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Abstract

Human activity characterization based on gait signatures is important in several appli-
cations including medical, elderly care, police, biometric identification, etc. Cameras
and on-body accelerometers are widely investigated for characterizing human activity.
Nonetheless, in order to achieve wide acceptance, sensors to be used for these appli-
cations should be unobtrusive and people’s privacy should be respected. Radar is a
promising technology for human activity characterization as it satisfies these require-
ments and operates largely unaffected by environmental conditions and the presence of
blocking objects. This thesis presents algorithms for radar signal processing and human
activity quantification, identification and classification in indoor environment. Methods
to extract parameters of human motion such as activity level, displacement, velocity,
step length, velocity bandwidth, etc., from radar data are suggested and discussed. The
developed algorithms are evaluated in an experimental low-cost radar prototype using
Universal Software Radio Peripheral and GNU Radio.
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Chapter 1

Introduction

Characterization of human movement is very important in diversified fields including
medical, elderly care, police, security and law enforcement, biometric identification, etc.
There is a vast research on developing an accurate model for different human activities.
The major goal of this research is to come up with parameters that can be used to
characterize human activity remotely using an appropriate sensor. One of these sensors
is radar. Radar makes remote characterization of human activity possible by using the
Doppler effect of electromagnetic waves. The major advantages of radar with respect to
other technologies are the fact that it allows unobtrusive monitoring and works unaffected
by environmental conditions.

1.1 Movement Monitoring Applications

Characterization of human movement includes human activity quantification, identifi-
cation and classification (in the context of this thesis). Quantifying activity involves
calculating an index proportional to the level of the movement, the so called activity
index (AI). Radars associated with human movement are commonly presence detection
radars that provide just binary information of whether or not there is motion. In contrast
to this binary information, quantification means providing an output that is proportional
to the level of movement. The level of activity actually depends on the type of movement,
the number of people, the presence of other moving objects, etc.; however, the goal of the
quantification is to come up with an index that quantifies indoor activity without taking
these factors into consideration. Identification of human movement on the other hand
involves identifying whether the activity index computed is due to movement of a person
or not. Other movements in an indoor environment such as rotation of a fan, movement
of pets, etc., can lead to a wrong estimate of the level of activity. So, identification
involves discriminating human movement from non-human movements. Classification
goes a bit farther; it involves identifying what type of movement the person is making.
An activity index can show the level of activity in a room; however, it does not tell
whether the person is sitting, walking or jogging for instance. So, human activity classi-
fication means to come up with a possible match to an activity that is being done from
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a list of possible activities.
The characterization of human activity in an indoor environment is useful in many

sectors including medical centers, care takers, police, etc. In the medical sector, remote
patient activity monitoring saves time and energy for doctors. The wellness of patients
can be related to the level and type of activity. For instance, the rehabilitation status
of operated patients can be related to the level of movement. Police may be looking
for suspects hidden behind or in a building; thus, monitoring their activity remotely
without violating privacy will be essential. Elderly care is also an important application
of human movement characterization. There are a lot of elderly people living alone in
their home or in elderly care centers nowadays. One of the parameters that can be
related to the health, emotion and wellness of these elderly people is their movement
pattern. Moreover, fall detection which is an important part of elderly care can also be
identified from the pattern of movement. Nowadays, there is also research going on to
use a person’s movement pattern for biometric identification as the movement pattern of
each person is said to be unique enough for identification. All these applications show
that remote characterization of a movement pattern has very important applications.
However, most of these applications require a sensor that enables to monitor movement
remotely in unobtrusive way and without violating privacy.

There are many sensors based on different technologies for presence detection and
activity quantification. However, the information from most of these sensors is limited.
In addition, some of these sensors can easily be blocked by obstacles or walls. Sensors like
the accelerometer1 have to be attached on the body which makes them inconvenient for
most people. Networking these on-body sensors and transmitting information wirelessly
to a fixed node is another problem. Radar is a promising technology for human move-
ment monitoring that avoids most of these problems. Radar is less privacy-violative as
compared to other sensors, can be mounted unobtrusively and allows monitoring through
the wall. Moreover, the fact that radar is not largely affected by lighting and weather
conditions makes it an attractive technology for remote movement monitoring.

Radar measures the Doppler shift of electromagnetic waves in order to characterize
movement. However, most of the commercial Doppler radars that exist nowadays are
specifically designed for measuring velocity of a rigid object that moves at a constant, high
velocity such as a car or airplane. Therefore, these radars can neither be directly used
nor adapted for measuring time varying movement patterns of human beings in real time.
Therefore, a flexible radar prototype should be designed by taking into consideration the
basic components of radar. The software of this prototype should be open source, easily
controllable and flexible to implement the required algorithms. Software defined radio
(SDR)2 based radars gives the flexibility to implement different type of radars and the
corresponding signal processing algorithms using the same basic hardware. Moreover,
new signal processing algorithms can be easily integrated into already existing software
blocks for real time operation.

1An accelerometer is a sensor which computes the level of activity from acceleration measurements.
2Software defined radio is a radio communication system where signal modulators and demodulators

are implemented in software on a personal computer or embedded processors.
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1.2 Advantages and Limitations of Radar for Human Activ-
ity Monitoring

Nowadays, there are many sensors widely used for automated human activity monitoring
and detection. Cameras are the most common ones. Processing a sequence of images
from cameras is being used for human activity characterization. Accelerometers and
other similar sensors are used for activity level detection. Infrared presence detectors
which measure change in heat or infrared energy are common nowadays for automatic
lighting control. Radar has in general the following advantages with respect to these and
other similar sensors:

• Less privacy-violative : Unlike cameras which shows images of the activities that
the human target is doing; radar monitors only limited information of the target
such as position and velocity.

• Non-obstructive observation : Radar has longer operation distance and can
penetrate non-metallic objects, which is important for through-the-wall detection.
Radio waves are also not obscured by clothing; for instance, radar can be used for
concealed weapon detection.

• Insensitive to environmental effects: Radar is not largely affected by light
and weather conditions which significantly affect other sensors.

• Unobtrusive : Radar can be mounted invisibly behind a wall3 or in ceiling.

• More information : Unlike other sensors, radar gives more information about
the target such as velocity, direction of motion and distance in addition to presence
detection.

However, a radar sensor has also limitations and disadvantages compared to other sensors.
These include:

• Extensive signal processing : Obtaining useful information from a radar system
is challenging and requires extensive signal processing.

• Blind to tangential motion : Radar measures only the radial motion of a target.

• More hardware : A radar system contains more complex hardware than these sys-
tems. In addition, radar with an antenna array or more than one radar (distributed
radars) may be required to track a human target in presence of multi-movers.

• Power and frequency Regulation : Radars should obey the tight power and
frequency regulations in the radio spectrum.

• Health Risk : It is confirmed that excessive radio waves cause health risk to the
body [28]. Thus, the other limitation of a human activity monitoring radar is that
the power must be kept below the safety limit.

3This holds true for non-metallic walls only and depends on other factors too.
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1.3 Related Work

A lot of literature has been revised on different approaches and technologies for human
being detection and ranging. This section reviews the major literature available on radars
for human being identification and classification. Human activity characterization using
various radar types has been studied in various literature. The use of wideband noise
radar sensors for human detection is described in [1]. Detection of human beings and
ranging using ultra-wideband noise sensors is also described in [2]. The author of [3] uses
multiple frequency continuous wave radar for classifying humans, animals and vehicles
and for ranging.

Human gait4 analysis using continuous wave (CW) radars is also studied in some
literature. Otero [4], uses a 10GHz CW radar using micro-patch antennas to collect data
and to attempt classifications, including male and female. A simulation based gender
discrimination using the spectrogram is also discussed in [5]. The authors of [6] use a
24GHz CW radar to obtain velocity information. In another paper, [7] the same authors
use again data from their radar to attempt to classify between a human and a non-human
object. Artificial neural networks for classifying human activities based on micro-Doppler
signatures5 are also shown in [8].

All the papers listed above use fast Fourier transform based frequency estimation.
There is also some research on using other transforms. The authors of [9] tried to
introduce the chirplet transform as an analysis tool, but they did not come up with
its meaning in the gait analysis. The Hilbert-Haung Transform for non-linear and non-
stationary signals in wide band noise radars is also suggested in [10] by the authors of
[2]. A complex but more accurate iterative way to obtain each pixel in the spectrogram
in a bid to improve the frequency resolution and side lobes of the fast Fourier transform
is also discussed in [11].

Both the model based and experimental research above assumes that there is a single
mover only. There is also research done on using Doppler based direction of arrival
sensing. The PhD dissertation, [12] describes in detail how to design a pulse Doppler
radar using an antenna array and the way to come up even with 3-D tracking. The
authors of [13] and [14], also describe ways to track humans using Doppler information
and antenna arrays.

The use of universal software radio peripheral (USRP)6 as passive radar has been
introduced by Mr. Eric Blossom7. Using a USRP as active radar has not yet been
explored. However, the author of [27] has written a thesis on using a USRP as a pulse
Doppler radar for airplane detection by adding some hardware modification.

4Gait is the pattern of human movement or locomotion.
5A micro-Doppler signature is the small scale pattern of motion obtained as a result of the Doppler

phenomenon.
6The universal software radio peripheral is a general purpose transceiver that allows to create a

software radio using a computer with a USB2 connection.
7Eric Blossom is the founder and overall architect of the GNU Radio project.
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1.4 Thesis Goals

The major goal of the thesis is to extract human movement parameters that can be used
for quantifying, identifying and classifying human movement, in particular walking, in
an indoor environment using a low cost radar sensor.

Strategies to identify, quantify and classify human movement using continuous wave
(CW) Doppler radar are investigated. Signal processing algorithms are designed and im-
plemented to extract human movement parameters that are employed by these strategies.
A low-cost radar platform, that uses a USRP as hardware and GNU Radio8 as software,
is designed and implemented in order to obtain experimental human movement data.
The algorithms suggested for human movement characterization are then evaluated by
obtaining human movement parameters such as activity index, velocity, stride length,
etc., from a data obtained by pre-defined experiments.

1.5 Thesis Organization

The thesis is organized as follows. The second chapter revises the velocity profile and
radar cross section (RCS) of human body according to available human movement mod-
els. The velocity profile is used to discuss human movement parameters that can be used
for identification and classification of human activity. In Chapter 3, general expressions
for the Doppler signal received in a multipath environment and the expected signal to
noise ratio (SNR) are derived and discussed in different scenarios. Chapter 4, discusses
time-frequency estimation techniques and the corresponding parameters used to obtain a
useful Doppler representation of the motion: the spectrogram. The Doppler signal model
in Chapter 3 is also utilized to estimate the signal spectrum using high resolution spectral
estimators. In Chapter 5, different methods to extract parameters of human movement
for activity quantification, identification and classification are discussed. Most of these
parameters are extracted from the spectrogram estimated in Chapter 4. Chapter 6 de-
scribes a low-cost software defined platform that is used as a continuous wave radar in
this thesis. The overall architecture and limitations of the platform are described. The
Chapter concludes discussing the choice of parameters and advantages of such a flexi-
ble platform. Then, the parameter extraction algorithms are evaluated and justified in
Chapter 7 based on pre-defined experiments. Finally, the major points drawn from the
thesis are summarized based on the results and further work which can make the Doppler
estimation more informative is suggested.

8GNU Radio is a free software toolkit for designing and implementing software defined radio systems.
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Chapter 2

Human Movement Characterization

In this Chapter, the basic principle of a widely used human movement model is intro-
duced. Velocity profile and RCS are discussed as the important parameters that describe
a human locomotion model. The next section makes use of the human movement model
and talks about parameters which can be extracted from the model for human movement
identification and classification purpose. These parameters have a unique value for hu-
man motion which helps in identification and differ from activity to activity which can
be used in classification.

Researchers that study human locomotion commonly use the following terminology
for two major parts of the body: torso and appendages. Torso refers to the main part
(trunk) of the body and appendages refer to the other parts of the body, particularly
it refers to the oscillating hands and legs.

2.1 Human Movement Model

The human movement model is the starting point for human activity characterization.
After studying the relationship between the different parts of the body during locomotion;
parameters that make the locomotion distinct can be identified. The most important hu-
man gait parameters that make human motion unique in radar based activity monitoring
are velocity profile and RCS. A velocity profile and RCS can be defined for each of the
major parts of the human body.

2.1.1 Velocity Profile

The velocity profile refers to the relative velocities that the different parts of the human
body attain during locomotion, in other words it is the velocity versus time pattern of
the parts of the body during movement. There is vast research on human movement
modeling; however, almost all of the models rely on dividing the non-rigid human body
into the most significant 12 rigid body parts and modeling the velocity profile and RCS
of these rigid components. One of the most common human movement models, [15]
decomposes the body into 12 parts consisting of the torso, lower and upper part of each

6



leg, lower and upper part of each arm, the head and each of the right and left foot. This
model tries to come up with kinematics of each of these body parts. Another known
model was developed by Troje, [16] which is based on 3-D position analysis of reflective
markers worn on the body using high resolution camera. Based on the analysis of the
experiments, Troje says that the velocity profile of each body part can be represented
using low order Fourier series. This is described as follows.

Assume a person moving at a constant velocity, V with respect to an initial point in
a certain direction. Let’s say we divide the body into M rigid body parts. Each of the
body parts including the torso have a velocity profile, vm(t) that can be represented as
a sum of sinusoids which can be given by:

vm(t) = V +A · {km1 · sin(ωct+ pm) + km2 · cos(ωct+ pm) +
km3 · sin(2ωct+ pm) + km4 · cos(2ωct+ pm)} (2.1)

where, km1, ..., km4 and pm{0 ≤ pm ≤ π} are constants that characterize each of the
body parts. The values of km1, ..., km4 is largest for the legs and smallest for the torso.
The phase, pm shows the locomotion mechanism of the body; for instance, the right leg
and left arm combination move 180o out of phase with respect to the left leg and right
arm. A is a constant that has a specific value for the different human activities like
walking, running, etc. The cadence frequency, ωc is the rate of oscillation of the body
and it is related to the velocity of the person as fc = B ·

√
V , where B is a constant and

depends on the type of motion.
A simulation of the velocity profile based on this model is shown in Figure 2.1.

Figure 2.1: Human movement velocity profile [7]
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The figure shows the velocity trajectory of each body part as a function of time. It
shows that the amplitude of oscillation of each body part is different. However, as shown
by (2.1), all the body parts oscillate at the same frequency ωc and its second harmonic.

2.1.2 Radar Cross Section (RCS)

The RCS, σ is a parameter that describes a target’s ability to reflect radar signals in
the direction of the receiver. It is defined as 4π times the ratio of the signal power
reflected towards the receiver per unit solid angle to the incident power density [17],
i.e., σ = lim

R→∞
4πR2 · PrSi , where Pr is reflected signal power per unit solid angle, Si is

incident power density, and R is the distance of the target. Thus, RCS is independent
of the distance of the target from the radar [18]; however, it is defined in far field of the
target. RCS is defined to reflect the characteristics of the target and not the effects of the
transmitter power, receiver sensitivity or the distance of the target from transmitter and
receiver. RCS of a target depends on various factors including shape, size, polarization,
angle of contact, frequency, etc. When a radio wave falls on a target there will be
reflection, diffraction and absorption whose contribution varies with the movement of
the target. For instance, the polarization of the returning reflected wave is not the same
as the polarization of the wave transmitted. Thus, the component of the polarization
tangential to the receiving antenna will define the RCS.

The RCS of a human body is also studied in some literature. Despite the fact that
the RCS changes with movement type, body orientation, body size, distance, frequency,
angle of contact, etc.; the contribution of each rigid part of the body to the total RCS
remains constant even during motion. The same assumption is also used throughout
this thesis. In addition, the RCS can be directly related to half of the body surface area
which is exposed when the person is in front of the radar [19]. This area is typically listed
as 1m2. The 12 major parts of the human body listed in Section 2.1.1 contribute to a
fraction of the RCS. The torso has the highest RCS followed by the legs and arms; while,
the head and feet have the least contribution. Particularly, the percentage at which of
these body parts contribute is listed as: torso 31%, left and right arms 10% each, left
and right legs 16.5% each, head 9% and feet 7% [19].

