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Realization of Wess-Zumino-Witten transitions with levels k = 6
and k = 4 in a frustrated spin-3 chain

Natalia Chepiga
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 13 February 2024; revised 16 April 2024; accepted 15 May 2024; published 3 June 2024)

We study dimerization transitions in a frustrated spin-3 chain with next-nearest-neighbor and three-site
interactions. We show that two independent coupling constants of the model are sufficient to fine-tune the system
to the critical point in the Wess-Zumino-Witten SU(2)6 universality class. This critical point appears as the end
point of an extended SU(2)4 critical line. This implies that the renormalization group flow leads to the critical
theory with the largest level k such that the number of relevant operators is reduced by one and the parity of the
level is preserved. Furthermore, we argue that due to the presence of marginal operator there is only one point in
the SU(2)6 universality class. In addition, we report the appearance of the nonmagnetic Ising transition between
the topologically trivial uniform and dimerized phases. This transition takes place within the singlet sector, while
the magnetic gap remains open.

DOI: 10.1103/PhysRevB.109.214403

I. INTRODUCTION

Antiferromagnetic Heisenberg spin chains have attracted a
lot of attention over the years. Competing interactions induce
frustration and are known to lead to new phases and quantum
phase transitions. For example, the J1 − J2 spin-1/2 chain
undergoes a Kosterlitz-Thouless transition [1] into a sponta-
neously dimerized phase [2,3]. By contrast, phases realized
in the J1 − J2 spin-1 chain are nondimerized and gapped: for
J2/J1 � 0.75 the chain is in the topologically nontrivial Hal-
dane phase [4]; beyond this point the ground state corresponds
to a pair of intertwined Haldane chains [5–7]. The dimerized
phase can be realized in the spin-1 chain in the presence of
a biquadratic interaction Jb(Si · Si+1)2 or due to the three-site
interaction J3[(Si−1 · Si )(Si · Si+1) + H.c.] [8–14]. The three-
site interaction is a generalization of the Majumdar-Ghosh
point and realizes exact dimerized state at J3 = J1/[4S(S +
1) − 2] for any value of spin S [12]. In fact, for not too large
next-nearest-neighbor coupling J2, the exact dimerized state
remains the ground state along the lines of [15]

J3

J1 − 2J2
= 1

4S(S + 1) − 2
, (1)

making the J1 − J2 − J3 model an ideal playground to study
dimerization transitions in spin-S chains. The model is defined
by the following microscopic Hamiltonian:

H = J1

∑

i

Si · Si+1 + J2

∑

i

Si−1 · Si+1

+ J3

∑

i

[(Si−1 · Si )(Si · Si+1) + H.c.], (2)

where without loss of generality we fix J1 = 1; in this paper
we restrict ourselves to positive coupling constants J2, J3 � 0.

Numerical investigation of this model already lead to an
impressive list of exotic quantum critical phenomena. Among
them, a nonmagnetic Ising phase transition between the fully

dimerized phase and the next-nearest-neighbor (NNN) Hal-
dane phase in the spin-1 chain at which the singlet-triplet
gap remains open [16]; partially dimerized phases in spin-
3/2 and 5/2 chains [17,18] separated by Kosterlitz-Thouless
transitions [1] from the critical phases; and the emergence of
magnetic floating phase—a critical phase with incommensu-
rate quasi-long-range correlations [17,18]. Another unusual
feature revealed in these systems was a termination of the
Wess-Zumino-Witten (WZW) SU(2)2S critical lines due to the
presence of marginal operators in spin-1 and spin-3/2 chains.
Above the end point the transition to the fully dimerized
phase is first order—a very counterintuitive conclusion for a
half-integer chain given that on one side of this transition the
phase is critical [19]. In both cases—in spin-1 and spin-3/2
chains—the marginal operators do not change the nature of
the transition and the end point belongs to the same universal-
ity class as the critical line it terminates.

