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ABSTRACT
Accurate prediction of thermodynamic properties of hydrocarbons is essential for chemical process
modelling. Conventional group contribution methods often are used to predict these properties.
However, these methods often require extensive parameter sets to handle structural complexities.
A refined group contribution method for predicting thermodynamic properties of hydrocarbon iso-
merswith reduced complexity and improved accuracy is presented anddiscussed. By combining the
structural framework of Constantinou and Gani (CG94) with a sensitivity-based selection of second-
order groups, a reduced yet highly effective set of twelve second-order groups is identified. This
reduced set retains the predictive power comparable to more complex models while significantly
reducing the number of parameters. Linear regression is applied to model enthalpies and Gibbs
free energies of formation for a wide temperature range. To test broader applicability, the model
is further extended to properties that require nonlinear regression, including critical temperatures,
critical pressures, acentric factors, and liquid densities. For all cases, the proposed model achieves
high predictive accuracy, demonstrating its robustness and generalizability. This methodology bal-
ances interpretability, efficiency, andperformance,making it suitable forboth researchand industrial
thermodynamic modelling.
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1. Introduction

The accurate prediction of thermodynamic properties
of hydrocarbons is a fundamental requirement for the
design, simulation, and optimisation of chemical pro-
cesses, as well as innovative products with improved
environmental and safety properties, particularly in the
context of the global transition toward sustainable fuels
and chemicals [1]. Iso-alkanes with high degrees of
branching are preferred constituents in sustainable avi-
ation fuels (SAF), lubricants, and phase change materials
due to their desirable thermophysical properties such as

CONTACT Thijs J.H. Vlugt t.j.h.vlugt@tudelft.nl Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering,
Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
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high energy density, low freezing point, and cold flow
properties [2]. Consequently, catalytic processes such as
hydroisomerization, which convert linear alkanes into
branched isomers inside shape-selective zeolites, are of
growing industrial relevance [3]. Experimental determi-
nation of thermodynamic properties like the standard
Gibbs free energy (�G0

f ), standard enthalpy of forma-
tion (�H0

f ) and entropy (�S0) for the myriad of possible
branched alkanes, particularly those with more than ten
carbon atoms, is often infeasible due to the large num-
ber of isomers and practical limitations of laboratory
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measurements [4,5]. To address this, group contribution
methods (GCMs) have emerged as a widely-used and
efficient approach to estimate thermodynamic proper-
ties based on molecular structure [6]. These methods
predict properties by summing contributions from pre-
defined structural fragments, termed ‘groups’ which are
generally classified as first-order groups that are basic
functional units or higher order groups that capture
local structural environments and neighbouring atom
effects [7].

Classical GCMs such as those of Lydersen [8], and
Joback and Reid [9] have provided reasonably accu-
rate predictions for small and moderately branched
molecules. The Constantinou and Gani (CG94) method
[10] improved thermochemical property predictions by
introducing a two-level structure: first-order groups
capture basic functional fragments, while another set
of groups, i.e. second-order groups, account for local
structural effects like branching and conjugation. This
methodology managed to improve accuracy and appli-
cability of group contributions and partially capture the
isomer effect. In this method, through chemical intu-
ition, the typical first-order groups for alkanes are used,
and second-order groups are defined by specifying a
central atom or group and its first neighbouring atoms
or groups, thereby encoding the local chemical envi-
ronment more explicitly. This allows for more accurate
differentiation between isomers and improves predic-
tions for molecules with complex or branched struc-
tures. Unfortunately, the accuracy of predictions still
decreases for highly branched long-chain alkanes [11].
This limitation often arises primarily from the reliance on
first-order groups and limited inclusion of second-order
corrections [12]. Recent research [13–15] has increas-
ingly focussed on refining group definitions, expand-
ing group libraries to integrate more structural effects,
and applying new computational advances to improve
the prediction of thermodynamic properties of complex
isomers.

