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Abstract
Multi-mission satellite altimetry data have been used to study the spatial and temporal variability in global storm surge water
levels. This was done by means of a time-dependent extreme value analysis applied to the monthly maximum detided water
levels. To account for the limited temporal resolution of the satellite data, the data were first stacked on a 5◦ × 5◦ grid.
Moreover, additional scaling was applied to the extreme value analysis for which the scaling factors were determined by
means of a resampling method using reanalysis data. In addition to the conventional analysis using data from tide gauges,
this study provides an insight in the ocean-wide storm surge properties. Nonetheless, where possible, results were compared
to similar information derived from tide gauge data. Except for secular changes, the satellite-derived results are comparable
to the information derived from tide gauges (correlation > 0.5), although the tide gauges show more local variability. Where
limited correlation was observed for the secular change, it was suggested that the satellites may not be able to fully capture
the temporal variability in the short-lived, tropical storms, as opposed to extra-tropical storms.

Keywords Storm surges · Sea level · Satellite radar altimetry · Extreme value analysis · Global change

1 Introduction

Coastal zones are densely populated and subject to higher
rates of population growth than other regions (McGranahan
et al. 2007). At the same time, these regions are extremely
vulnerable to many impacts of climate change, one of which
is coastal flooding (IPCC 2021). The latter is closely linked
to the occurrence of extreme sea level events (ESLs) and
observations indicate that such events have increased both
in frequency and magnitude (e.g., Oppenheimer et al. 2019;
Wahl et al. 2017). Projections suggest this trend to continue
in the future (e.g., Oppenheimer et al. 2019). While obser-
vations indicate that on the global scale, sea level rise is the
primary driver behind the increase in ESLs (e.g., Oppen-
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heimer et al. 2019; Wahl et al. 2017), locally the increase in
ESLsmay be amplified or even dominated by climate change
induced changes in storminess (e.g., Feng et al. 2019; Haigh
et al. 2014; Rashid and Wahl 2020).

The strongwinds and lowatmospheric pressure associated
with (extra)tropical storms cause a rise in the water level, a
so-called storm surge (Resio and Westering 2008). Several
studies suggest that climate change affects the frequency and
severity of (extra)tropical storms, which may exacerbate the
build up of storm surges in the future (e.g., Calafat et al.
2022; Gori et al. 2022). However, as is stated in the latest
IPCC report (IPCC 2021), there is overall low confidence in
any observed changes in the frequency ormagnitude of storm
events and their contribution to ESLs. This is mainly related
to the rare and short-lived nature of the storm events and
the large local variability (IPCC 2021). The local variabil-
ity in storm events is particularly important to acknowledge,
given that the observational evidence on storm surges pre-
dominantly includes in-situ data from tide gauges (e.g., Muis
et al. 2016). Hence, the information on storm surge water
levels is restricted to coastal regions with an uneven distri-
bution across the globe. Consequently, it is uncertain how
storm surges develop at the open ocean or to what extent
they are subject to temporal variability on the global scale.
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This also affects the validation of global surge models and
any predictions that are made using such models.

In this respect, the use of satellite data may provide a
significant contribution to our understanding. Over the past
decades, measurements of the sea surface height (SSH) have
been collected by a series of satellite radar altimeters, provid-
ing a record of instantaneous SSHwith quasi-global coverage
(Adebisi et al. 2021). Although the temporal resolution of
satellite altimeters is relatively limited (typical revisit period
is 9.9156 days (Beckley et al. 2021)), previous studies have
shown that consequent issues may be overcome by combin-
ing data from multiple missions and applying data stacking
(e.g., citeauthorBdV2021 2021; Cancet et al. 2015). Up to
now, a number of studies have been devoted to mapping
storm surges using satellite altimetry (e.g., Andersen et al.
2015; Antony et al. 2014; Ji et al. 2019). These studies have
shown that with adequate data processing, it is possible to
derive comparable storm surge properties from satellite data
as from nearby tide gauges. However, in these studies, the
analyses were focused on specific geographic regions and it
remains uncertain if andhow the ability to derive stormsurges
from satellite data varies globally. This may for instance be
due to global differences in the nature of storms (e.g., tropical
versus extra-tropical) or global differences in data availability
from satellite data. Moreover, the aforementioned examples
have not studied temporal changes in storm surges.

Nonetheless, there have been a number of studies on tem-
poral variability in surge (or extreme) water levels using tide
gauge data (e.g., Butler et al. 2007; Méndez et al. 2007;
Menéndez and Woodworth 2010). And, given the current
record of satellite radar altimetry, it should theoretically be
possible to apply similar methods to study temporal vari-
ability in surge water levels from satellite data. In fact,
this has already been demonstrated by Lobeto et al. (2018)
who successfully used satellite altimetry to study the time-
dependency in extreme sea levels, albeit on a local scale
(along the North American East Coast). In their study, a
scaling factor was used, to account for the irregular sam-
pling of satellites. This use of scaling is not new, e.g., Izaguirre
et al. (2011) applied a similar method to derive global wave
height variability from satellite altimetry. In this paper, we
build upon these previous studies and apply a time-dependent
extreme value analysis, including location-specific scaling,
to satellite radar altimeter-derived surge water levels. We
present a full ocean-wide mapping of quasi-global storm
surge water levels and their time variability. Here, we focus
both on annual variation and secular changes in the mag-
nitude of storm surge water levels. In addition, results are
compared to similar information derived from a global tide
gauge data set. In the following sections, we first give an
outline of the data used in this study, before introducing the
methodology and discussing the results.

2 Data

2.1 Satellite radar altimetry

This study exploited data from eight low-resolution mode
(LRM) satellite radar altimeters, that are: TOPEX/Poseidon
and Jason 1–3 (further referred to as TPJ), ERS-1 and ERS-2,
Envisat-1 and SARAL (see Fig. 1). The data were combined
for the full span of the TPJ-satellites (considering full years),
resulting in 29 years of sea level data (1993–2021). All
altimeter data were obtained through the Radar Altimeter
Data System (RADS; (Naeije 2022)). The surge water levels
were computed as follows:

WLsurge =H − Robs

− MSS − geophysical and range corrections
(1)

where H represents the altitude of the satellite with respect
to the WGS84 ellipsoid, Robs the measured range between
the satellite and the surface, and MSS the vertical datum,
being the DTU18-Mean Sea Surface product (Andersen et al.
2018). The following geophysical and range correctionswere
applied: the ionosphere (NIC09 for TOPEX/Poseidon and
ERS-1, GIM for others), dry troposphere (ECMWF), wet
troposphere (if available: radiometer, otherwise: ECMWF),
the solid tide (Cartwright and Edden 1973; Cartwright and
Taylor 1971), pole tide (Wahr 1985), ocean tide and load tide
(FES2014), sea state bias (BM3 for ERS-1 and ERS-2, Tran
et al. (2018) for SARAL/AltiKa and CLS for all others), and
the reference frame offset.

