is small, the gain obtained by using RWM over RW is small.
Therefore, only for large values of link density p and TTL, RWM is a more efficient way
of searching than RW. If we use Q > 1 with TTL = 2400, the efficiency decreases.

Figure 9.1 shows Pr [success] versus the searching overhead (number of packets
exchanged) and the worst time to discover the destination. Since the size of network is
not known a priori, we also show simulations for query split into multiple queries with
a different TTL. We use a linearly increasing TTL and the maximum time to discover
is given by maximum TTLmax.

TTL(l) = TTLmin + (l − 1) ∗ add_TTL (9.3)

104 CHAPTER 9. SEARCHING WITH MULTIPLE QUERIES

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

15001000500
Number of packets exchanged

 Flooding with sequence numbers
 RW (TTL = 6)
 RW (TTL = 100)
 RWM = N-1 (TTL = 100)
 RW (Q = 20)
 RWM = N-1 (Q = 20)

linear query
 RW (TTLmin = 20, add_TTL = 2)
 RWM = N-1 (TTLmin = 20, add_TTL = 2)

N = 400
p = 0.015

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

200150100500
Worst case time to discover

 Flooding with sequence numbers
 Q = 20, RWM = N-1
 Q = 20, RW

Linear Query
 RW (TTLmin = 20, add_TTL = 2)
 RWM = N-1 (TTLmin = 20, add_TTL = 2)

N = 400
p = 0.015

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

15001000500
Number of packets exchanged

 Flooding with sequence numbers
 RW (TTL = 6)
 RW (TTL = 100)
 RWM = N-1 (TTL = 100)
 RW (Q = 20)
 RWM = N-1 (Q = 20)

linear query
 RW (TTLmin = 20, add_TTL = 2)
 RWM = N-1 (TTLmin = 20, add_TTL = 2)

N = 400
p = 0.015

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

200150100500
Worst case time to discover

 Flooding with sequence numbers
 Q = 20, RWM = N-1
 Q = 20, RW

Linear Query
 RW (TTLmin = 20, add_TTL = 2)
 RWM = N-1 (TTLmin = 20, add_TTL = 2)

N = 400
p = 0.015

Figure 9.1: Performance of searching by using multiple queries in ER random graph for
N = 400 and p = 0.015

9.1. ANALYSIS OF SEARCHING WITH MULTIPLE RW QUERIES 105

Table 9.3: Efficiency of searching by multiple RW and RWM queries for p = 0.015 and
N = 400.

pN = 6 RW RWM g(RWM
RW)

N = 400 n Pr[succ.] n Pr[succ.]
Q = 1, TTL = 2400 0.7 0.996 1.23 0.28 1.8
Q = 20, TTL = 120 0.27 0.96 0.33 0.97 1.2
Q = 120, TTL = 20 0.24 0.95 0.26 0.97 1.1
Q = 400, TTL = 6 0.15 0.73 0.18 0.82 1.2

Table 9.4: Efficiency of searching using multiple RW and RWM queries for p = 0.2 and
N = 400.

pN = 80

N = 400 n (RW) n (RWM) g
¡RWM
RW

¢
Q = 1, TTL = 2400 1.05 1.997 2
Q = 20, TTL = 120 0.30 0.298 1
Q = 120, TTL = 20 0.285 0.285 1
Q = 400, TTL = 6 0.26 0.262 1

Using (9.3), the add_TTL parameter can be expressed as TTLmax−TTLmin
Q−1 . Figure

9.1 shows that efficiency of searching by RW and RWM decreases with TTL. This is in
contrast to the assumptions made in the analysis in Bisnik and Abouzeid [13], where
searching with multiple queries and independent uniform sampling are assumed to be
equivalent. Also, the linear query performs as good as sending multiple queries with a
large TTL(100). Thus, the simulations show that searching by using a single RW query
with TTL is more efficient than sending Q RW queries with TTL0(TTL = Q × TTL0)
for ER random graphs.
Figure 9.2 shows the results for searching with multiple queries in a BA power law

graph. In these graphs, RWM=2 gives the best performance in terms of reducing search
overhead. RWM=N-1 performs worse than RWM=2 since many of the queries end in a
deadlock. This reduces the efficiency of the RWM=N-1 strategy and queries with larger
TTL need to be sent to achieve the same probability of success as RWM=2. Moreover,
the improvement in performance of different RW strategies compared to flooding is
limited. Even with a large TTL = 1000, the RW does not perform better than flooding.
Figure 9.3 compares the performance of searching with RW and RWM in an ER

random graph and a BA power law graph using the same TTL = 400. The results are
for N = 10000 and for an ER random graph with link density p = 0.001. Figure 9.3 also

106 CHAPTER 9. SEARCHING WITH MULTIPLE QUERIES

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

35x103302520151050
Number of packets exchanged

 Flooding with sequence numbers
RW

 TTLmin = 100, add_TTL = 20
 TTL = 10
 TTL = 1000

RWM
M = N-1, TTLmin = 100, add_TTL = 20
 M= N-1, TTL = 100
 M = 2, TTL = 100
 M = 2, TTLmin = 100, add_TTL = 20

N = 10000

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

40003000200010000
Worst case time to discover

 flooding with sequence numbers
RW

 TTLmin = 100, add_TTL = 20
RWM

 M = 2, TTLmin = 100, add_TTL = 20
 M = N-1, TTLmin = 100, add_TTL = 20

N = 10000

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

35x103302520151050
Number of packets exchanged

 Flooding with sequence numbers
RW

 TTLmin = 100, add_TTL = 20
 TTL = 10
 TTL = 1000

RWM
M = N-1, TTLmin = 100, add_TTL = 20
 M= N-1, TTL = 100
 M = 2, TTL = 100
 M = 2, TTLmin = 100, add_TTL = 20

N = 10000

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

40003000200010000
Worst case time to discover

 flooding with sequence numbers
RW

 TTLmin = 100, add_TTL = 20
RWM

 M = 2, TTLmin = 100, add_TTL = 20
 M = N-1, TTLmin = 100, add_TTL = 20

N = 10000

Figure 9.2: Performance of searching using RW and RWM with multiple queries for BA
power law graph (N = 10000).

9.2. CONCLUSIONS 107

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

60x10350403020100
Number of packets exchanged

ER random graph
 Flooding
 RW, TTL = 400
 RWM = N-1, TTL = 400

BA model
 Flooding
 RW, TTL = 400

High degree destination
 RW, TTL = 400

N = 10000
p = 0.001 (ER graph)

Figure 9.3: Comparison of searching by multiple RW and RWM queries on ER random
graph and BA power law graph. (N = 10000 and for ER random graph p = 0.001)

shows the results for searching for a high-degree destination node in a BA power law
graph (the average degree of the destination is 72). Searching in ER random graphs
performs better than in a BA power law graph. This can be attributed to the fact
that most of the nodes in an ER random graph have a larger degree than the degree
of nodes in a BA power law graph (section 2.2). Thus, in a BA power law graph, the
RW makes a large number of hops among the low degree nodes while searching for the
destination node. Moreover, in a BA power law graph, since the degree of uniformly
chosen destination and source nodes is small, performance of searching for a uniformly
chosen node is much worse than searching for a high degree node.

9.2 Conclusions

We have analyzed the performance of searching with multiple RW strategies in two
types of graphs. The topology of graphs plays an important role in determining the
performance of different search strategies. Searching with multiple RW queries per-
forms better than flooding with sequence numbers in terms of overhead. The overhead
can be reduced further by using multiple RWM queries. However, the searching effi-
ciency decreases with TTL for both RW and RWM. The performance of searching with
multiple RW and RWM queries is better in ER random graphs than in BA power law
graphs. Moreover, in a BA power law graph, only small values of memory M improve
performance of searching using multiple RW queries.

108 CHAPTER 9. SEARCHING WITH MULTIPLE QUERIES

Part IV

Topology Analysis

109

Chapter 10

Topology of Ad hoc wireless
networks

The topology of ad hoc networks is critical in determining the performance of routing
algorithms, capacity and lifetime of ad hoc networks. In this chapter, we study the
impact of different signal propagation models on the topology of ad hoc networks. We
also analyze the impact of topology on shortest path routing based on distance and
hopcount metrics.

We characterize the variation in received signal power over distance due to path
loss and shadowing. Path loss is caused by dissipation of the power radiated by the
transmitter as well as effects of the propagation channel. Path loss models generally
assume that path loss is the same at a given transmitter-receiver distance [53]. Shadow-
ing is caused by obstacles between transmitter and receiver that attenuate signal power
through absorption, reflection, scattering and diffraction. Variation due to path loss
occurs over very large distances (100-1000 meters), whereas variation due to shadowing
occurs over distances proportional to the length of obstructing object (10-100 meters in
outdoor environments and less in indoor environments). Since variations due to path
loss and shadowing occur over relatively large distances, this variation is referred to as
large-scale propagation effects. Variations in received signal power also occur due to
the constructive and destructive addition of multipath signal components. Variations
due to multipath occurs over very short distances, on the order of signal wavelength,
so these variations are referred to as small-scale propagation effects.

