ON UNIFORM DISTRIBUTION OF SEQUENCES IN GF[q, x] AND $GF\{q, x\}$.

By H. G. Meijer and A. Dijksma

- 1. Introduction and preliminaries. Let $\Phi = GF[q, x]$ denote the ring of polynomials in the indeterminate x over an arbitrary finite field GF(q) of q elements. If A and M are any two elements of Φ with deg M > 0, let A(M) be the uniquely determined element of Φ such that deg $A(M) < \deg M$ and $A \equiv A(M) \pmod{M}$.
- J. H. Hodges [2; 55] defined the uniform distribution of a sequence $\theta = (A_i)$ of elements of Φ as follows. Let M be any element of Φ with deg M = m > 0. For any $B \in \Phi$ and integer $n \geq 1$ define $\theta(n, B, M)$ as the number of terms among A_1, A_2, \dots, A_n such that $A_i(M) = B(M)$. Then the sequence θ is said to be uniformly distributed modulo M in Φ if

(1.1)
$$\lim_{n\to\infty} n^{-1}\theta(n,B,M) = q^{-m} \text{ for all } B \in \Phi.$$

The sequence θ is said to be uniformly distributed in Φ if (1.1) holds for every $M \in \Phi$ with deg M = m > 0.

Let $\Phi' = GF\{q, x\}$ denote the extension field of Φ consisting of all the expressions

$$\alpha = \sum_{i=-\infty}^{m} c_i x^i \qquad (c_i \in GF(q)).$$

If α has this representation and $c_m \neq 0$, then we define deg $\alpha = m$. We extend this definition by writing deg $0 = -\infty$. The integral and fractional parts of α , denoted by $[\alpha]$ and $((\alpha))$ respectively, are defined by

$$[\alpha] = \sum_{i=0}^{m} c_i x^i, \quad ((\alpha)) = \sum_{i=-\infty}^{-1} c_i x^i.$$

It follows from the definition, that, for α and β in Φ' , we have $[\alpha + \beta] = [\alpha] + [\beta]$. We say $\alpha \equiv \beta \pmod{1}$ if $\alpha = \beta + A$, where $A \in \Phi$. It follows that $\alpha \in \Phi'$ is congruent modulo 1 to a unique β , namely $\beta = ((\alpha))$, such that $\deg \beta < 0$.

L. Carlitz [1; 190] defined the uniform distribution of a sequence $\theta = (\alpha_i)$ of elements of Φ' in the following way. For any $\beta \in \Phi'$ and any positive integers n and k, define $\theta_k(n, \beta)$ as the number of terms among α_1 , α_2 , \cdots , α_n such that deg $((\alpha_i - \beta)) < -k$. Then the sequence θ is uniformly distributed modulo 1 in Φ' if

(1.2)
$$\lim_{n\to\infty} n^{-1}\theta_k(n,\beta) = q^{-k} \text{ for all } k \text{ and } \beta \in \Phi'.$$

Received September 16, 1968.

An element $\alpha \in \Phi'$ is said to be irrational if it is not an element of GF(q, x), i.e., if it cannot be written as a quotient A/B with A and B in Φ . Well known is Kronecker's criterion for irrationality: If $\alpha = \sum_{i=-\infty}^{m} c_i x^i$, then α is irrational if and only if

(1.3)
$$\begin{vmatrix} c_{-1} & c_{-2} & \cdots & c_{-s} \\ c_{-2} & c_{-3} & \cdots & c_{-s-1} \\ \vdots & & & & \\ c_{-s} & c_{-s-1} & \cdots & c_{-2s+1} \end{vmatrix} \neq 0$$

for infinitely many s > 0.

The aim of this paper is to extend some of the results of L. Carlitz and J. H. Hodges. To do this we introduce a mapping of Φ onto the set of nonnegative integers I. Let τ be a one-to-one correspondence between GF(q) and the set $\{0, 1, \dots, q-1\}$ such that $\tau(0) = 0$. We extend the domain and range of τ to Φ and I by defining $\tau(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0) = \tau(a_n)q^n + \tau(a_{n-1})q^{n-1} + \dots + \tau(a_1)q + \tau(a_0)$. Clearly τ is a one-to-one correspondence between Φ and I. Then the sequence $\Gamma = (C_i) = (\tau^{-1}(i-1))$ consists of all elements of Φ , all occurring exactly once. Hence we have ordered the elements of Φ . We remark that Γ is uniformly distributed in Φ (compare [2; 62–63]).

