
Dependent Types and Conversion Checking
A literature survey on implementation techniques for type systems

Maria Khakimova1

Supervisor(s): Jesper Cockx1, Bohdan Liesnikov1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Maria Khakimova
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Bohdan Liesnikov, Annibale Panichella

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
While dependent types can allow programmers to
verify properties of their programs, implementing
a type checker for a dependent type theory is often
difficult. This is due to the fact that, in the presence
of dependent types, deciding the equality of types
- conversion checking - becomes non-trivial. Due
to an identified gap in literature regarding a survey
of existing techniques for implementing conversion
checking in the presence of dependent types, this
paper aims to provide an exploratory overview of
the current state of this field.
We identify five distinct implementation strate-
gies within this paper. Four of these techniques
were different from a theoretical standpoint - Naı̈ve
Substitution, Normalisation by Evaluation, Equal-
ity through “Shape” Analysis, Normalisation by
Hereditary Substitution, and a technique using con-
gruence closure. They all have different benefits
and drawbacks regarding their portability, extend-
ability to richer type systems, efficiency, and decid-
ability. Additionally, three techniques that focused
on improving the efficiency of conversion checking
through the use of an abstract machine or compila-
tion into native code were found.

1 Introduction
In type theory, a dependent type depends on some terms or
elements of other types [1; 2], and their presence in a type
theory can thus allow for more expressive types. This can re-
sult in more errors being caught by the compiler [3], which is
beneficial for programmers working with a language imple-
menting the dependent type system. Additionally, dependent
types allow for program verification as they add precision to
types [4, p. 1]. For example, proofs can be expressed as a de-
pendent program through the Curry-Howard correspondence,
which permits for any logical statements to be expressed as
a dependant type [2]. However, the implementation of de-
pendent type systems is often more complex than for simpler
type systems.

One of the main reasons for the difficulties of implement-
ing a dependent type theory is that a dependent type can con-
tain a piece of code [5]. This makes conversion checking (a
fundamental component of a typed functional programming
implementation [6]) difficult, as deciding the equality of types
now also has to decide the equality of terms.

It is important for a developer of a new dependently typed
programming language to consider which conversion check-
ing algorithm to use. This is because different algorithms
support different functionalities and type theories. Addition-
ally, it is also important to consider what they want from the
type equality. For example, while a flexible equality of terms
will ease the burden of proof, it can also make the type check-
ing undecidable. These considerations can influence a devel-
oper’s choice of the algorithm.

This survey will thus provide an exploratory overview
of the different implementation methods for the conversion

checking of dependent types. With the current state of liter-
ature, it is currently difficult to locate and compare different
algorithms, which is compounded by the inconsistencies in
terminology used. As there is currently no literature survey
that covers and compares existing implementation methods,
this paper will aim to cover that gap in research. However,
it is still important to note that this is an exploratory survey,
and therefore will likely not be able to cover all existing tech-
niques.

The research question that this literature survey will thus
focus on answering will be:

What different implementation techniques for conversion
checking of dependent types have been proposed in the

literature?

As this question is relatively broad, it is split into further
sub-questions to aid in structuring the research:

• What are the advantages and disadvantages of different
implementation techniques

• Under what circumstances are certain existing imple-
mentation techniques recommended over others?

The paper will be structured as follows. Section 2 will dis-
cuss the methodology used in the exploratory literature sur-
vey, and section 3 will go over the measures this paper will
take to ensure that the research is responsible. Then, section
4 will provide some brief definitions of concepts that may be
unfamiliar to non-experts in this field, before section 5 pro-
vides an overview of all the identified techniques. Section 6
will then offer a discussion on the identified techniques with
advice to implementers, as well as the limitations faced by
this survey. Finally section 7 will conclude the paper, and
offer some insight into potential future work.

2 Methodology or Problem Description
This section covers the methodology used within this liter-
ature survey. This will include the method of collecting the
information, as well as details on how technique classification
and comparison will be done.

2.1 Collection of Information
Initially, collection will be done of research papers that dis-
cuss and present implementation techniques for conversion
checking algorithms. This will be done using several tech-
niques, one of which is a keyword search. With this method,
queries will be formulated based on identified keywords and
their synonyms, and used to search within article databases.
Additionally, the reference list and bibliography of relevant
papers will be studied to identify papers and techniques that
have been built upon. Finally, Connected Papers1 will be used
to identify derivative papers, as well as papers with overlap-
ping citations. This will allow for more recent papers to be
found, ensuring that more modern (and perhaps less popular)
techniques will also be covered.

However, due to both the current state of the literature and
the nature of the topic being implementation techniques, it

1www.connectedpapers.com



is possible that not all approaches will be covered by peer-
reviewed articles. Due to this, the search will have to be ex-
panded to blog posts and podcasts by reputable authors in
the field. Additionally, documentation and git repositories
for languages implementing dependent types will be exam-
ined. This is because README files, git issues, git commit
messages, and comments in code can provide insight into the
implementation techniques, as well as their advantages and
disadvantages. While these sources may be considered to be
less reliable than a peer-reviewed article, their consideration
will allow greater representation of primary sources, and may
be necessary for a comprehensive review.

2.2 Technique Identification
The implementation techniques will be clustered for easier
discussion. This is due to multiple reasons, one of which is
that some papers do not include the name of the technique
that they are implementing. Sometimes this is because it is a
novel technique, although it can also happen for pre-existing
named techniques. On the other hand, the naming of differ-
ent implementation techniques can be inconsistent, with dif-
ferent names being used for the same method. Finally, some
techniques are small variations on others, and the differences
may either be interesting to catalogue and discuss or be mi-
nor enough to be ignored. Manual clustering of the papers
will therefore allow for better structure within the paper.

2.3 Technique Comparison
Ultimately, in order to give advice to implementers, a com-
parison of the identified techniques will be done. To do this,
the methods will be compared based on the simplicity of the
implementation, as well as its performance. However, these
judgements will often be subjective, as this paper is a litera-
ture survey that will not be carrying out experiments. Addi-
tionally, comparisons will be made based on the extendibility
of the techniques to other and/or richer type systems, and the
portability of the algorithms between type theories. Advice
will also be given based on the supported language features
of different algorithms.