The next section explains different signal propagation models. In section 10.2, we
compute the average node degree with these models. Section 10.3 analyzes the effect of
shadowing on traffic load. Finally, section 10.4 studies the lifetime of ad hoc wireless
networks.

111

112 CHAPTER 10. TOPOLOGY OF AD HOC WIRELESS NETWORKS

Table 10.1: Path loss exponent in different environments [53, 87].

Environment α range
Urban macrocells 3.7-6.5
Urban microcells 2.7-3.5
Office Building (same floor) 1.6-3.5
Office Building (multiple floors) 2-6
Store 1.8-2.2
Factory 1.6-3.3
Home 3

10.1 Signal Propagation Models Topology Model-
ing of Wireless Ad hoc Networks

The complex nature of signal propagation prevents us to use a single model that char-
acterizes path loss accurately across a range of different environments. However, a
simplified path loss model that is generally used is:

Prx = PtxK

µ
r

r0

¶−α
(10.1)

where Ptx and Prx are the transmitted and received power respectively, K is a constant,
r0 is a reference for distance for the antenna far-field, r is the distance between the
transmitter and the receiver, and α is the path loss exponent.
A table summarizing α values for different indoor and outdoor environments and

antenna heights at 900 MHz and 1.9 GHz is given in Table 10.1.
The models for path loss and shadowing can be combined to capture power falloff

versus distance along with random attenuation about this path loss from shadowing.
For the combined model, the ratio of received to transmitted power in dB is given by
[53]:

10 log10 Prx = 10 log10 Ptx + 10 log10K − 10α log10
µ
r

r0

¶
− ψ0dB (10.2)

where ψ0dB is a Gaussian random variable with mean zero and variance σ
2
ψdB
. Thus, the

average power at a distance r from the transmitter is the same for both the path loss
model and the path loss and shadowing model together.
The multipath effects are captured by ray-tracing models for deterministic channels.

However, since deterministic channels are rarely available, the multipath channels are
characterized statistically. The power distribution with Rayleigh fading is given by

10.2. AVERAGE NODE DEGREE IN AD HOC WIRELESS NETWORKS 113

[53, 76]:

p (x) =
1

Prx
e−x/Prx (10.3)

where Prx is the average received signal power i.e., the received power based on path
loss and shadowing alone.
The number of neighbors and the topology of an ad-hoc network becomes more

complex if the interference is considered from other nodes. In this case, the signal to
interference ratio (SINR) at the receiver is [46]:

SINR =
Ptxf (l)

G+ γ
Pm

i=1 Pif (li)
(10.4)

where m is the number of interfering nodes, Ptx and Pi are the transmission powers of
the transmitting node and the ith interfering node, G is the additive white Gaussian
noise. f (l) denotes the path loss component based on the considered signal propagation
model.

10.2 Average node degree in ad hoc wireless net-
works

A node is defined as a neighbor if the received power Prx or SINR ≥ Pmin. We first
study the degree distribution for the path loss model. In the path loss model, any node
within a circular area with radius ρ is a neighbor i.e., PtxKρ−α = Pmin. The following
derivation for the probability distribution of degree of a node in an ad hoc network with
arbitrary node distribution is given by Bettstetter [11]. Assume that a node is at a given
location x, where x = (x, y) in two dimensional Cartesian coordinates. A second node
is randomly placed according to some arbitrary pdf fX (x0). The two nodes have a link
if the second node is placed within a circle of radius ρ around x. The probability of the
link is given by

p0 (x) =

ZZ
A0(x)

fX (x
0)dx0

=

Z y+ρ

y−ρ

Z x+
√

ρ2−(y0−y)2

x−
√

ρ2−(y0−y)2
fXY (x

0, y0) dx0dy0

In the network with N nodes, the probability that a node has degree j is given by the
binomial distribution

Pr [deg = j] =

µ
N − 1

j

¶
(p0 (x))

j (1− p0 (x))
N−1−j

114 CHAPTER 10. TOPOLOGY OF AD HOC WIRELESS NETWORKS

with an expected value (N − 1) p0 (x). For small p0 (x) and large N , the binomial
distribution can be approximated by a Poisson distribution with mean (N − 1) p0 (x):

Pr [deg = j] ∼= λje−λ

j!

Let us assume a uniform distribution of nodes with density δ on an infinitely large
system plane (neglecting border effects). The limiting case of a uniform distribution
is called a homogeneous Poisson point process of density δ. This process is defined
by the following two properties [33]: (1) the number of nodes in each finite subarea
follows a Poisson distribution, (2) the number of nodes in non-overlapping subareas
are independent random variables. Thus, the degree distribution with uniform node
density and path loss model is Poisson [57, 76] with mean number of neighbors

E [NPL] = δπ

µ
PtxK

Pmin

¶ 2
α

= δπρ2 (10.5)

where ρ is the transmission radius such that PtxKρ−α = Pmin i.e., ρ =
³
PtxK
Pmin

´ 1
α
. If

white noise of power G is assumed to be present at the receiver, the transmission radius

ρ =
³

PtxK
GPmin

´ 1
α
.

The topology and average node degree with path loss and shadowing has been
studied extensively by Hekmat [57]. Hekmat and Van Mieghem [58] have shown that
degree distribution with path loss and shadowing is Binomial with the probability of
link between two nodes at normalized distance br , r

ρ
:

p (br) = 1

2

∙
1− erf

µ
3.07

log (br)
ξ

¶¸
, ξ , σψ0dB/α

where ξ is defined as the ratio between the standard deviation of radio signal power
fluctuations σψ0dB and the pathloss exponent α.
We compute the expected number of neighbors with path loss and shadowing. The

path loss model with shadowing is given by [76, 112]:

f (ψ) =
1√
2πσψ

e
− 1
2

logψ+logKr−α
σ

2

(10.6)

The average number of neighbors for a node with path loss and shadowing as shown in
Appendix A are:

E [NPL;S] = δπρ2e
√
2σ
α

2

(10.7)

Thus, the increase in average degree with shadowing depends on the ratio σ
α
. The

increase in number of neighbors by a factor of e
√
2σ
α

2

with shadowing has also been

10.3. SHORTEST PATH ROUTING AND LOAD BALANCING 115

proved by Orriss and Barton [80]. We now calculate the number of neighbors with path

loss and shadowing within the transmission range ρ =
³

KPt
GPmin

´ 1
α
due to path loss alone.

The average number of neighbors within the transmission radius ρ due to path loss
alone is (shown in the Appendix):

E [NPL;S (ρ)] =
πδρ2

2
+ πρ2δ

1

2
e

√
2σ
α

2

erfc

Ã√
2σ

α

!
(10.8)

The expected number of neighbors within radius r has been computed in [53],

E [NPL;S (r)] = δπr2
µ
f (a) + e(

2−2ab
b2
)f

µ
2− 2ab
b

¶¶
(10.9)

where a = Pmin−Prx(ρ)
σψ0

dB

, b = 10α log10 e
σψ0

dB

and Prx (r) = Ptx + 10 log10K − 10α log10
³

r
r0

´
.

f (x) can be related to the complementary error function as f (x) = 1
2
erfc

³
x√
2

´
. Note

that (10.8) and (10.9) are equivalent when a = 0. This shows that the derivation of
(10.7) in recent literature is related to the well known formula for coverage in cellular
networks.
The expected number of neighbors with path loss, shadowing and Rayleigh fading

is [76]:

E [NPL;S;F] = δπ

µ
2

α

¶
Γ

µ
2

α

¶
ρ2e

√
2σ
α

2

(10.10)

where Γ (·) represents the gamma function. Since α ≥ 2, fading reduces the average
number of neighbors by a factor of

¡
2
α

¢
Γ
¡
2
α

¢
.

10.3 Shortest Path Routing and Load Balancing

The number of shortest paths passing through a node (traffic load) can be calculated
by making the following assumptions for calculating the traffic load on nodes. Let us
assume that nodes are uniformly distributed with density δ in a circular area of radius
R (δ is large). Moreover, we assume that the nodes communicate with uniform rate λ.
In shortest path routing based on distance, an approximation to the load on a node at
a distance d from the center is [84]:

Lo (d) =
¡
πR2δ − 1

¢
λ+

π (R2 − d2)2 δ2λσ
2

(10.11)

Note that in 10.11 the traffic load on a node is independent of transmission range of
nodes and only depends on distance of node from the center. When the node density

116 CHAPTER 10. TOPOLOGY OF AD HOC WIRELESS NETWORKS

Figure 10.1: Traffic load on a node as a function of distance d of the node from the center
of the network (G = 0.03mW , K = 7.01× 10−4, Ptx = 100mW , Pmin = 10−4mW).

is low, equation 10.11 is not accurate. Also, 10.11 gives the load based on all source-
destination pairs. The actual load on a node depends on number of source-destination
pairs.
Figure 10.1 shows the simulation results for traffic load in a low density network with

different path loss models and shortest path routing based on hopcount and distance
metrics. The nodes (N = 200) are uniformly distributed in a circular area with radius
R = 500m. The simulations indicate that shortest path routing based on hopcount leads
to much better load balancing than shortest path routing based on distance. Moreover,
due to long range contacts in shadowing, the traffic is distributed much more evenly in
combined path loss and shadowing as compared to path loss alone.
Additional simulations show that shortest path routing based on distance metric

performs similar to the shortest path routing based on hopcount in terms of expected
hopcount and better in terms of expected distance.