The situation is radically different for spin chains with
S � 5/2 due to the appearance of additional relevant operators
[20,21]. The realization of higher level WZW SU(2)k uni-
versality classes is traditionally attributed to integrable spin-S
chains with a microscopic Hamiltonian given by a polynomial
of degree 2S in (Si · Si+1) [22–24] that artificially fine-tunes
all relevant operators to vanish. However, for WZW SU(2)k

critical theory with 5 � k < 10 there are only two relevant
operators consistent with the Z2 translation symmetry. This
means that two independent parameters, as in the J1 − J2 − J3

model, might be sufficient to fine-tune the system to the
WZW SU(2)2S critical point. Recently, this was reported in
the spin-5/2 chain where SU(2)5 critical points appear at the
end of the extended SU(2)3 critical line [18]. The first relevant
operator is responsible for the appearance of the dimerized
phase; the corresponding coupling constant changes its sign at
the transition. The second relevant operator controls the type
of this transition: when its coupling constant is positive, the
transition is first order; when it is zero both operators vanish
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and the critical theory is fine-tuned to WZW SU(2)5; when it
is negative the underlying critical theory renormalizes to the
lower level SU(2)3. For small values of J2 and J3 when the
coupling constant of both relevant operators are negative, the
extended critical phase is described by the WZW SU(2)1 [19]
critical theory. According to the recent field theory prediction
in the presence of both SU(2) and a discrete Z2 symmetry a
renormalization-group flow is only possible between WZW
SU(2)k theories if the parity of the level index k does not
change [25]. The spectacular sequence of WZW criticalities
with odd levels k = 1, 3, and 5 reported in spin-5/2 chain
confirms this theory prediction [18]. At the same time, the
possible renormalization between even levels remains unex-
plored numerically.

In the present paper we aim to fill this gap by looking
at the critical properties of the spin-3 J1 − J2 − J3 chain. In
addition, we will explore the situation when there are several
possible candidates with lower levels k that satisfy the parity
constraints. We will show that at the isolated point the transi-
tion is fine-tuned to the WZW SU(2)6 that appears as an end
point of WZW SU(2)4 critical line. We address this problem
numerically with a state-of-the-art density matrix renormal-
ization group (DMRG) algorithm [26–29]. Throughout the
paper, unless explicitly stated otherwise, we use a chain with
an even number of sites and open boundary conditions. In
two-site DMRG we typically keep up to 1500 states, perform
six sweeps, and discard singular values smaller than 10−8.

II. PHASE DIAGRAM

We present a basic phase diagram of J1 − J2 − J3 model for
spin-3 chain obtained numerically in Fig. 1. According to the
Haldane’s conjecture [4] the integer-spin chain at J2 = J3 = 0
is in the uniform and gapped phase. It is instructive to visu-
alize this phase in terms of valence bond singlets (VBS)—the
distribution of effective spin-1/2 singlets. To match the total
spin S = 3 six VBS have to terminate at each lattice site. The
phase at J2 = J3 = 0 corresponds to a uniform VBS covering
of the lattice with three spin-1/2 singlets per nearest-neighbor
bond. In this representation it becomes obvious that there
are three effective spins-1/2 at each end of the chain that
remain unpaired and form spin-3/2 edge states, however, only
spin-1/2 edge states are topologically protected. At large J2

by analogy with thespin-1 case one might expect the VBS
singlets to occupy next-nearest-neighbor bonds—the spin-3
analog of the NNN-Haldane phase. This phase is topologi-
cally trivial and therefore the system undergoes at least one
topological transition upon increasing J2. In fact, Berry phase
calculations on system sizes up to N = 10 sites have shown
that spin-3 J1 − J2 chain undergoes a sequence of three topo-
logical transitions [30]. Verification of whether all of these
transitions will remain present in the thermodynamic limit and
for finite values of J3 is an extremely challenging numerical
task that we leave for future investigations. However, it is
important to keep in mind that all these phases are uniform
and show no sign of dimerization [31]. From the Berry phase
calculations we can expect the trivial uniform phase to be
stable at least for J2 � 0.9 [30].