3 Responsible Research
While the ethics of a literature survey in type theory may be
simpler than in other fields, it is still important to consider
the potential impact of this paper. For this reason, this section
will cover the efforts that this paper has made to ensure that
the research is ”responsible”.

Specific care will be taken to not misrepresent the current
state of the field. While this paper aims to provide an ex-
ploratory overview, it will also try to avoid biases towards
certain techniques. To achieve this, primary sources will be
used as much as possible, but implementers’ feedback on the
techniques will also be taken into account. Additionally, part
of the data will be collected through a broad keyword search
as mentioned in 2.1. However, it is important to note that the
snowball technique was one of the main data collection tech-
niques that was used. This may mean that the papers collected
may have some biases, as they will be strongly linked to each
other. This can also result in some techniques being missed,

which can also lead to a misrepresentation of the current state
of literature. Overall, while efforts have been made to ensure
that the paper is as representative as possible, it is important
to note that this literature survey has some limitations in this
regard.

Steps have also been taken to ensure the reproducibility of
this research. For this purpose, the methodology has been
outlined in detail in section 2, and citations have been used
generously to ensure that it is clear where specific claims
come from. Page numbers are used in citations for longer
publications like books and PhD theses for easier repro-
ducibility.

4 Definitions
Before detailing the different identified implementations, it is
important that all readers have an understanding of the ter-
minology used. This is because the aim of this paper is to
provide an exploratory overview of the topic to all audiences,
including those less familiar with type theory and conversion
checking. Thus, this section will go over some of the termi-
nology that may be new to readers who are not experts in this
field.

To the extent of our knowledge, in dependent type theory
convertibility is analogous to definitional equality, and both
terms will be used within the paper. However, it is also impor-
tant to note that often, when referring to dependent type theo-
ries, the terms definitional equality and judgemental equality
are used interchangeably. For the purpose of clarity, this pa-
per will avoid using the term judgemental equality, as there
can be cases where the two differ in dependent type theory.

For conversion checking, it is important for the imple-
menter to know which equivalence relations they want the
language to support.

The simplest equivalence relation is α-equivalence. Two
terms being α-equivalent means that the only differences be-
tween them are in the names of bound variables [7; 8]. As an
example, λx. x y and λz. z y are α-equivalent. α-equivalence
can often be equivalent to syntactic equivalence, especially
when the type theory is formulated with devices such as De
Bruijn indices [9].

β-equivalence is also an equivalence relation that many
languages and type-checkers support. For two terms to be β-
equivalent, they must be able to be β-reduced into the same
β normal form [10]. To perform β-reduction, the λ is re-
moved from the function, and the argument is substituted for
the function’s parameter in the body [11].

The last equivalence relation that will be covered is η-
equivalence, which is said to express the idea of extensional-
ity [12]. Therefore, two functions are seen as equal when they
give identical results for all arguments. Unlike β-conversion,
both η-reduction and -expansion may be necessary to give an
η normal form [13], although the usage of both is often in-
stead for purposes of efficiency.

Whilst these are not the only equivalence relations that may
be considered by a language2, this paper will mostly focus

2As an example, Coq considers terms to be convertible when they
are βδιζη-equal[14]



on conversion checkers that allow for the satisfaction of βη-
equality.

5 Implementation Techniques
A variety of techniques can be used to implement a conver-
sion checking algorithm for dependent types. In general, type
equality is determined through their conversion into a normal
form and subsequent verification of α or syntactic equality
[14].

As mentioned by Gratzer, Sterling, and Birkedal, the naı̈ve
approach for implementing a conversion checker then would
be reducing each term until it is no longer possible, and then
comparing them for syntactic equality [5]. Due to efficiency
concerns, more sophisticated techniques that do not use re-
duction tactics alone are utilised.

This section provides an overview of the techniques found
in this exploratory literature survey. A brief overview of how
the implementation works is provided, along with some cited
advantages and disadvantages of the system. This section
covers the different techniques in the following order...

5.1 Naı̈ve Substitution
The simplest technique for conversion checking is naı̈ve,
capture-avoiding substitution, as used in Lean’s kernel [15;
16]. This approach aims to obtain normal forms through term
substitution alone.

Despite its simplicity in terms of theory and implementa-
tion, it has many drawbacks. Ultimately, it is a very slow
approach, requiring other techniques such as memoization to
maintain good performance, ditracting from the initial sim-
plicity of the algorithm by adding complexity [16].

5.2 Normalisation by Evaluation
Normalisation by Evaluation (NbE) is a technique that can
be used to determine definitional equality in dependent type
theories. It works by first transforming a term in a semantic
model of a language, and then reifying it back into a term
representation, thus obtaining a normal form [17, p. 25].

For an in-depth look into NbE, its different variants and
history, Abel’s habilitation thesis [18] is recommended. Al-
though it is from 2013, it provides some valuable insight into
the subject.

Despite favourable theoretical properties and improved ef-
ficiency over a naı̈ve substitution approach, NbE is not always
adequate for certain languages. For example, the fact that it
η-expands terms until it is no longer possible, means that it
is sometimes not what is necessary for a language. Occa-
sionally, it is not even possible within a certain type theory
without alterations [19; 17, p. 16]

Concerns about NbE’s efficiency have also been brought
up. Fully normalising expressions is not always necessary
for determining type equality, and sometimes a simple α-
equivelence check is sufficient [19]. However, this can of-
ten be mitigated by combining this approach with a simple
algorithm that checks if two terms are syntactically identical
before performing NbE.

Normalisation by Evaluation also comes in two flavours
- typed and untyped NbE. While typed NbE generally has

higher performance, untyped NbE can favoured due to its
generalisability [20]. However, this comes with significant
overhead due to the necessity of adding tags to object syntax
interpretation to embed the approach into a new language.
This can be mitigated to an extent, but not completely [21].