2.2 Methods to characterize human motion

Once the velocity profile and RCS models of the body are defined, the question is what
parameters can be extracted from these models for human movement identification or
classification. Some literature states certain parameters of motion and claim that these
parameters have a unique range of values for human movement and their value differs for
the different types of human activities [4], [8]. However, the exact range of these param-
eters for such identification or classification is not yet known. This is because, coming up
with a range of values for these parameters requires a detailed study of human locomo-
tion, its kinematics and modeling the different types of human activities. Such type of
modeling is challenging; moreover, the values of these parameters change significantly in
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different scenarios. Despite these limitations, these parameters are used for our human
movement characterization because:

• A random human movement can be divided into a uniform movement over small
time durations. Thus, the value of these parameters over the small time durations
can be defined.

• The classification error can be significantly decreased by training a classifier with
real data of these parameters.

2.2.1 Human Movement Identification

Different parameters of movement can be selected to discriminate human movement
from non-human movements. Of these parameters, the following parameters are unique
enough to identify human motion from movement of other animals or objects [4].

1. Torso Velocity , vtorso: is the velocity of the main component or trunk of the
human body. This is the velocity component that has the largest RCS, σ; but the
lowest velocity variation, lowest km1, · · · , km4 in (2.1). Hence, the torso velocity is
approximately equal to the velocity of the body, vtorso(t) ≈ V . Hence, the average
value of vtorso(t) can be taken to estimate the body velocity, which is one of the
parameters that has a unique range for a human target. Moreover, the way the
parameter vtorso(t) is changing with time shows the pattern of motion.

2. Cadence frequency , fc: is the rate of oscillation of the body parts. As the
legs have the highest, km1, · · · , km4 and hence the highest oscillation amplitude as
discussed in Section 2.1.1; the cadence frequency of the legs is the most dominant
oscillation. Like the torso velocity, the cadence frequency has a unique range for
human motion. For instance, a cadence frequency of 10Hz is too fast to be expected
from human motion.

3. Step length, Sl: is the distance between the point of initial contact of one foot
and the point of contact of the opposite foot. In addition to the torso velocity
and the cadence frequency, the relationship between these two parameters also
identifies humans uniquely. Step length is the ratio of the torso velocity to the
cadence frequency, i.e., Sl = vtorso

fc
. The step length is one of the parameters which

distinguish human movement from movement of other animals [7]. If estimated
accurately, the step length can even help to discriminate male and female human
subjects.

A research done on human subjects in a typical walking experiment measured using a
speed graphic camera shows that these parameters for normal men and typical walking
are found to be [20]:

• Torso velocity 1.54m/sec

• Step length 0.79m
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• Cadence frequency 1.95 steps/sec.

It is also reported in [15] that an empirical relationship between the body velocity and
the cadence frequency of the gait is found to be: fc =

√
V

1.346 for typical human walking.

2.2.2 Human Activity Classification

Activity classification can be done by matching parameters extracted in a real scenario
to the set of similar parameters extracted from pre-generated models for the different
human activities [5]. This matching can be more automated, efficient and more accurate
by training the classifier with continued experiments of each human activity that need to
be discriminated. Different movement parameters are claimed to be unique from activity
to activity by different researchers. The most common parameters include the following
[8]:

1. Torso velocity & cadence frequency : In addition to being used as identifica-
tion parameters, an accurate estimation of these parameters will lead to activity
classification. The magnitude of the torso velocity and the cadence frequency of
the gait are expected to be different from activity to activity. For instance, the
torso velocity obtained from a sitting person should be around zero; however, the
torso velocity should be at least higher than 1m/sec for a running person. The
gait pattern has a higher rate of oscillation for walking than running. This implies
these two parameters can be utilized for classification.

2. Velocity bandwidth : This involves the difference between the maximum and
minimum velocity components that occur during a certain activity. In (2.1), the
oscillation amplitude A depends on the type of motion. Some activities give a larger
value of A, hence high velocity bandwidth and other activities result in a lower A,
hence low velocity bandwidth. For instance, the velocity bandwidth during running
is high as compared to the velocity bandwidth during crawling.

3. Velocity bandwidth without micro-Doppler : This involves the velocity band-
width due to velocity components from the torso and other body parts with low
km1, · · · , km4 only, i.e., without including the oscillation of legs and arms. This pa-
rameter particularly describes the velocity extremes attained by the torso during
the activity. The velocity bandwidth of the torso differs from activity to activity;
thus, it is one of the micro-Doppler parameters for classification.

4. Velocity offset : This parameter shows the offset of the velocity profile from zero
velocity. It is the measure of asymmetry of the forward and backward swings of the
appendages. These swings are not symmetrical for most human movements and
the asymmetry is unique. If the swings are symmetrical, then the velocity offset
will be equal to the torso velocity.
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Chapter 3

Doppler Shift in Indoor
Environment

The basic principle behind radars measuring the speed of a target is the Doppler effect
introduced by Christian Doppler in 1842 for sound waves [21]. In the first section of
this Chapter, the Doppler effect and its analysis for a human target in a multipath
environment is derived and analyzed in detail. The radar equation and the expected
signal to noise ratio is formulated considering a general bistatic radar scenario. Special
cases of this SNR in different scenarios are also evaluated.

The discussion on Doppler shift from a human body is taken into consideration to
set minimum requirements on a radar system that can be used for characterizing human
movement. Continuous wave and pulse Doppler radars which are commonly used by
the radar community and which can be chosen for such application are discussed and
compared against each other. Some additional flexibility that can be achieved in these
radar types is discussed. Finally, the idea of using a pseudo random sequence instead of
pulse transmission is suggested.

3.1 Doppler Effect in Radars

3.1.1 Principle of Doppler Shift

Doppler radars use the principle of the Doppler effect to measure the velocity of a target.
The Doppler theory says: an electromagnetic wave hitting a moving target undergoes
a frequency shift proportional to the velocity of the target. The major question is how
does this frequency shift occur and how much frequency shift is expected when a target
is moving with a velocity, V .

Assume the scenario shown in Figure 3.1; a human target moving at a distance, Rtx
and at a time varying velocity, V (t) in a direction that has angle θ1 with the radial
direction of the transmitting radar. Assume that these parameters with respect to the
receiver radar are the distance Rrx, and the angle θ2. Thus, the electromagnetic signal
moves a total distance of Rtx +Rrx. Let’s assume that this velocity vector is in a plane
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Figure 3.1: Movement of a person and Doppler radar

parallel to the floor of the room; in other words, let’s assume vertical displacements are
insignificant.

Assume unmodulated continuous wave (CW) signal given by; x(t) = Aej(ωt+φo) is
transmitted, where A is the amplitude, ω is the frequency and φo is the initial phase.
The reflected echo from the human target received at the receiver antenna has a time
varying amplitude, a(t) and a time varying phase change, φ(t) and can be given by:
a(t)ej(ωt+φo+φ(t)). Hence, the received baseband signal after demodulation reduces to:

y(t) = a(t) · ejφ(t) (3.1)

From this equation, it is clear that the frequency content of the received signal, y(t)
is dependent on the time varying phase. For narrowband signals, the time varying phase,
φ(t) can be directly related to the delay or the number of wavelengths the wave travels.
This relation is given by:

φ(t) = 2π · (Rtx(t) +Rrx(t))
λ

where, λ is the wavelength of the electromagnetic wave being transmitted. Thus, the
Doppler frequency is given by,

fd(t) = − 1
2π
∗ dφ(t)

dt
= − 1

λ
·
{
d

dt
Rtx(t) +

d

dt
Rrx(t)

}
This implies that the Doppler shift depends on the combined rate of change of the

distances, Rtx(t) and Rrx(t). From this equation, it is also evident that: when the human
target moves away from the radar, that is when the distances Rtx(t) and Rrx(t) increase,
the Doppler frequency is negative; and when the person moves towards the radar, the
Doppler frequency is positive.

Hence, a target moving at an angle θ1 with respect to the direction of the signal from
the Tx antenna and θ2 from the Rx antenna as shown in Figure 3.1 has a Doppler shift
given by:
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fd(t) =
V (t)
λ

[cos(θ1) + cos(θ2)] (3.2)

(3.2) implies that a radar measures the radial component of the velocity of the target.
Thus, the Doppler shift is dependent not only on the velocity of the target, but also on
the relative position of the radar transmitter and receiver with respect to the target.

The received baseband signal, y(t) can also be expressed in terms of the velocity
of the target. Doppler frequency of a human target is time varying; thus, the received
signal should be analyzed in a time fraction of the motion, ∆t that is short enough to
assume uniform motion (constant Doppler frequency). That is, a random human motion
can be divided into short intervals of uniform motion. This allows to express the phase,
φ(t) locally as: φ(t) = 2πfd · t + φo, where φo is the initial phase at the start of the
time interval, ∆t. The amplitude, a(t) can also be assumed constant during short time
intervals. Therefore, the received signal, y(t) can be expressed locally as :

y(t) = a.ej(2πfdt+φo) (3.3)

3.1.2 Doppler Shift and Radar Configurations

A general radar system with separate transmitter and receiver sections is shown in Figure
3.1. A radar system may consist of a single transceiver instead of a separate Tx and Rx.
There can also be a case in which the radars are placed on opposite directions with
respect to the target. In general, radar systems are classified into different configurations
based on the relative position of the transmitter and receiver. These classifications are
based on the bi-static angle, the angle subtended between the transmitter, target and
receiver as shown in Figure 3.1 .

Monostatic: is a radar system in which the transmitter and receiver are collocated or
the bistatic angle is exactly 0◦. In this radar system a single antenna is commonly
used together with a duplexer to isolate the sensitive receiver from the high power
transmitter.

Pseudo-monostatic: is a radar system in which the bistatic radar is close to 0◦.
Pseudo-monostatic1 consists of an independent transmitter and receiver placed at
a distance much smaller than the distance to the target, that is R � Rtx&Rrx.
This is the radar configuration used in this thesis due to limitations of the platform
discussed in Section 6.3.

Bistatic: If the bistatic angle is much higher than 0◦, then the configuration is called
bistatic radar. One special case of bistatic radar is when the bistatic angle is 180o.
This radar configuration is called forward scatter radar.

The effect of human motion on the Doppler frequency is different in these radar config-
urations as (3.2) shows.

1It is the radar configuration used in most of our experiments.

13



• For pseudo-monostatic radar, θ1 = θ2 = θ. Thus, (3.2) reduces to: fd = 2Vλ cos(θ).
In monostatic radars, this equation further reduces to: fd = 2Vλ . For pseudo-
monostatic radars also R � Rtx&Rrx; thus, θ ≈ 0. Therefore, it is assumed
throughout this thesis that fd = 2Vλ holds for pseudo-monostatic radar configura-
tions. The Doppler shift is doubled; thus, it is significant in monostatic and pseudo-
monostatic radar configurations. However, the major challenge is the strong direct
path signal from Tx to Rx antenna.

• In bistatic radars, the bistatic angle is much larger than 0◦. A special case occurs
for the forward scatter radar where θ1 = 180 − θ2 . In this case, (3.2) reduces
to fd = V

λ [cos(180− θ2) + cos(θ2)] = 0. Thus, the Doppler shift in bistatic radar
configurations is not significant as compared to that of the monostatic radars in
general.

One of the factors that make the indoor environment different from the outdoor ones is
the presence of multipath. Due to the presence of multipath, the Doppler shift in bistatic
radars will be actually much higher than zero.

3.1.3 Clutter in an indoor Environment

Clutter is a term given to the reflected signal from unwanted objects in the environment.
Clutter can be divided into moving clutter and stationary clutter. Moving clutter can
be caused by wind, moving house equipments such as fan, doors, etc. However, sta-
tionary clutter can be caused by wall, ceiling, ground, room furniture, etc. In indoor
environments both types of clutter could exist.

• If the Doppler frequency from the moving clutter is much higher than humans, then
it will be filtered out by the receiver. Otherwise, the assumption is moving clutter
can be discriminated from human movement by using the movement identification
parameters.

• Stationary clutter does not cause a Doppler shift; thus, the frequency of this clut-
ter is the same as the frequency of the direct signal from Tx to Rx. Therefore,
stationary clutter contributes to the power of the direct signal.

3.1.4 Doppler Shift in Multipath Environment

For a person moving at a velocity, V in a pseudo-monostatic radar configuration, the
Doppler shift is given by: fd = 2V

λ . Thus, received signal in (3.3) can thus be expressed
in terms of the target velocity as:

y(t) = a.ej(
4πV
λ
t+φo) (3.4)

The human body is not a rigid body; thus, the body can be divided into M rigid
body parts. Each body part makes a frequency modulation of the transmitted signal due
to the time varying velocity profile. Thus each body part, m is described by:
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• a RCS, σm

• a velocity, vm(t) expressed in (2.1).

Assume that there is a single ray that reflects back from each body component. Thus,
the Doppler signal model during short time intervals of the motion, shown in (3.4) can
be expressed as a superposition of the M body parts as follows:

y(t) =
M∑
m=1

√
σm · a · ej(

4πvm
λ

t+φm) (3.5)

In a multipath environment, such as an indoor environment, there will be more than
one ray between the person and the radar as Figure 3.2 shows. Some paths may involve a
reflection of the person only; whereas, other paths involve more reflections of surrounding
walls and objects. Thus, there will be more than one ray going to each of the body parts.
Moreover, the number of these multipath is time varying as the person is in transition.
Let’s assume their are R paths involving the transmitter, the person and the receiver
during the time fraction,∆t for each body part2. Each of these rays, r is described by:

• a velocity profile for each body part, vmr(t).

• an initial phase φmr, corresponding to the initial position of each body part with
respect to each ray when the motion starts.

• a magnitude, ar(t), that is an inverse function of the path length of each ray.

Each body part has different angle of contact with respect to each ray, thus the RCS will
be dependent on the ray, r. Therefore, the received signal involving multipath will be
given by,

y(t) =
M∑
m=1

R∑
r=1

[√
σmr · ar · ej(

4πvmr
λ

t+φmr)
]

(3.6)

However, the product
√
σmr · ar · ejφmr can be written as a single complex number,

βmr and the exponent 4πvmr
λ as ωmr. Hence, the received Doppler signal model during a

short time interval, ∆t can thus be expressed as:

y(t) =
M∑
m=1

R∑
r=1

[
βmr · ejωmr·t

]
(3.7)

The idea shown by (3.6) can also be justified using Figure 3.2. The figure shows the
direction and magnitude of the radial velocity of the person with respect to each ray is
different. For instance, the person is moving towards the radar based on ray-1; while
he is moving away from the radar based on ray-2. This effect creates image frequencies,

2The number of paths also depends on the position of the body parts. It is obvious that there will
be more number of paths to the torso than to the feet; however let’s assume all have n paths.
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Doppler frequencies of smaller magnitude which are positive when the person is moving
away and negative when the person is moving towards the radar. Therefore a wide
velocity spectrum3 will be created even though the person moves at constant velocity.

The other factor that leads to wide velocity spectrum is the fact that the rigid com-
ponents of the human body constitute a continuous range of velocities. As discussed
in Section 2.1, the parts of the body move at different velocities superimposed on the
velocity of the main body and each part will have a velocity range between its nearest
and farthest ends. Hence, this effect also creates an increase of velocity spectrum width.

Figure 3.2: Doppler Effect in a multipath environment

3.2 Radar Equation and SNR

(3.1) shows that it is not only the phase of the signal that is time varying but also the
amplitude. The major reason for this change in amplitude is the path loss. As the
position of the person changes, the total distance the reflected wave travels changes and
that means the path loss changes.

Let’s consider the amplitude variation, ar(t) of the multipath components due to free
space path loss. That is, if a power, Pt is transmitted; how much power or signal to
noise ratio is received. The equation that describes this relationship is commonly called
the "Radar Equation". The radar equation shows the power of the signal received as a
function of the characteristics of the radar system and the characteristics of the target.

Assume a general scenario shown in Figure 3.1. The power density, St radiated from
the transmitter radar at a distance, Rtx is thus given by:

St =
Pt ·Gt
4π ·R2

tx

where: G is the gain of the transmit and receive antennas (let’s assume identical antennas
are used).

3A velocity profile consisting of a wide and dispersed range of velocities.
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This radiated power density is intercepted by the human target of RCS, σ resulting
in a received signal that is radiated back to the receiver with a power density:

Sr =
St · σ

4π ·R2
rx

=
Pt ·Gt · σ

(4π.Rtx.Rrx)2

This will be again intercepted by the effective area of the receiver antenna, Ae which
can be expressed in terms of the gain of the receiver antenna, G as Ae = G·λ2

4π where, λ
is the wavelength of the wave being transmitted.