For large J3 the system is in the fully dimerized phase
where every other nearest-neighbor bond is occupied by six

FIG. 1. Phase diagram of the S = 3 chain with next-nearest-
neighbor J2 and three-site interactions J3. There are at least two
topologically distinct uniform phases; according to the authors of
Ref. [30] there might be four of them separated by topological tran-
sitions; their exact location is outside of the scope of this paper. Fully
dimerized phase spontaneously breaks translation symmetry and has
two-fold degenerate ground states. The fully dimerized phase is
separated from the (topologically nontrivial) uniform phase by con-
tinuous WZW SU(2)4 transition along the blue line that terminates
at the end point (red star) located at J2 ≈ 0.08, beyond which the
transition is first order. For large values of J2 the transition between
(topologically trivial) uniform phase and the fully dimerized one is
consistent with Ising universality class. The sketches are visualiza-
tions of the corresponding phases in terms of valence bond singlets
(VBS): numbers near black lines state for the total number of VBS
singlets at the corresponding bond.

VBS singlets. This results in two degenerate ground states.
The line of exact dimerization defined in Eq. (1) terminates
at J2 ≈ 0.16—at this point the dimerization drops at once
from S(S + 1) = 12 to zero signaling in the presence of the
first-order transition, similar to the scenario reported in the
spin-1 chain [16]. The transition between the topologically
nontrivial uniform phase and the dimerized one is continuous
for J2 � 0.08 in the WZW SU(2)4 universality class, at J2 ≈
0.08 this critical line terminates with the SU(2)6 end point. At
large J2 the transition is between the two topologically trivial
phases and is consistent with a nonmagnetic Ising transition.
In the next two sections we provide details on the nature of
these continuous transitions.

Previous investigations of the J1 − J2 − J3 model also
revealed that a large portion of the phase diagram is character-
ized by incommensurate spin-spin correlations [6,7,17,32,33].
In the spin-3 chain incommensurability appears only as a
short-range order. The dotted line inside the uniform phases in
Fig. 1 marks the disorder line along which incommensurabil-
ity develops. Examples of the connected spin-spin correlation
function Ci, j = 〈Si · S j〉 − 〈Si〉 · 〈S j〉 on both sides of the dis-
order line are provided in Fig. 2. Inside the dimerized phase
the disorder line coincides with the exact dimerized line.

III. FROM WZW SU(2)6 TO SU(2)4

Let us now focus on the continuous transition at small
values of J2. To locate the transition we look at the finite-size
scaling of the middle-chain dimerization Dmid = |〈SN/2−1 ·

214403-2
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FIG. 2. Scaling of the connected correlation functions Ci, j =
〈Si · S j〉 − 〈Si〉 · 〈S j〉 with distance between spins for J3 = 0.005 and
various values of J3. Starting from J2 ≈ 0.24 the system demon-
strates the presence of incommensurate short-range correlations.

SN/2〉 − 〈SN/2 · SN/2+1〉|. In a log-log scale convex curves
signals finite dimerization in the thermodynamic limit and
therefore are associated with the dimerized phase. In con-
trast, concave curves point towards the nondimerized uniform
phase. The quantum critical point between these two phases
shows up as a separatrix on the finite-size scaling plot. By
keeping track of the change of curvature we can narrow down
the interval in which the quantum phase transition takes place.
In Fig. 3(a) we provide an example of finite-size scaling for
J2 = 0.08; the transition takes place between J3 = 0.017423
where the scaling curves a bit downwards and J3 = 0.017424
with data that slightly curve upwards. By fitting the main
slope of these two finite-size scalings we estimate the upper

and lower bounds of the critical scaling dimension d for a
given value of J2. The scaling dimensions extracted along the
transition line are summarized in Fig. 3(b). According to the
conformal field theory (CFT), the scaling dimension of the
WZW SU(2)k is given by d = 3

2(2+k) , this implies dk=4 = 1
4

and dk=6 = 3
16 . For small values of J2 the scaling dimension

d is in a reasonable agreement with dk=4, we believe the
discrepancy between the exact value and the measured one
is due to logarithmic corrections that appear when one of
the relevant operators renormalizes to zero. It is very impor-
tant to stress that our results would not be consistent with
another candidate satisfying Furuya and Oshikawa’s parity
rule [25]—the scaling dimension of WZW SU(2)2 is d =
3
8 that significantly exceeds the scaling dimension extracted
numerically.