10.4 Lifetime of Ad hoc Wireless Network

Network lifetime is usually defined as the time for first node to die, or as the time for
a certain percentage of nodes to die [12, 111]. We need to know the energy consumed
by wireless nodes for data transmission to determine the lifetime of ad hoc networks.
The energy consumed by a wireless node has two components [91]. The receiving
or processing energy is the energy consumed by the node in standby mode or when

10.4. LIFETIME OF AD HOC WIRELESS NETWORK 117

receiving data. The transmission energy is the energy needed to transmit data over the
radio link. The energy spent in transmitting and receiving a j−bit message is given by
[91]:

ET = Eelec ∗ j + Eamp ∗ j ∗ rα (10.12)

ER = Eelec ∗ j
where Eelec and Eamp are constants, r is the distance over which the message is trans-
mitted and α is the path loss exponent.
With the same assumptions used to compute (10.11), the maximum energy spent

by a node at distance d from the center till time t is

Espent(d) = E ∗
Ã¡

πR2δ − 1
¢
λ+

π (R2 − d2)2 δ2λσ
2

!
∗ t (10.13)

where E = ET +ER = 2∗Eelec+Eamp ∗rα. r is the transmission range of each node and
for the path loss model r = ρ. The energy spent is maximum since we have assumed
that each node transmits the maximum transmission range to transmit a packet to any
neighbor within the transmission range.
Thus, the lifetime (time when first node fails) for a network when all nodes start

with equal battery power E0 is

tlifetime =
E0

E
³
(πR2δ − 1)λ+ π(R2−d2)2δ2λσ

2

´
=

E0

E
³
(πR2δ − 1)λ+ πR4δ2λσ

2

´
=

E0

λ (2 ∗Eelec +Eamp ∗ r2)
¡
(N − 1) + N2σ

2π

¢
∼= c

λr2N2
(10.14)

where α = 2 and c is a constant. Using (10.14), it may be concluded that the lifetime
of a network increases if the transmission range is reduced.
In the simulations to study lifetime of ad hoc networks, we assume that Eo = 1J ,

Eelec = 50nJ/bit, Eamp = 100pJ/bit/m2 and α = 2. We assume that the nodes (N =
200) are uniformly distributed in circular area with radius R = 500 m and the initial
transmission radius (r) due to path loss alone is 200 m [41]. The size of packet for
shortest path routing is assumed to be 1250 bytes and for searching with flooding and
random walks the packet size is 125 bytes. We assume that in each time interval, a
pair of nodes chosen uniformly exchange a single packet. Lifetime is chosen as the time
when the first node dies [41].

118 CHAPTER 10. TOPOLOGY OF AD HOC WIRELESS NETWORKS

Power control algorithms could be employed to extend the lifetime of ad hoc net-
works [12, 61]. We show the effect of adaptive power on the lifetime of network. We
assume that each node tries to conserve energy by reducing its transmission power
independently of other nodes i.e., the transmission radius is reduced by each node.
Figure 10.2 shows the lifetime of ad hoc network with shortest path routing based

on hopcount and distance for a low density network. The simulations show that even
though shortest path routing based on hopcount performs better load balancing, yet
the lifetime of network is less than shortest path routing. This can be attributed to
the fact that nodes need to transmit over larger distance using shortest path routing
based on hopcount and thus require more transmission energy (10.12). These results
show the pitfalls in modelling ad hoc networks. Seemingly contradictory results can be
obtained by different assumptions and neglecting some of the parameters.

(a) (b)(a) (b)

Figure 10.2: Lifetime of an ad hoc network (time for first node to die) with shortest
path routing based on (a) distance and (b) hopcount for different transmission range.

Figure 10.2 also shows that by reducing the transmission power the lifetime of the
network does not increase in contradiction to (10.14). This is attributed to the fact that
though the decrease in transmission power reduces the energy consumption of a node,
the number of paths passing through the node increases i.e., the expected hopcount for
shortest path increases. Further analysis needs to be conducted to study the impact of
adaptive power algorithms on the lifetime of networks.
Figure 10.3 shows the lifetime of ad hoc networks for flooding with sequence numbers

and random walks for a low density network. The simulations show that overhead with
flooding is much less than with random walks. Moreover, by reducing the transmission
power the lifetime increases for flooding with sequence numbers. This is because each

10.5. CONCLUSIONS 119

(a) (b)(a) (b)

Figure 10.3: Lifetime of ad hoc network (time for first node to die) with searching by
(a) flooding and (b) random walks for different number of source-destination pairs and
different transmission range of each node.

node transmits the packet only once and with lower transmission power it spends less
battery power. In random walks, with decrease in transmission power of nodes, the
lifetime varies.

10.5 Conclusions

In this chapter, we analyzed the effect of different signal propagation models on the
topology of ad hoc wireless networks. Shadowing leads to better load balancing as
compared to path loss alone. The load balancing is much better for shortest path
routing based on hopcount as compared to shortest path routing based on distance.
However, the lifetime is worse with shortest path routing based on hopcount. The
lifetime of ad hoc networks is not affected if all the nodes decrease their transmission
power. Moreover, the lifetime analysis of ad hoc networks shows that overhead of
searching with random walks is more than flooding.
Modelling of topology features of ad hoc networks such as degree distribution, con-

nectivity, etc. has received extensive attention in the literature. However, the results
have been obtained for limited scenarios and assuming that the nodes are static. More-
over, contradictory results can be obtained based on assumptions and assumed parame-
ters. The increase in average node degree with shadowing but neglecting interference
is one such example. With interference the probability of nodes transmitting at larger
distance will decrease because of the larger interference. Thus, more analysis needs to

120 CHAPTER 10. TOPOLOGY OF AD HOC WIRELESS NETWORKS

be done to study the effect of topology on lifetime of ad hoc networks.

Chapter 11

Estimation of Topology

11.1 Introduction

The development of topology estimation algorithms is the first step to build intelligent1

topology based algorithms. In ad-hoc and self-configuring networks because of the
dynamic topology and limited bandwidth, external measurement tools are harder to
employ for topology estimation. Instead, techniques from statistics may be employed
to estimate the topology of ad hoc networks on the fly. Once the topology of ad hoc
networks is estimated, a number of parameters about the network such as connectivity,
expected hopcount for shortest path, load on nodes, TTL for searching etc. can be
obtained. These network parameters could be used for optimizing a wide variety of
algorithms.
We know that the topology of ad hoc wireless networks can be modelled as a geo-

metric random graphs with nodes the having Binomial degree distribution:

Pr [deg = j] =

µ
N − 1

j

¶
pj (1− p)N−1−j (11.1)

In this chapter, we consider the problem of estimation of topology of an ad-hoc
network, which involves estimating the values of p and N , given the degree of m nodes.
The estimation of parameters N and p for a Binomial distribution has been discussed
extensively in the literature [35, 69, 79]. A particularly hard problem is to estimate the
values of N and p when both are unknown and the sample size m is much smaller than
N . In this case, we apply some recently proposed estimates for both N and p.

1An example is flooding with probability q, the probability q could be optimized based on the
topology of the network.

121

122 CHAPTER 11. ESTIMATION OF TOPOLOGY

11.2 Topology Estimation

A variety of estimators can be used in estimation ofN or p when one of these parameters
is known. Let X1,X2, ..., Xm be the sample representing the degree of m nodes. The
likelihood function and log-likelihood function of the Binomial distribution is

L (N − 1, p) =
mY
i=1

µ
N − 1
Xi

¶
pXi (1− p)N−1−Xi (11.2)

L (N − 1, p) =
mX
i=1

log
(N − 1)!

Xi! (N − 1−Xi)!
+

mX
i=1

Xi log
p

1− p
+m (N − 1) log (1− p)

(11.3)
The maximum-likelihood estimator (MLE) is obtained by differentiating the likelihood
function L0 (N − 1, p) = ∂L

∂p
= 0, such that pMLE is

pMLE =

mP
i=1

Xi

m (N − 1) =
X

N − 1 (11.4)

Thus, when N is known, the link density p can be estimated using (11.4).
The method of moments estimate of p can be obtained since the sample mean

X = (N − 1) p and sample variance Ŝ2 = (N − 1) pq, where q = 1 − p, hence the
estimate of p is

bp = 1− Ŝ2

X
(11.5)

The estimated value of N using method of moments is bNME =
X
2

X−Ŝ2 + 1.