To overcome the shortcomings of existing GCMs,
Sharma et al. [13] proposed a novel linear regression-
based second-order group contributionmethod for alka-
nes that explicitly captures the interactions between
neighbouring atoms. By training the model on a dataset
of C1–C10 alkane isomers and systematically incorpo-
rating all possible second-order groups, an accuracy
beyond 1 kcal/mol was achieved in predicting �H0

f and
�G0

f for alkanes longer than C10. While highly accu-
rate, the Sharma et al. method has certain limitations
that lies in the complexity introduced by the use of 69
distinct second-order groups to represent local atomic

environments. Although this comprehensive enumera-
tion improves prediction for long and branched alkanes,
it significantly increases the dimensionality of the model,
which can make the regression process more complex,
and thus reduce interpretability.

This paper presents a novel idea that combines the
basic principles of Constantinou and Gani (CG94) [10]
and the Sharma et al. methods [13] to maintain the accu-
racy while reducing the complexity. By identifying and
selecting the most relevant second-order groups defined
in the Sharma method, and adopting the second-order
approximation strategy of CG94 in a data-driven frame-
work, we aim to balance model accuracy and complexity.
The proposed method holds potential to predict prop-
erties of more structurally complex hydrocarbons that
contain additional functional groups beyond those found
in alkanes. This paper is organised as follows: first, the
theoretical background of linear regression, the CG94
framework, and the Sharma et al. method are presented,
followed by details of the methodology for selecting
key second-order groups through sensitivity analysis.We
analyze the predictive accuracy for both �H0

f and �G0
f

for a wide temperature range from 0–1500K, and assess
how temperature affects outcomes andmodel robustness.
This study concludes with a summary of key findings
and a discussion on the implications for a scalable and
interpretable GCM. We specifically focus on �H0

f and
�G0

f due to the fundamental role in determining chem-
ical equilibrium and thermodynamic feasibility. Other
important properties such as the critical constants (Tc,
Pc), the molar volume at standard condition (Vm), and
the acentric factor (ω) are also included in this study. In
the Supporting Information, we provide detailed list of
all training data. In SI1.xlsx, the sheet titled DHf0 and
DGf0 include training data of �H0

f and �G0
f from the

Scott tables [16]. The critical temperature, critical pres-
sure, and acentric factors sheets present experimental
values ofTc,Pc, andω fromRef. [17] used for training our
model. The liquid density (298K) sheet provides density
training data at 298K from Ref. [18], and the molar vol-
ume (298K) sheet contains the corresponding molar vol-
ume values derived from the liquid density data. SI1.xlsx
includes the predictions of these properties using the
CG94 first-order group contribution method, the CG94
second-order groups contributions method, the Sharma
et al. method, and our method. In SI2.xlsx, the first- and
second-order group contributions using different meth-
ods for these properties are provided. SI3.py provides the
script for identifying the first- and second-order groups
in CG94 from SMILES strings and Figure 1 provides such
an example for using SI3.py.
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Figure 1. An example of using SI3.py to identify the first- and second-order groups. One can use the SMILES string of amolecule as input
to get the number of first- and second-order groups.

2. Theory

2.1. Linear regression

Linear Regression (LR) is commonly used to predict the
thermochemical properties, such as �H0

f and �G0
f , of

alkanes, using the occurrences of first-order or second-
order groups as independent variables

y = K +
∑
i=1

CiNi (1)

where y is the target property, Ni is the occurrence of a
first or a second-order group i in the molecule, and Ci is
the group contribution of the group i. K serves as fitting
residual. To know which variants, or ‘groups’, are rela-
tively more important, a sensitivity analysis is used [19].
In a LR model of the form

y = β0 + β1x1 + β2x2 + · · · + βpxp + ε, (2)

the coefficients βj indicate the marginal change in the
response y per unit change in the predictor xj keeping all
other variables constant. When predictors are measured
on different scales or units, as is common in GCMs for
thermochemical properties, direct comparison of βj val-
ues can be misleading. To assess sensitivity, all variables
are transform into standardised form

zj = xj − x̄j
sj

, and zy = y − ȳ
sy

, (3)

where x̄j and sj are the mean and standard deviation of
predictor xj, respectively, and similarly for the response
y. The standardised regression model becomes

zy = β∗
1 z1 + β∗

2 z2 + · · · + β∗
p zp + ε, (4)

where β∗
j is the standardised coefficient of predictor xj

computed from βj via

β∗
j = βj · sjsy . (5)