5.3 Using Abstract Machines
Using abstract machines has been proposed as a method of
making a conversion checker more efficient [22]. This ap-
proach is used by Agda3 [23] and Coq4 [24], both languages
that implement dependent types. This subsection focuses on
these two approaches, but other similar implementations ex-
ist, such as the technique proposed by Kleeblatt [17].

Agda Abstract Machine
The implementation of Agda’s typechecker uses an abstract
machine for compile-time reduction, as can be seen in the
source code [23].

This implementation uses a call-by-need machine, and was
found to offer better efficiency than their slow, substitution-
based, strategy. However, the comments in the code state that
the type checker would fall back to slow reduction occasion-
ally, especially when a definition is encountered that is not
supported by the machine. Nevertheless, a recent fix has been
implemente to ensure that the fast reduction strategy is always
used.

Unfortunately, as there is no published literature on this
technique, it is difficult to analyse the implementation tech-
nique based solely on the code and accompanying comments.
However, it is still interesting to note that this technique ex-
ists, and does seem to offer some advantages over not using
an abstract machine for conversion checking.

Strong Reduction with the Zinc Abstract Machine
An alternative implementation of conversion checking with
an abstract machine was proposed by Grégoire and Leroy in
2002 [22]. This technique for strong reduction is one that is
currently used in Coq’s vm compute tactic [24].

Although this is not mentioned in the paper itself, it has
been argued by other researchers that this is an instance of
untyped NbE [18, p. 67; 20].

This method utilises a modified version of the Zinc Ab-
stract Machine (ZAM) that was proposed by Leroy [25]. This
is an abstract machine that uses a call-by-value evaluation
strategy, unlike the machine discussed for the Agda Abstract
Machine. For conversion checking, terms are compiled down
to the bytecode of the ZAM, which performs the strong nor-
malisation through compiled weak symbolic reduction and an
interpreted recursive readback procedure [22].

This strategy is reported to have a few benefits. Coq’s doc-
umentation states that it is especially useful for the full evalu-
ation of algebraic objects [24]. However, the main advantage
of this strategy lies in its efficiency.

Implementing this technique in Coq has lead to significant
improvements in Coq’s efficiency. It was on average signifi-

3https://agda.readthedocs.io
4https://coq.inria.fr/

https://agda.readthedocs.io
https://coq.inria.fr/


cantly faster than Coq’s cbv and lazy strategies5, as can be
seen in the benchmarks provided by Grégoire and Leroy [22].
Kleeblatt suggested that this was because the strategy used
strict evaluation, which is often efficient, and issues of non-
termination were avoided by the finite nature of reduction se-
quences of Coq’s well-typed terms [17]. Thus, the efficiency
of this algorithm can be said to be due to both its intrinsic
efficiency, and its pairing with a favourable language.

This implementation strategy is not without drawbacks.
According to Coq’s documentation, it cannot be fine-tuned
[24], which can limit the type checker and/or language. Ad-
ditionally, while it is often an efficient strategy, Grégoire and
Leroy’s benchmarks demonstrated a small slow-down over
the cbv and lazy strategies [22]. This was explained by the
fact that the compilation to bytecode happens every time with
this technique. This is disadvantegeous when the terms to be
compared are already in normal form, as nothing is gained
but the price of compiling to bytecode must still be paid.
While it appears from the benchmarks that the overhead is
small enough to be acceptable, it is still something that im-
plementers may want to keep in mind.

5.4 Normalisation by Translation to OCaml
Another approach to implementing strong normalisation sim-
ilar to that in Grégoire and Leroy [22] was proposed by Boe-
spflug, Dénès, and Grégoire in 2011 [20]. It is currently
used as one of Coq’s performance-oriented reduction strate-
gies native compute, alongside vm compute [24].

The implementation details are similar to the Strong Re-
duction with the Zinc Abstract Machine (SRZAM) technique
described in subsection 5.3. This is in large part due to it
being created by building upon the SRZAM approach [20].
However, the main difference is that instead of compiling to
an abstract machine, it translates terms directly into OCaml.

This approach has a few advantages over using the Zinc
Abstract Machine in Grégoire and Leroy’s approach. One
such advantage is in efficiency. According to Coq’s documen-
tation, it is 2-5 times faster than the SRZAM approach [14].
The explanation offered by the authors Boespflug, Dénès, and
Grégoire is that by compiling to native code, the approach
avoids the limitations on efficiency placed by the abstract
machine [20]. Additionally, the direct conversion to OCaml
means that this approach does not need to work with a cus-
tom version of the ZAM. This is beneficial because an ab-
stract machine does not need to be maintained separately, and
it creates a better separation of concerns. Overall, it is evident
that a direct conversion to OCaml has some benefits over the
SRZAM approach.

In addition to being performant, this approach also aims to
be portable and easily generalisable to other (functional) lan-
guages. As an instance of untyped NbE [18, p. 67], it attempts
to include the generality of untyped NbE while matching the
performance of typed NbE [20].

However, there are also disadvantages to compiling di-
rectly to OCaml. As this approach has significantly more

5https://coq.inria.fr/refman/proofs/writing-proofs/equality.html#
applyingconversionrules

overhead than the SRZAM appraoch, Coq often recommends
that SRZAM still be used over this technique [14].

5.5 Equality through “Shape” Analysis
As an alternative to reduction or normalisation-based equal-
ity, it is also possible to determine type equality through the
“shapes” of terms. This is often done because always re-
ducing terms to normal form before checking for equality,
as done in NbE, is often wasteful. This section will look at
two implementations using this type of technique - the origi-
nal algorithm, as well as a unique spin on it that includes de-
pendency erasure. However, there are other implementations
that are worth investigating, such as another refinement by
Abel and Scherer [26] and a popular formalisation by Abel,
Öhman, and Vezzosi in 2018 [6].