11.2.1 Estimation when both p and N are unknown

The simplest estimator of the value of N with m i.i.d. samples X1, X2, ...,Xm is the
sample maximum X(m) → N and hence X(m) = N (a.s.) for all large m. This estimate
works well even at low values of m when the link density p is large. However, it is well
known that the sample maximum is not a reliable estimate of the binomial N parameter
and results in severe underestimation of N , especially if either true N is large, or the
value of p is small.
We first study the smallest value of m such that Pr

¡
X(m) ≥ m

¢
≥ 1− θ for a given

θ. The number m grows exponentially as shown by the following theorem by Dasgupta
and Rubin [35].

Theorem 7 : Let m, N → ∞ such that N
m
is an integer, and χ = m/N > p. Let

0 < θ < 1. Then the smallest value of m such that Pr
¡
X(m) ≥ m

¢
≥ 1− θ is

11.2. TOPOLOGY ESTIMATION 123

m ≥ (− log θ) (χ− p)

p
√
1− χ

Ã
χ (1− χ)

1
χ
−1

pq
1
χ
−1

!m√
2mπ (1 + o (1))

We now study some of the estimators proposed for N and p when both are unknown.
The method of moment estimate for p and N can be obtained by using (11.5). However,
when the value of p is small i.e., the sample mean and variance are close to each other,
the moments estimate is not stable. A moment-stabilized estimator has been proposed
by Olkin et al. [79], bNMES = max

(
Ŝ2φ2

φ− 1 , X(m)

)
(11.6)

where

φ =

½ X
Ŝ2

if X
Ŝ2
≥ 1 + 1/

√
2

max
n
X(m)−X

Ŝ2
, 1 +

√
2
o

if X
Ŝ2

< 1 + 1/
√
2

Another estimator that could be used is the stabilized MLE. The likelihood function
described in (11.2) can be maximized when N →∞, p → 0 and p (N − 1) = X. This
limiting case of likelihood is denoted by L (∞, 0). The following theorem by Levin [69]
gives the estimates.

Theorem 8 :An MLE of N exists. If X/Ŝ2 ≤ 1, L (N, p) < L (∞, 0), while if X/Ŝ2 >
1, L (N, p) is maximized by atleast one pair (N, p), with X(m) ≤ N <∞.

Substituting the value of pMLE from 11.4 in 11.3,

L (N − 1, p) =
mX
i=1

log
(N − 1)!

Xi! (N − 1−Xi)!
+

mX
i=1

Xi log
X

N − 1−X

+m (N − 1) log
µ
1− X

N − 1

¶
Let us denote the differential,

DN =
∂L
∂N

If D (0) ≤ 0, MLE = X(m) and if D (0) > 0 then the MLE is taken as solution of
D
¡
MLE−X(m)

¢
= 0. Thus, the stabilized MLE is given as

bNMES =

½ MLE if X
Ŝ2
≥ 1 + 1/

√
2

X(m) +
¡
m−1
m

¢ ¡
X(m) −X(m−1)

¢
if X

Ŝ2
< 1 + 1/

√
2

124 CHAPTER 11. ESTIMATION OF TOPOLOGY

Another two estimates for N when p and N are unknown have been proposed by
Dasgupta and Rubin [35]. Consider the identity N = Nr+1(Npq)r

(Np)r (Nq)r
. Substituting the

sample maximum X(m) for N , the sample variance Ŝ2 for Npq, the sample mean X for
Np and X(m) −X for Nq, we obtain the estimate for N

bN1 =
Xr+1
(m)

³
Ŝ2
´r

¡
X
¢r ¡

X(m) −X
¢r (11.7)

The second estimator proposed in [35] is bias corrected,

bN2 = X(m) +

[N1]−2X
i=0

F−1
i+1,[N1]−i

µ
1

m

¶
(11.8)

where F−1r,s denote the quantile function of the Beta(r, s) distribution. The quantile
function is defined as

F−1 (z) = min {x ∈ R, z ≤ F (x)} , z ∈ (0, 1)
and the probability density function of a beta distribution for any i > 0, j > 0

f (x) =
1

B (i, j)
xi−1 (1− x)j−1 , 0 < x < 1

where B (i, j) = (i−1)!(j−1)!
(i+j−1)! when i and j are integers, is the beta function.

11.2.2 Results

Table 11.1 show the estimated values of N using different estimators. The average
values are taken for 1000 iterations. In calculating the average value of bNME, we have
neglected the case where bpME ≤ 0. This makes the results look better than expected
since only the stable values of bNME are used while in bNMES even negative values lead
to estimation of N . For small p, the estimator bN1 is the best while for large values of
p, the estimator bN2, bNMES and bNMLES seem to perform good.
At small values of p, the estimators do not perform well. There seems to be under-

estimation of N when p is small in these methods. In the next section, we look into
estimation of N when a subgraph is known.

11.2.3 A subgraph and average degree are known

Let X1, X2, ...,Xm be the sample representing the degree of m nodes. The mean degree
obtained from this sample is

X =
1

m

mX
i=1

Xi = bp³ bN − 1´ (11.9)

11.2. TOPOLOGY ESTIMATION 125

Table 11.1: Estimated value of N using different estimators.

N p m X(m)
bN1

bN2
bNME

bNMES
bNMLES

200 0.05 25 24 38 30 219 37 18
200 0.1 25 39 82 62 431 71 33
200 0.3 25 84 278 199 347 165 93
200 0.7 25 164 531 400 199 198 183

Table 11.2: Estimation of N when a subgraph is known.

N p m Z
ˆ

N mse
400 0.05 25 40 411 5048
400 0.1 25 40 405 2176
400 0.4 25 40 401 349
400 0.8 25 40 400 58
1600 0.05 25 40 1651 79426
1600 0.1 25 40 1621 33509
1600 0.8 25 40 1602 886

Let us assume that a sub-graph having Z nodes (Z < N) is known. Let X1,X2, ...,Xt
be the sample representing the degree of t nodes within this sub-graph. The mean degree
obtained from this sample is

X = 1

t

tX
i=1

Xi = bp (Z − 1) (11.10)

Thus using 11.9 and 11.10, the estimated value of N is:

bN =
X

X
(Z − 1) + 1 (11.11)

Table 11.2 shows the results for estimating N using 11.11. We assume that t = Z.

11.2.4 Influence of m and Z

We want to find the effect ofm and Z on the estimated the value of N . Whenm is large,
the error in estimation of X becomes negligible. Hence, the error is only introduced
due to Y and when Z is large, the error would become small. Thus, large values of m

126 CHAPTER 11. ESTIMATION OF TOPOLOGY

and Z give the best estimate for N . However, the estimate of N does not improve as
m is increased keeping Z constant (11.1).

4500

4000

3500

3000

2500

2000

1500

1000

es
tim

at
ed

 v
al

ue
 o

f N

400300200100
m / Z

N = 1600, p = 0.05
 m = 25, varying Z
 Z = 20, varying m

N = 3200, p = 0.025
 m = 25, varying Z
 Z = 20, varying m

104

105

106

m
se

400300200100
m / Z

N = 1600, p = 0.05
 Z = 20, varying m
 m = 25, varying Z

N = 3200, p = 0.025
 Z = 20, varying m
 m = 25, varying Z

4500

4000

3500

3000

2500

2000

1500

1000

es
tim

at
ed

 v
al

ue
 o

f N

400300200100
m / Z

N = 1600, p = 0.05
 m = 25, varying Z
 Z = 20, varying m

N = 3200, p = 0.025
 m = 25, varying Z
 Z = 20, varying m

104

105

106

m
se

400300200100
m / Z

N = 1600, p = 0.05
 Z = 20, varying m
 m = 25, varying Z

N = 3200, p = 0.025
 Z = 20, varying m
 m = 25, varying Z

Figure 11.1: (a) Estimated value of N and (b) mean square error as a function of m
and Z.

11.3 Conclusions

We presented a methodology for topology estimation given the degree of certain nodes
in a random graph. It is difficult to estimate the values of N and p when both are
unknown and the sample size m is much smaller than N . Results show that at small
values of link density p, most of the estimators do not perform well. Further analysis
of topology estimation needs to be carried out in order to develop topology dependant
algorithms. Indeed, topology estimation is the first step for building such topology
based algorithms.

Chapter 12

Conclusions

The emergence of ad hoc wireless networks and P2P networks has lead to an increas-
ing interest in adaptive and decentralized algorithms for routing, resource and service
discovery etc. A variety of applications are currently being developed based on these
novel algorithms and protocols. For example, flooding and its variations had been the
de facto standard for searching in different networks. However, new versions of P2P
networks such as Gnutella and Gia use random walk strategies instead of flooding.
This thesis focused on three interrelated research topics for ad hoc networks:

• Ant Routing.