The standardised coefficient β∗
j quantifies the number of

standard deviations the response will change given a one
standard deviation increase in xj, keeping other variables
constant. Therefore, the absolute value |β∗

j | gives a direct
and interpretable measure of the sensitivity of the output
to that predictor [20, 21].

2.2. Constantinou andGanimethod (CG94)

The Constantinou and Gani [10] (CG94) method, intro-
duced in 1994, features both first-order groups and
second-order groups. first-order groups represent basic
functional units like -CH3 or -CH2-, while second-order
groups serve as correction factors that capture struc-
tural dependencies, such as branching, conjugation, and
neighbouring group interactions [7]. The definition of
the second-order groups was based on the conjuga-
tion principle as presented in the open literature. When
applied to alkanes in a united-atom representation, only
four first-order groups (CH3, CH2, CH and C) and five
second-order groups (shown in Figure 5(a)) are consid-
ered. An innovative element of the CG94 is its two-step
property estimation by using the model below:

f (X) =
∑
i
NiCi + W

∑
j
MjDj + K (6)

where f (X) represents the function (linear or non-linear)
of estimated value of the target property X, Ni and Mj
are the occurrence of first-order groups and second-order
groups, and Ci and Dj represent the group contribu-
tions. Figure 1 provides an example on how to assign
first- and second-order groups for a branched hydrocar-
bon. Initially, the model fits the contributions of first-
order groups by ignoring second-order effects (W =
0). Once these base values of Ci and K are established,
second-order group contributions are introduced and
optimised in a separate regression step (W=1), while
keeping Ci and K constant. This ensures that the second-
order effectsDj are treated as corrections to the first order
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approximation. Note that Ci, Dj, and K are temperature-
dependent parameters, allowing the model to capture
the temperature variation of the target property. This
approach maintains the independence of first-order
groups and allows second-order groups to capture sub-
tle topological and interaction-based corrections without
excessive adjustable parameters [7]. Despite its advance-
ments over the earlier GCMs, CG94 still requires some
improvements in specific areas. For example, the con-
jugation principle in CG94 does not always account for
long-range interactions and overall molecular effects like
conformational flexibility or electronic delocalisation,
which are important for modelling large or highly inter-
active molecular systems [22]. Therefore, CG94 can be
further supported by molecular-level theories in order
to improve the accuracy of the estimation of properties
of highly complex organic structures and accurately cap-
ture isomer-specific behaviour [23].The CG94 provided
the foundation for several other efforts in group contribu-
tions aiming to improve GCMs by refining group defini-
tions, expanding group libraries, and incorporatingmore
structural effects. For example, Marrero and Gani [24]
added a third order correction to the Constantinou and
Gani second order approximation model. However, this
introduces a significant number of additional adjustable
parameters and implementation complexity. Similarly,
Constantinou et al. [25] and later researchers [15, 26–28]
explored approaches that integrate ring corrections,
stereochemistry, and group interactions beyond near-
est neighbours of pure compounds and mixtures. These
developments may be perceived as as an intermediate
stage, bridging classical dual-level models with modern
machine-learning frameworks. A comprehensive critical
review of GCMs can be found in Ref. [7].

Table 1. First-order group contributions Ci of our method for
�H0f at different temperatures.