Assume the receiver has a controllable gain GR in the RF section; the received signal
power is then given by:

Pr =
Pt ·G2 · λ2 · σ ·GR
(4π)3 · (RtxRrx)2 (3.8)

The noise power consists of two parts: the thermal noise and the phase noise due to
leakage of the Tx signal into the Rx. The thermal noise is given by ,

Nthermal = K ·B · T · F ·GR

where K is the Boltzmann’s constant , B is the bandwidth of the receiver, T is room
temperature and F is the noise figure of the receiver.

The phase noise, Nphase of the receiver is frequency dependent and it can obscure
the velocity information from slowly moving targets. Phase noise in Doppler radars is
analyzed in detail in [22] and is expressed as:

Nphase =
ˆ

B

[Pt · Lp ·GR · Lphase(f)] df

where, Lp is the circuit or antenna isolation between Tx and Rx parts of the radar. It
describes what fraction of the transmitted power leaks directly into the receiver circuit.
Lphase(f) is the single side band (SSB) phase noise4 spectrum that results when the
transmitted signal is mixed with the receiver local oscillator. This parameter is relevant
as the effect of the direct signal is not only at the transmission frequency but also on the
surrounding frequencies with reduced effect. Thus, the total noise N = Nthermal+Nphase

is given by;

N = K ·B · T · F ·GR +
ˆ

B

Pt · Lp ·GR · Lphase(f)df

Hence, the received Signal to Noise Ratio (SNR) is given by,

SNR =
Pr
N

=
PtG

2λ2σ

(4π)3 (RtxRrx)2 ·
(
KBTF +

´
B PtLpLphase(f)df

) (3.9)

Thus, when the distances Rtx and Rrx vary due to movement of the person; the SNR
varies accordingly. The SNR expression shown can further be reduced in two scenarios:

4SSB phase noise is the phase noise spectrum at a given frequency offset expressed in decibels relative
to carrier per hertz, dBc/Hz .
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1. When the phase noise is significant, for instance for the case of an asynchronous
transmitter and receiver consisting of an ordinary, high ppm5 oscillator. In this
case, Nthermal � Nphase. Thus, the SNR reduces to:

SNR =
G2λ2σ

(4π)3 (RtxRrx)2LP
´
B Lphase(f)df

This implies that the SNR cannot be increased by increasing the transmit power
when the phase noise is significant.

2. When Phase noise on the received signal is negligible, for instance, for the case
when both the transmitter and receiver use a stable low ppm reference oscillator.
In this case, Nthermal � Nphase , and we obtain:

SNR =
PtG

2λ2σ

(4π)3 (RtxRrx)2 (KBTF )
(3.10)

(3.9) shows that the variation in amplitude of the received signal is due to the change
in distance of the target. This equation describes the SNR of each multipath ray as a
function of the distance of the target with respect to each ray. However, what matters
most is ratio of the power of each multipath ray which carries information to the power
of the direct signal between the Tx and Rx. This ratio is described as follows.

Let’s take again the radar scenario shown in Figure 3.1 with the line of sight dis-
tance between Tx and Rx denoted by R. The power of the direct signal received from
transmitter to receiver antenna, Pdirect can be expressed as: Pdirect = PtG2λ2

(4πR)2 . The signal
reflected from the human target and received at the Rx is described by (3.8). Then, the
ratio of the reflected power to the direct path power is given by:

Ratio =
Preflec.
Pdirect

=
σ

4π
·
(

R

Rtx ·Rrx

)2

Hence, the magnitude of the reflected signal as compared to the magnitude of the
direct signal is expressed in dB as;

Ratio|dB = 10 · log(σ) + 20 · log
(

R

Rtx.Rrx

)
− 10 · log (4π) (3.11)

Figure 3.3 shows this ratio for Rtx = Rrx = 5m and σ = 1; the reflected signal will
be much less than the direct signal as the Tx and Rx are placed more closely. The ratio
decreases further as the distance of the target, Rtx + Rrx increases. This ratio can be
improved by using directional antennas to minimize the direct signal.

For the multipath rays which carry information, the direct path power can also be
considered as a phase noise with isolation, Lp equal to the path loss. Thus, the major

5Parts per million(ppm) is a measure that shows how much an oscillator may drift from the designated
oscillating frequency
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cause of phase noise in the receiver depends on which of the isolation: the circuit isolation
or the antenna isolation is weaker.

Figure 3.3: Ratio of reflected to direct signal

3.3 Requirements for Human Movement Characterization

Architectural complexity and cost of a radar system grows as the application requires
more bandwidth, resolution, accuracy, etc. On the other hand, the requirements should
be satisfactory enough for the application concerned. For human movement character-
ization, the minimum requirements of a radar system are set taking into consideration
the properties of human movement parameters introduced in Chapter 2.

Maximum Doppler: The velocity of a person in an indoor environment varies from
time to time. For most activities that human beings perform, the velocity of motion
varies throughout the activity and depends on many factors; moreover, different
parts of the body move with different velocities of varying magnitudes. However,
at normal conditions a maximum velocity of 5m/sec can be set reasonably. This
maximum velocity corresponds to a maximum Doppler frequency of, fdmax =
2 · V rmaxλ = 167Hz6. Adding some confidence interval, the maximum Doppler
frequency is set to 200Hz.

Frequency Resolution: As described in Section 3.1.4, a range of velocities of different
magnitude exist even when the body moves at constant velocity. Thus, the velocity
resolution should be good enough to resolve these micro-Doppler7 signatures of
the movement. However, velocities less than 5cm/sec can reasonably be taken as

6assuming a carrier frequency of 5GHz(λ = 0.06) is used
7Micro-Doppler refers to the reflected Doppler frequency pattern obtained from non-rigid body move-

ment.
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no movement. Therefore, it is assumed that a velocity resolution of 5cm/sec is
required. These velocity resolution corresponds to a Doppler frequency resolution
of,∆fd = 2 · ∆V r

λ = 1.6Hz. This shows that a typical frequency resolution of 1Hz
will suffice.

Time Resolution: In order to identify and classify activity, the variability of the micro-
Doppler signatures should be monitored. The motion within a time window equal
to the time resolution should be stationary8. This time window should be small
enough to avoid abrupt velocity changes due to acceleration of parts of the body
and should be large enough to avoid computational complexity. Human movement
model, Section 2.1.1, should thus be considered in order to determine this param-
eter. Therefore, the required time resolution is set to 0.2sec considering these
factors.

Bandwidth: Assume that there is only a single mover and the change in the received
signal is due to the human activity concerned only. Provided these assumptions
are true; the bandwidth requirement is thus determined by the maximum Doppler
frequency expected, 200Hz. Hence, a bandwidth of 200Hz is assumed.

Sampling frequency: We need to distinguish approaching and receding targets; thus,
the sampling frequency should be set at least twice the bandwidth required. There-
fore, a sampling frequency of 2.5 ∗Bandwdith = 500S/sec is selected.

Thus, the following minimum requirements are required for characterizing human activity
based on Doppler shift:

• Maximum Doppler of 200Hz.

• Frequency resolution of 1Hz.

• Time Resolution of 0.2sec.

• A bandwidth of 0.5KHz.

3.4 Radar Types

As highlighted in the purpose of the thesis, the starting point in this thesis is to select
a radar technology which can be used for characterizing human movement; then, to
investigate which of these radar types can be implemented using a general purpose low
cost hardware.

There are different radar architectures which can possibly be used for monitoring
human movement. These architectures differ from each other in their transmission wave-
forms, bandwidth requirement, the way to separate transmission and reception, imple-
mentation complexity, the parameters that can be estimated, etc.

8A motion (the Doppler signal that result from it) is stationary if its expectation is independent of
time and its auto-correlation function E[x(t1).x(t2)∗] depends only on the time difference t2 − t1.
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3.4.1 Unmodulated Continuous Wave (CW) Radar

Radar engineers commonly use the name "continuous wave" for a transmission that is
continuous through time or a non-pulse transmission. CW radars may be modulated
as in FMCW [17] radars or they may be unmodulated CW radars. In the sections that
follow, unmodulated CW radars are discussed; so these radars are simply denoted as CW
radars.

In CW radars a carrier is transmitted. A portion of the radiated energy of this
carrier is reflected back from the moving target with a Doppler frequency shift. Then,
the received echo signal will be mixed with the reference signal from the transmitter.
The resulting output will then be filtered with a matched filter to obtain the velocity of
the target. CW Radar has the following properties in general:

• It is a radar system with small Tx and Rx complexity.

• CW radar has no means to measure the time of arrival of the signal or the range
of the target, since there is no modulation of a distinct waveform.

• The high power Tx is operating at the same time with the low power Rx. The strong
direct signal from the Tx affects the Rx; therefore, proper isolation is required
between Tx and Rx sections.

• Two targets cannot be spatially resolved using CW radar. In other words, the
signal received by this radar is the sum of all the reflections from targets at various
distances.

• There is no velocity ambiguity in CW radars.

The need to resolve multiple targets and isolate indoor reflections from the outdoor ones
leads to the idea of using pulse Doppler radar.

3.4.2 Pulse Doppler Radar

Transmission of a modulated pulse instead of an unmodulated carrier enables the mea-
surement of a target’s location. In these radars, pulses of a low duty cycle are modulated
and sent by the Tx. Then, the time of arrival of the reflected echo is estimated in order
to measure the target’s range. In addition, the Doppler shift between the frequency of
the modulating carrier and the frequency of the reference signal enables measurement of
the velocity of the target.

The range resolution, the minimum distance at which two closely spaced targets can
be resolved, is proportional to the bandwidth of the pulse, B. For monostatic radars, it
is given by [17],

∆R =
C

2B
(3.12)

where C is the speed of light. (3.12) implies that to resolve very closely spaced tar-
gets, such as the reflections from the parts of a human body, ultra-wideband radars are
required.
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The other important parameter of a pulse Doppler radar is pulse repetition frequency
(PRF). Pulse repetition frequency limits the maximum range that can be measured;
because of ambiguity with reflection of the next pulse. In order to measure a maximum
distance of Rmax; the PRF must satisfy PRF < C

2Rmax
[17]. However, a low PRF creates

a velocity ambiguity on the other hand since the Doppler shift will be aliased with shift
of the next frequency in the spectrum. Hence, to avoid velocity ambiguity (aliasing), the
PRF must satisfy PRF > 4Vmaxλ [17]. Hence, the PRF must be designed such that both
ambiguities are compromised if the Doppler radar is to be used for measurement of both
range and velocity. For the purpose of human movement characterization range is not
important; thus, the PRF can be set as high as the hardware allows.

Pulse radar can be implemented in two ways,

• The first way which is widely used by the radar community is using a single antenna
with a duplexer. In between each pulse, the radar system switches to reception
mode to receive the reflected echo from the target. This gives the radar the freedom
to send high transmit power to increase the received SNR. However, this radar
implementation suffers from a "blind zone", the range till which the radar will not
receive target reflections. That means the range profile of the radar starts from
the radar blind zone, Rblind = C

2·B = C.PW
2 (where PW is the pulse width) , and

ends at the maximum distance, Rmax. Thus, this method requires a fast switching
hardware that can also generate a short pulse.

• The second way is using separate sections as Tx and Rx and enabling transmission
and reception at the same time, so that reception is possible from the instant
transmission is started. This implementation avoids the radar blind zone. Thus,
it is suitable for indoor applications; however, it suffers from low average SNR. In
addition, high transmit power cannot be used due to the sensitive Rx operating
simultaneously in the vicinity of the Tx.

As discussed above, pulse radar has generally a low average SNR. The need to increase the
received SNR initiates the idea of transmitting a modulated sequence and processing the
received sequence to obtain a short pulse so that the same spatial resolution is obtained,
the process called pulse compression. Pulse compression can be achieved by modulating
a carrier with pseudo random sequence (PRS) or a linear frequency modulation (chirp).

3.4.3 Pseudo-random sequence (PRS) Radar

In PRS radar, a carrier is phase modulated with a periodic pseudo random sequence of
degree p (a p-sequence) and of length, J = 2p−1. A Pseudo-random sequence is a binary
phase shift keying (BPSK) sequence, s [j] having auto-correlation, A[n]:

A[n] =
1
J

J∑
j=1

s [j] .s [j − n] =

{
1 , n = 0
≤ 1

J , otherwise

This sequence is random but repeats itself after a length, J ; hence the name "pseudo
random”. PRS radar sends the sequence and correlates shifted versions of the received
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sequence with the reference to get the channel impulse response. As compared to a single
pulse, this sequence has higher average SNR.

A pseudo random BPSK signal of length J is transmitted. A signal of length, K +
LI − 1: y [0] , y [1] , · · · ., y [J + LI − 2] , is received, where LI is the length of the impulse
response of the channel. LI must be taken as large as J , in order to compute the resulting
impulse response though all shifts of the sequence. In matrix form, this can be given by,
y = Sh , where: S is a toeplitz matrix consisting of the transmitted BPSK sequence and
h is the impulse response of the channel.


y0

...

yJ+L−2

 =



s0 sJ−1 · · · s1

s1 s0 · · · s2
...

. . .
...

sJ−1 s0

s0 sJ−1
...

...
. . . sJ−1


∗


h0

...

hLI−1


Assuming the channel matrix is deterministic for short time intervals, the BLUE (best

linear unbiased estimator) can be used to estimate h. That is,

h = S+y =
(
SHS

)−1
SHy

Then, the maximum value from the h vector is selected among the LI paths as the
path that contain movement. The variation of the impulse response with time is then
analyzed to obtain movement information. If the radar is wideband (if there is good
spatial resolution), then the person will cover many bins in his motion. In that case, a
combined analysis of more than one bin and tracking of the bins that contain movement
may be required.
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Chapter 4

Time-Frequency Estimation

In order to estimate the time varying Doppler frequencies described by (3.7), spectral es-
timation techniques will be used. Non-parametric spectral estimators such as the discrete
Fourier transform (DFT) are good estimators as long as the frequencies to be estimated
are well-separated; however, high resolution parametric spectral estimators are required
to resolve closely spaced frequencies. In this Chapter, non-parametric and parametric
spectral estimators are introduced. Joint time-frequency estimation is discussed as a
means to see the variability of the signal in both time and frequency dimensions by using
these estimators. The optimal parameters selected in the joint time-frequency estima-
tions for parametric and non-parametric estimators are described. Background spectral
subtraction is discussed as a means to facilitate the extraction of human movement pa-
rameters after spectral estimation.

However, before applying the aforementioned spectral estimation techniques it is nec-
essary to pre-process the signal which involves I-Q imbalance correction and decimation.

Finally, we discuss a simple but important technique to estimate the change in phase
of the signal sample by sample, the so-called quadrature demodulation method, is dis-
cussed.

4.1 Signal pre-Processing

Before the spectrum of the signal is estimated some artifacts in the signal should be
removed. Firstly, most signal processing methods assume that the In-phase (I) and
Quadrature (Q) signals are equal in amplitude and have a phase shift of 90◦. However,
this phase and amplitude relationship of the I and Q signals may not be as expected due
to receiver circuit artifacts. Therefore, I-Q imbalance correction should be carried out.
Secondly, the signal received from analog to digital converters could be of higher sampling
rate than the rate required for Doppler analysis. Moreover, the signal contains high
frequency components. Therefore, the signal should be low-pass filtered and decimated
to the required sampling rate before further processing.
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4.1.1 I/Q Imbalance Correction

Let’s assume that the imbalanced I and Q signals are given by, I = A. cos(ωt+ θo) and
Q = B. sin(ωt+ θo + φe) where, r = A

B is the amplitude error and φe is the phase error.
To correct these errors, let’s expand r ·Q and form a corrected Q: Qnew = A. sin(ωt+

θo) from this expansion.

r ·Q = A · sin(ωt+ θo + φe)
= A · sin(ωt+ θo) · cos(φe) +A · cos(ωt+ θo) · sin(φe)
= Qnew · cos(φe) + I · sin(φe)

Hence, the new I and Q signals can be formed as,

Inew = I and Qnew = r.Q−I. sin(φe)
cos(φe)

Note that, estimates of r and φe can be obtained by transmitting a modulated sinusoid
from the radar and receiving the reflection of the same sinusoid for a static (no movement)
condition. This flexibility to transmit any waveform is the major advantage of a GNU
Radio based radar. The ratio of amplitudes, r can be obtained from the maximum
amplitudes of the received I and Q signals and φe can be obtained from their cross
correlation.