• Searching with single and multiple queries.

• Topology of ad hoc wireless networks.

In this chapter, we provide an overview of the results for each of these topics and the
major contributions of this thesis. We include remarks for extension of work whenever
possible.

Ant Routing

The first contribution of this thesis is in analyzing the performance of ant routing.
Based on the analysis in this thesis, we are able to answer questions such as: How do
different parameters affect the performance of ANTRALs and how does ant routing
perform for ad hoc wireless networks where mobility and limited bandwidth play an
important role. Extensive simulations of the AntNet algorithm show that ant routing
algorithms are able to find paths that are close to the shortest path. We can state that

The performance of ant routing is close to shortest path routing for
small sparse graphs.

127

128 CHAPTER 12. CONCLUSIONS

As the network size increases and density of network increases, the AntNet algo-
rithm is no longer able to find paths that are close to the shortest path. The performance
of AntNet algorithm depends on parameters such as η,Wmax and a. The optimal value
of parameters such as η and Wmax could be chosen depending on the size of network,
while the optimal value of parameter a depends on the degree of nodes. Thus,

The performance and optimization of parameters in ant routing algo-
rithms depend on the topology of the network.

Ant routing algorithms provide an automatic adaptation to link failure and traffic
changes. However, the rate of topology change in mobile ad hoc wireless networks is
large. In order to overcome this problem, on-demand protocols have been proposed
which search for a path to the destination only when the nodes need to transfer data.
We compared the performance of ant routing with on-demand protocols AODV and
DSR using NS-2. Our implementation includes realistic features for ad hoc networks
such as MAC layer, limited buffer size at nodes, node mobility etc. The analysis shows
that

Overhead of ant routing is more than on-demand protocols such as
AODV and DSR in ad hoc wireless networks.

Our work on ant routing could be extended further in new directions. The scalability
of ant routing algorithms needs to be investigated further. Moreover, modifications to
these algorithms such as using both data and ant packets for updating the routing
tables could be investigated. Specifically, the AntNet algorithm would be considered a
truly distributed and scalable algorithm if the nodes are able to learn and adjust the
various parameters used in the algorithm.

Searching

The main contribution of section 3 is the definition and classification of different
searching schemes. The searching strategies may be probabilistic and based on random
walks or may use unique feature of the network topology such as high degree nodes.
These strategies have been studied in bits and pieces in literature but a complete view
of different searching schemes was missing. In chapters 7, 8 and 9 of this thesis, we
have analyzed and studied the performance of searching schemes based on single or
multiple queries. We distinguished between deadlocks and loops and examined the
affect of deadlocks and loops on the performance of search strategies. An exact analysis
for some of these strategies in Chapter 8 is another contribution of this thesis.
The probability distribution of hopcount for a random walk on a complete graph

KN is a geometric distribution while the probability distribution for a random walk
with memory M is a uniform random variable on [1,M] and a geometric variable on
[M + 1, N − 1]. In many random walk strategies such as random walk using highest

129

degree, the expected hopcount is small but the probability of deadlocks is large. Indeed,
we need to look into probability of deadlocks as well as the expected hopcount to
determine the performance of search strategies.

The expected hopcount or expected weight of the path is not sufficient
to characterize searching based on different random walk strategies.

The performance of different search strategies depends on the graph topology. Be-
cause of high degree nodes in a BA graph, the performance of search strategies using
highest degree in BA graphs is better than in ER random graphs. In both these graph
topologies, the performance of random walk with look-ahead is close to shortest path
routing with small values of look-ahead. This is due to the small diameter O (logN) of
these graph topologies.

With lookahead of logN , the performance of searching with RW LA is
close to that of shortest path routing.

It can be concluded that more information a search strategy has, the better is its
performance. For example, random walk using highest degree, look-ahead and memory
performs better than random walk using look-ahead and memory.
A single RW query has an overhead and time to discover of O(N logN) for ER

random graphs and power law graphs. To reduce the time to discovery, multiple random
walk queries with smaller TTL may be used. The overhead of searching with multiple
queries depends on TTL and the number of queries which in turn can be optimized by
the topology of the network.

The overhead for searching with multiple random walk queries is less
than for flooding.

However, in BA graphs, the improvement of searching with multiple random walk
queries as compared to flooding is limited. With multiple copies of files in P2P networks,
searching with random walk queries would be much more efficient than searching with
flooding. Searching techniques proposed and analyzed in this thesis could be used with
traditional searching methods such as flooding. For example, critical information could
be spread by flooding while less critical information could be spread by random walks
queries.
Thus, section 3 of this thesis provides answers for questions such as: How does

memory and look-ahead affect the performance of random walk search strategies and
what role the graph topology plays in performance of different search strategies.

Topology of ad hoc wireless networks

The first two sections of this thesis show that the topology of networks is one of the
factors that determines the performance of different algorithms. The major achievement

130 CHAPTER 12. CONCLUSIONS

of this section is understanding the topology of ad hoc wireless networks and the affect
of topology on shortest path routing, lifetime etc.
In section 4, we investigated the effect of signal propagation models on the topology

of ad hoc wireless networks. Increasingly, it is being realized that simple path loss model
is not sufficient to characterize the topology of ad hoc wireless networks. Modeling
of wireless networks with shadowing and fading shows that shadowing improves the
connectivity while fading reduces the connectivity of these networks. Specifically, the

change in average node degree with these models depends on the standard deviation of
radio signal power fluctuations σ and the pathloss exponent α.

Shadowing increases degree of nodes in ad hoc wireless networks by a

factor of e
√
2σ
α

2

We proved that the average number of neighbors of a node with shadowing is related
to the well known formula for coverage in cellular networks. The appearance of long
range links with shadowing increases the number of neighbors and distributes data
traffic more effectively.

Shadowing improves the load balancing in ad hoc wireless networks.

A novel idea in Chapter 11 was the use of techniques from statistics to estimate the
topology of ad hoc wireless networks. We used estimators such as method of moments
and maximum likelihood to estimate N and p for random graphs. This analysis could
be extended further to build topology dependant algorithms.

Appendix A

Average number of neighbors

The path loss model with shadowing is given by

f (ψ) =
1√
2πσψ

e
− 1
2

logψ+logKr−α
σ

2

The area (A) where received power Pr is greater than Pmin is

A =

∞Z
r=0

2πrp(ψ <
Pt

Pmin
)dr = 2π

∞Z
r=0

rdr

Pt
PminZ

ψ=0

1√
2πσψ

e
− 1
2

logψ+logKr−α
σ

2

dψ

After substituting x = logψ+logKr−α

σ
= logψKr−α

σ
, we obtain

= 2π

∞Z
r=0

rdr

log
PtKr−α
Pmin

σZ
x=−∞

1√
2π

e−
x2

2 dx

= 2π

∞Z
x=−∞

dx

e−σxKPt
Pmin

1
αZ

r=0

rdr
1√
2π

e−
x2

2 = 2π

∞Z
x=−∞

1

2

µ
e−σxKPt

Pmin

¶ 2
α 1√

2π
e−

x2

2 dx

= π

µ
KPt

Pmin

¶ 2
α

∞Z
x=−∞

1√
2π

e−
x2

2 e−
2σx
α dx = π

µ
KPt

Pmin

¶ 2
α

e
√
2σ
α

2

Thus, the average number of neighbors for a node with path loss and shadowing are

δA = πδ
³
KPtx
Pmin

´ 2
α
e

√
2σ
α

2

.

131

132 APPENDIX A. AVERAGE NUMBER OF NEIGHBORS

We now calculate the number of neighbors within the transmission range ρ =³
KPtx
WPmin

´ 1
α
due to path loss alone.

A =

ρZ
r=0

2πrp(ψ <
Pt

Pmin
)dr

= 2π

ρZ
r=0

rdr

Pt
PminZ

ψ=0

1√
2πσψ

e
−1
2

logψ+logKr−α
σ

2

dψ

After substituting x = logψ+logKr−α

σ
= logψKr−α

σ
, we obtain

= 2π

ρZ
r=0

rdr

log
PtKr−α
Pmin

σZ
x=−∞

1√
2π

e−
x2

2 dx

= 2π

ρZ
r=0

rdr

0Z
x=−∞

1√
2π

e−
x2

2 dx+ 2π

ρZ
r=0

rdr

log
PtKr−α
Pmin

σZ
x=0

1√
2π

e−
x2

2 dx

=
πρ2

2
+ 2π

ρZ
r=0

rdr

log
PtKr−α
Pmin

σZ
x=0

1√
2π

e−
x2

2 dx

=
πρ2

2
+ 2π

∞Z
x=

log
PtKρ−α
Pmin
σ

dx

e−σxKPt
Pmin

1
αZ

r=0

rdr
1√
2π

e−
x2

2 dx

=
πρ2

2
+ πρ2

∞Z
x=

log
PtKρ−α
Pmin
σ

dxe−
2σx
α

1√
2π

e−
x2

2 dx

=
πρ2

2
+ πρ2

∞Z
x=0

dxe−
2σx
α

1√
2π

e−
x2

2 dx

=
πρ2

2
+ πρ2

1

2
e

√
2σ
α

2

erfc

Ã√
2σ

α

!