Data from all satellites were stacked on a rectangular
lat/lon grid with variable dimensions (see Sect. 3.2). Sub-
sequently, additional processing of the water levels was
required to remove outliers.While this is typically done using
a multiple of the standard deviation of the time series as
upper and lower boundary (e.g., Dinardo et al. 2018; Klein-
herenbrink et al. 2015), this may in our case also remove
the (more extreme) surge water levels. Hence, we opted for
a alternative approach using the dynamic atmosphere cor-
rection (MOG2d (ERA Interim forcing)). Here, data were
classified as outliers when their absolute deviation from the
median exceeded three times the 5-day moving maximum of
the dynamic atmospheric correction. This dynamic approach
adequately accounts for the spatiotemporal differences in
water level variability. Finally, to be able to isolate the effect
of variability in storminess on the ESLs, the yearly mean
sea level was removed from the time series by subtracting
their 365-day moving mean. Note that the remaining water
level may still reflect other processes (e.g., baroclinity or
non-linear interactions between tides and surges), but these
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Fig. 1 Schematic of satellite radar altimeter data availability over time,
excluding interleaved phases for the conventional LRM and the LRM
and synthetic aperture radar (SAR)missions combined. Note that this is
an example based on a 5◦ × 5◦ area in the North Sea and that the abso-

lute number of data points varies across the globe. Data from the higher
resolution SAR altimeters, CryoSat-2 and Sentinel-3, were excluded
from this study to ensure largely consistent data availability throughout
the studied time span

were assumed to be negligible compared to the actual surge
variability.

2.2 Tide gauges

Alongside the altimeter data, data from a selection of tide
gauges (obtained from the GESLA-3 dataset (Haigh et al.
2022)) were processed to allow for a comparison of the
derived surge properties. For this purpose, we only con-
sidered tide gauge data from the period for which satellite
altimeter data was available (1993–2021). The temporal res-
olution of the tide gauge data varies from one minute to one
hour, mainly depending on the country where the stations
are located and the time of data acquisition. In contrast to the
altimeter data, the tide gauge data were detided using tidal
constants obtained by means of harmonic analysis using the
UTide-software (Codiga 2020) instead of using FES. This
was done to remove as much of the tidal signal as possible,
thus including (shallow water) tides that are not in FES but
may be significant at the location ofmost tide gauges. Finally,
the time series was referenced to the annualmean sea level by
subtracting the 365-day moving mean from the time series.

2.3 Reanalysis data

Reanalysis data were used to compute scaling factors to
account for the limited temporal resolution of the satellite-
derived water levels (as described in Sect. 3.2). These data
were obtained from the Global Tides and Surge Model
(GTSM,Wang et al. 2021;Muis et al. 2016), forced by ERA5
reanalysis data. GTSM is a barotropic (2D) model that runs
on an unstructured grid with a resolution that increases from
25 km on the open oceans to 2.5 km at the coast. GTSM has
previously been used for a global reanalysis of storm surge

water levels, where validation using observed time series at
tide gauges resulted in an average RMSE of only 0.11 m
(Muis et al. 2016). In this study, time series with a sam-
pling rate of 10 minutes were reconstructed for the full TPJ
period. This was done for over 600 locations covering the
global oceans. Subsequently, the time series were detided
and referenced to the annual mean sea level in a similar way
as was done with the tide gauge data.

3 Methods

3.1 Extreme value analysis

Earlier studies that used satellite radar altimetry to observe
storm surges typically used a so-called peak-over-threshold
(POT) approach to identify single surge events that exceed a
given magnitude (Andersen et al. 2015; Antony et al. 2014;
Ji et al. 2019). While this is a common approach in extreme
value analysis, its use in the presented study would have one
important drawback. Namely, the POT approach relies on a
threshold that is defined a priori, and can thus not easily be
used to study temporal and spatial variability in surge water
levels (as this would require setting separate thresholds for
different locations and periods (Butler et al. 2007)). Another
approach that has been used in storm surge analyses is the so-
called block-maxima approach (e.g., Butler et al. 2007; Muis
et al. 2016). Such an approach relies on a relative definition
of an extreme value (with respect to other water levels in the
specified block) and can thus be unambiguously applied to
records with varying magnitudes of variability (Butler et al.
2007). Similar to studies byMéndez et al. (2007); Menéndez
and Woodworth (2010); Lobeto et al. (2018) on ESLs, we
opted for the use ofmonthlymaxima surgewater levels (MM)
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to be able to resolve annual differences. Moreover, the use
of monthly blocks results in a larger number of data points
(compared to annual blocks) and thus compensates for the
limited record of satellite data. On the other hand, the blocks
are still of sufficient length with respect to the poor temporal
resolution of the data (compared to e.g., weekly blocks).

Subsequently, as was also done in the aforementioned
studies, a time-dependent Generalized Extreme Value Dis-
tribution (GEVD) was fitted to the series ofMM. The GEVD
(Eq.2) is a three-parameter distribution where F represents
the cumulative probability associated with MM, μ is the
location parameter, σ the scale parameter, and ξ the shape
parameter. Depending on the shape parameter, the GEVD
can belong to the Weibull, Gumbel or Fréchet family (Lobeto
et al. 2018). In addition, inspired by Izaguirre et al. (2011);
Lobeto et al. (2018), scaling was introduced in the distri-
bution to account for the poor temporal sampling by the
satellites. Where undersampling of the water level by the
satellites would almost always result in an underestimation
of the MM, the degree of underestimation depends on the
actual data availability. This in turn is related to the reso-
lution of the stacking grid, the configuration of the satellite
tracks, and topography. Therefore, globally variable scaling
was used to correct the underestimation (see Sect. 3.2 for
more details). In contrast to the aforementioned studies, we
opted for two scaling factors: k1 for the location parameter
and k2 for the scale parameter. This decision stemmed from
experimental analysis using artificial data, that indicated that
undersampling results in a bias in the average MM, but also
affects the spread of the MM’s. Hence adopting two scaling
factors would allow for a better representation. Ultimately,
this resulted in the following GEVD:

F(MM) =
{
exp(−[1 + ξ(

MM−k1μ(t)
k2σ(t) )]− 1

ξ ) ξ �= 0

exp(− exp[−(
MM−k1μ(t)

k2σ(t) )]) ξ = 0
(2)

Here, the temporal variability was included in μ(t) and
σ(t) as follows, where ω = 2π year-1 and t is given in
years with respect to the center time of the considered data.
α[0,1,2,3] and β[0,1,2,3] were estimated:

μ(t) = α0 + α1t + α2 cos(ωt) + α3 sin(ωt)
σ (t) = β0 + β1t + β2 cos(ωt) + β3 sin(ωt)

(3)

The model parameters were estimated by means of the
maximum likelihood method as described in Méndez et al.
(2007). The scaling factors (k1 and k2) were determined a
priori based on experiments with the reanalysis data (see
Sect. 3.2). In addition to satellite data, high-frequency data
from tide gauges were processed in a similar manner as the

satellite data, except for the scaling factors, which now were
excluded from the GEVD.