4.1.2 FIR Filtering and Decimation

In order to decimate the signal by factor D, it is more efficient1 to use cascaded dec-
imators than decimating with one stage, particularly if D is large. As derived in [23],
an optimum number of stages can be obtained which minimized the number of compu-
tations. For a two stage decimator, a more efficient implementation can be made by
dividing a decimation factor of D into decimation factors D1and D2 where,

D1 =
2·D

(
1−
√
D· ∆f

(2−∆f)

)
2−∆f(D+1) and D2 = D/D1 ; ∆f = 1− fp

fc
,

where, fp is a pass-band frequency and fc is a cut-off frequency required at the final
stage of decimation.

In our radar, a decimation factor of D = 1000 is required as discussed in 6.4.2. fp
is set to the maximum Doppler required (200Hz) and fc is set to 250Hz ( half of the
sampling frequency). This, leads to a decimation factor of 100 and 10. Type-I FIR
Filters of order 30 are used as cascaded decimators as shown in Figure 4.1 (the red box
shows the frequency band till the cut-off frequency).

1More efficient in terms of the number of additions and multiplications needed.
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Figure 4.1: Cascaded decimation stage and FIR filter frequency response

4.2 Non-Parametric Frequency Estimation

Non-parametric spectral estimators estimate frequency content without assuming any
structure on the signal. The most common spectral estimator is the periodogram, which
is equivalent to the correlogram when a biased covariance matrix estimate is used.

Let’s assume that, there areN samples of the received signal, yn : {y [0] , y [1] , · · · , y [N − 1]}
that are available for estimation. The periodogram spectral estimator is given by [24];

φ̂p(ω) =
1
N

∣∣∣∣∣
N−1∑
n=0

y [n] e−jωn
∣∣∣∣∣
2

This periodogram is the same as a correlogram estimator, φ̂c(ω) =
∑N−1

k=−(N−1)w(k)r̂(k)e−jωk

estimated using a biased auto-covariance sequence estimate, r̂ [k] = 1
N

∑N−1
n=k y [n] y∗ [n− k] ,

where 0 ≤ k ≤ N−1 and r̂ [−k] = r̂∗ [k] (proof in [24]). This estimate however introduces
a bias |k|N . Thus, r̂ [k] will be a poor estimate of r [k] for values of k close to N . Thus,
the solution is to weigh the auto-covariance estimate using a window so that values of k
close to N will have less effect on the periodogram estimate. This windowed correlogram
estimator and is given by, φ̂c(ω) =

∑L−1
k=−(L−1)wc [k] r̂ [k] e−jωk , where wc [k] is an even

windowing function which decays smoothly to zero and L ≤ N . This lag window2 of the
correlogram can be replaced by an equivalent temporal window, w [n] of length L for the

periodogram and the periodogram can be given by: φ̂p(ω) = 1
N

∣∣∣∑N−1
n=0 w [n] y [n] e−jωn

∣∣∣2.
2It is called lag window since it weighs lags of the auto-covariance sequence
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However, the periodogram is commonly computed at discrete frequency points, ωk =
2π
N k, where k = 0, 1, 2, · · · , N − 1, which reduces the computation to windowed DFT.
The DFT can be computed in an efficient way using Fast Fourier Transform (FFT).

Y [k] =
N∑
n=1

y [n]w [n] e−j
2π
N
kn

The power spectral density (PSD) can then be estimated from the DFT using,

φ̂p [ωk] =
1
N
|Y [k] |2

The frequency resolution of the periodogram depends on the width of the main lobe
of the windowing function. The DFT of the window, W [ω] has a width of 2π

N if it is
a rectangular window. Hence, the resolution of the periodogram depends on the data
length, N and it is basically given by: 2π

N .

4.3 Parametric Frequency Estimation

Parametric spectral estimators assume some structure of the signal in order to estimate
the frequency components. In particular, the received signal should be modeled as a
sum of sinusoids. The Doppler signal model discussed in Chapter 3 can be utilized
in parametric spectral estimators to estimate the frequency components of the signal.
MUSIC and ESPRIT [24], are the most accurate of the available spectral estimators and
are based on singular value decomposition of the auto-covariance matrix.

4.3.1 Signal Model

It is discussed in Chapter 3 that the received Doppler signal is consists of many of sinu-
soids whose amplitude, and frequency varies with time. The various frequency compo-
nents in the Doppler signal are created due to multipath and the range of velocities from
the different parts of the human body. However, the Doppler signal model is expressed
as a sum of sinusoids in (3.7) by dividing the motion into parts that can be considered
piecewise stationary for a time duration, ∆t.

(3.7) shows that the received signal involves a summation over the number of multi-
path, R and the number of body parts, M . Let’s represent the total number of summa-
tions, M · R as D. Therefore, the discrete signal model for short segments of the signal
can be given by:

y [n] =
D∑
k=1

[
βk · ej(ωkn)

]
(4.1)

Then, assuming a white noise, e [n] is added to the Doppler signal ; the model is
expressed as:
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y [n] = x [n] + e [n] =
D∑
k=1

[
βk · ej(ωkn)

]
+ e [n] (4.2)

4.3.2 MUSIC

MUSIC (Multiple Signal Classification) is a good spectral estimation technique as com-
pared to periodogram as it provides a frequency resolution independent of the length of
the signal available for estimation.

Let’s take the signal model given in (4.1), y [n] =
∑D

k=1

[
βk · ej(ωkn)

]
which contains

D frequency components. Let’s consider a covariance matrix, R which can be estimated
for m lags as:

R = E
{
yny

H
n

}
where yn = [y [n] , y [n− 1] , · · · , y [n−m+ 1]] T . Let A be a matrix consisting of

frequency components to be estimated: A = [a [ω1] , a [ω2] , · · · , a [ωD]] where, a [ωk] =[
1, e−jωk , · · · , e−j(m−1)ωk

]
T . This matrix has rank D, provided m ≥ D [24].

In white noise of variance σ , the covariance matrix, can be expressed as: R =
APAH + σ2I, based on the signal model given in (4.2), where: P is a diagonal matrix
consisting of the power of the sinusoids:

{
β2

1 , · · · , β2
D

}
.

This shows there will be D eigen values larger than σ2 of the m eigen values. Let S
be a matrix consisting of the orthonormal eigen vectors associated with the highest D
eigen values of R and let G consist of the eigen vectors of the remaining m − D eigen
values of R. Thus: RG = σ2G = APAHG + σ2G. This shows that the matrix A
satisfies the property, AHG = 0.

Thus, the values of ω: [ω1, · · · , ωD] can be found as the highest D maxima of the
cost function:

aH(ω)a(ω)
aH(ω)GGHa(ω)

Thus, MUSIC has better resolution than periodogram in general. Moreover, the fre-
quency resolution of MUSIC is independent of the data length, N . However, the estima-
tion accuracy is dependent on N .

The eigen value decomposition of R is equivalent to the singular value decomposition
of the data matrix, X. The correlation matrix can be estimated as: R̂ = 1

N

∑N−1
t=m−1 yny

H
n

where: yn = [y [n] , · · · , y [n−m+ 1]]T or R̂ = 1
N

∑N−1
t=m−1 y

H
n yn where: yn = [y [n−m+ 1] , · · · , y [n]]

[24]. The data matrix for the latter is formed as:

X =


y [0] · · · y [N −m]

...
. . .

...

y [m− 1] · · · y [N ]
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4.3.3 ESPRIT

ESPRIT (Estimation of Signal Parameters using Rotational Invariance Technique) is an
estimation technique that makes use of the rotational properties of the frequency matrix
in order to find a way to estimate those frequencies.

The data matrix, X shown above can be expressed as;

X = A · S , where: S =

 β1 β1e
jω1 · · · β1e

j(N−m+1)ω1

...
...

. . .
...

βn βne
jωn · · · βne

j(N−m+1)ωn


If an SVD of data matrix X is formed such that: X = UΣVH ; it can be shown that,

there is a non-singular matrix C such that, U = AC.
Let’s form matrix U1 and U2 such that: U1 = [Im−1 0]U and U2 = [0 Im−1]U and

matrix A1 and A2 such that: A1 = [Im−1 0]A and A2 = [0 Im−1]A = A1T , where

T =

 ejω1 0
. . .

0 ejωn

.
This implies that:U1 = A1C and U2 = A2C. Hence,

U†1U2 = C−1TC

This implies that the matrix T , hence the frequencies on its diagonal, can be estimated
by eigen value decomposition of the matrix: U†1U2 [24].

The matrix containing the amplitudes, S can be obtained as:S = CUHZ. Then, |S|
contains N −m + 1 columns consisting of the same estimate [β1, β2, · · · , βn]T . Hence,
the final estimate of the amplitudes can be made by averaging over the columns of S.

4.4 Joint Time-Frequency Processing

In Chapter 2, Section 2.1, it is discussed that the human motion can be conveniently
represented in the velocity versus time plot. It is shown that the human motion velocity
profile consists of different velocity components each having different magnitudes and
these velocity components change fast through time as shown in Figure 2.1. The same
applies to the frequency content of the Doppler signal.

Let’s take the received data of length N modeled above. To estimate the Doppler
velocity components from this signal, the spectral estimators use the assumption that
the signal of length N is stationary. For instance, the DFT of the signal yn is given by,

Y [k] =
N−1∑
n=0

y [n] e−j2πnk/N

where k = 0, 1, ..., N−1. However, human motion is non-stationary by nature. Hence,
the Doppler signal, yn is also non-stationary. This makes the DFT by itself not useful to
see the frequency content of the signal.
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The way to analyze such a signal is therefore to view the change both in time and
frequency domains. That is to estimate the frequency components of the Doppler signal
of a short time window and to view the variability of these frequency estimates as a
function of time. Such a joint way of characterizing the time-varying frequency content
of the signal in both time and frequency domain is called joint time-frequency processing.

4.4.1 Short time Fourier transform (STFT)

A person walking in an indoor environment is in a non-uniform motion; however the
person’s velocity can be assumed to remain constant during short time intervals, i.e.,
physical constraints will limit the person from changing his velocity during short time
intervals. Thus, a non-uniform human motion can be viewed as a uniform motion over
small time or displacement intervals. This implies that, even though the received signal,
yn is non-stationary it can be assumed as a piece-wise stationary signal.

The discrete Fourier transform of a signal defined based on this piece-wise assumption
is called short time Fourier transform (STFT) and it is given by,

Y
[
k, n′

]
=

∞∑
n=−∞

y [n]w
[
n′ − n

]
e−j2πnk/Nfft (4.3)

n is a local time index describing the sequence yn, the windowing time index (refered
simply as ’time index’ from now on) is labeled n′ to distinguish it from the local time
index, k {0, 1, · · · , Nfft} is the frequency index, Nfft is the size of the FFT required
and w [n′ − n] is a sliding window function. The STFT is thus the DFT of a weighted
segment of the input signal.

The time index at which the spectrum is calculated, n′ is the center of the windowed
segment of the signal. n′ can be expressed in terms of the window length, L and the
percentage of overlap, x required between consecutive windows. That is, n′ is equal to
the integer value of L(0.5 + i(1 − x)), where i = 0, 1, 2, · · · . Hence, the time interval
between consecutive frequency estimations is equal to,

∆n′ = (1− x)L (4.4)

Window Size:

The length of the window, L is a trade off between spectral resolution, which is equal
to 1

L , and the risk of non-stationarity. A longer window size gives a better frequency
resolution and has a lower statistical variance (better accuracy). On the other hand, a
shorter window size provides better time resolution and satisfies the piece-wise station-
arity assumption used in STFT. Thus, time-frequency resolution is a trade-off in STFT.
Hence, considering these factors, the following parameters are used in the STFT based
on the requirements in Section 3.3.

• Sampling frequency, fs of 500S/sec is used as stated in the requirements.
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• L should be short enough such that the stationarity requirement is fulfilled. That
is a time resolution of 0.2sec (a window seize of L = 100 samples) is used in the
STFT.

• This gives a frequency resolution of 1
0.2sec = 5Hz in non-parametric frequency

estimators; this resolution is worse than the frequency resolution requirement of
1Hz.

Window Type:

The type of window is also a trade-off like the window size. On one hand, the main lobe
width of a windowing functions cause smearing (low resolution). On the other hand,
using smooth windows reduce leakage (variance of the spectral estimate). A rectangular
window provides the best resolution; however it has a higher leakage than the other
windows. Other windows have low side lobe levels and hence low leakage; however, the
main lobe of other windows such as Bartlett, Hamming, Hanning, Blackman, Kaiser,
etc., is wide and hence has smearing (smoothing) effect.

For human movement characterization applications, a high resolution is required to
avoid the smearing of the reflection from the different body parts. On the other hand, less
leakage is required so that the RCS (power) from each component is not overestimated due
to leakage. Moreover, the velocity bandwidth can be overestimated due to leakage of the
window used. Thus, in extraction of some parameters, discussed in Chapter 5, resolution
may be more important and for other parameters avoiding leakage is important. So, a
window type will be selected accordingly.

However, the Hamming window which is shown in Figure 4.2 is selected in all other
cases that require an optimal balance between leakage and resolution.

Figure 4.2: Hamming Window
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Zero Padding and Overlap:

As discussed above, time resolution is dependent on the window size, L and the frequency
resolution of STFT is proportional to 1/L. However, zero padding in the time domain
can be used to get a smooth spectrum in the frequency domain. Equivalently, higher
overlap between STFT windows in the time domain can be used to obtain a smooth
STFT plot in the time axes. Thus, zero padding and overlap do not add information to
the time-frequency estimation.

In (4.3), padding the data of size, L with zeros to a size Nfft > L will not change
the frequency resolution; however will increase the number of frequency points leading
to a smooth plot in the frequency domain. Similarly, increasing the overlap, x in (4.4)
decreases the distance, ∆n′ between time points; thus, it results in a smoother plot in the
time domain. The only problem of increasing these parameters is the high computational
complexity. In the STFT analysis, the following values are selected;

• Size of FFT: The size of FFT is set such that the frequency resolution, fs
Nfft

satisfies
the requirement, 1Hz. Thus, Nfft = fs = 500 is selected.

• Overlap: An overlap higher than 0.75 can cause to much complexity. Thus, a rough
selection of x = 0.75 (75% overlap) is selected.

4.4.2 Spectrogram

The spectrogram is a plot of the magnitude of frequency components versus time in
a joint time-frequency estimation. The pixels in a spectrogram can be obtained using
the discrete STFT and are represented by: P [k, n′], where P [k, n′] = |Y [k, n′]|2 or in
logarithmic scale, P [k, n′]dB = 10 · log |Y [k, n′]|2.

Each pixel in the spectrogram shows the power of the kth frequency component of the
signal at time instant, n′. Hence, the whole spectrogram shows the frequency components
of the signal, the power content of these frequencies and how the power content changes
through time. Whenever, the phase of the frequency estimate is also required, the spec-
trogram estimate P [k, n′] can be represented as, P [k, n′] = |Y [k, n′]|2 .ej(angle(Y [k,n′])).

4.4.3 Sliding Window Parametric Estimators

The major problem with the STFT is that the time and frequency resolution are depen-
dent on the window size in an inverse manner. That is, there will be low time resolution
if there is good frequency resolution and vice versa. To solve this problem wavelet trans-
form could be one approach. However, the multi-resolution nature of wavelets has a
limitation by itself. The scaling is such that there is a high frequency resolution and a
low time resolution at low frequencies and vice versa at high frequencies. However, it is
difficult to assume that natural phenomena including Doppler signals require this type of
resolution. Thus, the best way to estimate the spectral content of Doppler signals with
good time-frequency resolution is to use signal dependent estimators, i.e., to use sliding
window parametric estimators.
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The way to apply the sliding window to the parametric estimators is the same as
the STFT. In addition, the spectrogram3 from MUSIC describing the magnitudes is
computed similarly.

• The signal is decimated to a sampling rate of fs = 1000samples/sec, twice the
sampling frequency used for the non-parametric case; because, having more points
affects the estimation accuracy of parametric estimators.

• A window of size L = 0.2sec is used.

