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a b s t r a c t 

Emerging on-demand sharing alternatives, in which one resource is utilised simultaneously by a circum- 

stantial group of users, entail several challenges regarding how to coordinate such users. A very relevant 

case refers to how to form groups in a mobility system that offers shared rides, and how to split the costs 

within the travellers of a group. These are non-trivial tasks, as two objectives conflict: 1) minimising the 

total costs of the system, and 2) finding an equilibrium where each user is content with her assignment. 

Aligning both objectives is challenging, as users are not aware of the externalities induced to the rest. 

In this paper, we propose protocols to share the costs within a ride so that optimal solutions can also 

constitute equilibria. To do this, we model the situation as a non-cooperative game, which can be seen as 

a game-version of the well-known set cover problem . We show that the traditional notions of equilibrium 

in game theory (Nash and Strong) are not useful here, and prove that determining whether a Strong 

Equilibrium exists is an NP-Complete problem, by reducing it to the k-Exact-Cover problem. Hence, we 

propose three alternative equilibrium notions (stronger than Nash and weaker than Strong), depending 

on how users can coordinate. For each of these equilibrium notions, we propose a (possibly overcharging) 

cost-sharing protocol that yields the optimal solutions equilibria. 

Simulations for Amsterdam reveal that our protocols can achieve stable solutions that are close to the 

optimum, and that having a central coordinator can have a large impact. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Transport systems often face a tension between individual 

hoices and global optimisation. As users need to share some lim- 

ted resources, such as streets or vehicles, their decisions affect 

ther travellers but such externalities are usually not internalised. 

here are some famous paradoxes illustrating this issue, such as 

he Braess paradox ( Frank (1981) ), which predicts that building an 

xtra road might make everybody worse through their selfish rout- 

ng decisions, or the Down-Thomson paradox ( Mogridge (1997) ), 

hich states that new infrastructure for cars can also lead to an 

verall deterioration due to users switching from public transport 

o private modes. The problem of aligning users’ interests mani- 

ests itself in a novel way in on-demand shared systems, where 

equests are matched into groups, meaning that the route (thus 

aiting and in-vehicle times) depends on the circumstantial co- 
∗ Corresponding author.:. 
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ravellers. That is to say, if users can decide with whom to travel, 

hey might induce externalities to the rest of the users, which im- 

lies that their individual interests might not be perfectly aligned 

ith a global optimisation process. 

Therefore, in such shared mobility systems it is crucial to dis- 

inguish between optima and equilibria . Optimal solutions are typ- 

cally pursued by some central non-profit operator or authority, 

ho wants the system to run as efficiently as possible, and refer 

o minimising the sum of all the costs involved. Equilibria (also 

alled stable solutions) deal with users’ interests, namely to ensure 

hat everybody is satisfied enough so that they will not coordinate 

omehow to change the solution. As we discuss below, there are 

ifferent ways to define an equilibrium depending on how users 

re assumed to be able to coordinate. 

The authority does have a tool so that users internalise (at least 

o some extent) the externalities they induce to the rest of the sys- 

em: fares. In fact, when several users share a vehicle, an inevitable 

uestion of how to split the monetary costs emerges, and there 

s no straightforward answer to it. Naive approaches might be to 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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plit the costs uniformly between the users, or proportionally to 

he distance between each user’s origin and destination. However, 

uch ideas might lead to undesirable equilibria. If a user is trav- 

lling a long distance from her origin to her destination, then no- 

ody would want to share the vehicle with her under a uniform 

ivision of the costs; the opposite situation would occur with fares 

hat are proportional to the distance (a common scheme applied 

n ridepooling systems), as nobody would be willing to share a 

ide with someone requiring a short trip. Therefore, the question 

f which cost-sharing protocol should be implemented in order to 

lign the users’ and the authority’s interests is far from trivial. 

This paper is primarily devoted to addressing this research gap: 

ow to formalise the problem of defining protocols to split the 

osts among users sharing a ride, and which protocols should be 

sed to reach efficient solutions? To do so, we model the described 

ituation as a formal game, in which each user can choose with 

hom to travel, as long as the selected co-travellers agree. We ar- 

ue that the usual equilibrium notions (Nash and Strong Equilibria) 

o not capture appropriately how users can coordinate, which re- 

uires us to propose several alternative equilibria notions. For each 

f these notions, we propose a cost-sharing protocol (i.e., how to 

hare the costs among the users within a group) that makes the 

ptimal solution an equilibrium, so that the authority can propose 

he users how to match (optimally) in a way that they will be sat- 

sfied ( Anshelevich et al. (2008) ). Finally, we test our ideas using 

eal-life data in Amsterdam, with a batch of 400 travellers sharing 

ides. 

The equilibrium notions we describe, as well as the correspond- 

ng cost-sharing protocols, might be utilised for any mobility sys- 

em in which groups are formed on-demand and where a suf- 

cient number of vehicles is always available (i.e., there are no 

ejected requests). The rest of the paper is written assuming a 

idepooling system, i.e., a centralised service that matches trav- 

llers into groups and assigns vehicles to serve them. Ridepool- 

ng services are considered promising for the future of mobility, 

s they might keep many of the virtues that have made ride- 

ailing services popular, while reducing the increase in conges- 

ion that has been associated with those ( Diao, Kong, & Zhao 

2021) ; Henao & Marshall (2019) ; Tirachini & Gomez-Lobo (2020) ; 

u & MacKenzie (2021) ). Aligning users’ and the system’s inter- 

sts is crucial for this purpose, as one needs users to be inter- 

sted in using the system, and the system to be able to effec- 

ively stimulate users to share so that congestion is indeed miti- 

ated. Our findings also apply to ridesharing services, in which dif- 

erent riders coordinate to transport in a vehicle driven by one of 

hem ( Agatz, Erera, Savelsbergh, & Wang (2012) ; Chan & Shaheen 

2012) ; Enzi, Parragh, Pisinger, & Prandtstetter (2021) ; Furuhata 

t al. (2013) ; Mourad, Puchinger, & Chu (2019) ; Özkan (2020) ). 

or instance, Lu & Quadrifoglio (2019) study a similar model, ar- 

uing that when groups are matched, any of the riders within a 

roup can be the driver. Although these systems have not been 

ble to become large-scale yet, they might become a relevant part 

f future shared mobility systems, when coordination tools con- 

inue to evolve. As these systems might operate in non-centralised 

ashions, users’ choices become a structural component, so under- 

tanding their impact is crucial. Moreover, as we use generic cost 

unctions, other examples of the so-called sharing economy could 

e modelled using the same framework (such as sharing a hotel 

oom, a parking lot or a car, as exemplified by Chau & Elbassioni 

2017) ). 

The remaining of the paper is organised as follows. Section 2 

eviews the most important previous works. Section 3 formalises 

he game and describes the equilibrium notions that we study. 

ection 4 proposes the respective cost-sharing protocols, which are 

ested numerically in Section 5 . Finally, Section 6 concludes and 

roposes some lines for future research. 
957 
. Related works 

.1. Cost-sharing protocols 

The problem of how to split costs among different users that 

hare one or more common resources, and valuate them differ- 

ntly, has been studied by researchers for decades. This is usu- 

lly done in the context of game theory, i.e., where a number of 

layers need to make some choices (such as which resources to 

emand), so that their decisions affect each other and are taken 

imultaneously. Cost-sharing protocols have been proposed for both 

ooperative and non-cooperative games. In the former, the aim is 

orming coalitions, defined as sets of users that decide to cooper- 

te to form the best possible solution, so that the costs are split 

ithin each coalition; hopefully, there will be a single coalition 

ormed by everybody. The classical cost-sharing models within the 

ooperative framework are reviewed by Moulin (2002) , who also 

hows that this problem relates (via the resulting individual costs) 

o the question of how to split the resources, and by Jain & Mah-

ian (2007) . In the non-cooperative version, each player decides 

ndividually, so that the cost-sharing protocol is meant to push the 

layers towards equilibria that are beneficial for everybody (some 

xamples using this approach are the papers by Arin, Inarra, & 

uquin (2009) ; Buchbinder, Lewin-Eytan, Naor, & Orda (2008) ; Ma, 

ang, Yang, Hua, & Guan (2017) ). In the context of ridepooling (or 

idesharing), this is a very relevant difference, as in the cooperative 

ramework the cost of a user within a group does not depend only 

n her co-travellers, but also on the other members of the coali- 

ion, which might be inconvenient as the protocols can be difficult 

o understand (and thus to accept) by the passengers. 

Most of the models are anonymous , meaning that the cost of a 

esource does not depend on which users are using it, but only on 

ts total amount. This is the case for resource allocation problems, 

n which each user selects one or more resources (or an amount 

f them), and the total cost of each resource depends on the num- 

er of players (or the corresponding total amounts) selecting them 

 von Falkenhausen & Harks (2013) ; Gkatzelis, Kollias, & Roughgar- 

en (2016) ; Harks & Miller (2011) ). A particularly relevant case 

s congestion games ( Harks & Timmermans (2021) ), in which ev- 

ry user has to choose among some predefined set of resources 

for instance, different routes connecting her origin and destina- 

ion); cost-sharing protocols have been proposed for this setting by 

airing, Kollias, & Kotsialou (2020) and Gkatzelis, Kollias, & Rough- 

arden (2014) . 

Crucially, in on-demand transportation systems costs should not 

e anonymous, as the total distance driven by each vehicle de- 

ends directly on the origins and destination of its users. That is, 

he cost of the resources should depend not only on the num- 

er of users, but specifically on the set of users. This frame- 

ork is analysed by Harks & von Falkenhausen (2014) in a gen- 

ral facility location problem, where each user has a specific set 

f available resources to choose, by Roughgarden & Sundararajan 

2009) , in a model where there is a single resource, and by Albers

2009) , Roughgarden & Schrijvers (2016) , and Chen, Roughgarden, 

 Valiant (2010) for network design problems where users choose 

hich arcs they want. Scheduling problems are a particular type of 

on-anonymous model where cost-sharing protocols are needed: 

n such problems, jobs are to be assigned to available machines, so 

hat each job-machine pair has an associated length, with the re- 

ulting cost of each machine depending on the length of the tasks 

ssigned to it ( Caragiannis, Gkatzelis, & Vinci (2017) ; von Falken- 

ausen & Harks (2011) ). 

The model by Chau & Elbassioni (2017) is more similar to 

urs. They too use non-anonymous costs, and differ from the pa- 

ers referred in the previous paragraph as they consider a scheme 

n which resources are always available (they call this character- 
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stic as considering canonical resources that are always replace- 

ble). In the context of ridepooling, considering canonical resources 

eans that we assume that the fleet is large enough to trans- 

ort everybody, regardless of how users are grouped. As we dis- 

uss in Section 3 , such an assumption will be decisive when study- 

ng which passengers can deviate from their current group, as 

hey will always have the chance to travel alone. The paper by 

hau & Elbassioni (2017) differs from ours as they use coopera- 

ive game theory (which might be troublesome in the ridepool- 

ng context, as discussed above), and also as they take some usual 

ost-sharing protocols and study the worst possible equilibrium, 

nstead of finding protocols that make the optimal solution an 

quilibrium. 

As we explain in Section 3 , the game we study can be analysed

s a game-theory version of the classical combinatorial problem 

et cover . A similar game has been studied by Escoffier, Gourves, 

 Monnot (2010) , although they focus on cost-sharing protocols to 

inimise the cost of the worst possible equilibrium. Moreover, in 

heir model the cost of a user within a group can increase if some 

o-travellers decide to join a different group, which is reasonable 

or the abstract model they study, but does not seem to be realistic 

or modelling a mobility system. 