S. Uchiyama [5] has given a criterion for uniform distribution of a sequence in I. Using the mapping τ , we can give a simple criterion for uniform distribution in Φ . See §2 (Theorem 1).

In §3 we prove that (C,α) is uniformly distributed modulo 1 in Φ' if and only if α is irrational (Theorems 2 and 3). We furthermore prove that $([C,\alpha])$ is uniformly distributed in Φ if and only if α is irrational or $\alpha = A/B$ with $A, B \in \Phi$, deg $A \leq \deg B$, $\alpha \neq 0$ (Theorem 4). We remark that L. Carlitz [1; 191] and J. H. Hodges [2; 65] have already proved that these sequences are weakly uniformly distributed, i.e., they have proved that for these sequences the limits in (1.1) and (1.2) exist if n tends to infinity along the subsequence $n = q^{i}(t = 1, 2, \cdots)$. (We note that for Φ the concept of "weakly uniformly distributed" defined in [2] is not, in general, the analog of this concept as defined for Φ' in [1]). Furthermore, we observe that Theorem 4 is the complete analog of Hodges' Theorem 4.2.

2. Criterion for uniform distribution in Φ . J. H. Hodges [2] gave a necessary condition for uniform distribution of a sequence in Φ . L. Kuipers [3] modified this condition to a necessary and sufficient one. We will give a somewhat less complicated criterion using the mapping τ . To prove this criterion we use the concept of uniform distribution in I. I. Niven [4] defined this for a sequence $\Psi = (a_n)$ of elements of I as follows. Let j and $m \geq 2$ be any elements of I and define $\Psi(n, j, m)$ to be the number of elements among a_1, a_2, \dots, a_n satisfying $a_i \equiv j \pmod{m}$. Then the sequence Ψ is said to be uniformly distributed modulo m in I if

$$\lim_{n\to\infty} n^{-1}\Psi(n, j, m) = m^{-1} \quad \text{for all} \quad j \in I.$$

S. Uchiyama [5] proved the following criterion: $\Psi = (a_n)$ is uniformly distributed modulo m in I if and only if

(2.1)
$$\lim_{n\to\infty} n^{-1} \sum_{i=1}^{n} \exp(2\pi i h a_i/m) = 0 \quad \text{for} \quad h = 1, 2, \dots, m-1.$$

For the sake of brevity we shall use the following notation. Let M be any polynomial of degree m. Then we define for any $A \in \Phi$ and $h \in I$,

$$e_M(A, h) = \exp \left[2\pi i h \tau(A(M))/q^m\right].$$

THEOREM 1. The sequence $\theta = (A_i)$ of elements of Φ is uniformly distributed modulo M in Φ if and only if

$$\lim_{n\to\infty} n^{-1} \sum_{i=1}^n e_M(A_i, h) = 0 \quad \text{for} \quad h = 1, 2, \dots, q^m - 1.$$

Proof. Let $\Psi = (\tau(A_i(M)))$ and B be an arbitrary element of Φ . Then $A_i \equiv B \pmod{M}$ is equivalent to $A_i(M) = B(M)$ or $\tau(A_i(M)) = \tau(B(M))$. Hence

$$\Psi(n, \tau(B(M)), q^m) = \theta(n, B, M).$$

Therefore the sequence θ is uniformly distributed modulo M in Φ if and only if Ψ is uniformly distributed modulo q^m in I. Hence Theorem 1 is a direct consequence of S. Uchiyama's criterion (2.1). This completes the proof.

3. Uniform distribution of (C,α) and $([C,\alpha])$.

THEOREM 2. Let $\Gamma = (C_i) = (\tau^{-1}(i-1))$ and let $\alpha \in \Phi'$ be irrational. Then the sequence $\theta = (C_i\alpha)$ is uniformly distributed modulo 1 in Φ' .