• A rectangular window is used as there is no need to use other window functions for
parametric estimators.

• The statistical accuracy of MUSIC increases with increasing m (the number of
columns in the data matrix); however, so does the computational complexity. m
should be much less than N to have better estimation of the covariance matrix. In
addition, m must be greater than D (the number of sinusoids), i.e., D < m < N .
Hence, m = N/2 is selected as an optimal value assuming the number of sinusoids,
D is less than N/2.

• The eigen-based methods have high resolution in general. Thus, the MUSIC cost
function is sampled at 1Hz frequency resolution so that the requirement of Section
3.3 is satisfied.

Estimation of Number of Sinusoids, D

One of the major parameters that should be known for parametric spectral estimation
is the number of sinusoids, i.e., the parameter, D in (4.2). Moreover, the number of
sinusoids is different from window to window as the human motion is not uniform.

The parameter, D can be estimated from the singular value decomposition of the
data matrix X and an assumption on the maximum number of frequency components
expected in a static (no motion) condition, Dsta. This parameter is not easy to set;
however, the number of maxima greater than a threshold value can be taken for instance
as a measure of Dsta . For instance, considering the clutter spectrum in Figure 4.3; the
number of maxima greater than 65dB can be taken as 7; thus, this value can set as Dsta.

The singular values, σi of the data matrix X in a sliding window, Xwin = UΣVH

will consist of D singular values of the signal and m − D singular values of the noise.
So, each singular value σi is compared to the (Dsta)th singular value of the data matrix
at static condition. Thus, the value of D in a given window is the dimension at which
σi ≤ the (Dsta)th singular value. Hence, different value of D can be used in each time
window.

As already discussed D = M ·R where M is the number of body parts and R is the
number of signal paths in the indoor environment. The estimated value of D can thus

3The spectrum from MUSIC is a pseudo-spectrum; however this spectrogram still shows at which
frequencies the signal has stronger spectral content and at which frequencies it is weaker. Thus, MUSIC
can also be used as power spectral density estimator.
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be compared to the approximate number of sinusoidal components expected from human
motion.

What should be considered carefully is that underestimatingD, is equivalent to taking
the actual sinusoidal components as white noise which makes the parametric estimations
inaccurate in distinguishing the signal and the noise singular values. So, the value of D
should be taken large enough so that the remaining noise component can be assumed as
white noise. Even though, the number of sinusoids is different from window to window; it
is better to take the same D for all windows. Thus, the value of D from each estimation
window is computed and the highest value, Dmax is used as the number of sinusoids, D
in all windows.

4.5 Background Spectrum Subtraction

The signal received by a radar receiver consists of a strong direct signal from the Tx
to the Rx. There is also a clutter reflected from stationary objects such as walls in an
indoor environment. In addition, there are some spurious signals that always occur at
some frequencies around the carrier frequency due to the receiver characteristics and
frequency response of the antenna used as the background noise spectrum in Figure 4.3
shows. Thus, background subtraction is essential in order to reduce these background
signals, so that the frequency components due to the motion become evident.

Spectral subtraction methods are common in speech processing. Noise can be sup-
pressed from speech using spectral estimation by estimating the noise during a non-speech
interval [25], [26]. The same analogy can be used in radar signal processing. By estimat-
ing the noise when the environment is static (when there is no motion), the background
noise spectrum can be estimated. Then, spectral subtraction can be done based on the
estimated background signal.

Figure 4.3: Background signal spectrum

34



Let’s consider the noisy spectrogram pixel estimate at frequency index, k and time
index, n′ : P [k, n′]. This estimate consists of background noise, Pback [k, n′] and the
actual signal due to motion, Pm [k, n′]. That is P [k, n′] = Pm [k, n′] +P back [k, n′]. Thus,
the expected value of the background noise can be subtracted from each computed pixel,
P [k, n′] in order to obtain Pm [k, n′]. That is, P̂m [k, n′] = P [k, n′]− P back [k, n′].

The expected value of the background signal at each frequency, Pback[k] can be used
instead of Pback [k, n′]and it can be estimated by averaging over the time index, n′. That is
Pback [k] = E

{
|Pback [k, n′] |2

}
≈ 1

N

∑N
n′=1 |Yback [k, n′] |2. Thus, the power of the Doppler

signal due to motion only, P̂m [k, n′] can be estimated as:

P̂m
[
k, n′

]
= P

[
k, n′

]
− Pback [k] (4.5)

What if the magnitude P [k, n′] is less than Pback [k]? In that case, P̂m [k, n′] must be
set to the spectral floor. Therefore, a general expression is defined using flexible constants
α, β and γ [26] such that:

P̂m
γ [
k, n′

]
=

{
P γ [k, n′]− αP γback [k] , if P [k, n′] > (α+ β)Pback [k]
βP γback [k] , otherwise

(4.6)

β sets the spectral floor and α is a subtraction parameter used as a correction factor
for the underestimated expected value of the noise. The power index, γ gives the option
for power or magnitude subtraction; γ = 1 is for power subtraction and γ = 0 for
magnitude subtraction. The spectral floor can be set uniformly to βP γbm instead of the
frequency dependent βP γback [k], where Pbm is the minimum value of Pback[k]. This is to
make the spectrum in a static condition frequency independent. There is no need of using
a scaled down colored noise again; rather, it is better to make the noise partly white.

In order to create a smooth spectrogram that avoids spectral deeps and peaks, α > 1
and β > 0 should be selected. The other reason to set α > 1 is the spectral leakage that
results from the spectral estimators. That is, a frequency component with no Doppler
signal component will have a higher magnitude during motion than static condition due
to spectral leakage. Thus, setting higher α increases the threshold (α + β)Pback [k] so
that such leakage is treated as noise. The value of β depends on the spectral peaks and
valleys expected.

Basically there are two ways to make the spectral subtraction. Either of these meth-
ods could be suitable in different scenarios based on which signal parameter is to be
extracted.

1. Subtraction in the spectrogram: This is pixel based subtraction on the spectrogram
as shown above using (4.6). In this subtraction, γ is set to 1 ; since, power sub-
traction is more suitable for the visual spectrogram. An example of this spectral
subtraction is shown in Figure 4.4 for α = 3 , β = 0 and γ = 1.

2. Subtraction in time domain: After spectrogram subtraction in (1) , then the
subtracted signal is taken as the phase of the original signal, i.e., P̂m [k, n′] =
Pm [k, n′] · ej(angle P [k,n′]). Windowed IFFT is then applied to get a time domain
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signal free of the background signal. α = 3, β = 0.1 and γ = 0.5 are selected here
as magnitude subtraction is more suitable to transform the signal back to time
domain. This subtraction method is used in displacement estimation.

Figure 4.4: Spectrogram before and after background subtraction

4.6 Quadrature Demodulation

It is discussed in Chapter 3 that the signal received from a target after transmitting CW
signal is phase modulated with the motion pattern. The Doppler signal model can be
expressed in terms of the change in phase from sample to sample as:

y [n] =
D∑
k=1

[
ak [n] · ej(∆φk[n]+φk[n−1])

]
(4.7)

where D = M · R is the number of path of the signal, ak [n] is the amplitude of each
path k at time instant n, φk [n− 1] represents the phase at time instant, n − 1 and
∆φk [n] = φk [n]− φk [n− 1]. Assume that the remaining noise component is white.

Let’s make a rough assumption that the number of strong paths, D is only two: a
direct path (which contains no Doppler information) and one multipath ray reflected off
the person. In that case the signal model will reduce to a very simple expression:

y [n] = a1 [n] + a2 [n] · ej(∆φ[n]+φ[n−1]) (4.8)

The direct path amplitude, a1 [n] can be removed after estimation by windowed aver-
aging of the input signal. Thus, the change in phase between samples, y [n] and y [n− 1]
can be estimated using Quadrature demodulation ,

∆φ [n] = arctan((y [n]− a1 [n]) · (y [n− 1]− a1 [n− 1])∗)
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The total change in phase with respect to the initial point where motion starts,
∆φT [n] can thus be calculated as,

∆φT [n] =
n∑
i=1

∆φ [i] (4.9)

The assumption here is that this change in phase is caused by motion of the human
target only. Thus, the radial displacement can be estimated based on this change in
phase. The major problem with this change in phase, ∆φT [n] is when the noise or
clutter spectrum is not white as shown in Figure 4.3. In that case, the background
spectrum subtraction in time domain discussed in Section 4.5 can be used.
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Chapter 5

Parameter Extraction

As already introduced in Chapter 2, there are different parameters of human motion that
characterize human activity and that can be obtained from the velocity profile. When
using radar for human activity characterization, the body velocity profile is obtained in
terms of Doppler frequency profile. Thus, the parameters of human motion are extracted
based on time-frequency estimation of the Doppler signal.

The variation of the received power of the Doppler signal is used for quantifying ac-
tivity, i.e., to compute the activity index. The change in the phase of the signal estimated
using quadrature demodulation gives another important parameter that quantifies activ-
ity, i.e., the displacement of the person. On the other hand, applying different techniques
on the spectrogram estimated in Chapter 4 will enable the estimation of different move-
ment parameters such as torso velocity, cadence frequency, step length, velocity band-
width, etc. Estimation of these parameters from the received signal can make automatic
human movement identification and classification possible by training the classifiers. In
this Chapter, the methods used to estimate the movement parameters for human activity
quantification, identification and classification are discussed.

The spectrogram is described by time index, n′, frequency index, k and the power at
each pixel: P [k, n′]. Thus, at each time index, n′ angular frequencies [ω1, ω2, · · · , ωD] are
obtained which constitute the angular frequency range [−π : π]. From now on, frequency,
fk = ωk

2π is used to denote each Doppler frequency instead of ωk and kmax denotes the
frequency index for ωD.

5.1 Parameters to Quantify Activity

5.1.1 Activity Index

One of the ways to define an index that varies in proportion to the level of movement,
activity index is using the variation in the power of the channel. This definition is based
on two assumptions:

• The quantity of activity is proportional to the change in position of the person.
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• The only factor that causes time variation of the received CW signal power is
human activity.

Thus, the activity index (AI) at a particular time can be related to the standard deviation
of the power windowed around that time instant. However, the AI estimated using
standard deviation will depend on the distance of the human target from the radar. To
avoid this dependency, the standard deviation is normalized by the average value of the
signal at a particular window. This is based on the assumption that the mean signal
power is much higher than zero. The activity index changes over time; thus, the index
should be calculated over windowed versions of the signal. Thus, a rectangular sliding
window is used to calculate a moving standard deviation to mean ratio. The window size,
L is set to 1sec; since the power does not vary too often as compared to the micro-Doppler
pattern which requires a window of size, 0.2sec.

The standard deviation of the power of the signal is calculated using a sliding window
to get the activity index, AI [n′]. That is,

AI
[
n′
]

=

√
1
L

(∑∞
n=−∞ (P [n] · w [n′ − n])2

)
−
(

1
L

∑∞
n=−∞ P [n] · w [n′ − n]

)2
1
L

∑∞
n=−∞ P [n] · w [n′ − n]

where, n′ is the time index, n is the local time index, P [n] = |y [n]|2 is the power of
each sample, and w [n′ − n] is a rectangular window of size L.

Then, the activity index can be normalized to the maximum value over a certain time
duration in order to get an activity index in the interval [0 : 1].

5.1.2 Displacement versus Time

The other parameter that can quantify overall activity in an indoor environment is the
total displacement of a person with respect to the origin of motion. The displacement
estimated from radar data is the radial component of the actual displacement of the
person. This radial displacement can be obtained in two ways:

• Displacement can be obtained from the phase variation obtained from quadrature
demodulation in (4.9). The total displacement, ∆xT can be calculated as: ∆xT =
λ∆φT

4π . The displacement,∆xT may be overestimated in a static condition due to
colored background noise spectrum. Thus, the time domain background spectrum
subtraction technique discussed in Section 4.5 is applied before using this algorithm.

• Displacement is also equal to the area under the torso velocity vs time curve.
Thus, after estimating the torso velocity from the spectrogram (Section 5.2), the
total displacement can be calculated.
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5.1.3 Direction of Motion

Direction of motion is one of the important parameters of human movement. When
combined with other parameters it can give an idea of the position of the person and
where in the room the person is heading to at a particular time. As already described in
Chapter 3 :

• Approaching targets increase the frequency of the RF signal; hence result in a
positive Doppler shift.

• Receding (moving away) targets decrease the RF frequency; hence result in a neg-
ative Doppler shift.

Therefore, the position of the strongest frequencies in the frequency domain shows the
direction the object is moving. In addition, the change in direction of motion can be seen
from the spectrogram. For automatic direction identification, the sign of the difference
of the sum of powers at Doppler frequencies, fk > 0 and fk < 0 can also be taken in each
time window to determine the direction of motion for automatic identification, i.e.,

Direction
[
n′
]

= sign


fs/2∑
fk=0

P
[
k, n′

]
−

0∑
fk=−fs/2

P
[
k, n′

]
5.2 Identification Parameters

The parameters to identify human movement from non-human movements are introduced
in Section 2.2.1. These parameters are estimated as follows:

1. Torso velocity , vtorso [n′]: The instantaneous torso velocity is expressed in terms
of the torso frequency as: vtorso [n′] = 2π

λ ftorso [n′]. The torso frequency can be
obtained in two ways:

(a) Selecting the frequency of maximum power from each column in a spectro-
gram, i.e., ftorso[n′] = f [ktorso, n′], where, ktorso is the frequency index at
which P [k, n′] is maximum. The torso velocity is set to this value if there
is motion otherwise the torso velocity is set to 0. Doppler signal detection
can be made by calculating the standard deviation of P [k, n′] at each time
index, n′ and comparing it with a threshold. The threshold can be set based
on the standard deviation of the background signal, Pback[k] in Section 4.5.
Power at fk = 0 can be removed by averaging the signal or using background
subtraction.

(b) Weighted velocity estimation in each column, i.e.,

ftorso
[
n′
]

=
∑

k f [k, n′] · P [k, n′]∑
k P [k, n′]
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The former method is generally a better estimator than the latter; because, the
latter gives a biased estimate due to image frequencies (in multipath environment)
and due to oscillations of the appendages. However, the latter method performs
well even in static conditions; in addition, it is more easier to apply as there is no
need for threshold.

2. Cadence frequency , fc: Cadence frequency is obtained by taking the FFT of
the spectrogram in the horizontal direction at each Doppler frequency. Thus, the
Doppler frequency versus time plot will be transformed into Doppler frequency ver-
sus cadence frequency plot.i.e.,

Pc [k, c] =
NW∑
n′=1

Y
[
k, n′

]
e
−j( 2π

NW
·c·n′)

where Pc [k, c] is the power at Doppler frequency index k and cadence frequency
index c . The number of windows involved in the FFT, Nw should be short enough
to estimate the changing cadence frequency; however, it should be long enough
to get sufficient cadence frequency resolution. Thus, an optimal number of win-
dows should be taken considering these factors. The maximum cadence frequency
depends on the sampling time in the spectrogram, i.e., the time interval between
consecutive windows shown in (4.4).
In order to obtain the cadence frequency of the gait, the total power of the signal
at each cadence frequency is computed by summing over the Doppler frequency
bins. Thus, sum of the power over the Doppler bins gives a magnitude versus
cadence frequency plot. However, the sum should be computed over fk > 0 or
fk < 0 depending on the direction of motion. This is to avoid the effect of the
image frequencies in indoor environment. Thus, the cadence magnitude, Pc [c] is
computed as: Pc[c] =

∑fD
fk=0 Pc[k, c] . Based on the velocity profile model in (2.1),

three peaks are expected in the cadence frequency curve at frequencies of 0, ωc
and 2ωc. Thus, the second peak from the cadence frequency plot is taken as the
fundamental cadence of the gait.

3. Step length , Sl: Step length is obtained from the fundamental cadence frequency,
fc and the torso velocity, vtorso using the expression: Sl = vtorso

fc
.