.2. Sharing costs in on-demand transportation systems 

Cooperative game theory has also been used for the specific 

roblem of splitting the costs the users sharing a vehicle. Such 

n approach is followed by Lu & Quadrifoglio (2019) , who study 

he case in which vehicles follow the shortest circuits to serve 

heir passengers (i.e., solving a traveling-salesman-problem, TSP), 

hich might not be the best case when users’ costs are part of 

he decision. They focus on finding the so-called nucleus of the 

ooperative game, meaning that they minimise the maximal dis- 

atisfaction among all the groups that are formed. Levinger, Ha- 

on, & Azaria (2020) also study a similar framework as a coop- 

rative game, and focus on how to compute the so-called Shap- 

ey values , which are known to be fair prices in such cooperative 

ames, but are usually difficult to compute. Their main result is 

hat when only vehicle-kilometers are taken into account and users 

re sorted a-priori, Shapley values can be calculated in polynomial 

ime. Bistaffa, Farinelli, Chalkiadakis, & Ramchurn (2017) deals with 

oth the optimal solution and the kernel of the cooperative game 

n a similar ridesharing system. 

A different tool that has been widely used is mechanisms design , 

n which users offer prices as in an auction. Bian, Liu, & Bai (2020) ;

heng, Nguyen, & Lau (2014) ; Kleiner, Nebel, & Ziparo (2011) ; Shen, 

opes, & Crandall (2016) study mechanisms to match that are in- 

entive compatible , i.e., in which each user’s best strategy is to re- 

eal their true interests: Kleiner et al. (2011) focus on a rideshar- 

ng system, Shen et al. (2016) on ridepooling, while Bian et al. 

2020) ; Cheng et al. (2014) on feeder-trunk systems where the on- 

emand component serves the last mile; in the latter, users do not 

hare the vehicle simultaneously. Regarding non-shared ridehail- 

ng, Asghari, Deng, Shahabi, Demiryurek, & Li (2016) proposes bid 

echanisms to assign drivers to riders, while Zhang, Wen, & Zeng 

2015) study a discounted trade reduction mechanism scheme to sat- 

sfy every agent. 

Other studies use different techniques to set pricing that at- 

ain a stable matching among different agents: vehicles and users 

re matched by Rasulkhani & Chow (2019) in a generic many- 

o-one transport system (i.e., where many passengers can utilise 

he same route), while Hu, Dessouky, Uhan, & Vayanos (2021) ; 

eng et al. (2020) propose how to define the payments from pas- 

engers to drivers for ridesharing. Chen et al. (2018) consider a 

odel in which users can choose among a set of options that of- 

er different prices and pick-up times. Stable assignments between 
958 
airs of riders (or between one driver and one rider) are stud- 

ed by Chau, Shen, & Zhou (2020) ; Wang, Agatz, & Erera (2018) ;

an, Lee, Chu, Chen, & Luo (2020) ; Zhang & Zhao (2018) . Furuhata

t al. (2015) study cost-sharing mechanisms for ridesharing, that 

re updated online as new passengers enter the system, guaran- 

eeing that fares can never increase for a passenger. Ke, Yang, 

i, Wang, & Ye (2020) study the emerging market equilibria in 

oth pooled and non-pooled systems, including drivers’ and riders’ 

nterests. 

In all, the relationship between efficient prices and sta- 

le/optimal assignments in on-demand mobility systems has been 

ncreasingly studied during last years. However, the pricing strate- 

ies have mostly relied either on prices that might depend on 

sers travelling in other vehicles, or on auctions, so that the ques- 

ion about direct prices for a shared trip remains yet to be studied. 

.3. Game theory and flexible mobility systems 

Flexible systems require deciding how to match vehicles and 

sers, so that conflicts between the interests of different stake- 

olders usually emerge. Therefore, using game theory is a natural 

dea that has been followed by several papers in the past to study 

ifferent issues related to these mobility systems. Hernández, Cár- 

enas, & Muñoz (2018) consider an abstract model of carpooling, 

n which the users’ decisions (or strategies ) are whether to coop- 

rate or not. If they do not cooperate, they can decide selfishly, 

ut receive a punishment, whereas cooperating entails a reward. 

hey focus on the evolution in time of users’ decisions. Schroder, 

torch, Marszal, & Timme (2020) use game theory to understand 

he emergence of surge pricing in ridehailing systems, through 

 model in which drivers can decide when to turn-off their de- 

ices (a similar analyses is performed by Castillo, Knoepfle, & Weyl 

2017) , but without employing game theory). Kucharski, Fielbaum, 

lonso-Mora, & Cats (2020) study the system-wide impact of users 

rriving late at their pick-up locations, which is also modelled us- 

ng game theory, in which users’ decide strategically how late to 

rrive, taken into account the annoyance of both waiting for other 

assengers and arriving late at the final destination. Jacob & Roet- 

reen (2021) studies a for-profit ridehailing system in which users 

trategically decide whether to travel solo, pooling, or not using 

he system at all. 

In spite of its relevance, (non-cooperative) game theory has not 

een widely used to study the matching issues emerging in mobil- 

ty systems in which users share the same vehicle. 

.4. Contribution 

This paper’s contribution is threefold: First, we identify that op- 

imal ridepooling solutions are not always stable if travellers can 

hoose with whom to share the vehicle, and formalise the prob- 

em as a non-cooperative game. Second, we show that the tradi- 

ional notions of Nash and Strong Equilibria are not suitable for 

his problem, and propose three intermediate notions of equilib- 

ium. The third and main contribution of this paper is proposing 

ost-sharing protocols, so that for each of the three equilibrium 

otions, optimal ways to group the users also constitute equilib- 

ia. The rules imposed by these protocols to split the costs within 

 shared trip depend only on the characteristics of the trip itself, 

nd not on the other groups and trips in the system. 

Additionally, we run numerical simulations for a real-life case 

rom Amsterdam, that confirm our results, showing that optimal 

olutions are in fact stable for users. For each protocol, the best 

ossible equilibrium yields total costs that are close to optimality 

egardless of the equilibrium notion, whereas that the price of an- 

rchy can be significantly larger. 
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1 In the traditional set cover problem, elements of the universal set might be 

covered by more than one subset, which we do not allow here when we impose an 

equality in the constraint in Problem (1) . However, it is straightforward to see that 

the problems are indeed equivalent, modifying the usual definition of set cover: For 

each G ∈ G, for each H ⊆ G , if H / ∈ G , we add H to G with c(H) = min G ′ ∈G: H⊂G ′ c(G ′ ) . 
Doing so, there is always an optimal solution covering each element exactly once. 

2 This idea of proposing an ad-hoc equilibrium notion, between NE and SE, has 
. The game and the equilibria 

.1. The formal co-travellers game CTG 

Our problem is defined by a set of passengers P = { 1 , . . . , n }
nd a set of feasible groups G = { G 1 , . . . , G m 

} , each of them having

 cost c(G ) ≥ 0 . Groups G ∈ G are subsets of P , and all their sub-

ets are assumed to be feasible as well, i.e. G ∈ G, H ⊆ G ⇒ H ∈ G.

n particular, singletons are always feasible, i.e. { i } ∈ G ∀ i ∈ P . 

Groups in G are interpreted as sets of users that might travel 

n the same vehicle. The set G is defined by exogenous conditions 

such as the capacity of the vehicles, or declining groups that re- 

uire too long detours), i.e., we assume that G is fixed. We assume 

hat there are enough vehicles to carry everybody. 

Regarding costs, a natural assumption is that if H ⊆ G then 

(G ) ≤ c(H) (and c(∅ ) = 0) . Differently from other related papers

n the topic, we do not assume any type of supermodularity or 

ubmodularity, i.e., if G 1 and G 2 are disjoint groups and G 1 ∪ G 2 

s feasible, it might hold either that c(G 1 ) + c(G 2 ) ≤ c(G 1 ∪ G 2 ) or

hat c(G 1 ) + c(G 2 ) ≥ c(G 1 ∪ G 2 ) , because the sign of this relation-

hip represents how efficient it is to serve the whole group of pas- 

engers together (which depends, for instance, on how close are 

heir origins and destinations). 

We are interested in comparing different ways to match the 

sers. A matching is a selection of groups { H 1 , . . . , H η} ⊆ G, such

hat η > 0 is any integer and each i ∈ P belongs to exactly one of

hese groups H. The optimal matching can be found using the ILP 

hown in Eq. (1) , where x G = 1 if and only if group G is selected

o be executed, and the constraint ensures that each passenger is 

ransported in exactly one group. Hence, we are looking for a mu- 

ually exclusive and collectively exhausting partitioning of the pas- 

engers population. Throughout the paper, we will refer to this ILP 

s Problem (1) . 

min 

 G ∈{ 0 , 1 } 
∑ 

G ∈G 
x G c(G ) (1) 

s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 

Remark: Mobility systems induce costs of different nature and 

o various agents. We opt to use an abstract representation c(G ) 

o that our model remains valid for any cost function. For in- 

tance, c(G ) can contain operators’ costs, such as fuel and main- 

enance, and users’ costs such as total travelling time or other 

pecific ridepooling-related aspects (like unreliability, studied by 

lonso-González, van Oort, Cats, Hoogendoorn-Lanser, & Hoogen- 

oorn (2020b) ; Fielbaum & Alonso-Mora (2020) , or the willingness 

o share the vehicle with strangers, studied by Alonso-González, 

ats, van Oort, Hoogendoorn-Lanser, & Hoogendoorn (2020a) ; Ho, 

ensher, Mulley, & Wong (2018) , among others); one might even 

nclude in c(G ) other societal costs, such as congestion or emis- 

ions. 

The discussion about stable solutions requires defining some in- 

ividual costs. For each G ∈ G and i ∈ G , we denote by c i (G ) the in-

ividual cost of i when she belongs in group G . We do not impose

hat 
∑ 

i c i (G ) = c(G ) , and we discuss when this is the case. These

ndividual costs will be seen as exogenous when defining equilib- 

ium notions in Sections 3.2 –3.3 , and we will study how to define

hem in Section 4 . Deciding the individual costs is interpreted as 

efining the monetary fares for each user. The problem faced by an 

perator that is aiming for an optimal solution that is also stable 

an be seen as a two-level optimisation: First, the operator decides 

n some pricing scheme, and then the users choose how to match. 

he question that needs to be solved by the system is then how 

o set prices so that users match in a way that yields low total 
osts. a

959 
Problem (1) serves as the benchmark to compare how much 

orse is a resulting (stable) matching compared with the sys- 

em optimum solution. Therefore, it is useful to see that Problem 

1) can be read exactly as the set cover problem, which is known 

o be NP-Hard, and even further, that it is impossible to find a 

olynomial algorithm that provides a solution that approximates 

he optimal solution by a constant factor, unless P = NP ( Raz & 

afra (1997) ). That is to say, our problem can be seen as a version

f set cover in which each element of the set might decide which 

ubset is covering it 1 

Although Problem (1) could be hard to solve (because set cover 

s NP-Hard), real-life ridepooling situations usually generate ver- 

ions in which standard solvers are able to manage it ( Alonso- 

ora, Samaranayake, Wallar, Frazzoli, & Rus (2017a) ; Fielbaum & 

lonso-Mora (2021) ; Kucharski & Cats (2020) ). Therefore, we shall 

ssume in the rest of the paper that the optimal solution can be 

omputed in reasonable time. 

