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Slope failure analysis using the random material point method

B. WANG*, M. A. HICKS* and P. J. VARDON*

The random material point method (RMPM), which combines random field theory and the material
point method (MPM), is proposed. It differs from the random finite-element method (RFEM), by
assigning random field (cell) values to material points that are free to move relative to the computational
grid rather than to Gauss points in a conventional finite-element mesh. The importance of considering
the effects of both large deformations and the spatial variability of soil strength properties in slope
stability analyses is highlighted, by comparing RMPM solutions with RFEM and deterministic MPM
solutions for an idealised strain-softening clay slope characterised by a spatially varying undrained
shear strength. The risks posed by potential slides are quantified by the extent of retrogressive failure –

that is, due to the tendency for secondary failures to be triggered by the removal of support from the
remaining soil mass caused by the initial failure. The results show that RMPM provides a much wider
range of solutions, in general increasing the volume of material in the failure compared with the RFEM
solutions, which are usually limited to the initial slide. Moreover, the anisotropic nature of soil
heterogeneity is shown to have a significant influence on the nature and extent of failure.
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NOTATION
a acceleration
c cohesion

c0, cp initial (peak) cohesion
cr residual cohesion
cu undrained shear strength
E Young’s modulus
fn nodal normal force
ft nodal tangential force
H hardening/softening modulus
I identity matrix
i node numbering

M mass matrix
m material mass
N shape function

Nm number of material points surrounding a node
Nn number of grid nodes around a material point
p material point numbering
r sliding distance
t time
v velocity
V coefficient of variation
x location
z depth below slope crest
γ soil unit weight

Δt time step
εp plastic strain
ε̄p plastic shear strain invariant
ε̄pr plastic shear strain invariant at the onset of residual strength
θh horizontal scale of fluctuation
θv vertical scale of fluctuation
μ mean
μf frictional coefficient
σ standard deviation
υ Poisson’s ratio

INTRODUCTION
Soils exhibit spatial variability of material properties due to
variations in density, particle size distribution, minerology
and stress history. By considering heterogeneity within a
statistical framework, it is evident that slopes can exhibit a
variety of failure mechanisms due to the spatial distribution
of the weaker zones. For example, by using the random
finite-element method (RFEM), it has been shown that
failure mechanisms tend to follow the path of least resistance
(Hicks & Samy, 2002; Li et al., 2015), and that the
consequences of failure – for example, slide volume, are
closely related to the category of failure mode (Hicks &
Spencer, 2010; Hicks et al., 2014). RFEM combines random
field theory, for modelling spatial variability, with the
finite-element method (FEM), for modelling geotechnical
response, within a Monte Carlo simulation process (Fenton
& Griffiths, 2008). For this purpose, finite-element analyses
are often limited to small deformation problems, in order
to avoid excessive mesh distortions. In contrast, the material
point method (MPM) (Sulsky et al., 1994; Sulsky &
Schreyer, 1996) has proven to be a useful FEM variant in
capturing geotechnical failure mechanisms involving large
deformations (Wieckowski et al., 1999; Al-Kafaji, 2013;
Bandara & Soga, 2015; Wang et al., 2016).

By combining random field theory and MPM, this paper
proposes a new technique to investigate the influence of
heterogeneity on slope failure mechanisms involving large
deformations, including secondary failure mechanisms and
failure consequences. This technique is called the ‘random
material point method’ (RMPM).

THEORETICAL FORMULATIONS
MPM
MPM uses two types of discretisation: (a) a background
mesh for computation, which is regularly reset to limit mesh
distortions and (b) a set of material points representing
the material, which store all state variables and are allowed
to move freely through the mesh. There are three
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computational phases, as illustrated in Fig. 1 and summar-
ised as follows.
In the mapping phase, state variable information is

transferred from the material points to the background
mesh nodes – for example

vi ¼
XNm

p¼1

NiðxpÞmpvp
mi

ð1Þ

where subscripts i and p refer to the nodal and material
point numbering, respectively; m and v are the material
mass and velocity; N(x) are the shape functions at location
x and Nm is the number of material points surrounding
node i.
The updated Lagrangian FEM phase follows standard