Following the procedure described in Ref. [18] we as-
sociate the point J2 ≈ 0.08 where the scaling dimension is
consistent with WZW SU(2)6 and perform additional checks
to confirm the universality class at the end points. First, we
extract two critical exponents: β and ν that measures the
scaling of the order parameter (dimerization) and the corre-
lation length with the distance to the transition. The results
are presented in Fig. 4. For both critical exponents we see an
excellent agreement between numerical data (filled symbols)
and CFT predictions for WZW SU(2)6 ν = 2+k

2k and β = 3
4k .

For comparison we also present results for J2 = 0 that agree
well with CFT predictions for SU(2)4. Despite the fact that the
two pairs of critical exponents are very close (0.125 versus
0.1875 for β and 0.75 versus 0.667 for ν) one can clearly
distinguish these two cases in Fig. 4.

To the best of our knowledge the realization of the WZW
SU(2)6 phase transition in a nonintegrable spin chain is re-
ported for the first time and therefore deserves an additional
check by extracting conformal the towers of states. The con-
formal tower is a very specific structure of excitation energy

FIG. 3. (a) Example of finite-size scaling of the middle-chain dimerization for J2 = 0.08. The critical point is associated with the separatrix
at 0.017423 < Jc

3 < 0.017424, and the slope gives an effective scaling dimension 0.185 � deff � 0.198. Dashed lines are guide to the eyes;
solid lines are results of the fit. (b) Resulting value of the effective scaling dimension deff as a function of J2 along the transition between
the uniform and the fully dimerized phases. We associate the end point with the crossing points of the resulting curve and the horizontal line
dk=6 = 3/16 (dashed red). The dashed blue line stands for dk=4 = 1/4.
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FIG. 4. Scaling (a) of the middle chain dimerization D and (b) of
the correlation length ξ upon approaching the phase transition from
the fully dimerized phase to the uniform phase. Open symbols state
for the horizontal cut at J2 = 0, filled symbols for the horizontal
cut through the end point at J2 ≈ 0.08; the data are in excellent
agreement with the CFT predictions for the critical exponents for
WZW SU(2)4 (blue lines) and SU(2)6 (red lines).

spectra that system takes at the conformal critical point and
under specific cponformally-invariant boundary conditions
[34]. Here we probe only the lowest level of each magne-
tization sector—the “envelope” of the conformal tower. The
ground state of the system with N even is a singlet and thus
has total spin j = 0; a chain with an odd number of sites has
a ground state with total spin j = 3. We restrict ourselves
to Sz

tot � 12. We construct the envelope of these two towers
closely following Refs. [18,20]. The predictions for the en-
velops are summarized in Table I.

TABLE I. Lowest excitation energy with spin Sz
tot for both j = 0

and j = 3 WZW SU(2)6 conformal towers.

j = 0

Sz
tot 0 1 2 3 4 5 6 7 8 9 10 11 12

(E − E0)N/πv 0 1 2 3 4 5 6 9 12 15 18 21 24

j = 3

Sz
tot 3 4 5 6 7 8 9 10 11 12

(E − E0)N/πv, 0 2 4 6 8 10 12 16 20 24

FIG. 5. Conformal towers of states (top) and finite-size scaling
of excitation spectrum (bottom) at the WZW SU(2)6 end point.
Symbols are DMRG data, lines are CFT predictions summarized
in TableI, sound velocity v ≈ 3.34 ± 0.05 is extracted by fitting the
lowest two excitation energies with N even. For N even, the ground
state is in the singlet sector ( j = 0 tower), for N odd, the ground state
has total spin j = 3. The towers show only the lowest state within
each sector of total magnetization up to Sz

tot = 12.

Numerically, we extract excitation energies for system
sizes up to N = 160 for N even and up to N = 91 for N
odd. We extract a nonuniversal value of the sound velocity
by fitting two lowest-excitation energy levels for N even; the
extracted value is v ≈ 3.34 ± 0.05. In Fig. 5 we assume this
value to draw CFT predictions without any further fitting or
adjustments. The agreement with numerically extracted levels
of the towers is excellent.