Temperature/[K] CH3 CH2 CH C

0 −4.473 −15.034 −24.509 −35.827
200 0.619 −0.645 −0.222 1.522
273 3.751 6.149 11.070 18.372
298 4.874 8.523 13.999 22.572
300 4.938 8.735 15.371 24.771
400 9.645 18.607 31.583 48.773
500 14.559 28.771 48.167 73.197
600 19.637 39.129 64.933 97.765
700 24.804 49.654 81.936 122.516
800 29.822 60.104 98.906 147.302
900 35.080 70.677 115.828 171.833
1000 40.217 81.277 132.910 196.507
1100 44.877 91.980 150.716 222.368
1200 50.419 102.514 167.050 245.820
1300 55.296 113.150 184.229 270.247
1400 60.422 123.745 201.228 294.585
1500 63.390 134.719 219.318 321.960 Ta
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2.3. Sharma et al. method

The Sharma et al. method [13] represents a recent
advancement in CGMs specifically designed to improve
the prediction of thermodynamic properties for long-
chain and highly branched alkanes developed consid-
ering hydroisomerization as an application. Unlike ear-
lier models that rely primarily on first-order groups,
the method uses a comprehensive and systematic enu-
meration of second-order groups as the sole molecu-
lar descriptors. This method exhaustively enumerates all
the possible atom combinations surrounding a central
atom and forms second-order groups present within a
molecule. In this way, 69 second-order groups are defined
for branched alkanes. This definition of second-order
groups captures the influence of neighbouring group
interactions, branching patterns, and local connectivity,
which are factors especially crucial in iso-alkanes where
small differences in branching can lead to significant
changes in thermochemical properties [7]. Unlike CG94
where both first and second-order groups are used in
a two-step regression, the Sharma et al. method exclu-
sively considers second-order groups in LR using the
data set provided by Scott [16]. Each of the 69 defined
second-order groups is treated as an independent vari-
able and its contribution is directly estimated through
the regression coefficients. The extensive use of all 69
distinct second-order groups introduces a notable level
of complexity. While this richness and exhaust improves
the predictive accuracy, it also makes the model harder
to interpret, more data-intensive, and less generalisable.
Although the Sharma et al. method marks a signifi-
cant leap in structural sensitivity, its high dimensionality
raises challenges for practical implementation and may
limit scalability. Therefore, a sensitivity analysis is used to

Table 3. First-order group contributions Ci of our method for
�G0f at different temperature.

Temperature/[K] CH3 CH2 CH C

0 −4.473 −15.034 −24.509 −35.827
200 0.619 −0.645 −0.222 1.522
273 3.751 6.149 11.070 18.372
298 4.874 8.523 13.999 22.572
300 4.938 8.735 15.371 24.771
400 9.645 18.607 31.583 48.773
500 14.559 28.771 48.167 73.197
600 19.637 39.129 64.933 97.765
700 24.804 49.654 81.936 122.516
800 29.822 60.104 98.906 147.302
900 35.080 70.677 115.828 171.833
1000 40.217 81.277 132.910 196.507
1100 44.877 91.980 150.716 222.368
1200 50.419 102.514 167.050 245.820
1300 55.296 113.150 184.229 270.247
1400 60.422 123.745 201.228 294.585
1500 63.390 134.719 219.318 321.960 Ta
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Figure 2. Comparisonof predicted values of�H0f at 500 K for various iso-alkanesusingonly first-order groupcontributions (pink rhomb),
Sharmaet al.method [13] (yellowsquares), CG94 [10] (greencrosses), ourmethod (red stars), and the training set fromtheScott tables [16]
(blue circles). Using only first-order groups provides reasonably accurate predictions for less branched alkanes, the Sharma et al. method
shows an excellent agreement with the Scott tables, CG94 a achieves a better accuracy for branched isomers by incorporating local
structural corrections via second-order group correction.

determine which groups have more impact on predicting
the thermodynamics properties.