FEM procedures to solve the governing equations, although
a major algorithmic difference is in the use of the material
points to perform numerical integration – for example

Mi ¼
XNm

p¼1

NiðxpÞmpI ð2Þ

where Mi is the contribution to the mass matrix from node i
and I is an identity matrix. The nodal accelerations are then
solved for time t+Δt.
The convection stage involves mapping and updating of

kinematic variables back to the material points – that is

atþΔt
p ¼

XNn

i¼1

atþΔt
i Ni xtp

� �
ð3aÞ

vtþΔt
p ¼ vtp þ atþΔt

p Δt ð3bÞ

xtþΔt
p ¼ xtp þ vtþΔt

p Δt ð3cÞ
where Nn is the number of grid nodes providing support to
the material point.
Depending on how the governing equations are integrated

and solved in time, MPM is either categorised as implicit
(Wang et al., 2013, 2016) or explicit (Sulsky et al., 1994).
However, the key aspects of both formulations are the same,
including the techniques for treating boundaries, damping

and so on. An explicit version of the code has been adopted
here, based on Sulsky & Schreyer (1996).

Random field theory
Random fields are numerically generated predictions of the
spatial variability of a property over the problem domain.
These are based on (a) an assumed probability density
function, characterised by the mean property value μ and
standard deviation σ, in which V= σ/μ is the coefficient of
variation (Fig. 2(b)) and (b) an assumed spatial correlation
function, characterised by vertical and horizontal scales of
fluctuation, θv and θh, respectively, defining the distance over
which property values are significantly correlated (Fig. 2(a)).

This paper uses local average subdivision to generate
random fields of local averages that are assigned to random
field cells (Fenton & Vanmarcke, 1990). RFEM involves
multiple realisations of the problem to be solved, in which
each realisation involves generating a random field of the
material property, mapping cell values from the random
field onto the FEM mesh at the Gauss point level, and

(a) Mapping phase

(b) UL-FEM phase (c) Convection phase

Fig. 1. Computational cycle of MPM: (a) A set of material points representing the material, overlaid on a background computational
mesh. Material properties, constitutive models and other state information are assigned to, and stored only on, the material points.
Information is transferred to the nodes of the background mesh for computational purposes. (b) The equations of motion are solved on
the background mesh, utilising the updated Lagrangian FEM. (c) The state of the material points is updated, and the background mesh
reset

cu

cu

θv
µ

σ σ
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f

D
ep

th

(a) (b)

Fig. 2. Statistical measures of cu variability (after Hicks & Samy,
2002): (a) variation of cu with depth, (b) probability density
function of cu
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analysing the problem deterministically by finite elements
(Hicks & Spencer, 2010). In contrast, the random field is
mapped to the problem domain at the material point level in
RMPM.
In both RFEM and RMPM, multiple realisations are

analysed for the same set of input statistics (i.e. μ, σ, θv, θh),
in order to obtain a distribution of possible responses and
their relative likelihood.

Cohesion-softening model
For illustrative purposes, a simple cohesion-softening Von
Mises material model has been used herein. Figure 3 shows
that the strength decreases proportionally to the plastic

strain invariant in the softening stage – that is

cðε̄pÞ ¼ c0 þH ε̄p; ε̄p , ε̄pr ð4aÞ

cðε̄pÞ ¼ cr; ε̄p . ε̄pr ð4bÞ
where c is the (undrained) cohesion; c0 and cr are the
initial (i.e. peak) and residual cohesions, respectively;
ε̄p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=3Þεp : εp
p

is the plastic shear strain invariant; ε̄pr
is the plastic shear strain invariant at the onset of the residual
strength; εp is the vector of plastic strains and H is the
hardening or softening modulus (defined as negative for
softening).