We can now formally define the underlying (non-cooperative) 

ame, denoted as CTG: Co-Travellers Game . The players of CTG are 

he passengers p 1 , . . . , p n . Each passenger i can decide in which

roup she wants to travel, i.e., her possible strategies are the sets 

 in G i , defined as G i = { G ∈ G : i ∈ G } . 
Following the usual notation in game theory, we denote G i the 

trategy (i.e., the group) chosen by i , and G −i = (G j ) j � = i the profile

f strategies chosen by the other players. When i chooses G i , there 

re two possibilities: either all the other players in G i choose G i as 

ell, or at least one player does not. We assume that no one can 

e forced to join a group, so G is executed only in the first case,

ielding a disutility function U: 

 i (G i , G −i ) 

{
c i (G i ) if G j = G i ∀ j ∈ G i 

+ ∞ otherwise 
(2) 

The + ∞ disutility in Eq. (2) represents the case in which the 

roup is not executed, so i cannot travel. 

We now discuss different equilibrium notions for this game, 

hich are characterised by the level of coordination that is ad- 

itted among the users. For instance, the traditional Nash Equi- 

ibrium (NE) assumes that users cannot coordinate at all, so each 

ser can only act unilaterally, whereas the traditional Strong Equi- 

ibrium (SE) assumes full coordination. We also propose three al- 

ernative notions that lay between those two 2 For any equilibrium 

otion, we are mostly interested in the price of stability (PoS), i.e., 

n the “best” possible equilibrium, meaning the equilibrium that 

ields lowest total costs, which is interpreted as the matching that 

he system should propose to the users. It is worth noting that the 

oS is usually defined for NE ( Anshelevich et al. (2008) ), but it can

e computed for any equilibrium notion. 

When we run numerical experiments, we will also look at the 

rice of anarchy (PoA), which is the “worst” possible equilibrium, 

.e., the one that yields the highest total costs, which represents 

he worst case scenario when users coordinate freely without any 

ecommendation from the system. 

.2. Traditional notions of equilibrium 

.2.1. Traditional Nash Equilibrium (NE) 

The most common notion in game theory is the Nash Equilib- 

ium: 
lso been proposed by Dosa (2018) for the so-called Bin-packing problem . 
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3 When the system can decide on the prices, there is a trivial way to induce a SE, 

by sharing the total costs of a group uniformly among the users. After that, a greedy 

algorithm that repeatedly picks the group of non-selected users with the lowest 

average cost will output a SE. It is noteworthy that this mimics exactly the well- 

known polynomial greedy algorithm for set cover, implying that its cost is no larger 

than log (n + 1) times the optimal ( Chvatal (1979) ; Raz & Safra (1997) ). However, as 

discussed in the Introduction, such a way to split the costs would probably not be 

accepted by users travelling short distances. 
efinition 1. A profile of strategies (G i ) i ∈ P is a NE if no player can

nilaterally improve her situation, i.e. 

 i ∈ P, ∀ G 

′ 
i ∈ G i , U i (G i , G −i ) ≤ U i (G 

′ 
i , G −i ) (3)

In Definition 1 it is implicitly assumed that players are only 

pting for pure strategies . However, the usual notion of NE also ad- 

its mixed strategies , in which player i decides a probability distri- 

ution over G i in order to minimise the expected disutility. The fol- 

owing Lemma shows that in the CTG any NE is composed only by 

ure strategies because otherwise some players would face disutil- 

ty + ∞ and could reduce it. 

emma 3.1. Any Nash Equilibrium of the CTG is formed by pure 

trategies only. 

roof. Suppose player i chooses a mixed strategy, with P rob(G i = 

 ) = p for some G ∈ G i , p ∈ (0 , 1) , G � = { i } . Let j ∈ G be a different

layer. Then 

(U j (G )) ≥ (1 − p) · U j (G | G i � = G ) = (1 − p) · + ∞ = + ∞ 

hat is to say, if j chooses G , then she faces an infinity expected 

isutility, because there is a chance that the group is not executed. 

ence, G cannot be chosen by j with a non-zero probability in an 

quilibrium, because travelling alone yields a lower disutility. The 

ame argument can now be applied to i . Given that we already 

now that j is assigning zero probability to G : 

 i (G i , G −i ) = + ∞ 

Hence, i can improve her situation by assigning the mentioned 

robability p to { i } instead of G , which proves that this situation is

ot an equilibrium. �

We say that a profile of strategies (G i ) i ∈ P is coordinated if no- 

ody chooses a group that is not being executed. Note that a coor- 

inate profile of strategies is a matching (i.e., it satisfies the con- 

traint in Eq. 1 ). Although non-coordinated situations are feasible, 

hey shall not occur because any passenger would opt for travelling 

lone rather than choosing a group that is not being executed. This 

s formalised in the following Lemma for NE, and remain true for 

ll the other notions of equilibrium we study below in this paper 

ecause they are stronger (that is, they also imply a NE): 

emma 3.2. If a profile of strategies is a Nash Equilibrium, then it is 

oordinated. 

roof. Let (G i ) i ∈ P be a non-coordinated profile of strategies. Let i 

e a player choosing a group that is not being executed. Then i 

ould be better-off by choosing { i } instead, implying that (G i ) i ∈ P 
s not an equilibrium. �

To simplify the notation, and because our analyses deal with 

sers reaching equilibria, we drop the disutility U i and will utilise 

he costs c i directly, because they always coincide. 

We now argue that a NE always exists. Let us consider a NE 

nd a player i : Eq. (3) is trivially fulfilled by any G that is neither

 i nor { i } , because if i would switch to such a G , her group would

ot be executed and her cost would be + ∞ . Therefore, Eq. (3) can

e replaced by 

 i ∈ P, c i (G i , G −i ) ≤ c i ({ i } , G −i ) (4)

Note that when player i travels by herself, her strategy is G i = 

 i } and Eq. (4) is fulfilled with an equality. Hence, everybody trav- 

lling alone constitutes a trivial NE for the CTG. We now define the 

et of groups in which Eq. (4) holds: 

 T NE = { G ∈ G : ∀ i ∈ G, c i (G ) ≤ c i ({ i } ) } (5)

Any solution to Problem (1) that only selects groups from G T NE 

ould be a NE, as groups from G are defined such that Eq. (4) is
T NE 

960 
ulfilled. Hence, we can find the PoS and the PoA by solving, re- 

pectively, problems (6) and (7) : 

min 

 G ∈{ 0 , 1 } 
∑ 

G ∈G TNE 

x G c(G ) (6) 

s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 

max 
 G ∈{ 0 , 1 } 

∑ 

G ∈G TNE 

x G c(G ) (7) 

s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 

Problem (6) results from constraining Problem (1) to consider 

nly groups in G T NE , i.e. finding the best solution among this subset 

f groups, while Problem (7) switches from a minimisation to a 

aximisation problem, to find the worst solution. 

The trivial NE mentioned above ( G i = { i }∀ i ∈ P ) is troublesome,

ecause it does not represent what is expected to happen in ride- 

ooling services. If we think of such a service as provided by an 

pp, a NE would imply that a user that is suggested to join a group

an only choose to accept such a group or to dismiss it and travel 

lone. This occurs because NE is a weak notion, that forbids any 

ype of coordination among users, which precludes accounting for 

he complexity in the equilibrium analysis that is introduced by 

he chance of sharing. All of this justifies analysing other types of 

quilibria. 

.2.2. Traditional Strong Equilibrium (SE) 

An alternative usual notion in game theory, that represents the 

ther extreme situation, is the Strong Equilibrium, in which each 

ubset of players can coordinate: 

efinition 2. A matching (G i ) i ∈ P is a SE if no group of players can

ointly improve their situation. As the utility of a player only de- 

ends on her co-travellers, this happens if and only if 

 G ∈ G, either ∀ i ∈ G, G i = G, or ∃ i ∈ G such that c i (G i ) ≤ c i (G ) 

(8) 

Eq. (8) ensures that if a group G is not taking place, then it can-

ot happen that all the users from G would want to abandon their 

urrent groups to form G . This is a quite restrictive notion of an 

quilibrium because it permits any type of coordination between 

ll the users in the game. Therefore, it does not come as a surprise 

hat there are cases in which there is no such an equilibrium 

3 We 

how this in the following example, where we do not provide the 

xplicit numerical costs of each group, but only how users rank 

hem, as the comparison among groups is all that matters to de- 

ermine whether a certain profile of strategies is an equilibrium : 

xample 3.3. Consider an instance of CTG with three players A, B 

nd C. Travelling all of them together is the worst option for ev- 

rybody. Everybody prefers travelling in pairs (regardless of the co- 

raveller) over travelling alone. Regarding pairwise trips, A prefers 

o travel with B over travelling with C, B prefers C over A , and C

refers A over B . Such an instance presents no SE: if they all travel

lone, any pair would prefer to join, while if two players are trav- 

lling together, say A and B , then B would coordinate with C to 
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reate the group { B, C} , and analogous situations would occur for 

ny other pair. Everybody travelling together is also not a SE be- 

ause players would prefer to abandon the group. 

Not only an equilibrium might not exist. Determining whether 

hat is the case is computationally intractable, unless all the groups 

re formed by one or two users. 

heorem 3.4. a) Given an instance of CTG, determining whether a 

E exists is NP-Complete. This is true even if groups’ sizes cannot be 

arger than 3. b) On the other hand, if no group has more than 2

layers, it is possible to determine the existence of a SE in polynomial 

ime. 

roof. We first argue that this problem is NP, by noting that it is 

ossible to verify in polynomial time if a given profile of strategies 

s a SE. Indeed, we need to determine if Eq. (8) is fulfilled, which

s done by checking once for each G ∈ G if the respective condi- 

ions described by Eq. (8) are met. a) To prove that the problem in

hich groups can have 3 or fewer players is NP-Complete, we use 

 reduction from 3-Exact-Cover . The k -Exact-Cover is defined by a 

niverse set S whose size is a multiple of k , and a collection of 

ubsets B = b 1 , . . . , b Q , with | b i | = k ∀ i = 1 , . . . , Q . The question is if

ne can pick some of those subsets, such that they are all disjoint 

nd cover the set S. The k -Exact-Cover is known to be NP-Complete 

or any k ≥ 3 ( Garey & Johnson (1979) ). 

Given an instance of 3-Exact-Cover, we build an instance of CTG 

s follows: 

• The set of players is S ∗ = S ∪ { α} , with α an additional artificial

player. 
• Each subset of S ∗ whose size is not larger than 3 is a feasible

group. 

In order to define the costs, please note first that, for this proof, 

e might drop the need that if H ⊆ G , then c(H) ≤ c(G ) . In fact, if

ur cost scheme does not meet this condition, we can add a large 

uantity D to c i (g) for each player i and for each group g ∈ G i . By

oing so, the equilibria analysis remains unchanged because all in- 

ividual costs are raised by the same amount, and the cost of each 

roup g will have a part that is D · | g| , such that if D is large enough

hen this proportional part will outweigh any other differences be- 

ween groups of different size. Moreover, we do not need to define 

he costs numerically, as it suffices to show for each user how does 

he rank the different groups that she belongs to: 

• Groups of size 3 corresponding to some b i (i.e., that comes from 

the instance of the original 3-cover problem) are equally ranked 

as the preferred groups for all their members. 
• Groups of size 1 are the less convenient ones for everybody. 

To rank the remaining groups, i.e., groups of size 3 that do not 

orrespond to any b i , and pairs, we first introduce a notion of in-

ividual preferences for each user: We say that player i prefers 

layer j 1 over j 2 if and only if 

j 1 − i (mod n ) < j 2 − i (mod n ) (9) 

And we denote this situation by j 1 ≺i j 2 . Eq. (9) can be inter-

reted as if all users were displayed in a circle, such that i always

refers the first player that appears to her right. Therefore, i + 1 

mod n ) is the most preferred and i − 1 (mod n ) is the least pre-

erred player for player i . 