3.2 Data availability and scaling factors

Despite that we have used satellite data from multiple mis-
sions and stacked the data over larger areas, it is likely that
not all storm surges were captured in full magnitude. To
account for this, two scaling factors were introduced in the
GEVD. Since we considered that the predominantly coastal
tide gauge data would not be representative for ocean-wide
surge variability, the values of these scaling factors were
determined by means of global reanalysis data. For this pur-
pose, the model-derived time series, introduced in Sect. 2.3,
were randomly sub-sampled following the location-specific
satellite samplingdistribution.To improve the accuracyof the
estimated scaling factors, this was done 25 times (as a com-
promise between achieved accuracy and computation time),
resulting in 25 different realizations of the time series. For
each realization, theMM were computed and the GEVDwas
fitted to the data while including the scaling factors k1 and
k2. The optimal scaling factors were determined byminimiz-
ing the root-mean-square-error (RMSE) between the GEVD
based on the original high-frequency data and the GEVD
based on the sub-sampled data. Finally, the optimal, location-
specific, scaling factors were computed as the median of
values resulting from the 25 realizations. At the same time,
the standard error (SE) of these scaling factors was com-
puted as 1.4826 times the median absolute deviation of the
25 values. This experiment was done for two different grid
sizes (2◦ × 2◦ and 5◦ × 5◦) to gain insight in the impact of
the size of the area over which satellite data were stacked,
on the ability to accurately capture storm surge dynamics.
Note that the precise satellite sampling and data availability
also varies across the globe as the satellite tracks converge
towards the poles, while on the other hand, the metric dis-
tance between longitudes reduces towards the poles and the
(seasonal) presence of sea ice may hamper measurements of
the sea level.

To assess the use of reanalysis data for the computation
of the scaling factors on open ocean, the same procedure
was carried out using a selection of tide gauges that were
located at least 100km from the continental coastlines. Only
tide gauges were used that have at least multiple years of
gapless data. To prevent the validation from being affected by
temporal differences in storm surgemagnitude, the reanalysis
time series were first trimmed to the exact time span of the
tide gauge time series. However, note that the time spans
of the available data vary per tide gauge, hence truncating
the time series may introduce additional spatial variation in
obtained scaling factors.
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3.3 Storm surge characteristics

From the estimated location, scale, and shape parameters, the
storm surge water levels for certain return periods of interest
were calculated by means of the inverse of Eq.2, excluding
the scaling factors:

MMT =
{

μ − ( σ
ξ
[1 − (− ln[1 − 1

T∗12 ])−ξ ]) ξ �= 0

μ − σ ln(− ln[1 − 1
T∗12 ]) ξ = 0

(4)

where T is the return period in years. The term 1 − 1
T∗12

represents the probability thatMM will be below or equal to
MMT , hence the term equals the cumulative probability (F)
fromEq.2. In this paper the surgeMM water levels are shown
for a return period of 1

6 years and for 10 years, these will be
referred to as the MM1

6
and MM10 respectively (where the

subscript denotes the return period). These specific periods
were chosen because a return period of 1

6 years corresponds
to a cumulative probability of 0.5 (namely 1 − 1

1
6 ∗12 = 1

2 ),

hence it equals the average MM. On the other hand, the 10-
year return period represents a more extreme case, while still
remaining well within the time span of the data availability,
ensuring reasonable uncertainties.

Since we considered a time-dependent GEVD, the values
for μ and σ were first computed based on the fitted α- and
β-parameters and t . This allowed for a reconstruction of a
time-varying series of MMT -values from which the surge
characteristics of interest were derived. In this paper the
following characteristics are studied: time-averaged MMT ,
annual range (the difference between the highest and low-
est MMT in the year, excluding the secular change), annual
phase (month with highest MMT ) and the secular change
(linear trend in MMT ).

4 Results

4.1 Data availability and scaling factors

The number of data from satellite altimeters that were avail-
able per grid cell roughly equaled 2.5 × 105 from 40◦ S to
40◦ N, but then increased to 3×105 at 60◦ N/S, for the coarse
(5◦ ×5◦) grid. Using the fine (2◦ ×2◦) grid, reduced the data
availability by about 83%. In addition, as mentioned before,
the sea-ice affected regions experience seasonal differences
in data availability. This likely affected the derived storm
surge properties. For this reason, all figures showing satel-
lite data-based results will also show the maximum sea ice
extent during the TPJ period (derived from NSIDC (2022)),
as a reminder to treat these specific results with caution.

The obtained optimal scaling factors for the coarse grid
(5◦ × 5◦) are shown in Fig. 2a and d. Overall, the location
parameter (μ) required more scaling in the tropics (i.e., scal-
ing factor k1 deviates more from 1), compared to higher
latitudes. This relation is less obvious for scaling factor k2.
Moreover, the average SE for k1 and the average RMSE of
the obtainedGEVD showed a clear latitude dependency, with
larger errors at higher latitudes. In addition, as a result of the
lower data availability, the analysis on the fine grid required
more scaling than when the coarse grid was used (Fig. 2b,
e). Nonetheless, the analysis on the fine grid resulted in sig-
nificantly larger errors than the analysis on the coarse grid
(Fig. 2c). Based on these results, it was decided to use the
coarse grid for the remainder of the study.

The main findings from the comparison with scaling fac-
tors computed from tide gauge data are presented in Fig. 3.
For the majority of the locations, the differences between
the obtained scaling factors were within the 95%-confidence
intervals of these differences and were thus considered to be
insignificant (particularly applied to k2, Fig. 3d). For k1, the
significant differences mainly concerned higher scaling fac-
tors derived from the tide gauges compared to those derived
from GTSM, except for some locations in the Pacific Ocean
(Fig. 3a). This implies that the derived surge water levels
would be scaled upmore when considering the GTSM-based
product (as a lower scaling factor corresponds to increased
scaling). However, for k2, all significant differences con-
cerned lower scaling factors derived from the tide gauges
compared to GTSM (Fig. 3d, f). For the majority of the loca-
tions, better scaling results were obtained in the analysis of
reanalysis data: that is, the RMSE between the GEVD based
on the original high-frequency and satellite-sampled data
was lower. This particularly applied to the locations where
the tide gauge-derived k1 exceeded the GTSM-derived k1
(Fig. 3b). Comparing the absolute values (Fig. 3c, f) shows
larger variability in the tide-gauge derived scaling factors.
The coefficient of determination (r2) is only 0.26 and 0.19
for k1 and k2 respectively.