3. Results and discussion

Figure 6 shows the sensitivity analysis for �H0
f at 500K

in the Sharma et al. method, where each second-order
group is characterised by its |β∗

j | and its occurrence for
all molecules provided by the Scott tables [16]. A higher
value of |βj| indicates a large sensitivity, meaning the
corresponding group has a stronger influence on the pre-
dicted thermodynamic property. The circles within the
blue ellipses show both high sensitivities, i.e. strong influ-
ence on predicted enthalpy and high frequency of occur-
rence, which indicates that these groups are statistically
significant, making them the most important contribu-
tors in the model. In sharp contrast, many of the groups
concentrated near the origin have either negligible |β∗

j |
values, low occurrence, or both. These groups contribute
little to the overall variance in �H0

f and may be con-
sidered less relevant in terms of predictive power. It is

also worth mentioning that some groups have very low
occurrence, which may be attributed to the limitation of
the training dataset, which includes only C1–C10 isomers
and thus lacks highly branched structures only found
in heavier alkanes. The combination of high |β∗

j | and
high occurrence therefore serves as a useful criterion for
identifying the most influential structural motifs in the
regression model. This trend was consistently observed
for all temperatures from 0 K to 1500K, for both �H0

f
and �G0

f , indicating the robustness of group importance
for thermal variations.

Based on the observation, the 12 second groups falling
in the blue circles, which are characterised by both high
sensitivity and high frequency occurrence, are proposed
to be selected as a new representative set and are shown
in Figure 5(b). This subset captures the majority of group
features while significantly decreasing model complexity
by reducing the number of second-order groups needed
to fit. This reduced group set (as denoted by: our new
model) is then used to develop a new linear regression
model, which is systematically compared to the Sharma
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Figure 3. Comparison of predicted values of�G0f at 500 K for selected branched iso-alkanes for decane using different GCMs: using only
first-order group contributions (pink rhomb), CG94 [10] (green crosses), the Sharma et al. method [13] (yellow squares), and our method
(red stars), and compared to reference data from Scott thermochemical tables [16] (blue circles).

et al. method, which includes all 69 second-order groups,
and the CG94 method, which incorporates both first
and second-order groups. All five second-order groups
defined in CG94 (Figure 5(a)) can be fully represented
using combinations of the more detailed second-order
groups selected in our new method (Figure 5(b)). For
example, the CG94 group corresponding to CH(CH3)2
can be assembled from two CH2(CH3) and one C(CH3)

groups. Similarly, the CG94 group CH(CH3)CH(CH3)

corresponds to twoCH2(CH3) units connected via a cen-
tral carbon. This demonstrates that the CG94 groups are
a subset or simplified combinations of the second-order
groups selected through our sensitivity-based approach.
Therefore, our new set preserves the representational
capacity of CG94 while offering a finer structural reso-
lution.

While our sensitivity analysis is conducted specifically
for �G0

f and �H0
f , this focus is rooted in the original

design of the Sharma et al. method, which was devel-
oped and calibratedmainly for these two thermodynamic
properties. Since the 69 second-order groups in the
Sharma et al. method were trained and validated using
�G0

f and �H0
f data, the selection of a reduced group

set should start from the same context. Interestingly, the
selected subset of second-order groups emerging from

our analysis shows a high degree of chemical intuitive-
ness. Many of these groups represent prototypical local
environments that reflect key branching and substitu-
tion patterns, such as CH2(C)(CH3) or CH2(CH)(CH),
which are expected to influence a wide range of ther-
modynamic and physical properties. This structural logic
suggests that the most influential groups for �G0

f and
�H0

f may also play important roles in other proper-
ties like critical parameters and the acentric factor (ω).
Therefore, while our method is derived from sensitiv-
ity analysis on a limited property domain, its generaliz-
ability is empirically plausible and chemically justifiable.
In the later sections of this work, we test whether this
same set retains promising predictive performance for
multiple temperature-dependent properties, providing a
first assessment of its broader applicability. The fist- and
second-order group contributions Ci adn Di of these 12
groups used in our method for �H0

f and �G0
f can be

found in Tables 1–4.
The predicted �H0

f at 500K for various C6–C7 iso-
mers using first-order group contributions only and
CG94 with the reference values from the Scott tables
are shown in Figure 2 and compared. For all iso-
mers, the first-order group contribution method yields
the poorest performance. As branching increases, the
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Figure 4. Comparison of predicted values of�G0f at 800 K for selected branched iso-alkanes for decane using different GCMs: using only
first-order group contributions (pink rhomb), CG94 [10] (green crosses), the Sharma et al. method [13] (yellow squares), and our method
(red stars), and compared to reference data from Scott thermochemical tables [16] (blue circles).