For player i , the remaining groups are sorted lexicographically 

ccording to the relationship ≺i . That is to say, consider two differ- 

nt groups J = (i, j 1 , j 2 ) and K = (i, k 1 , k 2 ) , such that j 1 ≺i j 2 and

 1 ≺i k 2 . Then, i prefers J over K if and only if 

j 1 ≺i k 1 or ( j 1 = k 1 and j 2 ≺i k 2 ) (10) 

Intuitively, for player i the most relevant aspect to evaluate the 

roup that she belongs to is the closest of her co-players. If two 
961 
roups present the same closest co-player, then the remaining co- 

layer is relevant, following the same order. Such a first criterion is 

lso the decisive one when there is a group of two users involved, 

.e., if the same group J is compared with the group K 

′ = (i, k ) , i

refers J if and only if 

j 1 ≺i k or j 1 = k (11) 

Finally, if i has to choose between (i, j) and (i, k ) , she will chose

i, j) if and only if j ≺i k . The details that prove that this reduc-

ion works can be found in the appendix. b) To prove that the 

roblem of determining whether a SE exists is polynomial when 

ll the groups have 1 or 2 users, we show that such a problem is

quivalent to the well-known stable-roommate problem , which can 

e solved in polynomial time ( Gusfield (1988) ). The details proving 

uch an equivalence can be found in the appendix. �

It is noteworthy that determining whether a general game has a 

E can be harder than being NP-Complete ( Gottlob, Greco, & Scar- 

ello (2005) ), because verifying that a given profile is a SE is not 

s simple as here. The main difference is that in CTG we discard 

ll the non-coordinated profiles of strategies. 

The reason why such a notion of equilibrium is not appropri- 

te for this game is that it cannot take place in ridepooling nor 

idesharing systems. If hundreds or thousands of users are in- 

olved, it is impossible that all of them are able to coordinate just 

o perform a trip. That is, involving every possible coordination to 

efine stability is too strong. 

.3. Alternative notions of equilibrium 

The two most traditional notions of equilibrium are not suit- 

ble for this model. NE is too weak, and SE is too strong. Therefore, 

e now propose three alternative definitions for equilibrium in the 

idepooling context. All of them lie in-between the two previous 

nes, permitting some level of joint decisions among the users. 

hen we denote them with abbreviations, we will use first a letter 

R” to signal that they represent ridepooling situations. 

.3.1. Ridepooling Hermetic Equilibrium (RHE) 

The first alternative notion of equilibrium recognises that a user 

ould coordinate with those other users that are already related to 

er: the ones with whom she is currently sharing. 

Consider G ∈ G and H � G . We say that H wants to leave G if

 i ∈ H, c i (H) < c i (G ) , and G is hermetic if no such an H exists. For-

ally, G is hermetic if and only if: 

 H � G, ∃ i ∈ H such that c i (G ) ≤ c i (H) (12)

his idea permits coordination between users, but only when they 

re in the same group. Verifying if a group is hermetic can be done 

y testing for all its proper subsets if they want to leave or not. 

efinition 3. A matching (G i ) i ∈ P is a hermetic ridepooling equilib- 

ium if every G i is hermetic. 

It is evident that having each traveller by herself is a RHE. How- 

ver, it is not necessarily unique. To find the PoS and PoA, we con- 

traint Problem (1) in a similar way as for NE, but with tighter re- 

trictions. Let us define G H as the set of hermetic groups, which is 

ound just by pruning the non-hermetic groups. The PoS and PoA 

re found solving problems (13) - (14) , that are analogous to (6) - (7) ,

onstraining the set of groups to G H . 

min 

 G ∈{ 0 , 1 } 
∑ 

G ∈G H 
x G c(G ) (13) 

s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 
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max 
 G ∈{ 0 , 1 } 

∑ 

G ∈G H 
x G c(G ) (14) 

s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 

.3.2. Ridepooling Unmergeable Equilibrium (RUE) 

We now propose an alternative notion of equilibrium that ad- 

its some trivial Pareto improvements: merging groups when it 

s better for everybody. Allowing for these simple movements pre- 

ents to have as an equilibrium the matching in which everybody 

ravels alone. 

We say that two disjoint groups G 1 , G 2 are mergeable if G 1 ∪
 2 ∈ G and 

 i ∈ G 1 ∪ G 2 , c i (G 1 ∪ G 2 ) ≤ c i (G i ) , and ∃ i ∈ G 1 ∪ G 2 

such that c i (G 1 ∪ G 2 ) < c i (G i ) (15) 

his represents a way in which users from two different vehicles 

an coordinate, but only if everyone benefits from doing so. As this 

s a Pareto improvement (i.e. some players get better-off while no- 

ody loses), these mergers might be suggested for an external con- 

roller. 

efinition 4. A matching (G i ) i ∈ P is a ridepooling unmergeable equi- 

ibrium if it is a NE and no two different groups G i , G j are merge-

ble. 

Such an equilibrium always exists, as shown in Theorem 3.5 . 

heorem 3.5. Any instance of CTG admits a RUE. 

roof. In the appendix. �

As this equilibrium condition does not depend on single groups 

ut rather on the chance of merging them, we cannot just restrict 

to find PoS and PoA. Instead we first identify all the pairs of 

roups that are mergeable, and then use an extra constraint to pre- 

ent that they both occur simultaneously. In Algorithm 1 we build 

he set M of mergeable groups, i.e., each element of M is a duple

ormed by two groups that are mergeable. 

Algorithm 1: Construction of M . 

M = ∅ ; 
for all G 1 , G 2 ∈ G T NE do 

if G 1 ∩ G 2 = ∅ and G 1 , G 2 are mergeable then 

M ← M ∪ (G 1 , G 2 ) ; 

end if 

end for 

Output M ; 

If (G 1 , G 2 ) ∈ M , both occurring simultaneously would mean 

hat the matching is not a RUE. Therefore, we prevent that from 

appening in the ILP by adding extra constraints ensuring that the 

espective binary variables cannot both take a value of 1. This is 

hown in the inequalities represented by the last lines in Eqs. (16) - 

17) , that find the PoS and PoA for this type of equilibrium. 

min 

 G ∈{ 0 , 1 } 
∑ 

G ∈ G T NE 

x G c(G ) (16) 

s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 

x G 1 + x G 2 ≤ 1 ∀ (G 1 , G 2 ) ∈ M 

max 
 G ∈{ 0 , 1 } 

∑ 

G ∈ G T NE 

x G c(G ) (17) 
962 
s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 

x G 1 + x G 2 ≤ 1 ∀ (G 1 , G 2 ) ∈ M 

.3.3. Ridepooling Semi-individual Equilibrium (RSIE) 

One of the reasons why NE recognises everyone travelling alone 

s an equilibrium, is that individual (unilateral) movements are 

ery restrictive in the formal definition of CTG. A natural exten- 

ion for the idea of individual movements is that a single player 

witches group, with the players from the receiving group hav- 

ng the chance of accepting her if everybody improves or stays the 

ame. With this idea in mind, we can provide a formal definition 

f an equilibrium that is not fully, yet nearly, individual (because 

f the users that have to accept the moving player): 

Let G 1 , G 2 ∈ G and disjoint. We say that G 1 , G 2 are individually

nstable if ∃ i ∈ G 1 such that G 2 ∪ { i } ∈ G and the two following con-

itions are fulfilled: 

1. c i (G 2 ∪ { i } ) < c i (G 1 ) 

2. ∀ j ∈ G 2 , c j (G 2 ∪ { i } ) ≤ c j (G 2 ) 

The first condition entails that i wants to move from G 1 to G 2 ,

hile the second condition ensures that everyone in G 2 is willing 

o accept i . This equilibrium can be seen as the one expected when 

he service is offered through an app, such that each user can take 

nly two actions: i) leaving her current group (as for NE), and ii) 

oining a new group; the latter shall take place only if all users of 

he mentioned new group accept her. 

efinition 5. A matching (G i ) i ∈ P is a ridepooling semi-individual 

quilibrium if no G 1 , G 2 are individually unstable. 

The same counter-example 3.3 that revealed that there are in- 

tances of CTG with no SE is also a scheme with no RSIE. 

heorem 3.6. Given an instance of CTG, determining whether a RSIE 

xists is NP-Complete. This is true even if groups’ sizes cannot be 

arger than 3. 

roof. The same arguments used to prove Theorem 3.4 a) are valid 

or this theorem, as it involved only the kind of changes admitted 

y this equilibrium notion. �

Similar to RUE, finding the PoS and PoA under this notion of 

quilibrium requires adding some constraints to the ILP. These con- 

traints might lead to an empty set, if no RSIE exists. We first need 

o identify the pairs of sets that are individually unstable, which 

re kept in the set S built in Algorithm 2 . Here we assume explic- 

tly that ∅ ∈ G, entailing that the RSIE is also a NE, when taking

 2 = ∅ in Algorithm 2 . 

Algorithm 2: Construction of S . 

S = ∅ ; 
for all G 1 , G 2 ∈ G do 

if G 1 ∩ G 2 = ∅ and G 1 , G 2 are individually unstable then 

S ← S ∪ (G 1 , G 2 ) ; 

end if 

end for 

Output S; 

Once the set S has been computed, the PoS and PoA for this 

ype of equilibrium are obtained solving problems (18) - (19) . 

min 

 G ∈{ 0 , 1 } 
∑ 

G ∈G 
x G c(G ) (18) 

s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 
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Fig. 1. Venn diagram of the five notions of equilibria. NE, RHE and RUE are never 

empty, whereas RSIE and SE might be empty. 
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4 As discussed in Section 2 , using oblivious protocols precludes us from using a 

cooperative game theory approach. Moreover, requiring the protocols to be oblivi- 

ous also precludes using trivial ones to reach PoS = 1. For instance, one could set null 

individual costs when users select the group corresponding to the optimal solution, 

and a positive cost otherwise. However, this would not be oblivious, as the costs 

c i (G ) would depend on which is the optimal solution, an information that does not 

depend solely on G . 
x G 1 + x G 2 ≤ 1 ∀ (G 1 , G 2 ) ∈ S 

max 
 G ∈{ 0 , 1 } 

∑ 

G ∈G 
x G c(G ) (19) 

s.t. 
∑ 

G : i ∈ G 
x G = 1 ∀ i ∈ P 

x G 1 + x G 2 ≤ 1 ∀ (G 1 , G 2 ) ∈ S 

.4. Synthesis and positioning of the different notions of equilibria 

We have shown that NE is too weak as an equilibrium no- 

ion (i.e., it is too easy to fulfill) and that SE is too strong. We

ave therefore proposed three extra definitions for equilibria that 

ie in-between, depicted in Fig. 1 together with NE and SE. These 

hree alternative equilibria represent different types of coordina- 

ion among users: RHE admits full coordination between users 

ithin the same group, RUE admits a simple type of Pareto im- 

rovement, and RSIE accepts individuals moving from one group 

o another, if the users from the latter are willing to accept her. 

There is always at least one RHE and one RUE, entailing that 

he set of NE cannot be empty. The SE and RSIE sets, on the other

and, might be empty and it is an NP-Complete problem to deter- 

ine if that is the case. 

None of the intermediate notions of equilibrium is contained in 

he others. Consider the example 3.3 : everybody travelling alone 

s a RHE, but it is not RUE nor RSIE (because travelling in pairs is

etter); the three users travelling together is a RUE (because there 

s only one group, so no possible mergers) but it is not RHE nor 

SIE (because any player could opt to leave the group and travel 

lone). An example of a RSIE that is no RHE nor RUE is provided

n the Appendix. 