INFLUENCE OF SOIL HETEROGENEITY ON
RETROGRESSIVE SLOPE FAILURES
An idealised total stress boundary value problem has been
analysed to provide a simple illustration of RMPM,
although the same methodology can (and will in the
future) be applied to coupled effective stress analyses.
Figure 4 shows a 45°, 5 m high, clay slope, resting on a
firm base. The length from the slope crest to the left-hand
boundary is 20 m, in order to provide enough space for the
development of retrogressive failures. The initial slope
geometry has been discretised using 1810, four-node,
quadrilateral elements, with four material points per
element located at the Gauss point positions (i.e. initially,
before the slope starts to deform). A frictional contact

s1 = 20·0 m

H
 =

 5
·0

 m
Ro

lle
rs

s2 = 5·0 m

Frictional boundary

Fig. 4. Boundary conditions, background mesh and initial geometry of the clay slope. A cruder mesh than that used in the analysis is
shown for reasons of clarity
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Fig. 3. Sketch of cohesion-softening model

5·0

0·0

4·0 

2·0 

Plastic strain invariant
Sliding distance, r = 9·0 m
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Plastic strain invariantSliding distance, r = 9·6 m

(a)

(b)

(c)

Fig. 5. Initial and final slope configurations, with contours of plastic shear strain invariant, including spatial convergence analysis:
(a) Most coarse converged mesh (1810 elements, 4 material points per element), (b) Refined elements (3840 elements, 4 material
points per element), (c) Refined material points (1810 elements, 16 material points per element)
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between the slope base and supporting firm ground is
assumed, to account for geometric interlocking between
material layers, while rollers allow only vertical movement at
the left-hand boundary. The frictional boundary is based
on Bandara & Soga (2015) and is defined by a maximum
nodal tangential force ft = μffn, where fn is the nodal force
normal to the boundary and, in this analysis, the frictional
coefficient is μf = 0·3. The Young’s modulus and Poisson’s
ratio of the soil are E=1000 kPa and υ=0·33, respectively.
While an undrained failure implies a Poisson’s ratio of 0·5,
the adopted smaller value aids numerical convergence and
promotes a more realistic in-situ stress field, whereas the
plastic model component dominates the failure mechanism.
The peak undrained shear strength is 20 kPa, the residual
strength is 4 kPa and the hardening/softening modulus is
−50 kPa. For simplicity, the slope is initially unstable under
its own weight; hence, slope failure is triggered by applying
gravitational loading to generate the in-situ stresses.
Figure 5(a) shows the final slope configuration computed

using a deterministic MPM analysis. For a straightforward
quantification of the potential failure consequence, the
sliding distance r, as shown in Fig. 5, is used to define how
far the failure retrogresses backwards from the crest.
Figures 5(b) and 5(c) investigate mesh dependency by
considering refined meshes with greater numbers of elements
and material points, respectively. Although, as expected,
some mesh dependency is observed, the overall behaviour,
number of failures and sliding distance are consistent enough
to ensure the veracity of the following numerical study
(which is based on the discretisation in Fig. 5(a)).

RMPM against deterministic analysis
The influence of spatial variability of undrained shear
strength on slope response has been assessed by assuming
a normal distribution and a coefficient of variation of 0·25
for both peak and residual shear strengths (with all other

parameters being the same as for the MPM analysis).
A series of RMPM analyses, each comprising 100 Monte
Carlo realisations, has been conducted, for θv = 1·0 m and
θh = 1·0, 6·0 and 48·0 m.