Original Algorithm by Coquand, 1991
While there are generally no significant problems in imple-
menting an algorithm for β-reduction for languages imple-
menting dependent types, doing so for βη-reduction is often
much more complex [28]. The method proposed by Coquand
in 1991 avoids this completely by deciding equality directly
through analysing the “shapes” of terms, using the principle
of extensionality instead of η reduction or expansion [27; 28].

The main benefit of this technique is that it avoids explicit
normal form computation, which has been an issue with pre-
vious techniques. This means that the algorithm will termi-
nate early if terms are found to be unequal [28].

However, this is an old proposed technique, and thus has
some significant disadvantages. One of these is that it is not
easily scalable to richer type theories due to its strong re-
liance on the “shape” of terms [28]. Therefore, considera-
tions should be made to newer refinements of this technique
that preserve the benefits while making it as scalable as pos-
sible.

Equality by Dependency Erasure and “Shape” Analysis
An interesting development on Coquand’s original algorithm
was the type-directed approach created by Harper and Pfen-
ning for a subset of the Edinburgh Logical Framework (LF).
Unlike what was originally proposed by Harper, Honsell, and
Plotkin [29], and the Coquand’s algorithm, this technique
considers both η and β conversion.

This technique uses multiple ideas for conversion check-
ing, one which is the erasure of dependencies when decid-
ing equality, despite the presence of dependently-typed terms
[28]. This is perhaps the first equality algorithm that imple-
ments such a technique. This type-directed equality algo-
rithm therefore only requires testing equality on simple types.

However, as this technique was inspired by Coquand, it
also includes a focus on the “shape” of the terms [28]. This is
used in the first phase of the implementation to determine the
approximate non-dependent types, to provide information for
the verification that dependencies are respected throughout
the technique.

The authors of this technique consider it to be an efficient
implementation. This is because the usage of approximate
types leads to fast equality and unification operations, as the

https://coq.inria.fr/refman/proofs/writing-proofs/equality.html#applyingconversionrules
https://coq.inria.fr/refman/proofs/writing-proofs/equality.html#applyingconversionrules


computation and type-checking of precise types is often ex-
pensive Harper and Pfenning. However, no benchmark re-
sults are provided, and this judgement is purely subjective.

Another advantage that this technique provides is scalabil-
ity to richer languages. While this was developed for a subset
of LF, a blueprint for adapting the method to other type theo-
ries is provided by Harper and Pfenning [28].

Nevertheless, it cannot scale to all languages. The authors
have stated that it will handle poorly in an impredicative set-
ting or with predicative universes [28]. While a way for han-
dling the case of predicative universes has been suggested
by the authors, implementing it for impredicative settings is
likely more difficult. Additionally, it is sometimes impossi-
ble to eliminate dependencies completely. This is the case
with singleton kinds and subkinding, although some alter-
ations such as those proposed by Stone, College, and Harper
can be made to create a similar technique for them [30]. Some
authors also report that this technique does not permit the def-
inition of types by recursion on values [26], which is a fea-
ture that is common within many proof assistants. As can be
seen, there are many situations in which a pure version of this
technique cannot be used for conversion checking within a
language.

5.6 Normalisation by Hereditary Substitution
Another technique is Normalisation by Hereditary Substitu-
tion (NbHS), which was first introduced by Watkins et al.
[31]. This technique includes the simultaneous performance
of syntactical substitution and normalisation of terms [32].
Abel described hereditary substitutions as the “substitution
of a normal form into another one, triggering new substitu-
tions to remove freshly created redexes, until a normal form
is returned.” [33].

This technique also has some advantages, such as its struc-
turally recursive nature [33]. Additionally, hereditary sub-
stitutions preserve canonical forms during substitution [32],
which can be valuable for some implementations.

However, this exploratory survey has not found this to be
a popular technique for conversion checking. In discussion
forums, it has been noted that there is no reason to use hered-
itary substitution unless there is a particular interest in reverse
mathematics, as most other techniques are more favoured,
and hereditary substitutions can be formally difficult to han-
dle [34].

5.7 Conversion Checking in the Presence of
Non-Termination

Non-termination is a feature that languages implementing de-
pendent types may want to implement. However, this causes
significant complications to the conversion checking algo-
rithm in the presence of dependent types. This section will
look at two approaches to dealing with the conversion check-
ing of dependent types in the presence of non-termination -
that of Dependent Haskell, and ZOMBIE.

Dependent Haskell
Dependent Haskell takes an unusual approach to handling
non-termination through keeping the type-checking undecid-
able [35, p. 66]. Therefore, more responsibility is placed fully

on the programmer - if the type checker does not terminate (or
alternatively, is taking an unusually long time), they will have
to terminate it and make their own assumptions on what went
“wrong”.

Non-Termination with ZOMBIE
A language that takes a different approach to type checking
than Dependent Haskell is ZOMBIE, which was developed
by Sjöberg [36, p. 6]. ZOMBIE is a language that was de-
veloped as a part of the Trellys Project [4, p. 6], whose pur-
pose was to create a functional programming language that
included general recursion as well as full dependent types
[37].

Unlike Dependent Haskell, the functional language ZOM-
BIE retains decidable type-checking by excluding auto-
matic β-conversion completely [38]. While checking for β-
equivalence is still possible, this technique forces the user to
indicate how much to β-reduce their types.

As an alternative to the standard equality that is used,
ZOMBIE utilises a ”congruence closure” relation to define
type equality. This was done because efficient algorithms al-
ready exist to decide congruence closure, making decidability
of type checking much simpler to ensure.

