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Particle detection using closed-loop active model diagnosis

Jacques Nooma, Oleg Solovieva, Carlas Smitha, Nguyen Hieu Thaoa, and Michel Verhaegena

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628CD
Delft, The Netherlands

ABSTRACT

We demonstrate a novel closed-loop input design technique on the detection of particles in an imaging system
such as a fluorescence microscope. The probability of misdiagnosis is minimized while constraining the input
energy such that for instance phototoxicity is reduced. The key novelty of the closed-loop design is that each
next input is designed based on the most recent information. Using updated hypothesis probabilities, the input
energy distribution is optimized for detection such that unresolved pixels have increased illumination next image
acquisition. As compared to conventional open-loop, the results show that (regions of) particles are diagnosed
using less energy in the closed-loop approach. Besides the closed-loop approach being viable for particle detection
in fluorescence microscopy measurements, it can be developed further to apply in different areas such as sequential
object segmentation for reliable and efficient product inspection in Industry 4.0.

Keywords: Active fault diagnosis, Auxiliary signal design, Fluorescence microscopy, Machine vision

1. INTRODUCTION

Superresolution microscopy aims at nanometer-precision localization of single particles. A major limitation is
the photon budget per emitter. MINFLUX1 is a recently developed method for accurate estimation of particle
locations, while using the photon budget efficiently. However, the particles first need to be detected before the
MINFLUX procedure can be started. Previous efforts2,3 detect particles with uniform illumination and only
using a single shot (e.g. coarse xy-scanning for only a single time). Clearly, this provides opportunities for
improvement in reducing the photodamage to the tissue, and thereby potentially enhancing the localization
precision.

Closed-Loop Active Model Diagnosis (CLAMD) discriminates models in the fewest number of measurements
by sequentially applying the online calculated separating input to the system. It stems from active fault diagnosis4

and auxiliary signal design,5 in which auxiliary inputs are designed to verify whether a system is faulty or
not. Active fault diagnosis “has not seen widespread adoption in practical applications.”4 However, the theory
developed under this name is considerably more general than diagnosing faults. It is rather concerned with
diagnosing models, which is also associated with, for example, pattern recognition and the detection of particles
under a microscope. Therefore, in accordance with recent literature,6 this paper is continued with the term
‘model diagnosis’.

The efforts mentioned earlier2,3 using one single measurement are examples of open-loop active model diag-
nosis. They are active for having a controllable, yet predefined (in this case uniform) input illumination. Also
the techniques using sequential measurements, as in sequential analysis,7 with a predefined input are still cate-
gorized under open-loop. The closed-loop aspect is introduced when the next discriminating input is designed
based on most recent information, as early5,8, 9 and more recent contributions4 propose. This is likely to be more
appropriate for quick and efficient diagnosis.

After the contribution with application to automated visual inspection,6 this paper further stimulates research
in CLAMD by showing how it can be applied to particle detection. Challenging realistic conditions under a
fluorescence microscope are simulated, after which the closed-loop procedure finds the particle locations. Its
performance is then compared to that of an open-loop approach. Additionally, the methodology is tested on a
situation where neighboring pixels are not independent due to the large size of the point-spread function (PSF).
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2. METHODS

Consider the object to be imaged x ∈ {0, 1}m×m. For each element i ∈ {1, 2, . . . ,m2}, two hypotheses are
formulated whether it contains a particle or not:

M0 : xi = 0

M1 : xi = 1.
(1)

The mathematical model for the image formation is

yk = hx ∗
(
x · (hu ∗ uk)

)
+ vk, (2)

with uk ∈ Rm×m
+ the illumination input, yk ∈ Rm×m

+ the output intensity, hx, hu ∈ Rm×m
+ the point-spread

function (PSF) of the imaging system and illumination source, respectively, and vk ∈ Rm×m the noise at
measurement k. The symbols ∗ and · represent convolution and element-wise multiplication, respectively.