Proof. Let k be any positive integer and let $\beta = \sum_{i=-\infty}^{n} b_i x^i$ be an arbitrary element of Φ' . Then since $\alpha = \sum_{i=-\infty}^{m} c_i x^i$ is irrational, there exists an integer $s \geq k$ such that (1.3) holds. If $A = a_r x^r + a_{r-1} x^{r-1} + \cdots + a_0$, with $r \geq s - 1$, satisfies the inequality

$$(3.1) \deg\left((A\alpha - \beta)\right) < -k,$$

then the coefficients a_r , a_{r-1} , \cdots , a_0 satisfy

$$a_{0}c_{-1} + \cdots + a_{s-1}c_{-s} = b_{-1} - (a_{s}c_{-s-1} + \cdots + a_{r}c_{-r-1})$$

$$\vdots$$

$$a_{0}c_{-k} + \cdots + a_{s-1}c_{-s-k+1} = b_{-k} - (a_{s}c_{-s-k} + \cdots + a_{r}c_{-r-k})$$

$$a_{0}c_{-k-1} + \cdots + a_{s-1}c_{-s-k} = e_{1} - (a_{s}c_{-s-k-1} + \cdots + a_{r}c_{-r-k-1})$$

$$\vdots$$

$$a_{0}c_{-s} + \cdots + a_{s-1}c_{-2s+1} = e_{s-k} - (a_{s}c_{-2s} + \cdots + a_{r}c_{-r-s}),$$

where $e_i \in GF(q)$ $(i = 1, 2, \dots, s - k)$ are arbitrary. If s = k, then the equations of (3.2) containing e_i vanish. Using Cramer's rule, it follows that we may write

$$a_{0} = c_{0,0} + c_{0,s}a_{s} + \cdots + c_{0,r}a_{r}$$

$$a_{1} = c_{1,0} + c_{1,s}a_{s} + c_{1,r}a_{r}$$

$$\cdots$$

$$a_{s-1} = c_{s-1,0} + c_{s-1,s}a_{s} + \cdots + c_{s-1,r}a_{r}$$

where $c_{i,j} \in GF(q)$. Here the coefficients $c_{i,0}$ $(i=0,1,\cdots,s-1)$ depend on e_1 , e_2 , \cdots , e_{s-k} , while the coefficients $c_{i,j}$ with $j=s,s+1,\cdots,r$ are independent of e_1 , e_2 , \cdots , e_{s-k} . Moreover if $\{e'_1, e'_2, \cdots, e'_{s-k}\}$ differs from $\{e_1, e_2, \cdots, e_{s-k}\}$ then the corresponding set of coefficients $\{c'_{0,0}, c'_{1,0}, \cdots, c'_{s-1,0}\}$ differs from $\{c_{0,0}, c_{1,0}, \cdots, c_{s-1,0}\}$. Therefore the solutions A of (3.1) are of the form

$$A = a_{0} + a_{1}x + \cdots + a_{r}x^{r}$$

$$= (c_{0,0} + c_{1,0}x + \cdots + c_{s-1,0}x^{s-1}) + a_{s}(c_{0,s} + c_{1,s}x + \cdots + c_{s-1,s}x^{s-1})$$

$$+ \cdots + a_{r}(c_{0,r} + c_{1,r}x + \cdots + c_{s-1,r}x^{s-1})$$

$$+ a_{s}x^{s} + a_{s+1}x^{s+1} + \cdots + a_{r}x^{r}.$$

Hence

$$(3.3) \quad A = G_t + a_s F_s + a_{s+1} F_{s+1} + \dots + a_r F_r + a_s x^s + a_{s+1} x^{s+1} + \dots + a_r x^r,$$

where F_s , F_{s+1} , \cdots , F_r are fixed polynomials of degree $\leq s-1$, a_s , a_{s+1} , \cdots , a_r may be chosen arbitrarily in GF(q) and where G_t is a polynomial with coefficients depending on $e_1, e_2, \cdots, e_{s-k}$. Since there are q^{s-k} different sets $\{e_1, e_2, \cdots, e_{s-k}\}$ there are q^{s-k} different polynomials G_t and $t=1, 2, \cdots, q^{s-k}$.