It is noteworthy that the intersections among the groups cre- 

te new types of equilibria, in which two (or three) of the equilib- 

ia conditions are held simultaneously. For the sake of simplicity, 

e are not studying those intersections explicitly. Note that any of 

hose intersection requiring RSIE might be empty. Moreover, there 

ight also be no matching that satisfies both RHE and RUE: an 

xample (with five players) for this is provided in the Appendix; 

owever, one of the cost-sharing protocols we study in following 

ection does make optimal solutions both a RHE and RUE. 
963 
. Cost-sharing protocols to induce good equilibria 

So far we have assumed that c i (G ) is exogenous to the problem.

owever, from a policy point of view, one is interested not only 

n predicting which equilibria might emerge, but also in steering 

owards the best possible equilibria. Therefore, the controller of the 

ystem can determine the individual costs c i (G ) for each user i and

ach group G ∈ G i (for instance, via the monetary fares), in order to 

nduce efficient outcomes. 

From now on, we assume that only c(G ) (the total cost of the 

roup) is given for each G . We aim to find a so-called cost-sharing 

rotocol , i.e., to define how to split the costs amongst the play- 

rs in G by defining the respective individual costs c i (G ) . Following

hristodoulou, Gkatzelis, Latifian, & Sgouritsa (2020) , we will say 

hat such protocols are: 

• Budget balanced if they cover exactly the cost of the group, i.e. 

∀ G ∈ G, 
∑ 

i 

c i (G ) = c(G ) (20) 

• Overcharging if they are equal or in excess of the cost of the 

group, i.e. 

∀ G ∈ G, 
∑ 

i 

c i (G ) ≥ c(G ) (21) 

Note that here we are not dealing with the profit of the system. 

he idea of an overcharging protocol is that the set of individual 

osts can effectively push users to decide on groups that are effi- 

ient from a global point of view. 

As we aim at proposing pricing schemes that are understand- 

ble by the users, we will consider only oblivious protocols (as 

efined by Christodoulou, Gkatzelis, & Sgouritsa (2017) ), meaning 

hat c i (G ) depends only on i and G , and not on the other feasi-

le and selected groups in G. To be precise, an oblivious 4 protocol 

n this context defines c i (G ) as a function of the vector ( c(H) ) H⊆G .

oreover, for the different protocols we propose, all such functions 

an be computed in polynomial time. 

In this section, for each of proposed equilibria (RUE, RHE or 

SIE) we propose a cost-sharing protocol that make any optimal 

atching an equlibrium (i.e., PoS = 1 ). Before introducing the dif- 

erent protocols, it is useful to show and prove the following intu- 

tive Lemma. 

emma 4.1. Let { c i (G ) : i ∈ P, G ∈ G} be a budget-balanced cost-

haring protocol. Then any optimal matching does not contain pairs 

f mergeable groups. 

roof. Consider G 1 and G 2 part of an optimal matching. If G 1 and 

 2 were mergeable (Eq. 15 ), then the total cost of G 1 ∪ G 2 would be

trictly lower than c(G 1 ) + c(G 2 ) , which contradicts the optimality 

f the matching. �

We now proceed to introduce the different protocols. 

.1. Externality-based protocol 

There is a vast literature that studies how incorporating exter- 

alities into pricing might induce optimal equilibria. The so-called 

igouvian taxes ( Cremer, Gahvari, & Ladoux (1998) ) for markets 
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egulation, the VCG-mechanisms for auction designs ( Nisan & Ro- 

en (2007) ), or the incremental cost-sharing protocols for demand 

ames ( Moulin (2008) ) are some of the most relevant examples. In 

TG, however, doing so presents some difficulties: 

• The externalities induced to the whole system depend on the 

complete set of passengers and groups, which would require vi- 

olating the principle of proposing only oblivious protocols. 
• We have defined several notions of equilibria, so making an op- 

timal matching a NE, instead of a stronger notion, is not good 

enough. 

Notwithstanding the above, we now show how to define costs 

ccording to some of the externalities (namely those induced to 

he members of the same group), using an oblivious protocol and 

aking any optimal matching a RSIE. However, such a protocol will 

ot be budget balanced. 

efinition 6. Let G be a group. The externality-based protocol 

harges to each i in G the extra cost that its inclusion induces to 

he group, i.e. 

 i (G ) = c(G ) − c(G \ { i } ) (22) 

heorem 4.2. If the externality-based protocol is used, then every op- 

imal matching is a RSIE. 

roof. Let (G i ) i ∈ P be an optimal set of groups, and take player i

nd group G j � = G i such that G j ∪ { i } ∈ G. We will prove that i does

ot want to move to G j . If i moves to G j , her new costs would be:

 i (G j ∪ { i } ) = c(G j ∪ { i } ) − c(G j ) (23)

The difference in costs for i is found by comparing Eqs. (22) and 

23) : 

(G j ∪ { i } ) − c(G j ) − [ c(G i ) − c(G i \ { i } ) ] = c(G j ∪ { i } ) 
 c(G i \ { i } ) −

[
c(G j ) + c(G i ) 

]
(24) 

The last expression corresponds exactly to the total changes in 

he global costs of the system, which are positive because (G i ) i ∈ P is 

ptimal. Hence, player i would face positive extra costs if moving 

o any other group. �

Clearly, this protocol is not budget-balanced. In the presence 

f economies of scale, represented by sub-modular functions (i.e., 

n which adding an extra passenger is cheaper when the group 

s larger), the marginal individual costs c i (G ) might become very 

ow for large groups G , thus being far from sufficient to cover the 

eal group costs. Note that this low individual costs represent ef- 

ectively that larger groups should be prioritised when there are 

conomies of scale. Thus, the system would require subsidisation, 

hich is the usual case whenever there are scale economies in 

ransport systems ( Jara-Díaz (2007) ). If it is not possible to have 

ubsidies, the problem is partially solved with Corollary 4.2.1 , that 

hows that the externality-based split protocol can be adapted to 

e overcharging. However, it is no longer oblivious, but resource- 

ware , meaning that the costs within a group G might depend 

n all the possible costs c(H) for H ∈ G (regardless of the actual 

roups that are chosen by passengers not in G ). In practice, the 

nly not-oblivious information that is used to make the protocol 

vercharging is max H∈G c(H) . 

orollary 4.2.1. There is an overcharging resource-aware protocol, 

hat makes every optimal matching a RSIE. The only not-oblivious in- 

ormation required is max H∈G c(H) . 

roof. Let D ≥ max H∈G c(H) . Define c i (G ) as if it was externality-

ased, but adding D , i.e. 

 (G ) = c(G ) − c(G \ { i } ) + D (25)
i 

964 
As D is large enough, then individual costs are enough to cover 

he real ones. And because it is a fixed cost (every player i has to

ay it regardless of the group), the analyses regarding equilibria 

rom Theorem 4.2 are not affected. �

Remark: Theorem 3.6 states that determining whether a RSIE 

xists is NP-Complete, and we have just proved that if the 

xternality-based protocol is used, not only does a RSIE exist, but 

ctually every optimal solution is a RSIE. These two facts are not 

n contradiction, as the instances of the NP-Complete problem are 

efined by not only the group costs c(G ) but also exogenous in- 

ividual costs c i (G ) . On the other hand, in Theorem 4.2 we use a

pecific definition for the individual costs, so that the instance is 

nly defined by the group costs. 

.2. Residual-based protocol 

We now study an idea that might look more natural, in which 

he costs faced by a user are directly related to the cost of the re-

pective private trip. For this, we define the residual cost of a group 

c(G ) as the difference between the individual and the group 

osts: 

c(G ) = c(G ) −
∑ 

i ∈ G 
c i ({ i } ) (26) 

Such residual costs can be positive or negative, depending on 

hether it is efficient to group those users together. In general, 

ne might expect that they are negative for the groups that do 

ake place, as otherwise it is not reasonable to form that group. 

evertheless, we do not assume that in what follows. 

efinition 7. Let G be a group. A residual-based protocol consists 

f sharing only the residual costs, i.e., there exists residual prices 

p(i, G ) ∀ i ∈ G such that c i (G ) = c i ({ i } ) + p(i, G ) . All residual prices

p(i, G ) have the same sign and must fulfil: 
 

i ∈ G 
p(i, G ) = �c(G ) (27) 

Note that requiring every p(i, G ) to have the same sign and to 

ulfil Eq. (27) implies that 

 i ∈ G, sign (p(i, G )) = sign (�c(G )) (28) 

There might be several different residual split protocols, de- 

ending on the definition of p(i, G ) . Some simple ideas might in- 

lude making p(i, G ) proportional to c i ({ i } ) , or just a uniform divi-

ion. In any of which, users first pay a cost that depends solely on 

heir particular travel characteristics, and only the residual compo- 

ent depends on the rest of the group. These protocols are obvi- 

usly budget-balanced, and we now show that any optimal match- 

ng is a RUE when they are applied. 

heorem 4.3. Assume that any residual split protocol is applied. 

hen, every optimal matching is a RUE. 

roof. Let (G i ) i ∈ P be an optimal matching. We need to prove that 

t is a NE and that no two different groups are mergeable. 

To see that it is indeed a NE, consider some G i with more than

ne passenger (groups of size 1 do not need to be analysed). Be- 

ause this is an optimal matching, the cost of c(G i ) cannot be 

arger than all of its members travelling alone, i.e. 

(G i ) ≤
∑ 

j∈ G i 
c j ({ j} ) (29) 

Eq. (29) entails directly that �c(G i ) ≤ 0 (due to Eq. 26 ), which

mplies that p( j, G i ) ≤ 0 ∀ j ∈ G i (Eq. 28 ), and thus c j (G i ) ≤ c j ({ j} ) .
hat is, every player j prefers her current situation rather than 

ravelling alone, which is the definition of a NE. 
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The proof that no two groups can be mergeable follows directly 

rom Lemma 4.1 . �

For the numerical simulations in Section 5 , we will use residual 

rices that are proportional to the individual costs, i.e. 

p(i, G ) = �c(G ) · c{ i } ∑ 

j∈ G c j ({ j} ) (30) 

Which implies that total costs for each user will be proportional 

o their private costs. 

.3. Subgroup-based protocol 

A different way to combine individual and group costs is based 

n looking at the subgroups each player might belong to. Consider 

 group G and a subgroup H ⊆ G . If H presents a low average cost

in comparison with G ), then players that belong in H should not 

e charged much, as they are not directly inducing the costs on G . 

n the other hand, consider a player i such that every subset H � G

ontaining i presents a higher average cost than G : in that case, 

layer i would be directly benefited when G takes place, so she 

hould pay more than the average. With this idea in mind, let us 

ropose Algorithm 3 5 that takes as input the group G and outputs, 

or each player i , a subgroup-based cost z i (G ) and an associated

ubgroup ϕ i (G ) . 

Algorithm 3: Determining subgroup-based costs and the as- 

sociated subgroups. 

Input: G 

W = G ; % W contains the users whose costs have not been 

determined yet 

while W � = ∅ do 

J = argmin H ′ ⊆W 

c(H ′ ) 
| H ′ | ; 

for all i ∈ J do 

z i (G ) ← 

c(J) 
| J| , ϕ i (G ) ← J; 

end for 

W ← W \ J; 
end while 

Output: z i (G ) , ϕ i (G ) , ∀ i ∈ G 

The associated subgroups ϕ i (G ) represent which group is defin- 

ng the cost of each i . It is relevant to remark a straightforward

roperty fulfilled by these subgroups: they form a partition of G , 

hat is to say, two conditions are met: 

1. ∀ i, j ∈ G , either ϕ i (G ) ∩ ϕ j (G ) = ∅ or ϕ i (G ) = ϕ j (G ) . 

2. 
⋃ 

i ∈ G ϕ i (G ) = G . 