5.3 Classification Parameters

Parameters to classify human activity into a certain group of activities such as walking,
jogging, exercising, crawling, sitting with slight arm movement, etc., are already discussed
in Section 2.2.2. These parameters can be obtained from the spectrogram as follows:

1. Torso velocity & cadence frequency : already discussed above in Section 5.2.

2. Velocity Bandwidth : In order to obtain the velocity bandwidth, the upper and
lower frequency envelopes of the micro-Doppler pattern should be estimated. The
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envelope estimation will be more accurate if frequency leakage in the spectral esti-
mation is minimized. These envelopes consist of a set of frequencies at which the
maximum and the minimum micro-Doppler frequencies exist in each time window.
Let’s assume that these upper and lower envelopes at time index n′ are represented
by, fUE [n′] and fLE [n′] respectively. In order to estimate this envelopes:

• A threshold is set in order to distinguish the micro-Doppler pattern from noise
or background signal and hence to estimate the envelopes.
• The Spectrogram is scanned from k = 1 to k = kmax for fLE [n′] and k = kmax

to k = 1 for fUE [n′] until micro-Doppler pattern is detected.
• Threshold level : The threshold should be frequency dependent as the back-

ground noise is frequency dependent by itself. Therefore, a background noise,
Pback [k] as discussed in Section 4.5 is calculated; then it is multiplied by a
factor, α to account for the frequency leakage due to the spectral estimators.
Thus, the threshold at frequency index, k is set to α·Pback [k] . In order to min-
imize false detection due to frequency leakage, an α value as large as 20(13dB)
is used.

3. Standard Deviation : The other parameter that is important is the power distri-
bution over the velocities within the velocity envelope. Thus, the standard devia-
tion can be computed to see the extent to which the power distribution varies over
the velocities in the envelope.

5.4 Velocity Profile

It is discussed in Chapter 2 that the velocity profile is the major characteristics of human
motion. Accurate estimation of this profile enables identification and classification of
human activity. Moreover, accurate estimation of this parameter will be one step towards
identifying a person by his gait pattern. Thus, it would be very beneficial if the velocity
profile shown in Figure 2.1 can be obtained from radar data. One possible attempt to
obtain of this profile is described as follows.

Let’s assume that we need to obtain the velocity profile from the 12 significant and
rigid parts of the body. Thus, 12 significant frequencies should be extracted in each time
index, n′ for each body part. This can be done in two ways;

• The MUSIC spectrogram is estimated and the local maxima are extracted from it
based on a threshold value. Then, the largest12 maxima are taken in each time
index.

• The spectrogram is computed using sliding window ESPRIT. The highest 12 power
values and the corresponding frequencies are selected and the points are arranged
in order of increasing frequency. However, the problem of this method is that the
frequencies estimated might be frequencies of the highest power component only
rather than local maxima.
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Then, the next step is joining a frequency index in a window, n′ to its corresponding
index in the consecutive window, n′ + ∆n′. For instance, the power and frequency from
the leg in one window should be matched to the corresponding values in the next window
in order to obtain sets of points which describe the velocity profile of the leg. Thus, a
certain tracking criterion should be used to track the frequency from each body part
through time. One criterion that can be used is the assumption that contribution of each
body part to the RCS (hence the power) remains constant through time. Thus, the body
part with the highest power component in one window should remain being the highest
in the consecutive windows and the 2nd highest will remain the 2nd highest, etc. These
frequencies which correspond to the descending order of powers in each window can be
thus tracked.

Now, points of the velocity profile of each body part, vm [n′] given in (2.1) are esti-
mated. The velocity of the body, V and the cadence of the gait, ωc in (2.1) are already
estimated in Section 5.2. Now, the remaining parameters are the amplitudes of oscilla-
tion. Thus, can we apply some parameter estimation techniques to come up with the
amplitude parameters of the velocity profile: km1, km2, km3, km4 ?
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Chapter 6

The Experimental Platform

The goal of this thesis is not only to extract parameters that characterize human move-
ment; but also to use a low-cost, flexible transceiver as a radar.

In this Chapter, the overall hardware and software architecture of the radar platform
used in this thesis is described. Then, the limitations of this platform for the purpose of
measuring human movement Doppler shift are discussed. The limitations of the platform
lead to the discussion on which radar type can be implemented using this platform. It
is discussed why the CW radar is the radar type selected to be implemented on this
platform. The Chapter is concluded by discussing the major advantages of a GNU Radio
based radar in general.

6.1 Software Defined Radio

Software defined Radio (SDR) is any radio system that performs modulation and demod-
ulation of a signal in software. The extent to which a system should consist of a software
part in order to be categorized as an SDR is not clearly defined. However, the general
philosophy of SDR is keeping the software as close to the antenna as possible.

SDR tries to translate the radio engineering problem from the hardware to the soft-
ware domain. The major advantages of this translation include:

• High flexibility : Using SDR gives the flexibility to adapt to new services and
standards. Any processing that can be done in hardware can be done in software
with better flexibility. SDR can be modified or upgraded by modifying software
blocks which makes it flexible as compared to changing hardware components in
hardware systems.

• General purpose hardware : A single hardware can be used for different ra-
dio systems just by modifying the software block attached to the general purpose
hardware.

• Predictability : SDR has predictable and repeatable results as compared to hard-
ware radios.
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• Easy access: It is easier and convenient to access and view a signal between signal
processing blocks as compared to a signal between hardware components.

However, the extent to which the software in communication or radar systems can be
pushed closer to the antenna is limited. Some of the factors that lead to these limitations
include:

• Sampling rate of ADC : The sampling rate of the ADC should be twice the
maximum frequency in the signal of interest based on the Nyquist theorem1. For
most radio applications, the signal is modulated on carriers of many GHz; however,
ADCs of such high sampling rate are rare and costly. Thus, hardware front-ends
are required to bring the signal down to a lower frequency.

• Processing speed : Again, to realize such SDR systems the processor should be
able to process the signal sampled at high sampling rate in real time. This is not
possible with the currently existing general purpose processors.

The most common currently realizable SDR uses high speed ADC. Then, high speed
software processing is done on FPGA (Field programmable gate arrays) to lessen the
computational burden of the host processor and to avoid port/bus bandwidth bottlenecks.

6.2 Platform Overall Architecture

The radar platform used in this thesis is a software defined radio that consists of a USRP
as hardware platform and a GNU Radio as software platform. The combination of these
two provides the necessary flexibility required for building a radar system that can trans-
mit various types of waveforms (with some limitations) and receives the corresponding
reflection or echo from the target using the same hardware.

The USRP and GNU Radio combination is currently being used in various commu-
nication systems as cognitive radio front end, GPS receiver, IEEE 802.11 node, GSM
node, FM/AM transceiver etc. Moreover, there is a research on using this platform as
passive presence detection radar, by sensing the variation of GSM signals.

The overall block diagram of transmission and reception involving the USRP and the
GNU Radio is shown in Figure 6.1. As the figure shows, the radar consists of a USRP,
GNU Radio and daughter boards which consist of the RF front-end. This GNU Radio
based radar works as follows:

Sequence of bits to be transmitted is coded and modulated in the general purpose
computer and sent to the FPGA. In the FPGA, the discrete data is interpolated and up
converted to an IF frequency. Then, the signal is converted to analog by the ADC and
modulated to RF frequency by the RF front-end before transmission. The signal reflected
off the target is received by the Rx antenna, and then filtered and down converted to

1The Nyquist criterion states that exact reconstruction of a continuous time signal is possible if the
signal is band-limited and if the sampling frequency is greater than twice the maximum frequency content
of the signal.
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an IF frequency. The IF signal is then sampled by the DAC, further down converted
and decimated by the FPGA. Finally, the low rate data is sent to the general purpose
processor for demodulation,decoding and further analysis.

A detailed description of the parts of the platform including the USRP, GNU Radio
and daughter boards is found Appendix A and B.

Figure 6.1: GNU Radio based Radar Block Diagram

6.3 Limitations of the Experimental Platform

The hardware platform discussed in Appendix A can be used as a radar for characterizing
human activity. However, the platform has some limitations that require further analysis
in order to come up with the ways and modifications necessary to use it for the application
concerned.

6.3.1 Isolation in the USRP

As described in Appendix A, the USRP can work as a transceiver. However, this is
true provided the necessary isolation is maintained between Tx and Rx circuits in terms
of frequency, space or time. In our radar, the transmitted and received signals are not
separated in frequency as the Doppler frequency of the target is too small as compared
to the carrier. There is no separation in time as it is a short range application which
requires simultaneous transmission and reception. Thus, here is the effect when there is
little space isolation as it is the case when one USRP is used as transceiver radar.

According to the USRP designers, there is no more than 20dB isolation between
the Tx and Rx circuits on a single USRP. Since the dynamic range of the USRP ADC
is 74dB2, the minimum ratio of received echo to transmitted signal, Pr

Pt that can be
distinguished becomes −94dB. This means if dipole antennas are used in a monostatic

2Dynamic range of N-bit ADC=6.021·N +1.763 and N=12 for the USRP ADC.
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scenario, the maximum distance from which the echo can be distinguished will be, 10m
based on (3.8). This is a very optimistic result with ideal assumptions including the
assumption that the full dynamic range of the ADC is being used. In actual conditions,
the sensitivity distance is much shorter (this is also verified by experiment). Thus, it
is concluded that a single USRP does not provide the necessary isolation required to
distinguish an echo from farther distance.

Therefore, two USRPs with two daughter boards are used in our validation experi-
ments as shown in Figure 7.1 in order to avoid these isolation problems.

6.3.2 Phase Noise & Frequency offset

Using two USRPs solves the isolation problem; however, two big problems arise in the
platform: variable frequency offset and phase noise. This is because the daughter boards
use a phase locked loop based frequency synthesizer with a reference clock from the
USRP as discussed in Appendix A.2. In this case the reference clocks are taken from
two different motherboards each consisting 64MHz, 20ppm clocks. Thus, the daughter
boards are set to clocks of different frequencies and phase thus causing the variable offset
and phase noise. This makes extraction of very low Doppler frequencies around the
carrier impossible.

The phase noise and variable frequency offset when using two USRPs and is shown in
the time-frequency plot in Figure 6.2. Thus, the only solution is to synchronize the two
USRPs so that the daughter boards can tune to the same reference clock. However, the
major problem of the synchronized system is the radar can only be used in a monostatic
scenario as there needs to be a synchronizing wire between the two boards.

In communication systems, the phase noise is sometimes estimated from statistical
characteristics of the transmitted data sequences. That means a known sequence is sent
and based on the statistics of the received sequence, an attempt to estimate the charac-
teristics and model of the phase noise can be made. In radar systems, such estimation is
not possible as the transmitter phase noise and the channel phase noise (due to motion)
are mixed.

Figure 6.2: Frequency offset and Phase noise in the received signal
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The phase noise that results in the received signal at a frequency, f can be given by;

Lphase(f) = Ltx(f) + Lrx(f)− 2ρ
√
Ltx(f) · Lrx(f)

where Ltx(f) is the phase noise spectrum of the transmitter , Lrx(f) is the phase noise
spectrum of the receiver and ρ is the correlation between these phase noise spectra. This
derivation is shown in detail for a Doppler radar in [22]. Thus, synchronizing two identical
USRPs to obtain ρ = 1 completely eliminates the phase noise.

6.3.3 Maximum Distance

The maximum distance of a target that can be monitored using the synchronized experi-
mental platform using two USRPs depends on two factors: the reflected signal to thermal
noise ratio (SNR) and the reflected signal to direct signal ratio. The latter ratio can be
improved by directional antenna; moreover, it occurs at a localized frequency since the
Tx and Rx are synchronized. Thus, let’s consider the distance limitation due to the SNR.

The SNR from the reflected echo as a function of distance of the target, R as shown
in (3.10). For a synchronized radar in a pseudo-monostatic scenario, (3.10) reduces to:

SNR =
Pt ·G2 · λ2 · σ

(4π)3 · (R)4 · (K ·B · T · F )

For our experimental platform, these parameters are as follows: transmitter power,
Pt = 100mW = 20dBmmaximum, dipole antennas of gain, G = 1.5(1.76dBi), operating
frequency of 5GHz. Analysis done in [27] also shows that the noise figure for the USRP
is F = 2.82. A receiver bandwidth of 32MHz is used since ADC rate is 64MS/sec.

Using these parameters, the received SNR is given by: SNR|dB = 60.5− 40 · log(R).
Then, it depends on how much SNR is afforded. For instance, the SNR will be less
than 0, only after a distance of 30m. Hence, the operation range of the platform can
be considered roughly to be this distance; even though, there are many factors that can
significantly change this range limit.

6.3.4 Maximum Bandwidth

The maximum bandwidth of a signal that the USRP can handle is limited by the sampling
rate of the ADC (64Ms/sec) . This means based on the Nyquist criterion (to avoid
aliasing), the maximum signal bandwidth that can be sampled with this ADC is 64MHz
if I-Q sampling is used and 32MHz if real sampling is used. Hence, a signal of this
bandwidth can be sampled and processed in the FPGA.

However, if signal processing is to be done in a processor outside the USRP (in the
host PC); the signal must pass through the USB interface, which acts as a bottleneck.
USB 2.0 has an effective throughput of 32MB/sec3. Since GNU Radio represents each
complex sample using 4 bytes (16-bits I and 16-bits Q), this will limit the USB throughput

3The maximum data rate of USB 2.0 may reach till 60MB/s , however the effective rate in operation
is maximum 32MB/s
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to 8MS/sec. Hence, the maximum bandwidth of a signal that can be sent through the
USB is 8MHz. This is the reason why there are decimation stages in the default FPGA
configuration of the USRP.

6.4 Radar Types and Parameters

6.4.1 The Experimental Platform for Different Radar Types

Based on the characteristics of the platform described so far, let’s discuss whether the
USRP can be used to realize the different radar types of Section 3.4.

Pulse radar : Pulse mode operation with transmission and reception separated in time
is not applicable for such a short range application, as the USRP cannot generate
very short pulses due to its bandwidth limitation. It is possible to realize a pulse
radar using a USRP with both the Tx and Rx operating simultaneously. However,
the maximum spatial resolution will be limited to, ∆r = C

2B = 18.75m, which
is a very poor resolution for an indoor application. In addition, pulse transmis-
sion will result in low average SNR as discussed previously. Hence, pulse radar
implementation is not feasible.

PRS Radar : PRS radar will have the same poor resolution as the pulse radar; how-
ever, pseudo random sequence transmission will result in a better SNR than pulse
radar. This radar is implemented in our platform and some results are obtained
for comparison to the CW radar. The only advantage of a PRS radar implemented
using the USRP as compared to CW radar is that outdoor interference movements
outside the 18.75m range can be eliminated.

CW Radar : In CW radar, unmodulated carrier is transmitted; thus, the 8MHz band-
width of the USRP is more than sufficient. Moreover, it has simple implementation
and does not have the problems associated with a pulse transmission. Therefore,
CW radar is the radar type selected to characterize human movement using the
low cost experimental platform.

One of the ways to implement a wideband radar can be to generate and transmit a chirp
in the daughter boards; so that the 1GHz bandwidth of the daughter boards is utilized
despite the low sampling rate of the ADC. However, this approach is not used due to the
fact that the oscillators in the daughter boards are not flexible to generate any waveform.

6.4.2 Choice of Parameters

The choice made on some of the parameters in the designed experimental platform is
discussed below:

Carrier Frequency: Generally, a higher carrier frequency increases the Doppler fre-
quency resolution, ∆fd = 2 · ∆V r

λ . On the other hand, lower frequency is preferred
to decrease attenuation or to increase the operating distance. In the GNU Radio
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based radar, already discussed the choice of carrier frequency is in addition limited
by the operation range of the daughter boards, which is in the ISM frequency range
2.4−2.5GHz and 4.9−5.9GHz for XCVR2450 daughterboard. Therefore, a carrier
frequency of 5GHz is chosen considering these issues.

Transmit Power: Higher EIRP 4 increases the operation range of the radar. However,
the EIRP should comply with the power regulation to avoid interference with other
systems. More importantly, the maximum EIRP should consider the compliance
with the regulations for human exposure to radio frequency. The FCC has set the
maximum safety limit of power density to which human beings can be exposed in
uncontrolled and controlled/laboratory environment [28]. Since this radar is for an
indoor living room environment; the maximum power density allowed is 1mW/cm2.
If the person goes closer to the antenna than 0.5m, then it means the EIRP should
be limited to, EIRP < 39dBmW .

Decimation Factor: As discussed in Section 3.3, a maximum frequency of 200Hz is
expected from human movement. Hence, a sampling frequency of Fs = 500Hz will
suffice. The decimation factor of the decimation stage in the FPGA can be set to
a maximum of 256. However, a decimation factor of 128 is used in the FPGA and
the resulting signal is again decimated by factor of 1000 in the processor before
further analysis.