Figures 6(a)–6(c) show the probability density histograms
of the computed sliding distance, as well as fitted normal
probability density functions. The normal distribution fits
the computed results of the Monte Carlo simulation
reasonably well for smaller θh, as in Figs 6(a) and 6(b).
Although Fig. 6(c) shows a less good fit due to the higher
number of realisations needed for convergence with higher θh
(Hicks & Samy, 2002), the number of realisations is sufficient
to enable proper evaluation of trends. Moreover, the peak in
the number of realisations showing a sliding distance of 20 m
is an indication that the mesh does not extend far enough
from the slope crest in some cases. The mean sliding
distances for θh = 1·0, 6·0 and 48·0 m are r=9·43, 9·75 and
10·07 m, respectively, compared with r=9·0 m for the
deterministic MPM analysis based on the mean undrained
strength. However, of greater practical significance is that the
standard deviation of (i.e. the uncertainty in) r increases
significantly with θh, by a factor of around 2 for the range of
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Fig. 7. Comparison of solutions for θh = 1·0 m
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Fig. 6. Probability density functions of the realised sliding distance for the slope: (a) θh = 1·0 m, (b) θh = 6·0 m, (c) θh = 48·0 m,
(d) influence of θh on PDF
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θh considered. Hence, the deterministic analysis may
seriously underestimate the sliding distance, giving an
unconservative estimate of the risk. For the case in which
θh = 48·0 m, the spatial variability takes on a layered
appearance. A possible consequence is that the slope
remains stable (i.e. r=0 m) due to the presence of high-
strength soil layers along the potential failure path,
especially near the slope toe; conversely, the slope can slide
a large distance (e.g. r>20 m) due to the presence of weak
layers.

Note that some reduction of the distribution width
may be possible, by constraining the spatial variability
using site-specific data to condition the random fields
(Lloret-Cabot et al., 2014).

RMPM against RFEM
RFEM solutions have been compared with the results of
RMPM (for the same ensemble of random fields), as shown
in Fig. 7 for θh = 1·0 m. Due to the assumption of small
deformations in the RFEM simulation carried out in this
paper, secondary slides were generally not computed,
thereby significantly reducing the sliding distance and
range of solutions relative to the RMPM simulation. With
RMPM, the failure is able to retrogress backwards during
the slope collapse, due to the removal of support provided by
soil involved in the initial failure.

Failure process of heterogeneous slopes
Figure 8 shows the three stages in the failure evolution for a
typical realisation in which θh = 48·0 m: the initial failure,
the first failure block formed and the final configuration.
Figure 8(a) shows the random field of peak undrained shear
strength, with blue and red representing weak and strong
zones, respectively. As the soil self-weight is applied, the
shear stresses start to build up near the slope toe. However,
the failure initiates slightly above the toe where the
slope stability number (cu/γz) is lower. Hence, the failure
mechanism avoids the stronger zone in seeking out the path
of least resistance and fails along the base of the weaker soil.

Figure 8(b) depicts the stages of the constitutive model
governing the behaviour of the material points within the
slope. Blue, light blue, orange and red in the figure indicate
elastic, elastic unloading, softening and residual stages of
the model, respectively. It is seen that the material points
within a developing shear band are mostly governed by the
residual cohesion, whereas the soils within previous shear
bands mostly experience elastic unloading as a new shear
band is being formed. Figure 8(d) shows that the largest
plastic shear strain invariant contours propagate mainly
horizontally, forming the basal line of the global failure. Due
to the removal of support from the soil at the backscarp of
the first slide, the failure of the backscarp is triggered and the
second failure block is formed, with deformation continuing
until the final equilibrium state.

The influence of anisotropy (of the heterogeneity) on the
slope failure modes is illustrated in Fig. 9, where typical final
slope configurations for θh = 1·0 and 6·0 m are shown. The
contours of plastic shear strain invariant, in Figs 8(d), 9(b)
and 9(d), demonstrate that more soil wedges tend to form for
smaller θh, due to it being easier for failure paths to avoid
stronger zones.

CONCLUSION
The random material point method (RMPM) has been
proposed. In contrast to RFEM, which assigns random field
(cell) values to Gauss points within a finite-element mesh,
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RMPM assigns random field values to the so-called material
points that are able to move through the computational grid.
This grid is regularly reset, to avoid the excessive mesh
distortions that can occur in large deformation finite-
element analyses.
The potential of RMPM in geotechnical analysis has been

simply demonstrated for an idealised slope in a strain-
softening soil. Large deformations and heterogeneity were
both shown to have a significant effect on the initiation and
evolution of the slope failure mechanism; in particular, on
secondary failures and the extent of failure retrogression. By
equating the potential failure consequence to the sliding
distance (i.e. extent), deterministic and/or small strain
analyses are shown to, in general, yield unconservative
results and underestimate the risk.
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