133

Thus, the average number of neighbors for a node within the transmission radius

due to path loss alone (ρ) are δA = πρ2

2
+ πρ2 1

2
e

√
2σ
α

2

erfc
³√

2σ
α

´
.

134 APPENDIX A. AVERAGE NUMBER OF NEIGHBORS

Abbreviations

ANTRAL Ant routing algorithm
AODV Ad hoc on-demand distance vector
DS Direct sequence
DSDV Destination-sequenced distance vector
DSR Dynamic source routing
DSSS Direct sequence spread spectrum
DHT Distributed hash table
FDMA Frequency Division Multiple Access
FH Frequency Hopping
FTP File transfer protocol
HIPERLAN High performance radio local area network
ITU International Telecommunication Union
LAN Local area network
MAC Medium access control
MLE Maximum-likelihood estimator
MTSO Mobile Telephone Switching Office
OSI Open Systems Interconnection
PAN Personal area network
PN Personal Network
QoS Quality of service
RIP Routing Information Protocol
RW Random Walk
TDMA Time Division Multiple Access
WCDMA Wideband Code Division Multiple Access
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
WMN Wireless Mesh Network
WSN Wireless Sensor Network
WWW World Wide Web

135

136 ABBREVIATIONS

Bibliography

[1] M. Abramowitz, I.A. Stegun (Eds.).A Handbook of Mathematical Functions, With
Formulas, Graphs, and Mathematical Tables. Dover Publications, NewYork, 1974,
ISBN0486612724, June.

[2] L. A. Adamic, R. M. Lukose, A. R. Puniyani and B. A. Huberman. Search in
power-law networks. Physical Review E, vol. 64, 2001.

[3] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a survey. Com-
puter Networks, 47, pp. 445—487, 2005.

[4] R. Albert and A. Barabási. Statistical mechanics of complex networks. Reviews
of modern physics, 74, 2002.

[5] C. Avin and G. Ercal. On the cover time of random geometric graphs. Lecture
notes in computer science ISSN 0302-9743, 2005.

[6] A. Barabási, R. Albert and H. Jeong. Mean-field theory for scale-free random
networks. PhysicaA 272, pp. 173-187, 1999.

[7] P. Baran. On distributed communication networks. IEEE Transactions on Com-
munications. pp. 1-9, 1964.

[8] Z. Bar-Yossef, R. Friedman and G. Kliot. RaWMS- Random Walk based Light-
weight Membership Service for Wireless Ad Hoc Networks. Proc. MobiHoc, pp.
238-249, 2006.

[9] N. Bean and A. Costa. An analytic modelling approach for network routing al-
gorithms that use “ant-like” mobile agents. Computer Networks 49, pp. 243—268,
2005.

[10] R. Beckers, J.L. Deneubourg, S. Goss. Trails and U-turns in the selection of the
shortest paths by the ant Lasius Niger. Journal of Theoretical Biology 159, pp.
397—415, 1992.

137

138 BIBLIOGRAPHY

[11] C. Bettstetter. On the Connectivity of Ad Hoc Networks. The Computer Journal,
vol. 47, no. 4, 2004.

[12] M. Bhardwaj and A. Chandrakasan. Bounding the Lifetime of Sensor Networks
via Optimal Role Assignments. Proc. INFOCOM, pp. 1587-1596 , 2002.

[13] N. Bisnik and A. A. Abouzeid. Optimizing Random Walk Search Algorithms in
P2P Networks. Computer Networks, 2006.

[14] B. Bollobás, Random Graphs, Cambridge University press, second edition, 2001.

[15] A. Borodin, Y. Rabani and B. Schieber. Deterministic Many-to-Many Hot Potato
Routing. Proc. IEEE Transactions on Parallel and Distributed Systems, vol. 8, no.
6, pp. 587-596, 1997.

[16] J. Broch, D.A. Maltz, D.B. Johnson,Y. Hu and J. Jetcheva. A performance com-
parison of multi-hop wireless ad hoc network routing protocols. Proc. IEEE/ACM
MOBICOM, 47:445—487, 1998.

[17] C. Busch. Õ(Congestion + Dilation) Hot-Potato Routing on Leveled Networks.
Proc. SPAA, 2002.

[18] D. Camara and A.A.F. Loureiro. Ants A novel routing algorithm for ad hoc
networks. Proc. of the 33rd Hawaii International Conference on System Sciences,
2000.

[19] M. Castro, M. Costa and A. Rowstron. Peer-to-peer overlays: structured, un-
structured or both?. Technical Report MSR-TR-2004-73, 2004.

[20] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker. Making
Gnutella-like P2P Systems Scalable. Proc. SIGCOMM Conference, 2003.

[21] C.C. Chiang, H.KWu, W. Liu and M. Gerla. Routing in Clustered Multihop, Mo-
bile Wireless Networks with Fading Channel. Proc. IEEE Singapore International
Conference on Networks, pp. 197-211, 1997.

[22] F. Chung and L. Lu. The Diameter of Sparse Random Graphs. Advances in Ap-
plied Math. 26, pp. 257—279, 2001.

[23] F. Chung and L. Lu. The small world phenomenon in hybrid power law graphs.
Complex Networks, (Eds. E. Ben-Naim et. al.), Springer-Verlag, pp. 89—104, 2004.

[24] F. R. K. Chung. Spectral Graph Theory. CBMS Conference on Recent Advances
in Spectral Graph Theory, 1994. ISBN: 0-8218-0315-8.

BIBLIOGRAPHY 139

[25] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR).
Internet Draft, RFC 3626, 2003.

[26] T.J.M. Coenen, P.T.H. Goering, A. Jehangir, J.L. van den Berg, R.J. Boucherie,
S.M. Heemstra de Groot, G.J. Heijenk, S.S. Dhillon, W. Lu, A. Lo, P.F.A Van
Mieghem and I.G.M.M. Niemegeers. Architectural and QoS aspects of Personal
Networks. Proc. First International Workshop on Personalized Networks (PerNets
2006) USA, 2006.

[27] C. Cooper and A. Frieze. Crawling on web graphs. Proc. 34th annual ACM sym-
posium on Theory of computing, pp. 419 - 427, 2002.

[28] C. Cooper and A. Frieze. The cover time of the preferential attachment graph.
Journal of Combinatorial Theory, Series B 97, pp. 269-290, 2007.

[29] T.H. Cormen, C.E. Leiserson and R.L. Rivest. An introduction to Algorithms.
MIT Press, Boston, 2000.

[30] Andre Costa. Analytic Modelling of Agent-based Network Routing Algorithms.
Ph.D. thesis, School of Applied Mathematics, University of Adelaide, 2003.

[31] S. Cui, R. Madan, A. J. Goldsmith and S. Lall. Cross-Layer Energy and De-
lay Optimization in small-scale sensor networks. IEEE Transactions on Wireless
Communication, pp. 3688-3699, vol. 6, no. 10, 2007.

[32] D. Culler, D. Estrin and M. Srivastava. Overview of sensor networks. Proc. IEEE
Computer, Special Issue in Sensor Networks, Aug 2004.

[33] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes.
Springer, 1988.

[34] S.R. Das, C.E. Perkins and E. E. Royer. Performance Comparison of Two On-
Demand Routing Protocols for Ad Hoc Networks. Proc. INFOCOM, pp. 3-12,
2000.

[35] A. DasGupta and H. Rubin. Estimation of binomial parameters when both n, p
are unkown. Journal of Statistical Planning and Interference 130, pp. 391—404,
2005.

[36] J.-L. Deneubourg, S. Aron, S. Goss and J.-M. Pasteels. The self organizing ex-
ploratory pattern of the argentine ant. Journal of Insect Behavior 3, pp. 159—168,
1990.

[37] S. S Dhillon and P. Van Mieghem. Performance Analysis of the AntNet algorithm.
Computer Networks, Vol. 51, No. 8, pp. 2104-2125, 2007.

140 BIBLIOGRAPHY

[38] S. S Dhillon and P. Van Mieghem. Comparison of Random Walk Strategies for
Ad Hoc Networks. Proc. of the Sixth Annual Mediterranean Ad Hoc Networking
Workshop (Med-Hoc-Net 2007), Corfu, Greece, pp. 196-203, June 13-15, 2007.

[39] S. S Dhillon, X. Arbona and P. Van Mieghem. Ant Routing in Mobile Ad
Hoc Networks. Proc. Third International Conference on Networking and Services
(ICNS’07), Athens, Greece, June 19-25, 2007.