6.5 Advantages of GNU Radio based Radar

6.5.1 Low Cost

One of the major advantages of the GNU based Radar is that it is low cost. First, the
USRP and daughterboard combination is beyond the requirement for a CW radar. Only
one of the Tx and one of the Rx channels of the USRP is used. A 64MS/sec ADC
is more than required for a maximum Doppler frequency of 500KHz. Thus, a simpler
USRP can be designed for a CW radar. In addition, the USRP basically consist of an
FPGA which is a low cost component and the daughter boards are based on WLAN
chipset technologies which are of low cost because they are produced in large volumes.
Thus, if this human activity classifier radar is to be brought to the market ; algorithms
will be deployed in the FPGA. The additional components required will be low speed
ADC and DAC, WLAN chipsets and antennas. Thus, the hardware components of the
radar are generally cheaper.

Secondly, the GNU Radio software is open source and free. Thus, the characterization
algorithms can be integrated in real time with the transceiver algorithms in the FPGA.
In general a cheap hardware and free software contribute to a low-cost radar.

4EIRP is the power radiated off the antenna; thus, this is the power including the gain of the antenna
used.
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6.5.2 Flexibility

GNU Based Radar is flexible both on the transmission and reception sides provided the
flexibilities are satisfied by the RF front-end. Transmission parameters such as transmit
power, frequency, waveform type, gain, etc can be controlled. The reception algorithms
can also be modified easily. For instance, a new signal processing block can be inserted
between already existing blocks as long as the new block is compatible to the signal flow
graph. The flexibility of GNU Radio reduces the maintenance and modification cost of
the radar. For instance, to convert a GNU Radio based CW radar into a pulse radar,
one needs to change only the baseband waveform in the signal generator block from a
constant amplitude to a pulse.
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Chapter 7

Evaluation & Discussion

It is evident that pseudo random sequence or pulse radars are more suitable to charac-
terize multi-movers and to avoid outdoor interference. However, only CW radars can be
implemented in our experimental platform due to the bandwidth limitations discussed
in Section 6.3.

Thus, CW radar is implemented in the experimental platform. The human move-
ment characterization methods discussed so far are implemented in MAT LAB and these
algorithms are evaluated by making selected experiments in an indoor environment.

In this Chapter, the results from most of the human movement characterization
algorithms are presented in the form of plots and discussed. The displacement estimations
to quantify movement are evaluated using suitable experiments. Then, the performance
of the methods to estimate torso velocity and cadence frequency is tested using the
corresponding experiment for movement identification. Finally, the methods to classify
activity are evaluated for two human activities: walking and jogging. Thus, it is shown
that the parameters obtained from these two different activities are distinct.

7.1 Experimental Setup

The experimental platform consists of GNU radio software that runs on a processor. This
software controls the transmitter and receiver parameters including operating frequency,
gain and transmit power. We transmit using one USRP setup at 5GHz and receive the
signal reflected from the moving human being using the other USRP at the same carrier
frequency. As discussed in Section 6.3.2, the transmitter and the receiver daughter boards
should be synchronized1 to a common clock. This setup is Figure 7.1.

1The synchronization is done by disabling the clock of the slave USRP (by making a circuit modifi-
cation) and then the clock of the master USRP is fed to the slave using an SMA (SubMiniature version
A) connector.
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Figure 7.1: Experimental Setup

7.2 Human Activity Quantification

7.2.1 Activity Index

Experiment-1: This is an experiment done in a bistatic scenario. For activity quantifi-
cation, no synchronization is required; so we placed the Tx and Rx in opposite corners
of a room to cover the highest possible area in the room and the test person makes the
motion as follows. First, the person keeps static for 6sec; then, starts moving randomly
between the transmitter and receiver for a time duration of 10sec and then stops.

Figure 7.2: Power Variation

The power of the signal obtained and the corresponding activity index estimation is
shown in Figures 7.2 and 7.3. The AI estimation shows that the normalized standard
deviation is a good estimator of the variation of power and the variation of power can
describe the level of activity.
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Figure 7.3: Activity Index

7.2.2 Displacement versus Time

Experiment-2: This experiment is done for the scenario shown in Figure 7.4. The
person keeps static for 10sec, and then started moving towards the radar from a distance
of about 3m in front of the radar. The person follows the motion sequence shown by the
dotted arrow for a total time duration of 10sec. Then, he keeps static at the final point
for another 10sec.

Figure 7.4: Experiment-2

The displacement estimated using the quadrature demodulation method is shown (by
the blue line) in Figure 7.5. The figure shows that the displacement estimation follows
the motion sequence shown in Figure 7.4. In addition, this displacement estimation is
compared in the same figure with a more accurate displacement estimation using the torso
velocity estimate as discussed in Section 5.1.2. The figure shows that, the displacement
estimate from the simple quadrature demodulation method is as accurate as the one
estimated using the torso velocity estimate.
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Figure 7.5: Displacement versus time

Experiment-3: The quadrature demodulation method is also verified by a sawtooth

motion (a motion that includes tangential motion) in the experimental scenario shown in
Figure 7.6. In this experiment, the person keeps static for about 5sec, and then follows
the motion described by the dotted arrow in the corridor. The length of the corridor in
which the person moves is 12m as the figure shows.

Figure 7.6: Experiment-3

The displacement estimation from this experiment is shown in Figure 7.7. The figure
shows that,

• The total displacement till the person reaches the radar (until 22sec) is about 12.4m
which gives an estimation error of 3.33% only as compared to the actual distance
of 12m.

• The displacement of the tangential motions remains constant; this shows that the
displacement estimator is performing well, as the estimation is for radial displace-
ment.

• The displacement at static condition is overestimated due to coloured noise (clutter)
in the first estimation. However, this is completely corrected by using background
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subtraction in the second estimation. In the motion range, the two estimations are
identical because the background subtraction changes the magnitude of the signal
only.

Figure 7.7: Displacement from sawtooth motion

7.2.3 Direction of motion

The spectrogram in Figure 7.8 shows the direction of motion of the person described in
Experiment-2 in Figure 7.4.

A visual inspection of the spectrogram by itself gives much information. The figure
shows that the person starts his motion at 10sec and moves towards the radar for a time
duration of about 3sec, then turns his direction and moves away for a the radar for a
duration of about 3sec, then pauses for about a sec before moving again towards the
radar and finally stops his motion after 20sec.
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Figure 7.8: Direction of motion

7.3 Human Movement Identification

Experiment-4: In this experiment, the person keeps standing at a distance of 12m in
front of the radar for some seconds. Then, he starts moving towards the radar at uniform
rate. The person starts his motion just before the 12m mark and ends few meters after
the radar. This experiment is done in a 2m wide and 12m long corridor as shown in
Figure 7.9.

• A timer shows that it takes the person about 10sec to complete the 12m by walking.

• It is also counted that the person makes 15 steps during this 12m walking. Thus,
the person moves with 12

15 = 0.8m/step.

Figure 7.9: Experiment-4

7.3.1 Received Signal

Figure 7.10 shows the real part of the time domain signal recorded during this experiment.
The figure shows that the signal level received during static condition (at the beginning)
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is very small as compared to the signal level during motion (the next 10sec). This is due
to;

• The directional antenna used that minimizes the direct signal from Tx to Rx.

• The experiment is done in a corridor where possible reflectors (clutter sources) are
at farther distance.

Figure 7.10: Time domain signal

7.3.2 Spectrograms

STFT:

From the spectrogram, two of the parameters recorded manually during the experiment
can be clearly observed: the time duration of the motion and the number of steps the
person makes. The latter, which is counted to be 15 during the experiment, is equal to
the number of spikes in the spectrogram.

In addition, the multipath effect shown in Figure 3.2 is evident from this spectrogram
as the negative Doppler frequencies are filled with the image Doppler pattern, but with
lower power levels.
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Figure 7.11: STFT based Spectrogram Estimation

Sliding Window MUSIC:

Figure 7.12: MUSIC based Spectrogram estimation

It is clearly visible from the MUSIC based spectrogram that:

• The spectrum is resolved in frequency domain; i.e., the stronger frequencies are
clearly visible within the pattern.

• In the time domain, continuity of reflections from body parts is seen.
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The following estimations are based on the MUSIC based spectrogram shown above
as it has better frequency resolution than the STFT based spectrogram. The MUSIC
spectrogram during motion, i.e., between 3 and 11sec is taken to verify torso velocity
estimation and to estimate the cadence frequency of the gait.

7.3.3 Torso Velocity

The velocity estimations of the motion described in Experiment-4 are shown in Figure
7.13.

• To verify this velocity estimation, let’s take a part of the motion where the torso
velocity, vtorso [n′] > 0, i.e., the time range the person was moving towards the
radar. Thus, the distance the person moves can be estimated as the area under
this velocity versus time graph. That is, Distance = ∆n′ ·

∑8sec
n′=3sec vtorso [n′]. This

gives,

– Distance = 13.26m, using estimation based on maximum power, which gives
an error percentage of only10.5% as compared to the actual distance of 12m.

– Distance = 11.34m, using estimation based on weighted average, which gives
an error percentage of only 5.5%.

• These results show that both torso velocity estimation methods give good results.
From the figure (the estimation using maximum power), we see an up and down
velocity trajectory of the torso during the walking. This is true as the torso moves
a little forward (increase in velocity) and a little backward (decrease in velocity)
even when the whole body is moving at constant velocity.

• The torso velocity, vtorso [n′] is almost equal to the body velocity, V [n′]. Thus, the
average velocity of the body can be estimated by taking the average value of the
torso velocity over the motion interval, which is between 3sec and 11sec as shown
in the Figure 7.13. i.e.,

Vbody = average(vTorso) = 1.422m/sec
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Figure 7.13: Torso velocity Estimations

7.3.4 Cadence Frequency

The cadence frequency spectrogram obtained from the time domain spectrogram is shown
in Figure 7.14.

The cadence frequency shows the rate at which the power at each Doppler fre-
quency changes through time. For instance, we see that the Doppler frequency around
50Hz (1.5m/sec) is the strongest and it exists at the 1st bin of cadence frequency (at
fc = 0). All the body parts contribute to this zero cadence as each body part is moving
according to the velocity profile shown in (2.1).

Figure 7.14: Doppler vs cadence frequency
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Cadence of the gait:

The cadence of the gait is obtained by summing the powers from fk = 0 to fk = 250Hz
at each cadence frequency. This gives the cadence frequency plot shown in Figure 7.15.

As expected the cadence frequency has the highest power at fc = 0. The fundamental
cadence of the gait is equal to the second peak in the cadence frequency plot. Thus, the
gait cadence: fc = 1.74Hz = 1.74steps/sec from Figure 7.15.

Figure 7.15: Cadence frequency

Step Length:

• The step length is the ratio of the velocity of the body to the cadence frequency.
Hence, the step length is equal to Sl = Vbody

fc
= 1.422m/sec

1.74steps/sec = 0.82m/step.

• Thus, the estimation error of the step length as compared to the actual step length
of 0.8m is only 2.44%.

7.4 Human Activity Classification

Experiment-5: The objective of this experiment is to verify that the parameters of
human motion will have different values for different human activities. The experiment
is done in a large room. In this experiment, a person starts his motion from a distance
of about 15m and moves towards the radar until he stops few meters behind the radar.
Three types of activities are done walking, jogging2 and making exercise standing at
half-way distance. The person covers the same distance while making the walking and
jogging experiments.

2Jogging means running at a slow or leisurely pace.
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7.4.1 Spectrograms

The spectrograms obtained from the three activities are shown in Figure 7.16.

• The spectrogram from the different activities are quite distinct.

• It is also evident from the figure that, the jogging spectrogram has a smaller time
range than walking spectrogram (as expected).

To obtain the parameters for activity classification, 4sec of data from the interval 2sec
to 6sec of the MUSIC based walking and jogging spectrogram shown in Figure 7.17 are
taken.

Figure 7.16: Spectrograms from different Activities
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Figure 7.17: MUSIC spectrograms for walking and jogging

7.4.2 Torso Velocity

The torso velocity estimations are shown in Figure 7.18. Thus, averaging over the 4sec
time interval gives, a body velocity of;

• 1.61m/sec for the walking experiment.

• 2.56m/sec for the jogging experiment.

Figure 7.18: Classification based on torso velocity
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7.4.3 Step Length

The cadence frequency estimation from the two activities is shown in Figure 7.19. By
picking the 2nd significant peak in the cadence frequency plot, the cadence frequency is
found to be 1.73steps/sec for walking and 2.47steps/sec for jogging. Hence, the step
length is;

• Sl = vtorso
fc

= 1.61m/sec
1.73steps/sec = 0.93m for the walking experiment.

• Sl = vtorso
fc

= 2.56m/sec
2.45steps/sec = 1.05m for the jogging experiment.

Figure 7.19: Cadence frequency of the gait

7.4.4 Velocity Bandwidth

The velocity envelopes of the two activities are shown in Figure 7.20. Since the negative
frequencies are due to multipath, the velocity envelopes are extracted from the positive
Doppler frequency part of the spectrogram only.
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Figure 7.20: Classification based on velocity envelopes

From the upper and lower envelope estimations, fUE [n′] and fLE [n′], the velocity
bandwidth with and without micro-Doppler can be estimated.

• Micro-Doppler velocity bandwidth = average {maxima(fUE)−minima(fLE)}, which
gives:

– 4.53 m/sec for walking

– 6.46 m/sec for jogging

• Velocity bandwidth without micro-Doppler = average {minima(fUE)−maxima(fLE)},
which gives:

– 2.75 m/sec for walking

– 5.28 m/sec for jogging

• Offset of the velocity spectrum = average {maxima(fUE) +minima(fLE)}, which
gives:

– 2.47 m/sec for walking

– 3.56 m/sec for jogging

It is logical that the velocity bandwidth from jogging is greater than that of walking as
the body will move with a wide range of frequencies during running than during walking.

The fact that the velocity offset for both activities is greater than the torso velocity
shows that there is a higher velocity forward swing than backward swing in the human
locomotion.
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7.4.5 Standard Deviation

The standard deviation of the power over the velocities with the velocity bandwidth is
shown in Figure 7.21 for the two activities involved.

The average standard deviation over the 4sec interval is 10dB for walking and 14dB
for jogging. Thus, the variation of power over the velocity components of the motion
can also be used as a parameter for classification. This is also related to the appendage
to torso ratio, ATR parameter. That means, low ATR will result in higher standard
deviation than high ATR.

Figure 7.21: Standard deviation of power within velocity bandwidth

7.5 Velocity Profile

In the following methods, an attempt is made to extract the velocity profile points of the
walking in Experiment-5 as discussed in Section 5.4. The velocity profile points of the
motion obtained from the local maxima of the MUSIC based spectrogram are shown in
Figure 7.22 for a threshold3 of 5dB.

Combination of these local maxima through time should lead to a velocity profile
that is close to the model based profile in Figure 2.1. Then, the points are arranged in
order of their powers and tracking with time is done to obtain the set of points which
describe the velocity profile of each body part, vm(t) as discussed in Section 5.4. However
the strongest power based tracking did not give smooth velocity profiles. Thus, another
method to construct the velocity profile points from the maxima obtained should be
sought for.

3a value is taken as a maxima if it exceeds its neighbor values by more than the threshold.
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Figure 7.22: Velocity Profile using local maxima in MUSIC

7.6 Conclusion

From the results of the experiments performed, the following points can be concluded:

• It suffices to monitor the normalized standard deviation of power to get information
about the level of activity in an indoor environment.

• The two path model of quadrature demodulation is accurate enough to get a rough
estimation of the displacement of a person. This method is quite simple as com-
pared to distance estimation methods which use a short pulse analysis.

• Parametric spectral estimators are more useful and superior as compared to the
non-parametric ones for movement parameter extraction. For some of the param-
eters, these estimators perform the same; however, some of the parameters that
require high resolution, such as standard deviation within the velocity bandwidth,
benefit from the parametric estimators.

• The methods to obtain velocity and step length of the body give good estimations
for radial motion of the person.

• Parameters such as torso velocity, step length, velocity bandwidth are found to be
distinct for the different human activities performed; therefore, these parameters
can be used in training classifiers for automatic classification.