IV. SECOND END OF THE SU(2)4 LINE

After identifying that WZW SU(2)4 critical line terminates
with SU(2)6 end point on one side, it is natural to wonder what
happens at the second end of this line. In Fig. 6(a) we present
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FIG. 6. (a) Phase diagram of the spin-3 J1 − J2 − J3 model
zoomed around the transition to the dimerized phase for −0.2 <

J2 < 0.2. For negative J2 the critical SU(2)4 line terminates at J2 ≈
−0.12 ± 0.02. Most likely the end point belongs to the same SU(2)4

universality class as the critical line above it. (b) Effective scaling
dimension deff as a function of J2 along the transition; this panel is an
extended version of Fig. 3(b). If the second SU(2)6 end point exists
it would take place at J2 ≈ −0.15 where deff ≈ dk=6. In Fig. 7(b) we
show the energy excitation spectrum at J2 = −0.15 that rules out this
possibility.

the part of the phase diagram including the location of the
dimerization transition for J2 < 0. One can see that around
J2 ≈ −0.2 the transition line crosses the exactly dimerized
line, implying that at least at this point the transition must be
a first order. In practice, it means that the critical SU(2)4 line
has to terminate somewhere above. Based solely on the parity
constraint for a level k of the WZW criticality, there are three
possibilities: (i) the second end point belongs to SU(2)k=6

universality class line the first one at J2 ≈ 0.08; (ii) the end
point is in the same (k = 4) universality class as a critical line
above it; and (iii) the end point is critical with k = 2.

Following a similar procedure as in Fig. 6(a), we extract
the effective scaling dimension along the critical line also for
J2 < 0; these results are summarized in Fig. 6(b). One can
see that the scaling dimension deff never approaches d = 3/8
of the WZW SU(2)k=2 excluding the third scenario. Let us
now take a closer look at the first option. If the second
SU(2)k=6 end point exists, it will be located at the point where
deff ≈ 3/16. According to Fig. 6(b) this happens around J2 ≈
−0.15. In Fig. 7(a) we present the scaling of the middle chain
dimerization upon approaching this point along a horizontal
cut in the dimerized phase which is in reasonable agreement
with the critical exponent β = 1/8 of the WZW k = 6 crit-
ical theory. However, from the field-theory perspective, the
presence of a marginal operator along the SU(2)4 line that
becomes relevant around the SU(2)6 fixed point makes an
emergence of two SU(2)6 end points unlikely. Furthermore, as
presented in Fig. 7(b) the structure of the excitation spectrum
extracted at J2 = −0.15 does not resemble the structure of the
corresponding conformal tower for k = 6.

Let us now consider the final option that, in fact, fits out
numerical results: the critical SU(2)4 line terminates at the
end point in the same k = 4 universality class. This can hap-
pen if, for instance, the coupling constant of the marginal
operator of SU(2)4 critical line changes its sign leading to
a first-order transition with slow opening of the gap below

FIG. 7. (a) Scaling of the middle chain dimerization D upon
approaching the phase transition from the fully dimerized phase to
the uniform phase along J2 = −0.15. CFT predictions for the critical
exponents β = 3/16 for WZW SU(2)4 and β = 1/8 for SU(2)6 are
show with the dashed blue and solid red lines. (b) Energy gap at J2 =
−0.15 and Jc

3 ≈ 0.027564 (blue squares) between the ground-state
and the lowest-energy state in the sector with total magnetization Sz

tot

rescaled with sound velocity v. Results extracted at the end point at
J2 = 0.8 and Jc

3 ≈ 0.017423 (red circles) and CFT predictions for
SU(2)6 (red dots) are shown for comparison.

the end point. Similar physics are reported for SU(2)2 critical
line in spin-1 chains [16]. This conjecture is supported by the
excitation spectrum of Fig. 7(b) that has a structure typical
for the first-order transitions with equally spaced levels due
to almost noninteracting magnetic solitons [33,35]. When the
density of solitons becomes too high the envelope starts to
deviate from the linear slope. In the present case this happens
beyond Sz

tot ≈ 11 on a chain with N = 40 [see Fig. 7(b)].
Meanwhile, due to the slow opening of the gap for some
quantities including the order parameter, the transition might
look continuous due to finite-size effects. For J2 < 0, numer-
ical simulations are more challenging and we are limited to
system sizes N = 90 that might not be sufficient to resolve
a weak first-order transition at J2 = −0.15. To conclude, the
most plausible scenario according to our numerical data is that
the SU(2)4 critical line terminates around J2 ≈ 0.12 ± 0.02
with the end point in the same universality class as k = 4.