6 Discussion and Advice
Overall, this exploratory survey has demonstrated that there
are a lot of different techniques to choose from, and there
is not necessarily a ”best” technique that fits all languages or
ideas. However, this section will aim to provide implementers
with some advice on which technique may suit their idea of a
conversion checker better.
Portability One important facet to consider in a conversion
checker is its portability. While some implementers may be
willing to make more modifications to a conversion checking
algorithm to embed it in their language, this is not always the
case. However, that as can be seen with untyped NbE, gener-
alisability and portability can often come with the drawback
of low performance. However, there are still techniques that
manage to preserve both performance and portability, such as
the SRZAM technique discussed in 5.3, and the technique de-
tailed in section 5.4. However, in general, more performant
techniques tend to require more modifications for proper in-
tegration.
Extendibility If a less portable solution is chosen, the ex-
tendibility of it to richer type systems must be considered.
Many techniques discussed in this survey have been devel-
oped for specific (and occasionally subsets of) type theories.
This can mean that some techniques that have been discussed,
such as those mentioned in subsection 5.5 can not scale eas-
ily or at all to all type theories, or support certain desirable
features.
Simplicity The ease of implementing the conversion
checker may also be taken into account by implementers, es-
pecially when performing the implementation from scratch.
However, simple solutions such as Naı̈ve Substitution can of-
ten come with drawbacks such as a lack of efficiency, and
the resulting complexity from optimising the type checker to
maintain performance.



Efficiency The efficiency of the conversion checking algo-
rithm is also important. This is because programmers may
dislike languages with noticeable slow compile times due to
a slow conversion checker, and this can reduce the acceptance
and usage of the language. Oftentimes, to find more efficient
implementations, later derivative works need to be looked at.
However, this efficiency can often come with drawbacks - for
example, although the technique described in subsection 5.4
has been noted to be significantly more efficient, the SRZAM
technique that it is based on (discussed in 5.3) is still used and
often recommended in Coq. Nevertheless, given the current
state of literature it is difficult to provide objective compar-
isons on the efficiency of different techniques - unlike the
study done by Boespflug, Dénès, and Grégoire [20], most
studies do not provide comparative benchmarks. Therefore,
this exploratory survey cannot provide definitive advice on
the efficiency of most techniques in comparison to each other.

In the event that a less efficient technique is chosen, imple-
menters should note that a lot of techniques can be used in
conjunction, if they are willing to make modifications. Tech-
niques such as memoisation, or even performing a simple
α-equivalence check before doing more expensive computa-
tions can offer significant speed-ups to the algorithm. Thus,
it may be not as important to focus on the efficiency of an in-
dividual technique, but also look at additional optimisations
that can be done to it.

Abstract Machines The usage of an abstract machine
should also be considered. From subsection 5.3, it is evident
that the use of abstract machines for conversion checking is
being used successfully in at least two popular languages that
use dependent types. Unfortunately, while these two tech-
niques that use abstract machines report improvements in ef-
ficiency, this survey could not find discussions on the use of
an abstract machine for conversion checking without an asso-
ciated technique. Therefore, it is difficult to identify whether
using an abstract machine is beneficial over implementing a
similar algorithm without an abstract machine. It has also
been argued that the use of an abstract machine can limit the
efficiency of an implementation, as it is dependent on the ab-
stract machine which is often less efficient than native code.
In such cases, compilation to native code as described in 5.4
has been cited to be a more efficient solution. Additionally,
there are drawbacks that may reduce the implementability of
this technique for a new or existing language. If a modified
version on an abstract machine is used, it creates the addi-
tional concern of keeping it up-to-date. However, modifica-
tions might sometimes be necessary, as some definitions that
are wanted in a language may not be supported by the de-
fault abstract machine. As can be seen with Agda, this can
be worked around by falling back on a slower conversion-
checker, but that would result in two conversion checkers hav-
ing to be maintained, which may be undesirable. Therefore,
although the examples discussed demonstrate that using an
abstract machine may be efficient, this should not be taken at
face value.

Language Features Finally, the implementer must con-
sider what features they want from the language they are
implementing, as some features can have a strong impact

on the chosen conversion checking algorithm. For exam-
ple, the presence of non-termination, as discussed in sub-
section 5.7, can have drastic consequences on the conversion
checker. This is because the implementation will have to ei-
ther leave type checking undecidable, or work with unortho-
dox workarounds as in ZOMBIE.

However, this decision will also depend on whether or
not the implementer values the decidability of their type
checker. While enforcing decidability of conversion check-
ing can compromise the expressivity of a type theory or lan-
guage, the decidability ensures ease of use and minimisation
of developer confusion through guaranteed termination [39].
As put by Nawrocki, an undecidable type checker can cre-
ate the question of “When our dependently-typed program is
taking a long time to check, is the compiler just slow or is it
trying to prove the Riemann hypothesis?”. However, it has
also been argued by authors such as Eisenberg that programs
looping at run-time is not unusual, and programmers are not
surprised by this occurrence. By this logic, a program loop-
ing at compile-time due to undecidable type-checking should
not be too shocking [35]. Additionally, suggestions have been
made to halt the type-checking with an error message if the
number of reduction steps gets too high to give a better user
experience [40; 35, p. 66]. Hence, while decidability of the
conversion checking algorithm is often a favourable quality,
perhaps it is not necessary for it to perform to a good standard
for the programmer.

6.1 Limitations
Before making conclusions, it is important to discuss some
of the limitations of this exploratory survey. This is to ensure
that the findings are not misrepresented, and show points of
improvement for future research.

Given the nature of this paper being an exploratory survey
of different implementation techniques, as well as the current
state of the literature, most judgements and advice given in
this paper are subjective. For example, although many tech-
niques state that their technique is ”efficient”, it is difficult
to objectively compere this efficiency between techniques.
Benchmarks are rare, with some limited exceptions, in this
field. Unfortunately, there is a chance that some techniques
that have unjustifiably self-reported themselves as ”efficient”
have been labelled as such in this paper.

There is also a chance that not all techniques have been
identified. This is both due to the limited time-frame of this
paper, and the current literature often utilising inconsistent
terminology.

Additionally, not all sub-variants of different techniques
have been covered in this paper. This is because there are a
vast amount of such minute variations on covered techniques,
and it is impossible to cover them all in this short exploratory
survey. While the most stand-out modifications have been
covered, there is a chance that a specific modification that
an implementer is looking for exists in literature, but has not
been discussed or identified in this survey.

In conclusion, this paper possesses many limitations that
should be kept in mind when considering the advice and con-
clusions provided.