[40] S. S Dhillon and P. Van Mieghem. Searching with multiple random walk queries.
Proc. 18th Annual IEEE International Symposium on Personal, Indoor and Mo-
bile Radio Communications (IEEE PIMRC’07), Athens, Greece, September 3-7,
2007.

[41] S. S Dhillon and Y. Zhou. Topology, shortest path routing and lifetime of ad hoc
networks. Proc. 14th Symposium on Communications and Vehicular Technology
in the Benelux (SCVT 2007), Delft, Netherlands, 2007.

[42] G. Di Caro and M. Dorigo. AntNet: distributed stigmergetic control for com-
munication networks. Journal of Artificial Intelligence Research 9, pp. 317—365,
1998.

[43] G. Di Caro and M. Dorigo. Two ant colony algorithms for best-effort routing in
datagram networks. Proc. 10th International Conference on Parallel and Distrib-
uted Computing and Systems, 1998.

[44] S. Dolev, E. Schiller and J. Welch. RandomWalk for Self-Stabilizing Group Com-
munication in Ad-Hoc Networks. Proc. 21st Symposium on Reliable Distributed
Systems, 2002.

[45] M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic.
McGraw-Hill Press, 1999.

[46] O. Dousse, F. Baccelli and P. Thiran. Impact of Interferences on Connectivity in
Ad Hoc Networks. IEEE Transactions on Networking, vol. 13, pp. 425-436, 2005.

[47] F. Ducatelle, Gianni Di Caro, L.M. Gambardella. Ant agents for hybrid multi-
path routing in mobile ad hoc networks. Proceedings 2nd Annual Conference on
Wireless On demand Network Systems and Services (WONS), 2005.

[48] P. Erdös and A. Rényi. On random graphs I. Publ. Math. Debrecen. 6, pp. 290-297,
1959.

[49] M. Faloutsos, P. Faloutsos and C. Faloutsos. On power-law relationships of the
Internet topology. Proc. ACM SIGCOMM, Cambridge, Massachusetts, 1999.

BIBLIOGRAPHY 141

[50] P Ganesan and G S Manku. Optimal Routing in Chord. Proc. 15th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 169-178, 2004.

[51] C. Gkantsidis, M. Mihail and A. Saberi. Random walks in peer-to-peer networks:
Algorithms and Evaluation. Performance Evaluation 63, pp. 241-263, 2006.

[52] C. Gkantsidis, M. Mihail and A. Saberi. Hybrid search schemes for unstructured
peer-to-peer networks. Proc. IEEE INFOCOM, 2005.

[53] A. Goldsmith. Wireless Communication. Cambridge University Press, 2005.

[54] M. Güneş and O. Spaniel. Routing algorithms for mobile multi-hop ad-hoc net-
works. Proc. IFIP Conf. on Network Control and Engineering for QoS (Net-Con),
pp. 120—138, 2003.

[55] Z. J. Haas. A New Routing Protocol For The Reconfigurable Wireless Networks.
Proc. 6th IEEE International Conference on Universal Personal Communications,
pp. 562-566, 1997.

[56] Z. J. Haas, J. Y. Halpern and L. Li. Gossip-Based Ad Hoc Routing. Proc. IEEE
INFOCOM, 2002.

[57] R. Hekmat. Ad-hoc Networks: Fundamental Properties and Network Topologies.
Springer, 2006.

[58] R. Hekmat and P. Van Mieghem. Degree Distribution and Hopcount in Wireless
Ad-hoc Networks. Proc. 11th IEEE ICON, 2003.

[59] M. Heusse, D. Snyers, S. Guerin, P. Kuntz. Adaptive agent-driven routing and
load balancing in communication networks. Rapport technique de l’ENST de
Brestagne, RR-98001-iasc, 1998.

[60] S. S. Iyengar and R. R. Brooks. Distributed Sensor Networks. Chapman &
Hall/CRC, 2004.

[61] X. Jia, D. Li and D. Du. QoS Topology Control in Ad Hoc Wireless Networks.
Proc. INFOCOM, 2004.

[62] D. Johnson, D. Maltz, Y.-C. Hu, and J. Jetcheva. The dynamic source routing
protocol for mobile ad hoc networks. Internet Draft, draft-ietf-manet-dsr09-11.txt,
April 2003.

[63] J. Jonasson. On the cover time of random walks on random graphs. Combina-
torics, Probability and Computing 7, pp. 265-279, 1998.

142 BIBLIOGRAPHY

[64] B.J. Kim, C.N. Yoon, S.K. Han and H. Jeong. Path finding strategies in scale-free
networks. Physical Review E, vol. 65, 2002.

[65] F.A. Kuipers. Quality of Service Routing in the Internet: Theory, Complexity and
Algorithms. Ph.D. thesis, Delft University Press, The Netherlands, ISBN 90-407-
2523-3, 2004.

[66] G. F. Lawler, O. Schramm and W. Werner. On the scaling limit of planar self-
avoiding walk. Fractal Geometry and applications, a jubilee of Benoît Mandelbrot,
Proc. Symp. Pure Math. 72, vol. II, 339-364, 2002.

[67] S.-J. Lee, W. Su, and M. Gerla. On-Demand Multicast Routing Protocol
(ODMRP) for Ad Hoc Networks. Internet Draft, draft-ietf-manet-odmrp-02.txt,
Jan. 2000.

[68] A. Leon-Garcia. Probability and Random Processes for Electrical Engineering. 2nd
edition, Prentice Hall, 1994.

[69] B. Levin and J. Reeds. Compound Multinomial Likelihood Functions are Uni-
modal: Proof of a Conjecture of I.J. Good. Annals of Statistics 5, pp. 79—87,
1977.

[70] L. Lovász. Random Walks on Graphs: A Survey. Combinatorics, Paul Erdös is
Eighty (Volume 2), János Bolyai Mathematical Society Budapest, pp. 353-398,
1996.

[71] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and Replication in Un-
structured Peer-to-Peer Networks. Proc. 16th ACM International Conference on
Supercomputing, 2002.

[72] R. Madan, S. Cui, S. Lall and A. Goldsmith. Cross-layer design for lifetime max-
imization in interference-limited wireless sensor networks. IEEE Transactions on
Wireless Communications, pp. 3142-3152, vol. 5, no. 11, 2006.

[73] G. S. Manku, M. Naor and U. Wieder. Know thy Neighbor’s Neighbor: the Power
of Lookahead in Randomized P2P Networks. Proc. 36th ACM Symposium on
Theory of Computing, pp. 53-64, 2004.

[74] S. Marwaha, C. Tham, and D. Srinivasan. Mobile agents based routing protocol
for mobile ad hoc networks. Proc. IEEE Globecom, 2002.

[75] M. Mihail, A. Saberi and P. Tetali. RandomWalks with Lookahead in Power Law
Random Graphs. Internet Mathematics, 2006.

BIBLIOGRAPHY 143

[76] D. Miorandi and E. Altman. Coverage and connectivity of ad hoc networks in
presence of channel randomness. Proc. IEEE INFOCOM, vol. 1, pp. 491—502,
2005.

[77] M. E. J. Newman. The structure and function of complex networks. SIAM Review
45, pp. 167-256, 2003.

[78] I.G. Niemegeers and S.M. Heemstra de Groot. Research Issues in Ad-Hoc Distrib-
uted Personal Networking.Wireless Personal Communications: An International
Journal, Vol. 26, Issue 2-3, pp. 149-167, 2003.

[79] I. Olkin, A.J. Petkau and J.V. Zedik. A Comparison of n Estimators for the
Binomial Distribution. J. of the American Statistical Association 76, pp. 637—
642, 1981.

[80] J. Orriss and Stephen S. Barton. Probability distributions for the number of radio
transceivers which can communicate with one another. Proc. IEEE Transactions
on Communications, vol. 51, no. 4, pp. 676—681, 2003.

[81] C. Perkins, E. Royer, and S. Das. Ad hoc on demand distance vector routing.
Internet Draft, draft-ietf-manet-aodv-11.txt, August 2002.

[82] C. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers. Proc. ACM SIGCOMM, pp. 234-
244, 1994.

[83] L. L. Peterson and B. S. Davie. Computer Networks - A Systems Approach. Second
Edition, Morgan Kaufmann publishers, 2000.

[84] P. P. Pham and S. Perreau. Performance analysis of reactive shortest path and
multi-path routing mechanism with load balance. Proc. IEEE INFOCOM, vol. 1,
pp. 251—259, 2003.

[85] P. Purkayastha and J. S. Baras. Convergence Results for Ant Routing Algorithms
via Stochastic Approximation and Optimization. Proc. 46th IEEE Conference on
Decision and Control, New Orleans, 2007.

[86] S. Rajagopalan and C. Shen. ANSI: A unicast routing protocol for mobile ad
hoc networks using swarm intelligence. Proc. International Conf. on Artificial
Intelligence, pp. 24—27, 2005.

[87] T. S. Rappaport.Wireless Communication - Principles and Practice. Second Edi-
tion, Prentice Hall, 2002.