Figure 5. (a) five second-order groups used in CG94 [10] and (b) twelve second-order groups selected through sensitivity analysis. The
original CG94 work defined only 5 second-order groups for alkanes, while 12 second-order groups featuring high sensitivity and high
occurrence are chosen for our method from the 69 second-order groups defined in the Sharma et al. method [13].

accuracy of the first-order model reduces significantly,
while CG94, by incorporating second-order structural
correction, improves predictions for some isomers. CG94
still fails to fully capture fine-grained structural effects. In
particular, when the number of occurrences of a second-
order group is small, the contribution of this group may
be undervalued. This still shows the importance of using
second-order groups as a correction. Capturing the local

structural environment and surrounding atom effects is
essential for accurately predicting thermochemical prop-
erties of complex branched isomers [29].

At all investigated temperatures, our method consis-
tently outperforms CG94, with first-order group con-
tributions being the least accurate for all isomers. The
Sharma method generally yields the best agreement with
the Scott tables, but our method closely follows, striking
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Figure 6. Sensitivity analysis of second-order groups used in the Sharma et al. method [13] for predicting �H0f at 500 K. Each point
represents a second-order group, with the vertical axis indicating its sensitivity (|β∗

j |), and the horizontal axis showing its number of
occurrences in the dataset. Groups within the blue ellipses are both highly sensitive and frequently occurring, and were thus selected as
the 12 most influential groups for our method to construct a reduced group set for further comparison with CG94 [10] and the Sharma
model [13]. Notably, only 46 out of the 69 second-order groups in the Sharma et al. method were detected from all the molecules listed
in Scott tables [16].

a balance between accuracy and transferability. At 500K
(Figure 3), our predictions for�G0

f for 3,3,4-m-C7, 3,4,4-
m-C7, and 3,4,5-m-C7 are in excellent agreement with
both the Sharmamethod and Scott tables, and this agree-
ment is also maintained at 800K (Figure 4). Impor-
tantly, our model systematically provides results that fall
between those of the Sharmamethod and CG94, offering
improved accuracy while relying on a reduced set of only
12 high-sensitivity second-order groups. This compact
yet carefully selected set is sufficient to capture structural
effects effectively, demonstrating that exhaustive param-
eterisation is not required to achieve reliable predictions.
The newmethod, by incorporating a few additional fitted
parameters beyond CG94, enhances accuracy substan-
tially without introducing the complexity of Sharma’s 69
second-order parameters. While some minor trade-offs
in accuracy remain, particularly for highly branched iso-
mers such as 3,3-e-C6, the predictive performance of our
approach demonstrates clear robustness across a broad
range of branched structures. This balance of accuracy,
simplicity, and scalability makes our method particu-
larly attractive for extension to hydrocarbons beyond
alkanes, where the inclusion of additional second-order
groups will be essential but where the exhaustive Sharma
approach would become increasingly cumbersome.

To further assess the temperature dependence of
model performance, Figure 7 presents the R2 values
for �G0

f and �H0
f predictions, respectively, for a range

of temperatures from 400K to 1500K. For both �G0
f

and �H0
f , the Sharma et al. method consistently main-

tains the highest R2 values, exceeding 0.99 at nearly all
temperatures, which re-affirms its robustness and accu-
racy. Our newmethod exhibits a performance curve that
closely follows that of Sharma et al. method, achieving
R2 values above 0.995 over a wide temperature range.
Interestingly, its accuracy improves steadily with tem-
perature up to around 1000K, before a slight decline
appears. In contrast, CG94 starts with significantly lower
R2 values, below 0.96 at 400K and then shows a grad-
ual rise, reaching a plateau around 0.996 at mid-range
temperatures, before dropping sharply at 1500K. The
Sharma et al. method again delivers near-perfect R2,
while the our method remains stable around 0.990 with
minor fluctuations. CG94 shows improved accuracy with
increasing temperature but consistently underperforms
relative to the other models. Notably, the gap between
our method and Sharma is slightly more pronounced
for �H0