7 Conclusions and Future Work
In conclusion, this exploratory survey identified several dif-
ferent techniques that can be used to implement a type
checker. For normalisation into normal forms, Naı̈ve Substi-
tution, Normalisation by Evaluation (NbE), Equality through
“Shape” Analysis, and Normalisation by Hereditary Substi-
tution (NbHS) were the main tactics. Naı̈ve Substitution
is the simplest implementation, as it uses only term sub-
stitutions in the base algorithm. While NbE avoids direct
reduction through transformations and reificatoins, Equality
through “Shape” Analysis looks at the general “shapes” of
terms. NbHS, however, simultaneously normalises and per-
forms syntactical substitution on terms to achieve a normal
form. Equality through congruence closure was also looked
at in 5.7, which avoids β-conversion entirely, and maintains
decidable conversion checking in the face of non-termination.
It was also found that, although most languages prefer to in-
corporate decidable type checking, there are languages such
as Dependent Haskell which, due to the difficulties of con-
version checking under non-termination, choose to have type
checking be undecidable. Implementations that focused more
on efficiency were also identified, which either utilised an ab-
stract machine, or compiled terms into another language such
as OCaml.

Each of these tactics has advantages and disadvantages.
Differing advice is given to implementers depending on the
portability, extendability, simplicity, efficiency, and decid-
ability that they want from the conversion checker, as well as
the desired functionality of the language. However, it should
be noted the judgements on features such as extendablity and
portability are subjective.

7.1 Future Work
As identified in this exploratory survey, there are many gaps
in the literature that can be filled with future work.

One such gap is that this paper does not pay particular at-
tention to what type of equality is used. It may be important
for developers to consider which and what amount of differ-
ent equalities to implement, as more equalities can make the
type theory more powerful [41, p. 54]. Thus, further inves-
tigations can be made that analyse the effects and benefits of
including or excluding equalities.

Additionally, as discussed in Limitations subsection, for
efficiency of the implementation techniques, this paper can
give limited advice as the techniques have not been fully com-
pared yet. While some papers offer comparative benchmarks,
this is not standard. A comprehensive overview of the effi-
ciency of certain techniques, with all of them being tested to
measure performance, can thus be done in the future.

Some implementation techniques also do not have a paper
describing the implementation and the theory behind it. For
example, this is evident with Agda’s conversion checker us-
ing the Agda Abstract Machine, or the conversion checker in
Lean’s kernel. This makes reasoning about, and implement-
ing such techniques difficult. Filling such gaps in research
could be a topic for future research.

Finally, this paper had a strong focus on conversion check-
ing algorithms for dependent types. There may be some over-
lap with other types or features that implementers would want

to have in their language, but would significantly affect the
conversion checking algorithm. Looking into this to make
sure that the advice remains the same, or alternatively show-
ing why the advice no longer holds, could be valuable.

Overall, there are many avenues within which more re-
search can be done to provide a better overview of the differ-
ent conversion checking algorithms for dependent type theo-
ries.

References
[1] Per Martin-Löf. “An Intuitionistic Theory of Types:

Predicative Part”. In: Logic Colloquium ’73. Ed. by
H.E. Rose and J.C. Shepherdson. Vol. 80. Studies in
Logic and the Foundations of Mathematics. Elsevier,
1975, pp. 73–118. DOI: https : / / doi . org / 10 . 1016 /
S0049-237X(08)71945-1.

[2] Ana Bove and Peter Dybjer. “Dependent types at
work”. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 5520 LNCS
(2009), pp. 57–99. ISSN: 03029743. DOI: 10 . 1007 /
978-3-642-03153-3 2.

[3] Samuel Baxter. “An ML Implementation of the De-
pendently Typed Lambda Calculus”. Honors Thesis.
Boston College, May 2014.

[4] Vilhelm Sjöberg. “A Dependently Typed Language
with Nontermination”. In: Publicly Accessible Penn
Dissertations (2015). URL: https: / / repository.upenn.
edu/edissertations/1137.

[5] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal.
“Implementing a modal dependent type theory”. In:
Proceedings of the ACM on Programming Languages
3 (ICFP Aug. 2019). ISSN: 24751421. DOI: 10.1145/
3341711. URL: https://doi.org/10.1145/3341711.

[6] Andreas Abel, Joakim Öhman, and Andrea Vezzosi.
“Decidability of conversion for type theory in type the-
ory”. In: Proceedings of the ACM on Programming
Languages 2 (POPL Jan. 2018). ISSN: 24751421. DOI:
10.1145/3158111.

[7] nLab authors. alpha-equivalence. Revision 7. June
2023. URL: https : / / ncatlab . org / nlab / show / alpha -
equivalence (visited on 06/15/2023).

[8] Roy L. Crole. “Alpha equivalence equalities”. In: The-
oretical Computer Science 433 (2012), pp. 1–19. ISSN:
0304-3975. DOI: https://doi.org/10.1016/j.tcs.2012.01.
030.

[9] Benno van den Berg and Martijn den Besten.
“Quadratic type checking for objective type theory”.
In: CoRR abs/2102.00905 (2021). arXiv: 2102.00905.
URL: https://arxiv.org/abs/2102.00905.

[10] nLab authors. beta-reduction. Revision 6. June 2023.
URL: https : / /ncatlab .org /nlab / show/beta - reduction
(visited on 06/15/2023).