With the statistics of the stochastic variable vk known, the hypothesis probabilities Pi,k(Mj) evolve according
to the Bayesian update rule

Pi,k(Mj) =
p(yi,k|Mj)Pi,k−1(Mj)

p(yi,k)
, (3)

where p(yi,k|Mj) is the probability density function (PDF) of output yk at pixel∗ i, conditioned on hypothesis
Mj . The initial conditions Pi,0(Mj) can be set to any prior probabilities. Note that the PDFs are taken
here independent of neighboring pixels. This means that only the response at output pixel yi,k is regarded for
assessing whether object element xi contains a particle, without regarding pixels neighboring to yi,k. Therefore,
it is assumed that hx is centered and narrow.

In the current application we limit the so-called input energy∑
i

u2
i,k = vec(uk)

⊤vec(uk) ≤ ε. (4)

This concept can have physical meaning and purpose, for instance for reduced phototoxicity or bleaching in
fluorescence microscopy. Note that this definition of the input energy is standard in control engineering, but can
be different from the physical energy in reality.

2.1 Closed-Loop Input Determination

Based on the probabilities calculated in (3), the input energy ε for next acquisition is distributed as follows:

ui,k+1 =

√
Pi,k(M0)Pi,k(M1)∑
ℓ Pℓ,k(M0)Pℓ,k(M1)

ε (5)

This function is chosen heuristically, though with the logic that larger inputs are desirable if Pi,k(M1) = 1 −
Pi,k(M0) ≈ 0.5 and otherwise, smaller inputs are affordable. Note that this works only if the illumination does
not have a lateral offset. This means that hu is centered, but not necessarily narrow. The diagnosis algorithm is
applied in closed-loop, as illustrated in Figure 1. The imaging system performs operation (2) and the controller
computes both (3) and (5).

3. SIMULATION RESULTS

In this section, first the results are shown for a Monte-Carlo simulation where the PSF is small compared to
the pixel size. Afterwards, the effect of a larger PSF is evaluated. For both experiments, the acquired images
have size 50×50 pixels and consist of 15 randomly distributed particles. This makes the initial probability for
each pixel Pi,0(M1) = 15/2500. The input characteristic hu is a centered Gaussian with standard deviation 2
pixels. The open-loop approach applies uniform illumination over a number of measurements equivalent to the
closed-loop approach. We consider two cases of the output PSF hx: sharp and wide.

∗The notation for individual elements i in m × m-matrices is in this paper indicated as first subindex, e.g.: ui,k for
matrix uk, or Pi,k(Mj) for matrix Pk(Mj).
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Figure 1. Control scheme. The (unknown) object x is fed to the imaging system together with illumination input uk.
Its output is corrupted with noise vk, after which yk is measured. The controller determines the probabilities of particle
presence for each pixel Pk(M1) and computes the input for next measurement.

3.1 Sharp PSF

The imaging system in this experiment is assumed to have a small PSF compared to the pixel size. This
implies that each photon emitted from object element xi will be received only in output element yi,k and not
in neighboring pixels. The images are corrupted with Poisson noise with 20 photons background noise and the
input energy is ε = 105 squared photons†, which implies that two photons per emitter can be expected per
measurement if the sample is uniformly illuminated. The maximum number of measurements is 200 and 800
Monte-Carlo runs are performed.

Video 1 shows the precision and recall‡ characteristics resulting from the Monte-Carlo runs, together with
one realization of the particle probabilities and corresponding input (paused at time step k = 90). From the
precision-recall curves and the corresponding area under the curve, it can be clearly seen that the closed-loop
approach converges faster to the ground truth. The reason for this is that the closed-loop approach inspects
unresolved areas with higher illumination intensity than areas with higher confidence. The bottom right plot
reveals this effect, by showing larger inputs at areas where Pi,k(M1) ≈ 0.5. In addition, when comparing the
summed input energy for all measurements until an Area Under the Curve (AUC) of 0.98 is achieved, it can be
concluded that the closed-loop approach (k = 91) uses 27.8% less energy than the open-loop approach (k = 126).
The illumination at the true particle locations – which is direcly related to bleaching – was reduced with 18.6%
using the closed-loop approach.