Figure4 visualizes the consequences of using the coarse
grid as opposed to the fine grid by comparing the obtained
time-averagedMM1

6
andMM10 to information derived from

tide gauges. The message is two-fold: (1) using the coarse
grid resulted inmore spatial data gaps when a significant por-
tion of a grid cell covered land and was omitted and (2) using
the coarse grids resulted inmore averaging of the surge water
levels. This generally resulted in lower values compared to
tide gauges as ESLs tend to increase towards the coast. The
latter can be clearly seen the North Sea. However, the oppo-
site effect was observed in the Skagerrak (the water between
Norway and Denmark) where the fine grid resulted in lower
values than the coarse grid.
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Fig. 2 Global estimates of the scaling factors k1 (a) and k2 (d) for the
analysis on the coarse grid (5◦ ×5◦). Note the difference in color scales
used for the two subfigures. The average scaling factors k1 (b) and k2
(e) including their standard error (patched area) are shown as a function

of absolute latitude (linear fit), as well as the RMSE between the GEVD
based on the original high-frequency and satellite-sampled data (c), for
both the fine (2◦ × 2◦) and coarse grid

Fig. 3 Difference between the scaling factors k1 (a) and k2 (d) obtained
from tide gauge (TG) and reanalysis (GTSM) data for the secular anal-
ysis on the coarse grid (5◦ × 5◦). Positive values (red) indicate the tide
gauge-derived factor is larger. Insignificant differences (i.e., that do not
exceed the 95% confidence interval of the difference) have been col-
ored white. Difference between the scaling factors k1 (b) and k2 (e)

as a function of the RMSE between the GEVD based on the original
high-frequency and satellite-sampled data. Absolute values for the scal-
ing factor k1 (c) and k2 (f) derived from tide gauge and reanalysis data
(GTSM). Filled scatters indicate significant differences between the two
scaling factors
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Fig. 4 Time-averagedMM1
6
(a, b, c) andMM10 (d, e, f) following from tide gauge data (a, d), the satellite data stacked on the fine grid (2◦ × 2◦;

b, e) and the satellite data stacked on the coarse grid (5◦ × 5◦; c, f)

4.2 Time-averaged surge water levels

The time-averagedMM1
6
andMM10 are visualized in Fig. 5a

and b, respectively. Both quantities showed a strong zonal
dependency with lower values in the tropics (about 0.25 m
for both return periods) and larger values at mid and high
latitudes (about 0.6 and 1.2 m respectively). This pattern
was observed in both the satellite-derived and the tide
gauge-derived products. More increased surge water levels
compared to their surroundings were observed in the north-
west Atlantic Ocean, the northwest Pacific Ocean, and the
Southern Ocean. In several instances, the surge water level
at one tide gauge exceeded that of surrounding tide gauges
and the nearby satellite-derived product (e.g., in the Gulf of
Mexico and the North Sea). In addition, higher surge water
levels were observed in the sea-ice affected regions, partic-
ularly in the Southern Ocean. Overall, the 95%-confidence
intervals related to both yearly average MMT ’s (not shown)
are narrow (< 0.3MMT for 95% of the grid cells), with the
exceptions being located in the sea-ice affected regions. The
correlation between the tide gauge-derived product and the
satellite-derived product (interpolated to the locations of the
tide gauges) was computed as 0.63(±0.04) for MM1

6
, and

0.67(±0.04) for MM10.

4.3 Annual differences in surge water levels

As shown in Fig. 6a and b, storm surges water levels on the
northern hemisphere were subject to significant annual vari-
ation (up to 0.4 m for MM1

6
and 0.75 m for MM10), while

this wasmuch less for the storm surges on the southern hemi-
sphere (up to 0.2 m for MM1

6
and 0.4 m for MM10). Here,

the sea-ice affected region in the Southern Ocean appeared
to be a clear outlier with an annual range in both MM1

6
and

MM10 of 0.75 m or more. For the majority of the domain
(95% of the grid cells), the 95%-confidence intervals related
to the annual ranges (not shown) subceed the annual ranges
(< 0.7MM1

6
and < 0.95MM10), with the exceptions again

being located in the sea-ice affected regions.
Overall, the annual phase (the month with the highest

MMT ) was found to correspond to the local winter (Fig. 7).
Exceptions were predominantly located in the tropical zone,
e.g., the Japanese and Philippine Seas (August) and the Ara-
bic Sea (July). Another striking region was the zonal band in
the Pacific Ocean around 15◦ N where theMM1

6
was largest

in March/April. Moreover, while the overall pattern in the
annual phase is comparable for MM1

6
and MM10, that of

MM10 showed more variability in the tropics. Finally, the
annual phase of the MM in sea-ice affected regions cor-
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Fig. 5 Time-averagedMM1
6
(a)

and MM10 (b) following from
the satellite data (background)
and tide gauge data (scatters).
The hatched regions indicate the
maximum sea ice extent during
the TPJ period

responds to the month of maximum sea ice extent (March
for the northern hemisphere and September for the southern
hemisphere).

The computed correlation coefficient between the satellite-
derived product and that from tide gauges was 0.57(±0.04)
(0.73(±0.03)) for the annual range of MM1

6
(MM10) and

0.53(±0.04) (0.50(±0.04)) for the annual phases. Differ-
ences were predominantly observed along the west coast of
North America (annual range of MM10), in the Arabic Sea
(annual phase), and Gulf of Mexico (all variables).

4.4 Secular change surge water levels

Global changes in theMM1
6
of ∼ 0.25 cm/year were derived

across the globe (Fig. 8a). The trend was predominantly neg-
ative, while several mid-latitude regions showed an increase
instead. In contrast to the earlier studied variables, the trend
estimates only exceed the associated 95%-confidence inter-
vals (Fig. 8b) in∼40% of the grid cells. The 95%-confidence
intervals exhibit a similar zonal pattern as the time-averaged
MMT ’s; larger uncertainties in the trend estimateswere found
in the subtropics,where the time-averagedMMT ’swere high-
est (Fig. 5).Moreover, therewas poor agreement between tide
gauges- and satellite-derived yearly trends: the computed
correlation coefficient was 0.11(±0.06). An example of a
region where there was a consistent mismatch between the
tide gauge- and satellite-derived change in MM1

6
is the east

coast of North America. As this region knows the frequent
occurrence of tropical storms (see Fig. 9), the correlation
coefficient was again computed considering only the tide

gauges that are located outside of the areas that are affected
by tropical storms. This resulted in a higher correlation,
namely: 0.28(±0.07). The mismatch appeared to be partly
related to the high local variability in the tide gauge-derived
change or isolated tide gauges (e.g., the tide gauges in the
western Pacific that show positive trends). In fact, filtering
out spatial outliers from the trends derived at tide gauges,1

increased the correlation up to 0.35(±0.08) for a distance of
200 − 220 km. The correlation reduced again for larger dis-
tances. This relation was also observed for the time-averaged
MMT and annual variation variables, albeit with some differ-
ences in the optimal distance. Finally, large negative trends
(exceeding 0.5 cm/year)were observed in the sea-ice affected
regions.