[11] Milo Davis. Inside PRL - Beta Reduction (Part 1). Nov.
2016. URL: https : / / prl . khoury . northeastern . edu / bl
og / 2016 / 11 / 02 / beta - reduction - part - 1/ (visited on
06/15/2023).

https://doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1007/978-3-642-03153-3_2
https://doi.org/10.1007/978-3-642-03153-3_2
https://repository.upenn.edu/edissertations/1137
https://repository.upenn.edu/edissertations/1137
https://doi.org/10.1145/3341711
https://doi.org/10.1145/3341711
https://doi.org/10.1145/3341711
https://doi.org/10.1145/3158111
https://ncatlab.org/nlab/revision/alpha-equivalence/7
https://ncatlab.org/nlab/show/alpha-equivalence
https://ncatlab.org/nlab/show/alpha-equivalence
https://doi.org/https://doi.org/10.1016/j.tcs.2012.01.030
https://doi.org/https://doi.org/10.1016/j.tcs.2012.01.030
https://arxiv.org/abs/2102.00905
https://arxiv.org/abs/2102.00905
https://ncatlab.org/nlab/revision/beta-reduction/6
https://ncatlab.org/nlab/show/beta-reduction
https://prl.khoury.northeastern.edu/blog/2016/11/02/beta-reduction-part-1/
https://prl.khoury.northeastern.edu/blog/2016/11/02/beta-reduction-part-1/


[12] Luke Palmer. [Haskell-cafe] What’s the motivation for
η rules? Dec. 2010. URL: https : / / mail . haskell . org /
pipermail/haskell-cafe/2010-December/087783.html
(visited on 06/15/2023).

[13] nLab authors. eta-conversion. Revision 13. June 2023.
URL: https : / /ncatlab .org/nlab/show/eta- conversion
(visited on 06/15/2023).

[14] Conversion rules — Coq 8.17.0 documentation. URL:
https://coq.inria.fr/refman/language/core/conversion.
html (visited on 06/12/2023).

[15] Leonardo de Moura et al.
lean4/src/kernel/type checker.cpp at master · lean-
prover/lean4. Jan. 2023. URL: https : / / github . com /
leanprover / lean4 / blob / master / src / kernel / type %
5C checker.cpp (visited on 06/24/2023).

[16] András Kovács, Sebastian Ullrich, and Vladislav
Zavialov. AndrasKovacs/smalltt: Demo for high-
performance type theory elaboration. Apr. 2023. URL:
https://github.com/AndrasKovacs/smalltt/tree/master
(visited on 06/24/2023).

[17] Dirk Kleeblatt. “On a Strongly Normalizing STG Ma-
chine with an Application to Dependent Type Check-
ing”. PhD Thesis. Technical University of Berlin, Apr.
2011. DOI: 10.14279/depositonce- 2798. URL: https:
//doi.org/10.14279/depositonce-2798.

[18] Andreas Abel. “Normalization by Evaluation: Depen-
dent Types and Impredicativity”. Habilitation The-
sis. Ludwig-Maximilians-Universität München, 2013.
URL: http://www.cse.chalmers.se/∼abela/habil.pdf.

[19] David Thrane Christiansen. Checking Dependent
Types with Normalization by Evaluation: A Tutorial.
URL: https://davidchristiansen.dk/tutorials/nbe/ (vis-
ited on 06/12/2023).

[20] Mathieu Boespflug, Maxime Dénès, and Benjamin
Grégoire. “Full reduction at full throttle”. In: Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 7086 LNCS (2011), pp. 362–377.
ISSN: 03029743. DOI: 10 .1007 /978- 3- 642- 25379-
9 26.

[21] Mathieu Boespflug. “Conversion by Evaluation”. In:
Practical Aspects of Declarative Languages. Ed. by
Manuel Carro and Ricardo Peña. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 58–72. ISBN:
978-3-642-11503-5. DOI: 10.1007/978-3-642-11503-
5 7.

[22] Benjamin Grégoire and Xavier Leroy. “A compiled
implementation of strong reduction”. In: ACM, Sept.
2002, pp. 235–246. ISBN: 1581134878. DOI: 10.1145/
581478.581501.

[23] Ulf Norell et al. agda/Fast.hs at master · agda/agda.
May 2023. URL: https://github.com/agda/agda/blob/
master/src/full/Agda/TypeChecking/Reduce/Fast.hs
(visited on 06/12/2023).

[24] Reasoning with equalities — Coq 8.17.0 documenta-
tion. URL: https://coq.inria.fr/refman/proofs/writing-
proofs/equality.html (visited on 06/12/2023).

[25] Xavier Leroy. The ZINC experiment: an economi-
cal implementation of the ML language. INRIA, Feb.
1990. URL: https://inria.hal.science/inria-00070049.

[26] Andreas Abel and Gabriel Scherer. “On Irrelevance
and Algorithmic Equality in Predicative Type Theory”.
In: Logical Methods in Computer Science 8 (1 Mar.
2012), pp. 1–36. ISSN: 1860-5974. DOI: 10 . 2168 /
LMCS- 8(1:29)2012. URL: https://lmcs.episciences.
org/1045.

[27] Thierry Coquand. “An algorithm for testing conver-
sion in type theory”. In: Logical Frameworks. Book
has been checked out. 1991, pp. 255–279. ISBN: 0 521
41300 1.

[28] Robert Harper and Frank Pfenning. “On equivalence
and canonical forms in the LF type theory”. In: ACM
Transactions on Computational Logic (TOCL) 6 (1
Jan. 2005), pp. 61–101. ISSN: 15293785. DOI: 10 .
1145/1042038.1042041.

[29] Robert Harper, Furio Honsell, and Gordon Plotkin. “A
framework for defining logics”. In: Journal of the ACM
40 (1 Jan. 1993), pp. 143–184. ISSN: 0004-5411. DOI:
10.1145/138027.138060. URL: https://dl.acm.org/doi/
10.1145/138027.138060.

[30] Christopher A Stone, Harvey Mudd College, and
Robert Harper. “Extensional Equivalence and Single-
ton Types”. In: ACM Transactions on Computational
Logic 7 (4 2006), pp. 676–722.

[31] Kevin Watkins et al. “A concurrent logical framework:
The propositional fragment”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 3085 (2004), pp. 355–377. ISSN: 16113349.
DOI: 10.1007/978-3-540-24849-1 23.

[32] Chantal Keller and Thorsten Altenkirch. “Hereditary
Substitutions for Simple Types, Formalized”. In: Sept.
2010. URL: https://inria.hal.science/inria-00520606.

[33] Andreas Abel. “Implementing a normalizer using sized
heterogeneous types”. In: Journal of Functional Pro-
gramming 19 (3-4 July 2009), pp. 287–310. ISSN:
1469-7653. DOI: 10.1017/S0956796809007266.