Now $\theta_k(n, \beta)$ equals the number of polynomials among C_1 , C_2 , \cdots , C_n which are of the form (3.3); i.e., $\theta_k(n, \beta)$ is the number of polynomials of the form (3.3) with

$$(3.4) \quad \tau(A) = \tau(a_r)q^r + \dots + \tau(a_s)q^s + \tau(a_rF_r + \dots + a_sF_s + G_t) \le n - 1.$$

Suppose first that

$$(3.5) \quad n-1=b_rq^r+b_{r-1}q^{r-1}+\cdots+b_sq^s+(q-1)q^{s-1}+\cdots+(q-1),$$

where $0 \le b_i \le q-1$ $(i=s,s+1,\cdots,r)$, i.e., $n=aq^s$ for some integer a. Since $t \in \{1,2,\cdots,q^{s-k}\}$, we observe by comparing the equations (3.4) and (3.5) that

$$\theta_k(n, \beta) = q^{s-k}(b_r q^{r-s} + b_{r-1} q^{r-s-1} + \cdots + b_s + 1)$$

$$= aq^{s-k}$$

$$= q^{-k}n.$$

Let now n be arbitrary; then

$$|\theta_k(n,\beta)-q^{-k}n|\leq q^{s-k},$$

from which the theorem follows. This completes the proof.

THEOREM 3. $\theta = (C_i\alpha)$ is uniformly distributed modulo 1 in Φ' if and only if α is irrational.

Proof. In Theorem 2 we have shown that if α is irrational, then θ is uniformly distributed modulo 1 in Φ' . Suppose now that $\alpha = A/B$ where A and B belong to Φ and set deg B = b. We may, and do, suppose that (A, B) = 1. If θ is uniformly distributed modulo 1 in Φ' , then we get from (1.2) with k = b + 1 and $\beta = 0$,

$$\lim_{n\to\infty} n^{-1}\theta_k(n, 0) = q^{-b-1}.$$

If $\deg\left((CA/B)\right)<-b-1$, there exist $F\operatorname{\varepsilon}\Phi$ and $\delta\operatorname{\varepsilon}\Phi'$ such that $\deg\delta<-b-1$ and

$$CA/B = F + \delta,$$

or

$$CA - FB = B\delta$$
.

Since $CA - FB \in \Phi$ and deg $(B\delta) \le -1$, it follows that $\delta = 0$ and B divides C. Conversely, if B divides C, then deg $((CA/B)) = -\infty < -b - 1$. Thus deg ((CA/B)) < -b - 1 if and only if $C \equiv 0 \pmod{B}$. Since the sequence $\Gamma = (C_i)$ is uniformly distributed modulo B in Φ (compare [2; 62-63]), it follows that

$$\lim_{n\to\infty} n^{-1}\theta_{b+1}(n,0) = \lim_{n\to\infty} n^{-1}\Gamma(n,0,B) = q^{-b} \neq q^{-b-1}.$$

We have thus arrived at a contradiction, and hence the theorem is proved.

THEOREM 4. Let $\Gamma = (C_i)$ be as above. Then $\Psi = ([C_i\alpha])$ is uniformly distributed in Φ if and only if α is irrational or $\alpha = A/B$ where A, $B \in \Phi$, $\alpha \neq 0$ and $a = \deg A \leq b = \deg B$.

Proof. The proof is divided into three parts: (I) α is irrational; (II) $\alpha = A/B$, A, $B \in \Phi$ and a > b; (III) $\alpha = A/B$, A, $B \in \Phi$ and $a \leq b$.