5 Discussion

For the first time, the vast amount of data available from
satellite radar altimeters has been used to map the tempo-
ral variability in global storm surge water levels. This has
been done by fitting a time-dependent generalized extreme
value distribution (GEVD) to the monthly maximum (MM)
surge water levels. However, in contrast to the in-situ data
that have been widely used to study storm surges, the data
from satellite altimeters have a rather coarse temporal res-

1 defined as locations where the trend deviates more than two times the
MAD from the median trend computed over all tide gauges within a
certain distance.
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Fig. 6 Annual range inMM1
6

(a) andMM10 (b) following
from the satellite data
(background) and tide gauge
data (scatters). The hatched
regions indicate the maximum
sea ice extent during the TPJ
period

olution. To ensure sufficient coverage of storm events, the
measurements from eight different missions were combined
and stacked over areas of 5◦ ×5◦. In addition, an experiment
based on reanalysis data was performed to obtain location-
specific scaling factors that correct for possible bias in storm
surge water levels obtained by the satellites. Subsequently,
the time-average storm surge water levels and their annual

variation and secular change were derived and compared to
the same information derived fromhigh-frequency tide gauge
data.

The main findings presented in this paper are the fol-
lowing. The time-average MM1

6
and MM10 showed a clear

zonal pattern, with higher water levels observed at mid and
high latitudes compared to the equatorial region. The largest

Fig. 7 Annual phase of (month
with the highest) MM1

6
(a) and

MM10 (b) following from the
satellite data (background) and
tide gauge data (scatters).
Locations with insignificant
annual variation have been left
white. The hatched regions
indicate the maximum sea ice
extent during the TPJ period
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Fig. 8 Yearly trend inMM1
6

following from the satellite data
(background) and tide gauge
data (scatters) (a). Only
satellite-derived trends that
exceed the 95% confidence
interval have been dotted. Tide
gauge-derived trends that were
insignificant at the 95%
confidence level were excluded
from the plot. The 95%
confidence intervals are shown
in (b). The hatched regions
indicate the maximum sea ice
extent during the TPJ period

storm surge water levels were observed in the northwest
Atlantic Ocean, northwest Pacific Ocean, Southern Ocean
and North Sea. These regions correspond to regions where
the mesoscale variability is large (e.g., Rhines 2001). As the
mesoscale variability has not been removed from the “surge”
water levels, it is unknown to what extent this affects the
larger magnitude in the aforementioned regions. However,
these regions do not stand out when considering the temporal
variability in storm surge water levels. The annual varia-
tion in the storm surge water levels was particularly large at
mid to high latitudes in the northern hemisphere. The largest
annual variation was observed in the sea-ice affected regions,
although there are reasons to question that finding (more will
follow). While the month in which the highest surge water
levels were observed generally corresponds to the local win-
ter, in particular in the tropics, there were some exceptions.
Most likely, this is related to the nature of the storms that are
captured.Where extra-tropical storms typically occur inwin-
ter, tropical storms (i.e., hurricanes, cyclones, and typhoons)
have a different seasonality (e.g., peak activity in September

for theNorthAtlantic, inAugust for Japan (Camp et al. 2015)).
Lastly, a predominant negative trend in storm surgewater lev-
elswas observed across the domain, except for certain regions
at mid-latitudes. Although the uncertainties associated with
the time-averagedMM’s and annual variation were generally
small, they were more significant for the trend estimates. In
many cases (∼ 60%) the trend estimate did not exceed its
95%-confidence interval.

The results derived from the satellite data have been com-
pared to a similar product derived from tide gauges. This
comparison can be used to assess the ability to use satellite
data for storm surge analysis. However, it should be kept in
mind that one cannot expect a perfect agreement between
the products derived from both data sources. Firstly, the tide
gauge data are point estimates, while the satellite product is
a spatial average. As was seen in Fig. 4, the obtained quanti-
ties closely depend on the size of the area that was used for
stacking of the satellite data. In addition, not all tide gauge
data cover the full TPJ period, nor are they gapless. Conse-
quently, given the high interannual variability in storminess

Fig. 9 Number of years with
data for tide gauges used in the
study. The hatched regions
indicate the areas that are
affected by tropical storms with
wind speeds exceeding 100
knots (derived from Knapp et al.
(2022))
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(IPCC 2021;Weisse et al. 2014), the secular changes derived
from the tide gauges may not be representative for the full
TPJ period.

Nevertheless, a reasonable agreement between the tide
gauge and satellite-derived product was observed for the
time-average and annual properties. However, more contra-
dictionswere observed for the secular change. Asmentioned,
this may be related to the data availability at the tide gauges,
although this mainly affects the tide gauges in Southeast
Asia and the Gulf of Mexico (Fig. 9), while contradictions
were also observed elsewhere. Hence, two alternative rea-
sons are suggested. Firstly, the secular results appeared to
be more dominated by local variability and it is plausible
that the change in storminess at the coast of one island in
e.g., the Pacific Ocean is not representative for the 5◦ × 5◦
area that this island is located in. This is supported by the
fact that excluding spatial outliers from the trends derived at
tide gauges resulted in better correlation. On the other hand,
a positive trend in MM1

6
was observed at a number of tide

gauges along the east coast of the USA, yet not captured
by the satellite-derived product. This leads to the second
hypothesis concerning the difference between tropical and
extra-tropical storms. Tropical storms are typically shorter
and smaller than extra-tropical storms (Von Storch andWoth
2008) and therefore more likely to be missed by the satellite
data. The latter is supported by the fact that the annual phase
of the MM1

6
and MM10 did not everywhere correspond to

the local season of tropical storms (Camp et al. 2015), even
though tropical storms surges typically have a larger ampli-
tude than extra-tropical storms (Von Storch andWoth 2008).
The contradictions in observed trends along the east coast
of the USA suggest the positive trend may reflect changes in
the tropical storms as opposed to a background negative trend
in extra-tropical storms. However, the regional increases in
storm surge water levels around 45◦ N/S are consistent with
the observed poleward shift in tropical storms (IPCC 2021).

Another apparent limitation of the satellite data is related
to the sea-ice affected regions. All studied storm surge prop-
erties show rather extreme values in the regions that are
affected by sea ice that may not be an actual representation
of the truth. Similarly, in these regions the uncertainties asso-
ciated with the estimated parameters appeared exceptionally
large. The derived annual phase and secular change suggest
that the results in these regions are affected by contamination
from reflections of the sea ice rather than the actual water
level. Namely, the annual phase corresponds to the period
of maximal sea ice extent (September for the Antarctic and
March for the Arctic (NSIDC 2022)), and in this season one
would not expect a significant surge as the water surface can
only to a limited extent be disturbed by the wind. If, how-
ever, the data is dominated by reflections from the sea ice, a
higher “water” level is indeed expected during months with

maximal sea ice extent. In addition, the negative trend in
surge water levels in the regions suggests contamination by
sea ice reflections. As the sea ice extent reduces over time,
the contamination would also reduce, resulting in a reduc-
tion in extreme “sea” level measurements. In fact, the sea-ice
affected regions would be an interesting study area, precisely
because of the significant changes to the sea ice extent. How-
ever, for such a study, a more explicit selection of the radar
returns is required.