Utilising costs z i would not necessarily induce a budget- 

alanced protocol. Let us define the excess e (G ) as: 

 (G ) = c(G ) −
∑ 

i ∈ G 
z i (G ) (31) 

This excess might be positive or negative. To define the actual 

rotocol, we modify the payoffs z i to achieve the budget-balanced 

roperty. If the excess is positive, we split the remainder uniformly 

mong the users of the group (for our results below regarding op- 

imal matching being equilibria, this remainder could be split in 

ny way): 

 i (G ) = z i (G ) + 

e (G ) 

| G | if e (G ) > 0 (32)
5 We choose this writing of the algorithm because it eases the understanding. 

he algorithm can be adapted to run in polynomial time: Sort in a list all groups 

n G according to their average costs. Then, for each G , go through the said list, 

electing the groups that are subsets of G and that only contain elements that have 

ot been assigned yet. 

c

b

t

t

m

c

965 
When e (G ) < 0 , we sort the ϕ i (G ) according to their aver-

ge costs (from the cheapest to the most expensive), resulting in 

 

1 , . . . , ϕ 

Q , with Q the number of distinct subgroups ϕ i (G ) . Let us

enote the respective costs z i = c(ϕ 

i ) / | ϕ 

i | (we are omitting the ex-

licit reference to G to ease the notation). Define I 1 as the smallest 

ndex such that z I 1 ≥ c(G ) / | G | (such an index exists because the

xcess is negative). We then diminish the costs of ϕ 

j for j ≥ I 1 to 

e equal to the average cost of G until we reach zero excess. The 

ndex I 2 representing the last ϕ 

j whose cost is adjusted to c(G ) / | G |
an be characterised as the largest index such that 

 1 −1 
 

i =1 

z i | ϕ 

i | + 

I 2 ∑ 

i = I 1 

c(G ) 

| G | | ϕ 

i | + 

Q ∑ 

i = I 2 +1 

z i | ϕ 

i | ≥ c(G ) (33)

The definition of I 2 through Eq. (33) implies that if we set the 

osts for users in ϕ 

I 2 +1 to be equal to c(G ) /G , then the individ-

al costs would not be enough to cover the group’s costs. How- 

ver, such costs might still be reduced from the original z I 2 +1 , till 

he zero excess is reached. The precise expression for the budget- 

alanced costs in the case of negative excess is defined by: 

 k ∈ ϕ 

i , c k (G ) = 

 

 

 

 

 

z i if i < I 1 or i > I 2 + 1 

c(G ) 
| G | if i ∈ { I 1 , . . . , I 2 } 

c(G ) −
(∑ I 1 −1 

j=1 
z j | ϕ j | + ∑ I 2 

j= I 1 
c(G ) 
| G | | ϕ j | + 

∑ Q 
j= I 2 +2 

z j | ϕ j | 
)

| ϕ i | if i = I 2 + 1 

(34) 

The last case in Eq. (34) represents how to diminish the costs 

or users in ϕ 

I 2 +1 to make the excess equal to zero, which is not 

nough for c k (G ) to reach c(G ) / | G | (by definition of I 2 ). Note that,

n this case of negative excess, costs can only be diminished, which 

mplies that 

 i (G ) ≤ z i (G ) ∀ i ∈ P (35) 

efinition 8. Let G be a group. The subgroup-based protocol 

harges to each i in G the costs according to Eq. (32) if e (G ) ≥ 0 ,

r to Eq. (34) if e (G ) ≤ 0 . 

By construction, this protocol is budget balanced. The following 

heorem states that using it reaches a price of stability equal to 1, 

f the system is commanded by the RHE or RUE notions (or both). 

heorem 4.4. Assume that the subgroup-based protocol is applied. 

hen every optimal matching is both a RHE and a RUE. 

roof. In the appendix. �

.4. Synthesis and analysis 

We have proposed three cost-sharing protocols to determine 

ow to split the costs among users sharing a ride. All these pro- 

ocols depend only on the ride itself, without requiring any more 

nformation, and two of those are budget-balanced (the remain- 

ng one can be made overcharging). Each equilibrium notion from 

ection 3 , has at least one corresponding protocol that enables the 

ystem to simultaneously reach optimum and equilibrium. Table 1 

ynthesises which protocol should be used depending on which 

quilibrium notion governs the system: 

Regarding the protocols, the rationale behind each of them can 

lso be synthesised: the externality-based accounts for the extra 

osts induced to the other members of the group, the residual- 

ased rests mostly on the individual costs (e.g., proportional to the 

ime required to go from the origin to the destination), whereas 

he subgroup-based recognises which users could be efficiently 

atched together in smaller groups to determine how to split the 

osts. 
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Table 1 

Synthesis of which protocol reaches PoS = 1 depending on the equilibrium notion. 

Equilibrium RHE RUE RSIE 

Protocol to be used Subgroup-based Subgroup-based or Residual-based Externality-based 
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Table 2 

The number of groups and the distribution of their sizes yielded by each of the 

pruning algorithms, as well as the number of mutually exclusive constrains (be- 

tween group pairs) in the respective equilibrium notions. Individual costs are de- 

fined according to the subgroup-based protocol. 

algorithm number of size mutually mean 

of groups 1 2 3 4 + exclusives size 

Basic 2191 400 1348 363 79 - 2.05 

NE 1708 400 928 305 74 - 2.03 

HERMETIC 1366 400 806 142 18 - 1.83 

RUE 2191 400 1348 363 79 2762 2.05 

RSIE 2191 400 1348 363 79 24,404 2.05 
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. Numerical simulations 

We now simulate the resulting feasible groups emerging from a 

eal-life case, in order to analyse which matching could emerge for 

ll the equilibrium notions discussed above, and the role played by 

he cost-sharing protocols we propose. 

.1. The scenario 

We consider a batch of 400 travellers departing within a 10- 

inute window (2400 passengers/h) in the afternoon peak-hour 

n Amsterdam. Trips, defined through the exact origin, destination 

nd departure time, are sampled from the nation-wide demand 

ataset ( Arentze & Timmermans (2004) ). 

We assume that the cost c(G ) of each group G ∈ G comprises 

sers’ costs (the monetary equivalent of their time) and operators’ 

onetary costs. For passenger i in group G , we denote by t(G, i )

nd w (G, i ) her in-vehicle travel and waiting times, respectively. 

e convert time into money using average value of time (9 €
hour) as βt , and we multiply it by 1.5 to get the penalty for wait-

ng βw 

. We assume here that travel time is weighted equally re- 

ardless of the number of co-travellers. Therefore, the time-related 

ost of user i travelling in group G is: 

 T (G, i ) = βt t(G, i ) + βw 

w (G, i ) (36)

e calculate the vehicle costs C O (G ) proportional to the trip dis- 

ance l(G ) plus a fixed ride cost: 

 O (G ) = βl l(G ) + βV , (37) 

ence the total cost of group G is computed by adding operators’ 

nd users’ costs: 

(G ) = 

∑ 

i ∈ G 
C T (G, i ) + C O (G ) (38) 

ith βl = 1 € /Kilometer and βV = 1 €. 
To compute the set of feasible groups G we apply the hierar- 

hical exact algorithm of ExMAS ( Kucharski & Cats (2020) ) which 

omputes all feasible groups of travellers (of any size). A group is 

eclared feasible when for all the travellers the additional detour 

nd delay can be compensated thanks to sharing. ExMAS in this 

onfiguration generates 2191 feasible groups of various sizes, con- 

tituting G for further calculations. 

We first calculate the pricings in the three proposed protocols 

or each traveller-ride combination. Then we prune the groups ac- 

ording to the different notions of equilibria, and finally we per- 

orm the matching to assign travellers to groups. Matching is done 

rst with the objective to minimise total travel costs (to compute 

he price of stability of the system) and then to maximise it (to 

ompute potential anarchy of the system). 

.2. Results 

First we illustrate how the different equilibrium notions restrict 

he number of feasible solutions, by means of the so-called ‘share- 

bility graph’ ( Fig. 2 ). In such a graph, each traveller is a node,

nd nodes i and j are connected if the corresponding users could 

e feasibly matched together (that is, if the group { i, j} ∈ G). In

ig. 2 we show how NE and RHE pruned the initial G (recall that 

he other notions of equilibrium - RUE and RSIE - prune solutions 

ased on exclusive pairs of groups rather than unfeasible groups). 
966 
ut of 2191 initially feasible groups, and if using the subgroup- 

ased protocol, 1708 remain for NE and 1366 for RHE. However, 

uch pruning does not significantly alter the graph structure, that 

lways consists of one highly connected giant component and few 

isconnected nodes. 

Table 2 summarises the results of the simulation of the effects 

f the different equilibrium notions, where we report how the 2191 

nitially feasible groups are pruned and how it affects the size of 

he remaining groups. NE prunes mainly groups of size 2, with 

roups shared by more than two travellers remaining almost in- 

act. Consequently, filtering 2191 groups to 1708 for NE decreases 

he mean degree mildly. When we allow subgroups to coordinate 

o leave together, i.e. when we study RHE, rides of greater size are 

urther pruned, resulting in a significantly lower average degree. 

We also report in Table 2 the number of mutually exclusive 

onstrains imposed by the RUE and RSIE protocols. This number 

s much higher for RSIE, i.e., when users can move individually to 

ther group willing to receive her, the resulting equilibria seem to 

e much more restrictive than when admitting merges between 

roups. This fits the fact that a RUE always exists, whereas a RSIE 

oes not necessarily exist. 

We now analyse the different cost-sharing protocols. Intuitively, 

ne expects that shorter trips result in lower costs, as well as 

roups of larger sizes (because the costs are split among many). 

his is studied in Fig. 3 , where we show users’ costs for the 400

ravellers in 2191 groups (4085 traveller-group pairs), and their 

elationship with distance and size, for the different cost-sharing 

rotocols; we also compare these results with users’ direct costs 

 T (G, i ) , i.e., when accounting only for their travelling times. 

The top row of Fig. 3 shows the relationship between costs and 

istance. The colour of the dots represents the size of the respec- 

ive group. We see that direct costs (left panel) are always lower 

or single rides, because there is no detour. However, when a cost- 

haring protocol is introduced, that is, when the operators’ costs 

re split among the users, larger groups become more attractive 

nd mostly dominate private rides. This conclusion is reinforced 

hen examining the bottom row, that shows users’ costs depend- 

ng on the groups’ size, where it is apparent that the increasing 

rend observed in the left panel is neutralised or reversed in the 

ther panels. There are some noteworthy aspects for each proto- 

ol: 

• Subgroup-based : This protocol does not exhibit a high correla- 

tion between distance and users’ costs, as many dots are placed 

far from the diagonal. In addition, it is the protocol in which 

large groups are favoured the most, as most red dots present 

the lowest cost for a given distance. This is in line with intu- 
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Fig. 2. Shareability graphs for selected pruning algorithms. Nodes denote travellers, which are linked if they can share a ride. Nodes are sized according to their degree 

(i.e. number of connecting edges). The number of nodes remains fixed across the pruning, and the number of links decreases as groups are being excluded in the pruning 

procedures. Individual costs are defined according to the subgroup-based protocol. 

Fig. 3. User costs as a function of distance (top row). First we plot direct user costs, followed by the costs under the three introduced cost-sharing protocols. Each dot 

denotes a traveller-group pair and colours denote the size of the corresponding group. The blue diagonal line denotes non-pooled rides. The bottom row shows the cost 

distributions varying with the groups’ size for the different protocols. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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ition, as this protocol is meant to ensure that efficient groups 

are hermetic, so that (a number of) their members are assigned 

with the lowest costs when the group is complete. 
• Residual-based : This protocol exhibits the highest correlation 

between distance and users’ costs, which is expected since 

costs are calculated proportionally to distances. 
• Externality-based : This protocol exhibits the lowest correlation 

between distance and users’ costs. This means that the protocol 

is effectively capturing that the relevant aspect for this protocol 

is not the total distance, but the total detour imposed on others. 