144 BIBLIOGRAPHY

[88] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker. A Scalable
Content-Addressable Network. Proc. of ACM SIGCOMM, 2001.

[89] M. Roth and S. Wicker. Termite: emergent ad-hoc networking. Proc. of the 2nd
Mediterranean Workshop on Ad-Hoc Networking, June 2003.

[90] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. Proc. IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Germany, pp. 329-
350, 2001.

[91] A. Salhieh and L. Schwiebert. Power Aware Metrics for Wireless Sensor Net-
works. Proc. 14th IASTED Conference on Parallel and Distributed Computing
and Systems, 2002.

[92] R. Schoonderwoerd, O. Holland, J. Bruten and L. Rothkrantz. Ant-based load
balancing in telecommunications networks, Journal of Adaptive Behavior 5 (2),
pp. 169—207, 1996.

[93] G. M. Schütz and S. Trimper. Elephants can always remember: Exact long-range
memory effects in a non-Markovian random walk. Physical Review E, vol. 70,
Issue 4, 2004.

[94] S. Singh and C. Raghavendra. PAMAS: Power Aware Multi-Access protocol with
Signalling for Ad Hoc Networks. Proc. ACM Computer Communications Review,
1999.

[95] P. Sinha, R. Sivakumar and V. Bharghavan. MCEDAR: multicast core-extraction
distributed ad hoc routing. Proc. Wireless Communications and Networking Con-
ference (WCNC), pp. 1313 - 1317, 1999.

[96] E. S. Sousa and J. A. Silvester. Optimum Transmission Ranges in a Direct-
Sequence Spread-Spectrum Multihop Packet Radio Network, Proc. IEEE Journal
on Selected Areas in Communications, vol. 8, no. 5, pp. 762—771, 1990.

[97] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. Proc. of the ACM
SIGCOMM Conference, 2001.

[98] D. Subramanian, P. Druschel and J. Chen. Ants and reinforcement learning: a
case study in routing in dynamic networks. Proc. 2nd Mediterranean Workshop
on Ad-Hoc Networking, June 2003.

[99] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

BIBLIOGRAPHY 145

[100] H. P. Thadakamalla, R. Albert and S. R. T. Kumara. Search in weighted complex
networks. Physical Review E, vol. 72, 2005.

[101] G. Theraulaz and E. Bonabeau. A brief history of stigmergy. Artificial Life (Spe-
cial Issue on Stigmergy), pp. 97—116, 1999.

[102] C.K. Toh. A Novel Distributed Routing Protocol To Support Ad hoc Mobile Com-
puting. Proc. IEEE 15th Annual International Phoenix Conference on Computers
and Communications, pp. 480-486, 1996.

[103] S. Valverde and R. V. Solé. Internet’s Critical Path Horizon. European Phys. J.
B. 38, pp. 242-252, 2004.

[104] R. van der Hofstad, G. Hooghiemstra, P. Van Mieghem. First passage percolation
on the random graph. Probability in the Engineering and Informational Sciences
(PIES), vol. 15, pp. 225—237, 2001.

[105] P. Van Mieghem. Performance Analysis of Computer Systems and Networks.
Cambridge University Press, 2005.

[106] P. Van Mieghem. Paths in the simple random graph and the Waxman graph.
Probability in the Engineering and Informational Sciences (PIES) 15, pp. 535—
555, 2001.

[107] P. Van Mieghem. Data Communication Networking. Techne Press, 2006.

[108] P. Van Mieghem, H. De Neve and F.A. Kuipers. Hop-by-hop Quality of Service
Routing. Computer Networks, vol. 37/3-4, pp. 407-423, 2001.

[109] Y. Xue and B. Li. A location-aided power-aware routing protocol in mobile ad
hoc networks. Proc. IEEE Globecom, vol. 5, pp. 2837-2841, 2001.

[110] J.-H. Yoo, R. J. La and A.M. Makowski. Convergence results for ant routing.
Proc. CISS, Princeton University, NJ, 2004.

[111] H. Zhang and J. Hou. On the Upper Bound of α-Lifetime for Large Sensor Net-
works. ACM Transactions on Sensor Networks, vol. 1, no. 2, pp. 272-300, 2005.

[112] M. Zorzi and S. Pupolin. Outage Probability in Multiple Access Packet Radio
Networks in the Presence of Fading. Proc. IEEE Transactions on Vehicular Tech-
nology, vol. 43, no. 3, pp. 604—610, 1994.

146 BIBLIOGRAPHY

Acknowledgements

I would like to thank my advisor and promotor Piet Van Mieghem who gave me the
opportunity to work with him at TU Delft. His enthusiasm and insights have been
invaluable during my Ph.D. thesis work. I am indebted to all the committee members
for their comments and suggestions. My special thanks to Sonia, Ignas, Hans and
other people in the IOPGencom project for their comments and views during project
meetings.
Life would have been less fun without the people on the 19th floor. My special thanks

to Nauman, Umar, Ramin, Weidong, Tom, Jasmina, Milena, Almerima, Fernando,
Biengjie, Rob and all other people on the 19th floor for the wonderful time and a
friendly atmosphere. A special thanks to Marjon and Wendy for their help during
these four years.
I would also like to thank all my friends in Delft for their advice and cooperation

specially Andrei, Frederico, Marco and Robert. Last but not least, a special thanks to
all my friends, family and well wishers whom I didn’t see much in last few years but
remain always in my heart.

Santpal Singh
Delft

147

148 ACKNOWLEDGEMENTS

Curriculum Vitae

Santpal Singh Dhillon was born on 10 September, 1979 in Nathana, Punjab (India). He
graduated with a B.Tech (Honors) degree in Electrical Engineering from Indian Institute
of Technology, Kharagpur in 2001. He graduated with a MS degree in Electrical and
Computer Engineering from Duke University, U.S.A in 2003. In March 2004, he started
his Phd degree at TU Delft in the Network and Architecture Services (NAS) group
headed by Prof. Piet Van Mieghem.

Publications

• S. S Dhillon and Y. Zhou, "Topology, shortest path routing and lifetime of ad hoc
networks ", Proc. 14th Symposium on Communications and Vehicular Technology
in the Benelux (SCVT 2007) .

• S. S Dhillon and P. VanMieghem, "Searching with multiple randomwalk queries",
Proc. 18th Annual IEEE International Symposium on Personal, Indoor and Mo-
bile Radio Communications (IEEE PIMRC’07), September 3-7, Athens, Greece.

• S. S Dhillon, X. Arbona and P. Van Mieghem, " Ant Routing in Mobile Ad Hoc
Networks ", Proc. Third International Conference on Networking and Services
(ICNS’07), June 19-25, 2007 - Athens, Greece.

• S. S Dhillon and P. Van Mieghem, "Comparison of Random Walk Strategies for
Ad Hoc Networks ", Proc. of the Sixth Annual Mediterranean Ad Hoc Networking
Workshop (Med-Hoc-Net 2007), June 13-15, Corfu, Greece, pp. 196-203.

• S. S Dhillon and P. Van Mieghem, "Performance Analysis of the AntNet algo-
rithm", Computer Networks, Vol. 51, No. 8, June 6, p. 2104-2125, 2007.

• T.J.M. Coenen, P.T.H. Goering, A. Jehangir, J.L. van den Berg, R.J. Boucherie,
S.M. Heemstra de Groot, G.J. Heijenk, S.S. Dhillon, W. Lu, A. Lo, P.F.A Van
Mieghem and I.G.M.M. Niemegeers, "Architectural and QoS aspects of Personal
Networks", Proc. First International Workshop on Personalized Networks, Per-
Nets 2006, 21 July 2006, San Jose, CA, USA.

149

150 CURRICULUM VITAE

• S. S. Dhillon and K. Chakrabarty, "Sensor placement for effective coverage and
surveillance in distributed sensor networks", Proc. IEEE Wireless Communica-
tions and Networking Conference, pp. 1609-1614, 2003.

• S. S. Dhillon, K. Chakrabarty and S. S. Iyengar, "Sensor placement for grid cover-
age under imprecise detections", Proc. International Conference on Information
Fusion (FUSION 2002), pp. 1581-1587, 2002.

• S. S. Dhillon, K. Chakrabarty and S. S. Iyengar, "Sensor placement for effective
grid coverage and surveillance", Workshop on Signal Processing, Communications,
Chaos and Systems, Newport, RI, 2002.

• S. S. Dhillon and K. Chakrabarty, "A fault-tolerant approach to sensor deploy-
ment in distributed sensor networks", Proc. Army Science Conference (ASC),
Paper ID: JP-05, 2002.

• S. S. Dhillon and S. Chakrabarti, "Power line interference removal from electro-
cardiogram using a simplified lattice based adaptive IIR notch filter”, Proc. 23rd
International Conference on Engineering in Medicine and Biology (IEEE-EMBC),
pp. 3407- 3412, 2001.