I (α is irrational). Let M be any polynomial of degree m > 0. Then α/M is irrational and according to Theorem 2, $\theta = (C_i \alpha/M)$ is uniformly distributed modulo 1 in Φ' . Hence if $D \in \Phi$ with $d = \deg D < m$, then for k > 0,

(3.6)
$$\lim_{n \to \infty} n^{-1} \theta_k(n, D/M) = q^{-k}.$$

Ιf

$$(3.7) \qquad \deg\left(\left(C_{i}\alpha/M - D/M\right)\right) < -k$$

then there exist $F \in \Phi$ and $\delta \in \Phi'$ such that deg $\delta < -k$ and

$$C_i \alpha / M - D / M = F + \delta$$

or

$$C_i\alpha = FM + D + M\delta$$
,

and hence $[C_i\alpha] \equiv D \pmod{M}$ if $k \geq m$. Conversely, if $[C_i\alpha] \equiv D \pmod{M}$, then (3.7) holds for k = m. Because of this equivalence we have that

$$\theta_m(n, D/M) = \Psi(n, D, M).$$

From this and (3.6) it follows that

$$\lim_{n\to\infty} n^{-1}\Psi(n, D, M) = q^{-m}.$$

II $(\alpha = A/B; a > b)$. If B divides C_i , then obviously $[C_iA/B] \equiv 0 \pmod{A}$. Conversely if $[C_iA/B] \equiv 0 \pmod{A}$, then there exist $F \in \Phi$ and $\delta \in \Phi'$ such that $\deg \delta < 0$ and

$$C_iA/B = FA + \delta$$

or

$$C_i - FB = \delta B/A$$
.

Since deg $\delta B/A < 0$, it follows that $C_i = FB$ or $C_i \equiv 0 \pmod{B}$. This implies that $[C_iA/B] \equiv 0 \pmod{A}$ if and only if $C_i \equiv 0 \pmod{B}$. Since $\Gamma = (C_i)$ is uniformly distributed modulo B in Φ , we get

$$\lim_{n\to\infty} n^{-1}\Psi(n, 0, A) = \lim_{n\to\infty} n^{-1}\Gamma(n, 0, B) = q^{-b} > q^{-a},$$

which implies that the sequence Ψ is not uniformly distributed in Φ .

III $(\alpha = A/B; a \leq b)$. By definition $\Psi(n, D, M)$ is the number of elements among C_1 , C_2 , \cdots , C_n which satisfy the equation

$$(3.8) [XA/B] \equiv D(M) \text{ (mod } M).$$

 X_0 satisfies (3.8) if and only if it satisfies

$$(3.9) [XA/B] \equiv D(M) + E_t M \pmod{AM}$$

where E_t is a polynomial of degree < a, also $t = 1, 2, \dots, q^a$. We now discuss for a moment equation (3.9) where t and D(M) are fixed. Let X_0 satisfy (3.9). Let F be a polynomial of degree < b - a and let H be an arbitrary polynomial. Then also

$$(3.10) X_0 + HBM + F$$

is a solution of (3.9). On the other hand, if X_0 and X_1 satisfy (3.9), then

$$[(X_0 - X_1)A/B] \equiv 0 \pmod{AM}.$$

Hence $(X_0 - X_1)A/B = HAM + \delta$, where $\delta \varepsilon \Phi'$ with deg $\delta < 0$. Therefore $X_0 - X_1 = HBM + \delta B/A$. We set $F = \delta B/A$. Then deg F < b - a, and since $F = X_0 - X_1 - HBM$, we have $F \varepsilon \Phi$. Thus if (3.9) has a solution X_0 , then the other solutions are given by (3.10), where H is arbitrary and F is arbitrary but deg F < b - a. Hence there are q^{b-a} solutions of degree < b + m, and we may assume deg $X_0 < b + m$.

Since there are q^{b+m} polynomials of degree < b + m, it follows that q^{b+m} : $q^{b-a} = q^{a+m}$ equations of the form (3.9) are solvable. On the other hand, there are q^m different polynomials D(M) and q^a different polynomials E_t , so that there are q^{m+a} different equations of the form (3.9), and hence all are solvable.