Furthermore, the method of obtaining scaling factors
using reanalysis data has been assessed by comparison to
a similar analysis using data from a selection of tide gauges
(Fig. 3). Overall, a larger spread was observed in the scal-
ing factors derived from tide gauge data compared to the
reanalysis data (Fig. 3c, f). In most locations, the differences
between the factors derived from the reanalysis and the tide
gauge data appeared insignificant. For k2, only a few signif-
icant differences were found, predominantly in regions that
are affected by tropical storms (see Fig. 9). In all of these
cases, the factors derived from the reanalysis data exceed
those derived from the tide gauge data. This suggests that
the obtained surge water levels may be scaled too little. On
the other hand, in several instances, significantly lower val-
ues (thus more scaling) were computed from the reanalysis
data for scaling factor k1. Although, as this predominantly
concerns locations where the scaling is significantly less suc-
cessful in the experiment with tide gauge data compared to
that with reanalysis data (higher RMSE, Fig. 3b), this ques-
tions the reliability of the tide gauge-derived scaling factors.

Unfortunately, a comparison of the results presented in
this paper to findings by earlier studies is not straightforward,
for various reasons. First of all, many studies on changes in
extreme sea level events (ESLs) do not exclude the impact
of variability in the mean sea level (MSL) (e.g., Wahl et al.
2017; Weisse et al. 2014). In contrast, the study by Menén-
dez and Woodworth (2010) (and a follow-up by Marcos
andWoodworth (2018)) specifically attempted to distinguish
the impact of the MSL on the temporal variability in ESLs
derived from tide gauge records.While by including theMSL
an overall increase in ESLs was observed across the globe,
the observed change was predominantly negative when the
MSLwas excluded.Although this corresponds to thefindings
presented in our study, some contradictions were observed
for individual tide gauges. Consequently, a second issue that
complicates intercomparisons of results was identified: the
timespan of considered datasets. Since the study by Menén-
dez and Woodworth (2010) was mainly based on tide gauge
data from 1970 up to 2010, it is unknown to what extent any
differences in results are related to the high interannually
variable character of storm surges. On another note, the sea-
sonal pattern found in their study did largely correspond to
what was presented in this paper. Finally, while the presented
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analysis provides a range of information on storm surgewater
levels and their temporal variability, it does not directly allow
for any conclusions on changes in the frequency of storm
surges. In that sense it may be of interest to extend the anal-
ysis by a type of peak-over-threshold analysis (as was done
in Andersen et al. 2015; Antony et al. 2014; Ji et al. 2019).

Finally, where this study is the first attempt to study
global surge water levels from satellite radar altimetry, sev-
eral recommendations for future research were identified. To
ensure consistent data availability throughout the considered
period, this study did not include synthetic aperture radar
(SAR) altimetry from theCryoSat-2 andSentinel-3missions.
Nonetheless, the inclusion of additional data would likely
result in improved accuracy of the estimated MM. More-
over, the high spatial resolution of SAR altimeter data may
possibly surpass the need to omit data from sea-ice affected
regions, as the smaller footprint allows the retrieval of water
level from fractures in the sea ice (Quartly et al. 2018). Sim-
ilarly, these data are less affected by the contamination from
land in coastal regions, hence their use may possibly allow
to bridge the gap between the tide gauges and satellite data.
However, including these SAR data requires several adap-
tations of the methodology. Firstly, it would require the use
of time-variable scaling factors, as the addition of the SAR
data significantly alters the sampling frequency for the last
decade compared to the rest of the considered period (as
was shown in Fig. 1). Secondly, considering sea-ice affected
regions requires tailored processing of the altimeter data and,
thirdly, since in these regions only SAR data can be used, it
needs to be assessed whether the current record length (13
years) is sufficient for secular analysis. On a similar note,
it is recommended to consider the use of publicly available
coastal altimeter data sets (e.g., XTrack (Birol et al. 2021)) as
this would allow better comparison with the analysis of tide
gauge data. However, this requires increased efforts to ensure
compatibility between the coastal and open ocean altimeter
data sets. Lastly, it may be worthwhile to develop a uni-
versal relation between the required scaling and the (space-
and time-dependent) data availability, surpassing the need to
resort to reanalysis data.

6 Conclusions

The data from eight LRM satellite radar altimeters (1993–
2021) have been used to study the temporal and spatial
variability in global storm surge water levels. The time-
averaged surge water levels were dominated by a zonal
pattern, with higher water levels at mid and high latitudes
compared to the equatorial region. The highest water lev-
els were observed in the Southern Ocean, northwest Pacific
Ocean, northwest Atlantic Ocean, and North Sea. In particu-
lar, the surge in water levels in the northern hemisphere was

subject to significant annual variability. Overall, the maxi-
mum storm surge water levels mainly occurred in the local
wintermonths, that is, except for the tropics where the annual
phase showed more local variability. Finally, moderate sec-
ular changes of ∼ 0.25 cm/year were derived for the MM1

6
.

The derived changes were predominantly negative, except
for a few mid-latitude regions with positive changes.

Except for the secular changes, the satellite-derived results
were comparable to the informationderived from tide gauges,
although the tide gauges showed more local variability. The
poor correlation for the secular change may be related to the
change in water levels being dominated by either a change
to tropical or extra-tropical surges. It has been suggested that
the satellites may not be able to fully capture the temporal
variability in short-lived tropical storms.

Nevertheless, the results provide valuable information on
the spatial and temporal variability in storm surge water lev-
els, in particular for regions that are not covered by the many,
yet clustered tide gauges. Further analysis with the inclusion
of high-frequency (SAR) data and/or the tailored processing
of data in coastal and sea-ice affected regionsmay potentially
bridge the remaining gaps between the coast and open ocean.

Acknowledgements Thiswork is part of the research programFAST4Nl
with project number ALWPP.2017.001, which is (partly) financed by
the Dutch Research Council (NWO).

Data availibility The reanalysis data (GTSM) were kindly provided
by Deltares, The Netherlands. The GESLA-3 data set was obtained
from https://rmets.onlinelibrary.wiley.com/doi/10.1002/gdj3.174 and
the satellite radar altimeter data through http://rads.tudelft.nl.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Adebisi N, Balogun AL, Min TH, Tella A (2021) Advances in estimat-
ing sea level rise: a review of tide gauge, satellite altimetry and
spatial data science approaches. Ocean & Coastal Management
208. https://doi.org/10.1016/j.ocecoaman.2021.105632

123

https://rmets.onlinelibrary.wiley.com/doi/10.1002/gdj3.174
http://rads.tudelft.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ocecoaman.2021.105632


Ocean Dynamics

AndersenOB,ChengY,DengX, StewardM,Gharineiat Z (2015)Using
satellite altimetry and tide gauges for storm surge warning. Pro-
ceedings of the international association of hydrological sciences
365:28–34. https://doi.org/10.5194/piahs-365-28-2015

AndersenOB,Knudsen P, Stenseng L (2018) A newDTU18MSSmean
sea surface-improvement fromSARaltimetry. 25 years of progress
in radar altimetry symposium