3.2 Wide PSF

Now, a larger PSF of the imaging system is considered, making neighboring pixels dependent. Nevertheless,
the same strategy from Section 2 is still used. The PSF hx is modeled as a centered Gaussian with standard
deviation 1.2 pixels.Then, the images are corrupted with Poisson noise with 5 photons background noise. The
input energy is ε = 62 500 squared photons, implying that 5 photons per emitter are expected each measurement
in the case of uniform illumination.

Video 2 shows the results for one realization (paused at time step k = 100). At first sight, it appears that the
closed-loop approach finds the particles with significantly more confidence than the open-loop approach using
uniform illumination. On the other hand, for both approaches the probability plots show circular blobs with
high confidence, instead of single pixels. This produces apparent rings with low confidence (i.e. Pi,k(M1) ≈ 0.5)
around the actual particles. Therefore, the closed-loop approach suggests large illumination very close to the
particle locations, thereby inadvertently illuminating the particles itself with a higher intensity. Nevertheless,
the photodamage to the general tissue can still be decreased, as the particles are detected in fewer measurements
and thus using less input energy in total, as compared to the open-loop approach using uniform illumination.

†As mentioned in Section 2, the definition of input energy in control engineering can be different from the physical
energy in reality.

‡Precision is defined as TP/(TP+FP), and recall is TP/(TP+FN), with TP, FP and FN the true positives, false
positives and false negatives, respectively.
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Video 1. Results of Monte-Carlo runs for small PSF. (Bottom middle) precision-recall curves for k = {30, 50, 90} 
for open-loop (blue) and closed-loop approach (red). (Bottom left) the Area Under precision-recall Curve (AUC) over 
time. (Remaining) one realization at time step k = 90: ground truth (top left), particle probabilities for open-loop (top 
middle) and closed-loop approach (top right), and the corresponding input (bottom right). Using nonuniform closed-loop 
illumination, the probabilities converge faster to the ground truth. http://dx.doi.org/10.1117/12.2605452.1
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Video 2. Results of the simulation with larger PSF. The ground truth (bottom left), the particle probabilities for open-
loop (top left) and closed-loop approach (top middle), the output (bottom middle) and the input (bottom right) at time 
step k = 100. Although the effect of larger PSF is clearly visible in the probability plots, it can be seen that the closed-loop 
approach converges faster in the direction of the ground truth. http://dx.doi.org/10.1117/12.2605452.2
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If regarding the measurement number for which the average probability for the positives exceeds 98% (closed-
loop: k = 46 with average Pi,46(M1) for negatives 6.7%; open-loop: k = 119 with average Pi,119(M1) for negatives
4.7%), it turns out that this specific realization uses 61.3% less energy and reduces bleaching of the emitters
with 29.0% in closed-loop. Surprisingly, this means that the closed-loop approach performed better in this case,
despite the degenerate behavior of focusing illumination around the actual particles. Still, there are substantial
opportunities for improvement in efficient distribution of illumination intensity. To achieve that, it remains a
challenge to consider dependencies between neighboring pixels.

4. CONCLUSIONS

This manuscript demonstrated the application of CLAMD to particle detection in imaging systems. By consid-
ering probabilities of particle presence in a pixel, the proposed approach calculates an illumination pattern such
that the overall confidence increases, while using limited input energy. A first test under challenging conditions
for a fluorescence microscope with small PSF showed a decrease in energy usage of 27.8% and in bleaching of the
particles of 18.6%. An additional test with large PSF also demonstrated an improvement in performance, yet
revealed the degenerate behavior of this implementation of inadvertently focusing illumination on the particles.

Further developments should focus on considering the dependency between pixels if the PSF is wide. Another
recommendation is to perform the detection with (sub-pixel) localization simultaneously, instead of subsequently.
This would lead to a more efficient use of the photon budget of the particles, and therefore a more accurate
localization. After this demonstration in particle detection, the applicability of CLAMD can be expanded to
detecting extended objects with limited input energy, which could be useful in reliable and efficient medical
diagnosis or product inspection in Industry 4.0.
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