[34] András Kovács. What is hereditary substitution and
why should I use it? Mar. 2018. URL: https : / /
proofassistants . stackexchange . com/questions /1174 /
what- is- hereditary- substitution- and- why- should- i-
use-it/1177#1177 (visited on 06/12/2023).

[35] Richard A. Eisenberg. “Dependent Types in Haskell:
Theory and Practice”. PhD Thesis. University of Penn-
sylvania, Oct. 2016. URL: http://arxiv.org/abs/1610.
07978.

[36] Chris Casinghino. “Combining proofs and programs”.
In: Dissertations available from ProQuest (2014).
URL: https : / / repository . upenn . edu / dissertations /
AAI3670881.

[37] Stephanie Weirich and Matúš Tejiščák.
sweirich/trellys. July 2019. URL: code . google .
com/p/trellys (visited on 06/15/2023).

https://mail.haskell.org/pipermail/haskell-cafe/2010-December/087783.html
https://mail.haskell.org/pipermail/haskell-cafe/2010-December/087783.html
https://ncatlab.org/nlab/revision/eta-conversion/13
https://ncatlab.org/nlab/show/eta-conversion
https://coq.inria.fr/refman/language/core/conversion.html
https://coq.inria.fr/refman/language/core/conversion.html
https://github.com/leanprover/lean4/blob/master/src/kernel/type%5C_checker.cpp
https://github.com/leanprover/lean4/blob/master/src/kernel/type%5C_checker.cpp
https://github.com/leanprover/lean4/blob/master/src/kernel/type%5C_checker.cpp
https://github.com/AndrasKovacs/smalltt/tree/master
https://doi.org/10.14279/depositonce-2798
https://doi.org/10.14279/depositonce-2798
https://doi.org/10.14279/depositonce-2798
http://www.cse.chalmers.se/~abela/habil.pdf
https://davidchristiansen.dk/tutorials/nbe/
https://doi.org/10.1007/978-3-642-25379-9_26
https://doi.org/10.1007/978-3-642-25379-9_26
https://doi.org/10.1007/978-3-642-11503-5_7
https://doi.org/10.1007/978-3-642-11503-5_7
https://doi.org/10.1145/581478.581501
https://doi.org/10.1145/581478.581501
https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Reduce/Fast.hs
https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Reduce/Fast.hs
https://coq.inria.fr/refman/proofs/writing-proofs/equality.html
https://coq.inria.fr/refman/proofs/writing-proofs/equality.html
https://inria.hal.science/inria-00070049
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.2168/LMCS-8(1:29)2012
https://lmcs.episciences.org/1045
https://lmcs.episciences.org/1045
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1145/138027.138060
https://dl.acm.org/doi/10.1145/138027.138060
https://dl.acm.org/doi/10.1145/138027.138060
https://doi.org/10.1007/978-3-540-24849-1_23
https://inria.hal.science/inria-00520606
https://doi.org/10.1017/S0956796809007266
https://proofassistants.stackexchange.com/questions/1174/what-is-hereditary-substitution-and-why-should-i-use-it/1177#1177
https://proofassistants.stackexchange.com/questions/1174/what-is-hereditary-substitution-and-why-should-i-use-it/1177#1177
https://proofassistants.stackexchange.com/questions/1174/what-is-hereditary-substitution-and-why-should-i-use-it/1177#1177
https://proofassistants.stackexchange.com/questions/1174/what-is-hereditary-substitution-and-why-should-i-use-it/1177#1177
http://arxiv.org/abs/1610.07978
http://arxiv.org/abs/1610.07978
https://repository.upenn.edu/dissertations/AAI3670881
https://repository.upenn.edu/dissertations/AAI3670881
code.google.com/p/trellys
code.google.com/p/trellys


[38] Vilhelm Sjöberg and Stephanie Weirich. “Program-
ming up to Congruence”. In: ACM, Jan. 2015,
pp. 369–382. ISBN: 9781450333009. DOI: 10 . 1145 /
2676726.2676974. URL: https:/ /dl .acm.org/doi/10.
1145/2676726.2676974.

[39] Wojciech J Nawrocki. “Decidability of typechecking
in a dependently-typed programming language with
sigma types”. Master Thesis. University of Cambridge,
June 2020.

[40] Lennart Augustsson. “Cayenne — A Language with
Dependent Types”. In: Advanced Functional Program-
ming. Ed. by S. Doaitse Swierstra, José N. Oliveira,
and Pedro R. Henriques. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 240–267. ISBN: 978-3-
540-48506-3.

[41] David Aspinall and Martin Hofmann. “Dependent
Types”. In: Advanced Topics in Types and Program-
ming Languages. Ed. by Benjamin C. Pierce. The MIT
Press, Dec. 2004, pp. 45–86. ISBN: 9780262281591.
DOI: 10.7551/mitpress/1104.003.0004.

https://doi.org/10.1145/2676726.2676974
https://doi.org/10.1145/2676726.2676974
https://dl.acm.org/doi/10.1145/2676726.2676974
https://dl.acm.org/doi/10.1145/2676726.2676974
https://doi.org/10.7551/mitpress/1104.003.0004

	Introduction
	Methodology or Problem Description
	Collection of Information
	Technique Identification
	Technique Comparison

	Responsible Research
	Definitions
	Implementation Techniques
	Naïve Substitution
	Normalisation by Evaluation
	Using Abstract Machines
	Agda Abstract Machine
	Strong Reduction with the Zinc Abstract Machine

	Normalisation by Translation to OCaml
	Equality through ``Shape" Analysis
	Original Algorithm by Coquand1991, Coquand1991
	Equality by Dependency Erasure and ``Shape" Analysis

	Normalisation by Hereditary Substitution
	Conversion Checking in the Presence of Non-Termination
	Dependent Haskell
	Non-Termination with ZOMBIE


	Discussion and Advice
	Limitations

	Conclusions and Future Work
	Future Work

	References