• The velocity profile of the different body parts can be obtained from the spec-
trogram; however, better tracking methods to match the velocities in consecutive
windows are required.
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Chapter 8

Conclusions & Future Work

8.1 Conclusion

In this thesis, parameters of human motion that can be used for activity quantification,
identification and classification are summarized using human movement models. The
Doppler shift phenomenon is utilized to measure human movement pattern using radar.
The Doppler signal model due to human motion in a multipath environment is derived
in a general bistatic radar scenario. It is found that the human motion, especially in
an indoor environment, consists of a wider Doppler spectrum than the motion of rigid
objects. The Doppler model is then utilized to compute a useful representation of the
motion: the spectrogram, using non-parametric and parametric estimators. It is found
that the sliding window MUSIC spectrogram has better resolution and hence it is more
useful in calculating most of the parameters than the STFT based spectrogram. It is also
discussed that the background clutter spectrum can be estimated in a static condition
and thus, it can be subtracted from the spectrogram.

The results obtained show that quadrature demodulation with background subtrac-
tion is a good but simple displacement estimator. The displacement estimate can be a
simple solution to find the position of a human target especially if displacement estimates
from distributed radars can be combined. It is also shown that human activity can be
identified from other kind of movements in an indoor environment by using the torso ve-
locity profile and cadence frequency estimates obtained from the spectrogram. It is also
concluded that, the parameters of motion obtained from the spectrogram such as torso
velocity, cadence frequency, velocity bandwidth are distinct enough to allow classification
of human activities. Thus, a classifier can be trained using these parameters for efficient
automatic classification.

It is also concluded that an indoor short range radar can be implemented using
simple transceivers like USRP. As already discussed, GNU Radio based radar is low-cost
and flexible. Unmodulated continuous wave radars can sufficient to characterize human
motion; however, modulated radars with a higher bandwidth are required to discriminate
multi-movers.
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8.2 Future Work

The following points are recommended as future work:

Classifier Training : Parameter extraction is one major step towards classification or
identification. However, it is difficult to find some defined unique range for these
parameters for the different activities. Thus, classification can only be done by
training the classifier with a series of experimental data taken for each activity; so
that most likely hood classification can be done in a real scenario. Thus, this work
can be extended by selecting a suitable classifier and making experiments to get
statistical data for the classifiers.

Phase Noise: Most of the validation experiments are done using a synchronized trans-
mitter and receiver arranged in a pseudo-monostatic scenario. However, it may
be required to operate a radar in a bistatic scenario so that most of the indoor
environment is covered. However, there will be phase noise and frequency offset
due to oscillator drift which makes extraction of small velocities, like those from
the human motion, impossible. The frequency offset can be removed by estimating
the offset of windowed segments of the signal using STFT. However, solving the
phase noise problem in a bistatic scenario requires further study.

Distributed Radars: Radar measures a radial motion pattern. Most of the identifi-
cation and classification parameters obtained such as torso velocity, displacement,
etc., represent the radial component of these parameters. The activity index com-
puted may not equally represent motion in different parts of the room; moreover,
the motion pattern received from a person behind walls can be too noisy. Thus,
one of the solutions to reduce these problems is deploying more than one radar
(distributed radars). This could involve deploying more than one transmitter or
more than one receiver. Thus, the efficient combination of Doppler information
from these radars can lead to an estimate more close to the actual values of these
parameters.

Multi-movers: Most of the methods suggested in this thesis face a problem in the pres-
ence of multiple persons. Different ways could be suggested to solve the problem:

• Antenna arrays: One way is to use antenna arrays (at least duplets) even though it
could be expensive. Thus, the variability of the spatial response of the antenna ar-
rays through time can be analyzed to see the direction of movement of the movers.
Another way using antenna arrays is combining the spectrograms from each an-
tenna; so that the phase difference, and hence the DOA, can be obtained at each
Doppler frequency at a particular time. Combining these three parameters yields
DOA versus frequency versus time information. From such a plot, the movement
of the persons can be discriminated. This SIMO (single input multiple output)
system can also be implemented using a USRP as there are two receiver sections
in the USRP.
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• UWB Radars: The use of UWB radars will enable a 3-D, Range-Time-Frequency
analysis. That means, the range bin at which the legs, arms, head or torso are
present can be singled out and separate time-frequency plots of each body part can
be obtained. This will make both identification and classification of human activi-
ties accurate. Therefore, the use of UWB radars for human activity identification
and classification is highly recommended. However, translation motion of the per-
son will lead to migration of the required bin making the bin tracking challenging.
Tracking of the required bin based on power level or selecting a bin common to the
selected consecutive oscillations can be a possible approach. However, UWB radars
could be too expensive; moreover, wideband radars are sufficient for discriminating
multi-movers.

• High sampling rate ADC : The cheapest way for multi-mover detection is using a
higher rate ADC than the current 64MS/sec ADC in the USRP. It can be said that,
we don’t need a resolution more than 0.5m to discriminate multi-movers. Thus,
such a resolution can be achieved by 300MS/sec ADC for instance. However, a
fast ADC means all the signal processing should be done in the FPGA.

Therefore, our recommendation for multi-mover detection is to use a high sampling rate
ADC together with the USRP as a pseudo-random sequence radar (this radar is already
implemented in GNU Radio as part of this work, but not used in the results because the
spatial resolution is not useful enough because of the low sampling rate ADC).
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Appendix A

Universal Software Radio Peripheral

Note: The hardware description of the USRP and daughter boards is mostly
based on the information I read and learned from GNU Radio forums and
based on the guides: [27], [29] and [30]. I would like to thank these authors for
their volunteer contribution as their is no a standard manual for the USRP
and daughter boards.

USRP is a general purpose radio that allows general purpose computers to function as
software defined radios. It can be directly plugged through USB to the host processor.
USRP1 is designed such that it serves as a digital baseband and IF section of a radio
communication system . The USRP consists of a cyclone FPGA, which makes it general
purpose, flexible and easily controllable. There are different daughter boards that are
designed to function as an RF section of the USRP. Figure A.1 shows how the USRP is
used with four daughter boards. The gain and carrier frequency of these daughter boards
can also be controlled from the host processor through the USRP.

A.1 The USRP

The USRP is designed such that the high speed signal processing, such as down con-
version, up conversion, decimation, interpolation, filtering are done in the FPGA. The
low speed signal processing such as modulation, demodulation and further signal pro-
cessing takes place in the host processor. This avoids bandwidth limitation due to USB
bottleneck and lessens computational burden of the processor.

The main components of the USRP are four DACs, four ADCs, Altera Cyclone
EP1C12 FPGA and Cypress FX2 USB 2.0 interface chip. The GNU radio community
mainly uses the USRP for wirelsess communication research. As a result, they have
designed a default FPGA configuration that is suitable for most communication systems.
The USRP with this default FPGA configuration is shown in Figure A.2. The figure
shows that the USRP has independent transmit and receive paths.

1USRP is designed and currently sold by Mr. Matt Ettus, http://www.ettus.com
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Figure A.1: The USRP with basic transmit and receiver Daughter boards

Figure A.2: USRP motherboard

The Receiver daughter boards, the RF front ends for the USRP will be plugged to
RxA and RxB and the transmitter daughter boards to TxA and TxB slots. As shown, the
in-phase and quadrature components of the signal have separate paths and ADCs. The
USRP uses 32-bits to represent a complex sample (16-bit in-phase and 16-bit quadrature);
hence, the samples received in the host are signed integer values instead of actual voltage
values.

The Transmit Signal Path

The complex data symbols to be transmitted are represented in an integer format and sent
to the USB. The USB interface chip stores these data in a FIFO transmit buffer. Then,
these data is interleaved and fed to the CIC (Cascaded Integrate-Comb) interpolator.
If the user specifies an interpolation factor of N, the CIC interpolators interpolate by a
factor N/4 and the remaining factor of 4 is done by the half band filters (HBF). The
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De-multiplexer then determines to which digital up converters the data will be output.
The digital up converters convert the base band data to an IF frequency. These data
is then converted to analog by 14 − bit, 128MS/sec DACs. The DAC can output a
maximum power of 10dBm2. There is also a programmable logic controller (PGA) that
can amplify the signal by a gain of up till 20dB after the DAC. Then, these signal is RF
modulated and transmitted by the daughter boards.

The digital up converter section shown in Figure A.3, converts the base band analog
signal of frequency,ωo to a passband RF signal. If a symbol,Sn = an + jbnis transmitted
then the output, Rnwill be given by,

Rn = a. cos(ωc)− b. sin(ωc) + j {a. cos(ωc) + b. sin(ωc)} = Sn.e
jωc

Figure A.3: Digital Up converter in USRP

The Receive Signal Path

In the receive signal path, the analog IF signal is received from a quadrature3 daughter-
board plugged to RxA or RxB. This IF signal is sampled by 64MS/sec, 12− bit ADC.
The full range of the ADC is 2V peak to peak across a 50Ωdifferential resistor. This
means the maximum power of a signal that can be sampled with the ADC without clip-
ping is 16dBm; however there is a programmable gain amplifier (PGA) of 20dB before
the ADC to amplify low level received signals. Then, the value of the multiplexer in the
FPGA determines from which ADC the input of each DDC (digital down converter)4

will be taken. The output of the DDC is interleaved and stored in the Rx, FIFO buffer.
Then, the data will be stored or processed in real time in the host PC.

The digital down converter section consists of a frequency down converter and a
decimator as shown in Figure A.4. The higher frequency components are first filtered

2The DAC supplies maximum of 1V peak-to-peak to a 50Ωresistor
3a daughterboard which has both in-phase and quadrature signal components
4only DDC0 and DDC1 are currently being used in the default FPGA configuration
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out using a four-stage CIC filter and decimated by factorM/2, whereM is the decimation
factor set by the user. The remaining factor of 2 decimation is done by the HBF.

Figure A.4: Digital down converter section in USRP

The USRP has the following features in general:

• Has an FPGA which can be designed into any Rx or Tx component.

• The multiplexer value, the interpolation and decimation rates, the gain and other
settings can be set by software.

• It has high speed analog to digital converter which can sample signals of bandwidth
till 64MHz without aliasing.

A.2 Daughter boards

There are different types of daughter boards that can be used as an RF front-end on the
USRP. The main differences between these boards include:

• Maximum transmit power

• Operation frequency range

• The number of transmit and receive sub-devices5 contained

• Whether the board uses its own or the motherboard (USRP) clock.

• Cost

The following are the major daughter boards designed by Ettus Research and used nowa-
days together with USRP.

5A sub-device is an independent transmitter or receiver part within a daughterboard which can be
tuned and whose gain can be set.
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Daughterboard Function Operating Frequency (MHz) Transmit power Clock Cost
XCVR2450 Transceiver 2400-2500 & 4900-5900 20dBm USRP $275
RFX2400 Transceiver 2300-2900 17dBm self $275
DBSRX Rx 800-2400 . USRP $150

LFRX/LFTX Rx/Tx 0-30 . . $75
Basic Rx/Basic Tx Rx/Tx 2-200 . . $75

Table A.1: USRP Daughter boards and their Characteristics

Most of the daughter boards are direct down conversion daughter boards, meaning
they can translate the RF signal directly to a base band signal. Moreover, some of them
use the USRP clock and some of them their own clock as reference. So, the tuning
method varies from daughterboard to daughterboard.

We used XCVR2450 daughterboard together with USRP. RF down conversion in this
board is discussed as follows.

Tuning in XCVR2450 This daughterboard is a direct down conversion daughterboard.
There is a voltage controlled oscillator (VCO) in the board that is controlled by a
Phase locked loop (PLL) based frequency multiplier which takes the USRP clock
as reference as shown in Figure A.5. When the user sets the receive or transmit
frequency of the daughterboard to a frequency,f ; the PLL based frequency synthe-
sizer tries to set the VCO frequency as close as possible to the required frequency
using the loop filter. Finally the VCO frequency will be set to a multiple of the
USRP oscillator frequency and with a phase equal to the phase of the USRP Os-
cillator6. If the required tuning frequency can be done to the multiplier resolution
of the PLL then direct down conversion will occur and the DDC frequency in the
FPGA will be set to 0. Otherwise, tuning will be done in the XCVR as close as
possible to the the required frequency and the remaining tuning is done by the
DDC in the FPGA.

6The USRP oscillator is a 64MHZ, 20ppm(parts-per-million) oscillator in the motherboard
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Figure A.5: PLL based frequency multiplier
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Appendix B

GNU Radio

B.1 Introduction

GNU Radio is an opensource,free software toolkit to build and deploy software defined
radios. The software consists of a set of hardware independent signal processing blocks
and hardware dependent interface code that links up the signal processing blocks run-
ning on a general purpose computer with the USRP hardware. GNU Radio has signal
processing libraries written in c++ ; and these blocks are glued together in Python. A
detail about GNU Radio, its features, the steps that should be followed to install it, etc.,
is found in [31] or on the main GNU radio page, http://gnuradio.org/trac. Here, only
a summary of the most important features is given.

GNU radio has generally the following major features:

Open Source: The code of gnu radio is opensource , so anybody can modify and use it
or distribute a new version.

Free: Anybody can use GNU Radio software for free. As a result its correctness is
not guaranteed. That means anybody who uses a code of GNU Radio for SDR
application uses it at his own risk.

Platform: GNU Radio can work in Linux, UNIX, Mac . GNU Radio can also work in
Windows ; despite, the fact that all of the libraries are not yet defined and there
are lots of bugs yet to be solved.

Libraries: In addition to base classes which function as building blocks for any radio
application; GNU radio contain a set of utility libraries and SDR applications writ-
ten for different radio applications including spectrum sensing, OFDM transceiver,
GSM transceiver, FM receiver, etc.

Data flow Abstraction: This is a nice but difficult to handle feature of Python for
other programming language users. Unlike other programming languages; GNU
Radio provides data flow abstraction. That is, the data that flows between signal
processing blocks can not be accessed.
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Programming Language: In GNU Radio signal processing blocks are defined in C++;
however, these blocks are glued together and run in Python. This is to make the
critical blocks defined in optimized C++ code and to make the connection and
management applications in the more user friendly Python language.

Reconfigurable on the fly: Parameters of signal processing blocks can be modified or
tuned during run time in GNU Radio.

Flexibility: GNU Radio can be used to form any communication system provided the
RF front end is able to perform the high frequency task.

The properties listed above make GNU Radio a suitable software platform for USRP.

B.2 Blocks & Signal Flow Graphs

A signal processing block is an independent module which has input and output ports
and a processing gut. In each block, the data received through an input port is stored in
a buffer, processed by the signal processing code and then pushed to the output buffer
to be sent to the next block. Such an implementation allows a real time operation of
signal processing blocks connected together. In addition , each block has its own member
functions through which a parameter can be set or be accessed.

A signal flow graph is an interconnection of signal processing blocks that forms a
complete radio application. These may for instance be an application which displays
the signal level in the environment around a certain carrier frequency. Every signal flow
graph starts with a source, uses the required signal processing blocks and ends in a sink.
So, when the USRP is used as transmitter it will be set as a sink in a signal flow graph
and when it is used as a receiver it will be used as a source in the signal flow graph. Thus,
from the application or Python point of view, there is a connection of signal processing
blocks between which data flows. Therefore, new blocks to be inserted should be able to
be compatible with the already existing blocks.

B.3 Radar Signal Flow Graphs

The radar consist both Tx and Rx, which have its own signal flow graphs.
The radar transmitter consists of :

Signal generator: This section generates modulated symbols. That is, it generates a
constant amplitude for CW radar, a pulse for pulse radar and a pseudo random
sequence for PRS radar.

Multiplier(gain): After the data is generated, it will be multiplied with a constant
corresponding to the transmitter amplitude set by the user.

USRP Sink : Finally the data will be sink to the USRP and the USRP does the
transmission task already described.
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Figure B.1: SDR structure using GNU radio and USRP

So, the transmitter radar flow graph looks like:

Signal generator →Multiplier → USRP Sink

In the radar receiver similarly,

USRP Source: The sampled baseband signal is received by these block.

Data receiver: The received data is correlated with the sent sequence to get impulse
response of the channel.

Radar_algorithms: In these blocks the impulse response is processed using the differ-
ent human movement characterization algorithsms.

Data_sink: The data sink can be a file to store the processed data or it can be a
graphical user interface showing the final processed output.

So, the receiver flow graph looks:

USRP Source→ DataReceiver → Radar algorithms→ DataSink
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