Antony C, Testut L, UnnikrishnanAS (2014) Observing storm surges in
the Bay of Bengal from satellite altimetry. Estuarine, Coastal and
Shelf Science 151:131–140. https://doi.org/10.1016/j.ecss.2014.
09.012

Beckley B, Ray RD, Zelensky N, Lemoine F, Brown S, Desai S,
Mitchum G (2021) Integrated multi-mission ocean altimeter data
for climate research TOPEX/Poseidon, Jason-1, 2, & 3 User’s
Handbook Version 5.1

Bij de Vaate I, Vasulkar AN, Slobbe DC, Verlaan M (2021) The influ-
ence of arctic landfast ice on seasonal modulation of the M2 tide.
J Geophys Res: Oceans 126, e2020JC016630. https://doi.org/10.
1029/2020JC016630

Birol F, Léger F, PassaroM,CazenaveA,NiñoF,Calafat FMet al (2021)
The x-track/ales multi-mission processing system: new advances
in altimetry towards the coast. Adv Space Res 67(8):2398–2415.
https://doi.org/10.1016/j.asr.2021.01.049

Butler A, Heffernan JE, Tawn JA, Flather RA, Horsburgh KJ (2007)
Extreme value analysis of decadal variations in storm surge ele-
vations. J Marine Syst 67(1–2):189–200. https://doi.org/10.1016/
j.jmarsys.2006.10.006

Calafat FM,Wahl T, TadesseMG, Sparrow SN (2022) Trends in Europe
storm surge extremes match the rate of sea-level rise. Nature
603(7903), 841–845. https://doi.org/10.1038/s41586-022-04426-
5

Camp J, Roberts M, MacLachlan C, Wallace E, Hermanson L, Brook-
shaw A, Scaife AA (2015) Seasonal forecasting of tropical storms
using the Met Office GloSea5 seasonal forecast system. Quar-
terly J Royal Meteorol Soc 141(691):2206–2219. https://doi.org/
10.1002/qj.2516

Cancet M, Andersen O. Stenseng L, Lyard F, Cotton D, Benveniste
J, Schulz A (2015) High resolution tidal modeling in the arctic
ocean: needs and upcoming developments. Sentinel-3 for science
workshop (Vol 734, p 64)

Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics.
Geophys J R Astron Soc 33:253–264. https://doi.org/10.1111/j.
1365-246X.1973.tb03420.x

Cartwright DE, Taylor RJ (1971) New computations of the tide gen-
erating potential. Geophys J R Astron Soc 23:45–74. https://doi.
org/10.1111/j.1365-246X.1971.tb01803.x

Codiga DL (2020) UTide unified tidal analysis and prediction func-
tions. MATLAB central file exchange. [Software]. https://
www.mathworks.com/matlabcentral/fileexchange/46523-utide-
unified-tidal-analysis-and-prediction-functions. (Last checked
on 10/06/2020)

Dinardo S, Fenoglio-Marc L, Buchhaupt C, BeckerM, Scharroo R, Fer-
nandesMJ, Benveniste J (2018) Coastal SAR and PLRM altimetry
in German bight and west Baltic Sea. Adv Space Res 62(6):1371–
1404. https://doi.org/10.1016/j.asr.2017.12.018

Feng J, Li D, Wang T, Liu Q, Deng L, Zhao L (2019) Acceleration of
the extreme sea level rise along the Chinese coast. Earth and Space
Science 6(10):1942–1956. https://doi.org/10.1029/2019ea000653

Gori A, Lin N, Xi D, Emanuel K (2022) Tropical cyclone climatology
change greatly exacerbates us extreme rainfall-surge hazard. Nat
Clim Chang 12(2):171–178. https://doi.org/10.1038/s41558-021-
01272-7

Haigh ID, MacPherson LR, Mason MS, Wijeratne EMS, Pattiaratchi
CB, Crompton RP, George S (2014) Estimating present day
extreme water level exceedance probabilities around the coast-

line of Australia: tropical cyclone-induced storm surges. ClimDyn
42(1):139–157. https://doi.org/10.1007/s00382-012-1652-1

Haigh ID, Marcos M, Talke SA,Woodworth PL, Hunter JR, Haugh BS,
. . . Thompson P (2022) GESLA version 3: a major update to the
global higher-frequency sea-level dataset. [Dataset]. Geoscie Data
J. https://doi.org/10.1002/gdj3.174

IPCC (2021) Climate change 2021: the physical science basis. Contri-
bution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change [Masson-Delmotte
V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N,
Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy
E, Matthews JBR, Maycock TK, Waterfield T, Yelekç O, Yu R,
Zhou B (eds)]. Cambridge University Press. https://doi.org/10.
1017/9781009157896

Izaguirre C,Méndez FJ,MenéndezM, Losada IJ (2011)Global extreme
wave height variability based on satellite data. Geophys Res Lett
38:(10). https://doi.org/10.1029/2011GL047302

Ji T, Li G, Zhang Y (2019) Observing storm surges in China’s coastal
areas by integrating multi-source satellite altimeters. Estuarine,
Coastal and Shelf Science 225. https://doi.org/10.1016/j.ecss.
2019.05.006

Kleinherenbrink M, Lindenbergh R, Ditmar P (2015) Monitoring of
lake level changes on the Tibetan Plateau andTian Shan by retrack-
ing Cryosat SARInwaveforms. J Hydrol 521:119–131. https://doi.
org/10.1016/j.jhydrol.2014.11.063

Knapp KR, Diamond HJ, Kossin JP, Kruk MC, Schreck CJ (2022)
International best track archive for climate stewardship (IBTrACS)
Project, Version 4. [Dataset]. NOAA National Centers for Envi-
ronmental Information. https://doi.org/10.25921/82ty-9e16

Lobeto H, Menendez M, Losada IJ (2018) Toward a methodology
for estimating coastal extreme sea levels from satellite altimetry.
J Geophys Res: Oceans 123(11):8284–8298. https://doi.org/10.
1029/2018JC014487

Marcos M, Woodworth PL (2018) Changes in extreme sea levels. CLI-
VAR Exchanges 16(1):20–24

McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing
the risks of climate change and human settlements in low elevation
coastal zones. Environment and urbanization 19(1):17–37. https://
doi.org/10.1177/0956247807076960

Méndez FJ, Menéndez M, Luceño A, Losada IJ (2007) Analyzing
monthly extreme sea levels with a time-dependent GEV model.
J Atmos Ocean Technol 24(5):894–911. https://doi.org/10.1175/
JTECH2009.1

Menéndez M, Woodworth PL (2010) Changes in extreme high water
levels based on a quasi-global tide-gauge data set. J Geophys Res:
Oceans, 115 (C10). https://doi.org/10.1029/2009JC005997

Muis S, Verlaan M,Winsemius HC, Aerts JC, Ward PJ (2016) A global
reanalysis of storm surges and extreme sea levels. Nat Commun
7(1):1–12. https://doi.org/10.1038/ncomms11969

Naeije MC (2022) Radar altimeter database system. [Data archive].
http://rads.tudelft.nl