The few dots at the bottom with zero costs represent cases in 

which a group H would not be feasible according to the ExMAS 

algorithm which determines the set G, but there is some feasi- 

ble group G containing H. In those cases, H is added assuming 

the cost of the cheapest feasible group containing it. 

In Table 3 we report the most relevant indices for each protocol. 

e study the case in which the operator can propose a solution 

‘Best case’, the one that we focus on throughout the paper), but 
967 
e also analyse the ‘Worst case’ where we assume the users are 

ot coordinated, so they may reach the solution of maximal, rather 

han minimal, system-wide costs. 

We report passenger-hours, vehicle-hours, number of groups 

nd total cost (reported as PoS - best and PoA - worst, respec- 

ively). The best-case analysis confirms that for each equilibrium 

here is at least one pricing allowing to reach the PoS = 1 (as syn-

hesised in Table 1 in the previous section), through the optimal 

ssignment that requires 234 vehicles, involving 84.01 Pax-Hours 

nd 41.64 Veh-Hours. Moreover, for all the protocols, the price of 

tability is low regardless of the equilibrium notion, meaning that 

he protocols are robust. In fact, all the indices are very similar 

cross the protocols, i.e., they yield similar best solutions. 

The worst-case results show that the price of anarchy is be- 

ween 1.1 and 1.22 in this example. That is to say, if the sys- 

em does not propose a solution, losses can be as high as 22%, 

hich highlights the relevance of having centralised solutions. The 

esidual-based protocol is the most effective one in the case with 

o central coordination. 
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Table 3 

KPIs for the three cost-sharing protocols proposed in the paper, depending on the equilibrium notion that governs the system. On the left side we show the ‘best-case’ 

results, i.e. when we minimise total costs subject to the respective equilibrium, representing the best solution that could be proposed by the system’s operator. On the right 

side we show the ‘worst-case’ solution, obtained by maximising costs subject to the respective equilibrium, representing the worst possible outcome if users coordinate by 

themselves. 

Best-Case Worst-Case 

Protocol Equilibrium Pax-Hours Veh-Hours 

N 

◦ of 

groups PoS Pax-Hours Veh-Hours N 

◦ of groups PoA 

Residual-based RHE 83.64 41.84 234 1.001 60.34 60.34 400 1.22 

RUE 84.01 41.64 234 1 89.31 54.46 275 1.18 

RSIE 84.12 41.66 234 1.001 93.28 49.08 235 1.12 

Subgroup-based RHE 84.01 41.64 234 1 60.34 60.34 400 1.22 

RUE 84.01 41.64 234 1 88.82 54.57 277 1.19 

RSIE 83.16 42.25 235 1.003 93.4 49.53 234 1.12 

Externality-based RHE 82.14 42.62 240 1.006 60.34 60.34 400 1.22 

RUE 84.01 41.64 234 1 89.02 54.59 276 1.19 

RSIE 84.01 41.64 234 1 92.88 50.11 238 1.13 

Table 4 

Portion of the total costs 

covered by the sum of 

users’ costs when the 

externality-based protocol 

is utilised, considering the 

best-case solution. 

Equilibrium Portion 

RHE 0.81 

RUE 0.82 

RSIE 0.82 
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Note that the highest PoA is always reached when studying 

HE, because everybody travelling alone is a RHE, which is exactly 

he worst solution (400 groups). For RUE and RSIE the contrary 

appens, i.e., passenger-hours are similar (albeit higher) to those 

btained in the best-case analysis, while increasing vehicle-hours 

nd the number of groups. That is to say, while the system is pro-

iding almost the same quality of service as in the best-case sce- 

ario, it does so through a non-efficient utilisation of the vehicles. 

n the case of RUE, this happens because this notion of equilibrium 

an admit any large group, regardless of its efficiency; something 

imilar happens with RSIE, but indirectly: when groups are large, 

ew individual movements from one group to another are feasible. 

In Table 4 we report which portion of the total costs are cov- 

red by the sum of users’ individual costs in the best-case solution 

or the externality-based protocol. Even though more than 80% of 

he total costs are covered by the sum of users’ costs, additional 

ubsidies would be needed regardless of the equilibrium notion. 

t is worth recalling that such need for subsidies can be avoided 

y means of Corollary 4.2.1 , but this would increase the fares for 

very user. As the other two protocols are budget-balanced, it is 

uaranteed that the group costs are exactly covered by the indi- 

idual costs (in other words, the second column of the equivalent 

o Table 4 would have a “1” in every row). 

Finally, in Fig. 4 we study users’ satisfaction in comparison to 

he cheapest alternative they have (i.e., if they had the opportu- 

ity to select their most preferred group, regardless of their co- 

ravellers’ opinion). To do this, we plot the cumulative distribu- 

ion of the relative differences between the cheapest alternative for 

ach user, and the individual cost of the group that actually con- 

ains her in the best possible matching for each equilibrium no- 

ion. Null difference implies a perfect match (best personal option) 

hich increases as users are matched to more expensive pooled 

ides. These curves complement system-wide indicators, as they 

llow to investigate distributional effects among users. The faster 

he curve reaches 1, the more equalised the matching. 
968 
We observe that the panels in Fig. 4 look similar regardless of 

he equilibrium notion. For all of them, the externality-based pro- 

ocol provides the least equal outcome, with some users facing 

osts that can be higher than 2 times their best option, whereas 

sing the subgroup-based or residual-based protocols this num- 

er is reduced to little more than 1.5. The residual-based protocol 

chieves the highest equity. Recalling that RSIE charges less from 

he users than the other protocols (as it does not collect enough to 

over the whole operators’ costs), an interesting trade-off emerges 

etween total users’ costs and its (unequal) distribution. 

. Synthesis, conclusions and future research 

In this paper, we address the issue of how to split common 

osts when users share a ride in a mobility system that decides 

ow to group the users. After recognising that the way costs are 

plit can affect which groups are going to be formed and hence 

he quality of the solution (matching), we have modelled the said 

ituation as a game, in which each user can choose with whom to 

ravel, as long as all co-travellers agree. 

In order to study the possible equilibria in such a game, we 

ave proved that it suffices to consider pure strategies only. More- 

ver, we have discussed that the traditional notions of Nash and 

trong Equilibria are not the most appropriate ones as they may 

ither prevent sharing on one hand (NE) or require unfeasible co- 

rdination on the other (SE). We therefore proposed three interme- 

iate definitions of equilibrium depending on which are the possi- 

le ways in which users can coordinate. Moreover, we have also 

roved that determining whether a Strong Equilibrium exists is an 

P-Complete problem, through a reduction from the so-called 3- 

xact-Cover. 

For each of these equilibrium notions we have proposed a cor- 

esponding cost-sharing mechanism that reaches a price of sta- 

ility equal to one, i.e., that makes any optimal solution also an 

quilibrium. By this means, we allow a central operator to group 

he users, simultaneously reaching a system-wide optimum and a 

sers’ equilibium. When deciding what is the cost for an individual 

ithin a given group, the protocols determine based on (i) the cost 

f the respective private trip (‘residual-based’), (ii) the extra-costs 

mposed to the co-travellers (‘externality-based’), or (iii) the costs 

f the subgroups that contain the said user (‘subgroup-based’). 

We tested our ideas by computing the feasible groups for a set 

f 400 travellers in Amsterdam forming 2191 feasible groups. Nu- 

erical results show that our protocols effectively make efficient 

arger groups to be preferable by the users, and that they always 

each a price of stability close to 1. We also show that if the sys-

em cannot propose a solution and users coordinate by themselves 
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Fig. 4. Cumulative distribution of relative differences between each user’s lowest possible cost, and the cost imposed on her by the best possible matching for each equilib- 

rium notion. Different colors represent the various cost-sharing protocols. 
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hen the worst case induces around 20% extra-costs for two of the 

quilibrium notions. 

Our discussion and methods demonstrate that selecting an ap- 

ropriate cost-sharing mechanism, understandable by the users, 

an play a key role in ensuring that an equilibrium exists and 

n aligning users’ interests with a system-wide optimum. Further- 

ore, the ability of proposing a central coordination is also crucial 

o make this type of mobility systems attractive. 

As this is an emerging topic, there are numerous directions for 

urther research. In this paper, we have assumed a central oper- 

tor that aims for a global optimum; if a for-profit company was 

onsidered instead, our model would have to be modified to con- 

ider the company’s interests as well (for instance, as an addi- 

ional player). We assumed the demand is exogenous and fixed, 

hereas in fact such cost-sharing protocols can make the system 

ore attractive and thus induce the demand, triggering a positive 

eedback loop as the critical mass needed for pooling is reached. 

oreover, we have assumed that the system’s optimum depends 

nly on total costs, regardless of equity aspects, although we show 

hat results can actually be far from equal for all the users in- 

olved, which suggests yet another direction for further research. 

n a theoretical note, studying protocols that ensure bounds on 

he price of anarchy, as well as determining the complexity of de- 

iding whether a RSIE exists if all the groups have size no larger 

han 2, are relevant questions that emerge from this paper. Finally, 

quilibrium analysis in a dynamic environment, taking into ac- 

ount users that will emerge in the future for which there is partial 

r no information available, is also an intriguing research avenue, 

hat has been analysed only from the point of view optimal match- 

ng, both theoretically ( Feng, Niazadeh, & Saberi (2020) ; Torrico & 

oriello (2017) ) and in applied models ( Alonso-Mora, Wallar, & Rus 

2017b) ; van Engelen, Cats, Post, & Aardal (2018) ; Fielbaum, Kron- 

ueller, & Alonso-Mora (2021) ; Wallar, Van Der Zee, Alonso-Mora, 

 Rus (2018) ; Wen, Zhao, & Jaillet (2017) ). 
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ppendix 

ontinuation of the proof of Theorem 3.4 a) 

We now need to prove that there is an exact cover in the orig- 

nal instance of 3-exact-cover iff there is a strong equilibrium in 

his instance of CT G . 

If there is an exact cover b 1 , . . . , b p in the original instance, it is

traightforward how to build a strong equilibrium in the instance 

f CT G . Indeed, consider the profile of strategies in which α trav- 

ls alone, and the other groups are b 1 , . . . , b p . Therefore, every el-

ment of S is in its most preferred situation, and α has no other 

hoice than being alone. 

We will now show that these are the only possible strong equi- 

ibria in such an instance of CT G , more precisely we will prove the

ollowing Lemma: 

emma A.1. Let h 1 , . . . , h q be a strong equilibrium on the proposed 

nstance of CT G . Then there exists � such that h � = { α} and ∀ j � = �, h j 
orresponds to some b i from B. 

Lemma A.1 implies that when there is a strong equilibrium in 

he instance of CT G , we can construct the exact cover just by tak-

ng all such subsets h j . The proof of Lemma A.1 rests on another

echnical Lemma, that limits which situations can occur in a strong 

quilibrium: 

emma A.2. Let h 1 , . . . , h q be a strong equilibrium on the proposed 

nstance of CT G . Then none of the following situations can happen: 

i) The existence of one h i of size 3 that does not come from B and 

the existence of one h j of size one. 

ii) The existence of two h i , h j both of size 2. 

iii) The existence of two h i , h j both of size 1. 

Before proving Lemma A.2 , let us explain why it suffices to 

rove Lemma A.1 . In fact, the number of players in this game is 

 t + 1 , for some t ∈ N . If we remove all those players that belong

o a subset h i coming from B, the remaining number of players 

s 3 s + 1 for some s ∈ N . We just need to show that s = 0 , i.e.,

hat all players but α are covered by groups coming from B. What 

emma A.2 ensures is that if s > 0 , then it would be impossible to

over the remaining 3 s + 1 players with the subsets h i not coming

rom B, which is a contradiction. Hence, Lemma A.1 is proven by 

emma A.2 . 