Now we want to determine $\Psi'(n, D, M)$, the number of terms among C_1 , C_2 , \cdots , C_n which are solutions of (3.9) for fixed t and D(M). In other words, we want to determine the number of polynomials of the form (3.10) with

$$\tau(X_0 + HBM + F) \le n - 1.$$

Let $HBM = G_1 + G_2$ where deg $G_2 < b + m$ and $G_1 = d_r x^r + \cdots + d_{b+m} x^{b+m}$ with $r = \deg HBM$ (if H = 0 so that $r = -\infty$, then $G_1 = 0$). Then

$$\tau(X_0 + F + HBM) = \tau(d_r)q^r + \cdots + \tau(d_{b+m})q^{b+m} + \tau(X_0 + F + G_2).$$

Here F and H are arbitrary with deg F < b - a. BM is fixed, while G_1 depends on the choice of H. In fact, if we compare the coefficients of H, BM and G_1 , we conclude that there is a one-to-one correspondence between the polynomials H and G_1 . If $n = eq^{b+m}$, we get as in the proof of Theorem 2, that

$$\Psi'(n, D, M) = nq^{-m-a}.$$

Since $t \in \{1, 2, \dots, q^a\}$, we get

$$\Psi(n, D, M) = q^a \Psi'(n, D, M) = nq^{-m}$$
.

From this it follows after some calculation that

$$|\Psi(n, D, M) - nq^{-m}| \le q^b$$

for all n, so that the sequence is uniformly distributed in Φ . This completes the proof.

4. Complementary sequences. Let $\theta = (A_i)$ be a subsequence of $\Gamma = (C_i) = (\tau^{-1}(i-1))$. If $\theta \neq \Gamma$, then we denote by θ^* the complementary sequence of θ , which is a subsequence of Γ and consists of all elements of Γ which do not belong to θ . Here θ^* may be finite or infinite. We recall that Γ is uniformly distributed in Φ (compare [2; 62–63]). We now prove the following theorem.

THEOREM 5. Let $\theta = (A_i)$ be an infinite subsequence of $\Gamma = (\tau^{-1}(i-1))$. Let $A(n, \theta)$ denote the number of terms A_i with $\tau(A_i) < n$. If $s = \lim \sup_{n \to \infty} n^{-1}A(n, \theta) < 1$ and θ is uniformly distributed modulo M, then θ^* is also uniformly distributed modulo M.

Proof. Since $\lim \sup n^{-1}A(n, \theta) < 1$, the sequence θ^* is infinite. For the sake of brevity we write $k_1 = A(n, \theta)$ and $k_2 = n - A(n, \theta) = A(n, \theta^*)$. Then $k_1/n < (1+s)/2$ and $k_2/n > (1-s)/2$ if n is sufficiently large. For any polynomial B we have

$$\theta^*(k_2, B, M) = \Gamma(n, B, M) - \theta(k_1, B, M)$$

 \mathbf{or}

(4.1)
$$k_2^{-1}\theta^*(k_2, B, M) = n^{-1}\Gamma(n, B, M) + (k_1/k_2)\{n^{-1}\Gamma(n, B, M) - k^{-1}\theta(k_1, B, M)\}.$$

Here $(k_1/k_2) < (1+s)/(1-s)$ if n is sufficiently large. As k_2 tends to infinity through the sequence of all positive integers, then obviously n and k_1 tend to infinity through subsequences of the sequence of all integers. Since Γ and θ are uniformly distributed modulo M, the second term in the right-hand side of (4.1) tends to zero. Hence

$$\lim_{k_2\to\infty} k_2^{-1}\theta^*(k_2, B, M) = \lim_{n\to\infty} n^{-1}\Gamma(n, B, M) = q^{-m},$$

which proves the theorem.

REFERENCES

- L. CARLITZ, Diophantine approximation in fields of characteristic p, Trans. Amer. Math. Soc., vol. 72(1952), pp. 187-208.
- J. H. Hodges, Uniform distribution in GF[q, x], Acta Arithmetica, vol. XII (1966), pp. 55-75.
- L. Kuipers, A remark on Hodges' paper on uniform distribution in Galois fields (Abstract presented by title), Notices Amer. Math. Soc., vol. 15(1968), p. 120.
- I. NIVEN, Uniform distribution of sequences of integers, Trans. Amer. Math. Soc., vol. 98(1961), pp. 52-61.
- S. UCHIYAMA, On the uniform distribution of sequences of integers, Proc. Japan Acad., vol. 37(1961), pp. 605-609.

TECHNISCHE HOGESCHOOL DELFT DELFT, NETHERLANDS