NSIDC (2022) Sea ice index, version 3 (G02135) [Dataset]. NOAA
National Centers for Environmental Information. https://nsidc.
org/data/g02135/versions/3#anchor-2

Oppenheimer M, Glavovic B, Hinkel J, van de Wal R, Magnan AK,
Abd-Elgawad A, . . . Sebesvari Z (2019) Sea level rise and impli-
cations for low lying islands, coasts and communities. In: IPCC
Special Report on the Ocean and Cryosphere in a Changing Cli-
mate [Pörtner H-O, Roberts DC, Masson- Delmotte V, Zhai P,
Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A,
Petzold J, Rama B, Weyer N (eds)], 321–445

Quartly GD, Rinne E, Passaro M, Andersen OB, Dinardo S, Fleury S,
. . . others (2018) Review of radar altimetry techniques over the
arctic ocean: recent progress and future opportunities for sea level
and sea ice research. The Cryosphere Discussions, 1–51. https://
doi.org/10.5194/tc-2018-148

123

https://doi.org/10.5194/piahs-365-28-2015
https://doi.org/10.1016/j.ecss.2014.09.012
https://doi.org/10.1016/j.ecss.2014.09.012
https://doi.org/10.1029/2020JC016630
https://doi.org/10.1029/2020JC016630
https://doi.org/10.1016/j.asr.2021.01.049
https://doi.org/10.1016/j.jmarsys.2006.10.006
https://doi.org/10.1016/j.jmarsys.2006.10.006
https://doi.org/10.1038/s41586-022-04426-5
https://doi.org/10.1038/s41586-022-04426-5
https://doi.org/10.1002/qj.2516
https://doi.org/10.1002/qj.2516
https://doi.org/10.1111/j.1365-246X.1973.tb03420.x
https://doi.org/10.1111/j.1365-246X.1973.tb03420.x
https://doi.org/10.1111/j.1365-246X.1971.tb01803.x
https://doi.org/10.1111/j.1365-246X.1971.tb01803.x
https://www.mathworks.com/matlabcentral/fileexchange/46523-utide-unified-tidal-analysis-and-prediction-functions
https://www.mathworks.com/matlabcentral/fileexchange/46523-utide-unified-tidal-analysis-and-prediction-functions
https://www.mathworks.com/matlabcentral/fileexchange/46523-utide-unified-tidal-analysis-and-prediction-functions
https://doi.org/10.1016/j.asr.2017.12.018
https://doi.org/10.1029/2019ea000653
https://doi.org/10.1038/s41558-021-01272-7
https://doi.org/10.1038/s41558-021-01272-7
https://doi.org/10.1007/s00382-012-1652-1
https://doi.org/10.1002/gdj3.174
https://doi.org/10.1017/9781009157896
https://doi.org/10.1017/9781009157896
https://doi.org/10.1029/2011GL047302
https://doi.org/10.1016/j.ecss.2019.05.006
https://doi.org/10.1016/j.ecss.2019.05.006
https://doi.org/10.1016/j.jhydrol.2014.11.063
https://doi.org/10.1016/j.jhydrol.2014.11.063
https://doi.org/10.25921/82ty-9e16
https://doi.org/10.1029/2018JC014487
https://doi.org/10.1029/2018JC014487
https://doi.org/10.1177/0956247807076960
https://doi.org/10.1177/0956247807076960
https://doi.org/10.1175/JTECH2009.1
https://doi.org/10.1175/JTECH2009.1
https://doi.org/10.1029/2009JC005997
https://doi.org/10.1038/ncomms11969
http://rads.tudelft.nl
https://nsidc.org/data/g02135/versions/3#anchor-2
https://nsidc.org/data/g02135/versions/3#anchor-2
https://doi.org/10.5194/tc-2018-148
https://doi.org/10.5194/tc-2018-148


Ocean Dynamics

Rashid M, Wahl T (2020) Predictability of extreme sea level variations
along the U.S. Coastline. J Geophys Res: Oceans 125:(9). https://
doi.org/10.1029/2020jc016295

Resio DT, Westering JJ (2008) Modeling the physics of storm surges.
Physics Today 61:33–38. https://doi.org/10.1063/1.2982120

Rhines P (2001) Mesoscale eddies. Steele JH (ed), Encyclopedia of
ocean sciences (p 1717-1730). Oxford: Academic Press. https://
doi.org/10.1006/rwos.2001.0143

TranN, Dibarboure G, Picot N, Féménias P (2018) Improving the conti-
nuity of the Jason SSB time-series. In OSTSTmeeting, September

Von Storch H, Woth K (2008). Storm surges: perspectives and
options. Sustain Sci 3(1):33–43. https://doi.org/10.1007/s11625-
008-0044-2

Wahl T, Haigh ID, Nicholls RJ, Arns A, Dangendorf S, Hinkel J, Slan-
gen AB (2017) Understanding extreme sea levels for broad-scale
coastal impact and adaptation analysis. Nat Commun 8(1):1–12.
https://doi.org/10.1038/ncomms16075

Wahr JM (1985) Deformation induced by polar motion. J Geophys Res
90(B11):9363–9368. https://doi.org/10.1029/JB090iB11p09363

Wang X, Verlaan M, Apecechea MI, Lin HX (2021) Computation-
efficient parameter estimation for a high-resolution global
tide and surge model (GTSM). J Geophys Res: Oceans 126
,e2020JC016917. https://doi.org/10.1029/2020JC016917

Weisse R, Bellafiore D, Menéndez M, Méndez F, Nicholls RJ,
UmgiesserG,WillemsP (2014)Changing extreme sea levels along
European coasts. Coast Eng 87(1):1–14. https://doi.org/10.1016/
j.coastaleng.2013.10.017

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1029/2020jc016295
https://doi.org/10.1029/2020jc016295
https://doi.org/10.1063/1.2982120
https://doi.org/10.1006/rwos.2001.0143
https://doi.org/10.1006/rwos.2001.0143
https://doi.org/10.1007/s11625-008-0044-2
https://doi.org/10.1007/s11625-008-0044-2
https://doi.org/10.1038/ncomms16075
https://doi.org/10.1029/JB090iB11p09363
https://doi.org/10.1029/2020JC016917
https://doi.org/10.1016/j.coastaleng.2013.10.017
https://doi.org/10.1016/j.coastaleng.2013.10.017

	Mapping the spatiotemporal variability in global storm surge water levels using satellite radar altimetry
	Abstract
	1 Introduction
	2 Data
	2.1 Satellite radar altimetry
	2.2 Tide gauges
	2.3 Reanalysis data

	3 Methods
	3.1 Extreme value analysis
	3.2 Data availability and scaling factors
	3.3 Storm surge characteristics

	4 Results
	4.1 Data availability and scaling factors
	4.2 Time-averaged surge water levels
	4.3 Annual differences in surge water levels
	4.4 Secular change surge water levels

	5 Discussion
	6 Conclusions
	Acknowledgements
	References