Putting everything together, we just need to prove that 

emma A.2 is true. We will show that each of the forbidden sit- 

ations is indeed impossible in a strong equilibrium, following the 

ame order: 
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i) Assume that there is a group h i = { x, y, z} that does not

come from B, and a group h j = { w } . Without loss of gener-

ality, w falls between x and y within the circle that defines 

the lexicographic order of the preferences. Hence, both x and 

w would be strictly better if they change to form the group 

{ x, w } , contradicting the fact that this was a strong equilib-

rium. 

ii) Assume two groups h i = { x, y } , h j = { w, z} . When we restrict

the circle to these four players, either the preferred co- 

player for x is not y , or the preferred co-player for y is not x

(or both). Without loss of generality, we assume the former 

case. It is clear that the users of a group of size 2 will al-

ways improve their situation if someone else joins, then x, z

and w would coordinate to form the group { x, z, w } , contra-

dicting the fact that this was a strong equilibrium. 

iii) Two isolated players will always prefer to merge. 

I.e., the forbidden situations from Lemma A.2 cannot exist in a 

trong equilibrium, which completes the proof the Theorem. 

ontinuation of the proof of Theorem 3.4 b) 

The stable-roommate problem ( SRP ) is defined by a set of 2 μ
layers for some μ ∈ N , such that for each player there is a list

orting the rest of the players in some strict order of preferences. 

he problem consists on determining whether all the players can 

e grouped in pairs, in a way where it never happens that i and j

re not together but they both would be better if they were. We 

ow prove that SRP is equivalent to determining the existence of a 

E in the restricted version of CT G where all groups have size 1 or

, that we denote CT G − 2 . 

roof. Let G be the set of groups in an instance of CT G − 2 . Con-

ider a user i ∈ P . Note that her preferences can be described as a

ist L i = (y 1 , . . . , y k i , i ) , meaning that her preferred group is (i, y 1 ) ,

ollowed by (i, y 2 ) , and so on until (i, y k i ) and then to travel alone.

he groups that come after travelling alone are not relevant as they 

hall never be part of any equilibrium. Utilising this notation, we 

uild an instance of SRP as follows: 

• The set of players is P × P ′ , where P ′ contains one copy of each

player in P . 
• If the list of preferences for x ∈ P is L x = (y 1 , . . . , y k x , x ) in CT G −

2 , the preferences in SRP are (y 1 , . . . , y k , x 
′ ) (i.e., the same one

but switching x by its copy in P ′ ); the order of the players after

x ′ is irrelevant for this proof. 
• For x ′ ∈ P ′ , its preferred match would be x ∈ P . The list contin-

ues with the elements in P ′ according to a circle (i.e., it prefers 

y ′ over z ′ iff y ′ − x ′ mod n < z ′ − x ′ mod μ, as described in the

proof of the part a) of this Theorem), and the rest of the pref-

erences is irrelevant. 

We need to prove that there is a strong equilibrium in the orig- 

nal instance of CT G − 2 iff there is a stable matching in this in-

tance of SRP . To do that, it is useful to note first that an even-sized

ircle { x 1 , . . . , x 2 μ} always presents a stable matching, by joining x i 
ith x i + μ( mod μ) . 

Take first a strong equilibrium in CT G − 2 , formed by the pairs

a 1 , b 1 ) , . . . , (a k , b k ) and the users c 1 , . . . , c � travelling alone. We

uild a stable matching in SRP as follows: 

• a i and b i are matched in P for all i = 1 , . . . , k . 
• c i in P is matched with c ′ 

i 
in P ′ for all i = 1 , . . . , � . 

• The only players that remain to be matched are the copies in 

P ′ of a i and b i , for all i = 1 , . . . , k . Thus, it is an even number

of players in P ′ , that form a circle, so we can create a stable
matching among them as discussed above. 

970 
It is straightforward to see that this is indeed a stable matching, 

hanks to the fact that it was built from a strong equilibrium in 

T G − 2 . 

Take now a stable matching in SRP . We first note that in this 

table matching there is no pair (x, y ′ ) , with x ∈ P, y ′ ∈ P ′ and x � = y :

f there was such a pair, then the matching would not be stable be- 

ause x and x ′ would prefer be matched together. Therefore, each 

 ∈ P is either matched with a different z ∈ P or with x ′ . We build

he strong equilibrium taking exactly these assignments: each pair 

x, z) formed by two elements in P will form a group in CT G − 2 ,

nd those y that are paired with their copy y ′ ∈ P ′ will travel alone

n CT G − 2 . It is straightforward to see that such an assignment 

akes a strong equilibrium, thanks to the fact that it was built 

rom a stable matching. �

roof of Theorem 3.5 

We prove the Theorem by finding a RUE, which is done algo- 

ithmically. In short, we begin with everybody travelling alone, and 

ach time we find two mergeable groups, we merge them, which 

e repeat until we find no more. The resulting profile of strategies 

s a RUE. We provide the respective pseudo-code in Algorithm 4 . 

Algorithm 4: Construction of a RUE. 

∀ i ∈ P, G i = { i } ; 
v = 0 ; 

% v is an auxiliary variable to end the following while
cycle. 

while v=0 do 

v = 1 ; 

for all i, j ∈ P such that G i � = G j do 

if G i and G j are mergeable then 

v = 0 ; % The cycle continues 

G i , G j ← G i ∪ G j ; 

end if 

end for 

end while 

Output (G i ) i ∈ P ; 

By construction, the output from Algorithm 4 is a RUE: 

• The algorithm only stops if there are no more pairs of merge- 

able groups. 
• The output is also a NE. As the algorithm only induces Pareto- 

improvements, everybody ends-up better-off (or equal) than in 

the initial situation, i.e., than travelling alone. This is exactly the 

definition of being a NE. 

Moreover, Algorithm 4 does stop because it starts with a pro- 

le of strategies, and at each step that is kept but with groups of 

ncreasing size. 

xample of a RSIE that is not RUE nor RHE 

Consider a game with six players. Every combination of players 

s feasible. The only thing that matters for the players is the size 

f the group that they belong in, with the following order (from 

est to worse): 6, 2, 5, 3, 1, 4. In such a setting, splitting the six

layers into two groups of size 3 constitutes a RSIE that is not RHE 

or RUE: 

• It is RSIE because any individual movement would lead to a 

group of size 1 or 4, than are worse than the current situation. 
• It is not RUE because the groups could merge and everybody 

would agree. 
• It is not RHE because any pair of players within a group would 
choose to leave the group to travel together as a pair. 
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Table A1 

Feasible co-travellers for each of the five 

users, sorted according to their prefer- 

ences. 

A B C D E 

ABC BCD CDE DAE EAB 

AB BC CD DE EA 

ABE BAC CBD DCE EAD 

AE BA CB DC ED 

ADE BAE CAB DBC ECD 

A B C D E 
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xample of an instance of CTG with no matching that is RHE and 

UE 

Consider a game with five players A, B, C, D, E. As in the proof of

heorem 3.4 , we do not need to impose that if H ⊆ G , then c(H) ≤
(G ) , and it suffices to exhibit the players’ orders of preferences. 

he set G is defined by: 

 = { A, B, C, D, E, AB, AE, BC, CD, DE, ABC, ABE, ADE, BCD, CDE} 
he set G should have the property that if G ∈ G and H ⊆ G , then

 ∈ G, which is not the case with this definition of G. We assume

hat those groups H are in G, but all members of H would prefer 

o travel alone, so H will not be a part of any equilibrium and we 

an omit them. 

In Table A.5 we show, for each user, how they sort their prefer- 

nces. It is assumed that travelling alone comes right after the last 

lement of the respective columns. For instance, the best choice 

or player A would be to form the group ABC, whereas her worst 

ption before travelling alone is ADE. Note that the preferences are 

ymmetric: for player p i and using the sum mod 5, her order of 

references is: p i +1 p i +2 , p i +1 , p i +1 p i −1 , p i −1 , p i −2 p i −1 . 

We now show that there is no matching for this instance that 

s a RUE and a RHE. First, such a matching could not contain any

roup of size 3 because they are not hermetic. In fact, all those 

roups are of the type p i p i +1 p i +2 , and the subgroup p i +1 p i +2 would

lways want to leave. Discarding the groups of size 3, there are 

hree remaining options for A : travelling alone, with B or with E. 

t is useful to note that two groups of the form p i −1 p i and p i +1 ,

espectively, are always mergeable. 

• If A travels alone, B can travel alone, but it would merge with 

A , or B can travel with C. In the last case, D would travel with

E, but A and DE are mergeable. 
• If A travels with B , C can travel alone or with D . If C travels

alone, AB and C are mergeable. If C travels with D , E travels 

alone, but CD and E are mergeable. 
• If A travels with E, B can travel alone or with C. In the first

case, AE and B are mergeable. In the second case, BC and D are 

mergeable. 

Therefore, any feasible matching for this instance contains ei- 

her a pair of mergeable groups or a non-hermetic group. 

roof of Theorem 4.4 

The proof consists of two parts. First, we prove that any group 

ith negative excess is hermetic. Second, we show that in any op- 

imal matching every group leads to a negative excess. The fact 

hat every optimal matching is a RUE follows directly from Lemma 

.1 . 

Let G be a group with negative excess, implying that c i (G ) ≤
 i (G ) (Eq. 35 ), and let H ⊆ G . We shall show that users in H do not

ant to coordinate to leave G . Take i ∈ H such that 

 j ∈ H, z i (G ) ≤ z j (G ) (39) 
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By definition of the functions z, Eq. (39) implies that ϕ i (G ) 

as the first one selected among { ϕ j (G ) : j ∈ H} . Therefore, the set

 i (H) was completely available (i.e., in W in Algorithm 3 ) when 

 i (G ) was selected. This implies that z i (H) ≥ z i (G ) , as z i (H) is com-

uted optimising over a smaller set. If e (H) ≥ 0 , then 

 i (H) ≥ z i (H) ≥ z i (G ) ≥ c i (G ) (40) 

he positive excess of H explains the first inequality, the second 

nequality was explained in the previous paragraph and the third 

nequality is due to the negative excess of G . If e (H) < 0 and c i =
 i (H) , Eq. (40) still holds. Finally, if e (H) < 0 and c i (H) < z i (H) : 

 i (H) ≥ c(H) 

| H| ≥ z i (G ) ≥ c i (G ) (41) 

Where the first inequality is due to the definition of the costs 

n the case of negative excess, which diminishes the costs of some 

ubgroups but never below the average cost of the whole group 

Eq. 34 ), the second inequality is explained because ϕ i (G ) is se-

ected when the whole subset H is available, and the third inequal- 

ty holds because e (G ) ≤ 0 (Eq. 35 ). Putting everything together, we 

ave shown that c i (H) ≥ c i (G ) , i.e., i would not leave G to form H.

herefore, G is indeed hermetic. 

The negative excess of G in an optimal matching emerges when 

ecalling that sets ϕ 

j are a partition of G . Indeed: 

 

i ∈ G 
z i (G ) = 

∑ 

i ∈ G 

c(ϕ i (G )) 

| ϕ i (G ) | = 

Q ∑ 

j=1 

c(ϕ 

j ) ≥ c(G ) (42) 

Note that the third sum is adding each ϕ i (G ) once. The second 

quality is achieved by noting that each 

c(ϕ i (G )) 
| ϕ i (G ) | is added exactly 

 ϕ i (G ) | times, and the final inequality is true because sets ϕ 

j are a

artition, that has to be sub-optimal because forming the group G 

s part of the optimal matching. 
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