V. ISING TRANSITION AT LARGE J2

We show so far that for small values of J2 the transition
to the dimerized phase is continuous and terminates at the
end point at J2 ≈ 0.08. Beyond this point the transition is first
order. This conclusion is supported by the observation that, at
the point where the exact dimerized line hits, the transition the
order parameter jumps discontinuously. Now, we are going to
ask ourselves whether this first-order transition will eventually
turn (again) into a continuous transition at large values of J2.
As a disclaimer, let us mention here that we leave detailed
investigation of the uniform phase(s) and phase transition(s)
in the range 0.2 � J2 � 0.8 outside of the scope of this work.
However, we want to share one very interesting observation.
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FIG. 8. Finite-size scaling of the middle-chain dimerization for
J2 = 1. Separatrix is associated with the phase transition; the slope
gives the effective scaling dimension that is in the excellent agree-
ment with the CFT prediction d = 1/8. Inset: Finite-size scaling of
the singlet-triplet gap at the critical point Jc

3 ≈ 0.00605. The mag-
netic gap remains open at the transition.

In the region where the uniform phase is expected to be
topologically trivial, the domain wall between the uniform
and the dimerized phases are nonmagnetic. This transition is
therefore expected to take place entirely in the singlet sector.
Since the Z2 symmetry is broken at the transition it is natural
to expect the underlying critical theory to be Ising CFT with
scaling dimension d = 1/8. Our numerical results for the
finite-size scaling of the order parameter presented in Fig. 8
are in excellent agreement with this prediction. The nonmag-
netic nature of this transition is supported by finite-size scaling
of the singlet-triplet gap presented in the inset of Fig. 8 that
shows no tendency to close in the thermodynamic limit.

VI. DISCUSSION

To summarize, in the present paper we studied dimeriza-
tion transitions in a frustrated spin-3 chain. We identified the
end point in the WZW SU(2)6 universality class into which
the J1 − J2 − J3 model with two independent parameters is
fine-tuned. The universality class of the underlying critical
theory was verified with the scaling dimension d and confor-
mal towers of states computed at the transitions as well as with
the critical exponents β and ν controlling the scaling of the
order parameter and the divergence of the correlation length
upon approaching the transition.

Away from the fine-tuned end point we detect that the
critical theory due to the presence of second relevant operator
renormalizes to a critical theory of the lower level of the same
parity: SU(2)4. Eventually, the critical SU(2)4 line terminates
via the end point in the same universality class. This picture is
different from the one reported for WZW transitions with odd
k levels, where the SU(2)3 line was terminated on both sides
with the SU(2)5 critical points. We believe that the difference
is attributed to the presence of an additional marginal operator
along the SU(2)4 line. We hope that our results will stimulate
further theoretical exploration of this problem.

We see no signature of possible renormalization to the
level k = 2. This lead us to a hypothesis that the renormal-
ization group flow will lead towards the highest level with
the right number of relevant operators. In other words, for
the frustrated spin model with 5/2 � S < 5 and two inde-
pendent parameters one might expect SU(2)2S to be realized
as the end points terminating the WZW SU(2)4 critical line
for the integer—and the SU(2)3 line for half-integer spin
chains—both independent on the value of spin S. The case
of spin S = 5 is less obvious due to the appearance of an
additional marginal operator. Beyond that, for S > 5 a generic
two-dimensional parameter space would not suffice to fine-
tune the system into WZW SU(2)2S critical points, and we
expect the critical lines for integer (half-integer) chains to be
in SU(2)4 [SU(2)3] terminated with SU(2)10 [SU(2)9] end
points. This hypothesis can be checked numerically with S >

3, though, of course, computationally this is very challenging.
One has to admit the possibility that for a given model, e.g.,
for J1 − J2 − J3, the interval of continuous transition might
shrink for large S to the point when it can eventually disappear.

In addition, for large values of J2, we report an appearance
of the nonmagnetic Ising transition, previously detected in the
frustrated spin-1 chain. This supports previous conjecture that
the appearance of the Ising transition at the boundary of the
dimerized phase and large J2 is generic for any integer spin
chains.
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