f than for �G0
f , possibly reflecting that enthalpy

is more sensitive to specific group contributions. It is
also worth noting that all three models exhibit a decline
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Figure 7. Temperature-dependent coefficient of determination (R2) for thermochemical property predictions of CG94 (yellow), our
method (blue), and the Sharma et al. method (green). (a) R2 values for �H0f predictions for a temperature range of 400–1500 K. (b)
R2 values for �G0f predictions. The Sharma et al. method maintains consistently high accuracy for all temperature, while our method
exhibits strong performance with minor deviations at high temperatures. In contrast, CG94 shows lower R2 values, particularly at lower
temperatures, reflecting its limited structural resolution.

in R2 values for �G0
f at 1500K. While still maintain-

ing relatively high accuracy, this simultaneous drop for
all models suggests that prediction becomes inherently
more challenging at extreme temperatures. One possi-
ble explanation may be the increasing dominance of

entropic contributions at high temperatures [30]. R2
values for all temperatures can be found in Tables 5
and 6. The absolute and relative root mean square devi-
ations are shown in Tables 7 and 8 for �H0

f and �G0
f ,

respectively.
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Table 5. Comparison of R2 values for predicted �H0f at various
temperatures using three different GCMs: CG94 [10], our method,
and the Sharma et al. method [13].

Temperature/[K] R2 (CG94) R2 (our method)
R2 (Sharma

et al. method)

0 0.943972 0.976717 0.999988
200 0.965040 0.985654 0.999987
273 0.969607 0.987911 0.999993
298 0.970933 0.988487 0.999995
300 0.971017 0.988528 0.999995
400 0.975165 0.990045 0.999997
500 0.977978 0.990901 0.999986
600 0.979905 0.991340 0.999956
700 0.981066 0.991520 0.999935
800 0.981887 0.991299 0.999915
900 0.982585 0.991432 0.999896
1000 0.982759 0.991231 0.999859
1100 0.982753 0.991009 0.999842
1200 0.982715 0.990652 0.999816
1300 0.982599 0.990334 0.999805
1400 0.982220 0.989895 0.999590
1500 0.981967 0.989441 0.999742

Table 6. Comparison of R2 values for predicted �G0f at various
temperatures using three different GCMs: CG94 [10], our method,
and the Sharma et al. method [13].

Temperature/[K] R2 (CG94) R2 (our method)
R2 (Sharma

et al. method)

0 0.943976 0.976705 0.999880
200 0.244684 0.671566 0.995275
273 0.791147 0.919019 0.997689
298 0.865462 0.947700 0.998270
300 0.869337 0.949164 0.998313
400 0.959663 0.983684 0.999167
500 0.979919 0.991594 0.999422
600 0.987419 0.994528 0.999543
700 0.991061 0.995952 0.999598
800 0.993089 0.996761 0.999641
900 0.994359 0.997251 0.999675
1000 0.995183 0.997582 0.999695
1100 0.995812 0.997809 0.999690
1200 0.996180 0.997989 0.999719
1300 0.996533 0.998127 0.999730
1400 0.996438 0.997936 0.999590
1500 0.969542 0.970780 0.975832

The R2 analysis for a wide temperature range confirms
that Sharma et al. method shows the most accurate and
consistent performance, which is expected as it used all
69 type of second-order group as fitted parameters. In
sharp contrast, our new method, despite using only four
first-order and twelve ‘important’ second-order groups,
manages to achieveR2 values above 0.995 atmost temper-
atures examined. This indicates that the reduced model
is not only significantly simpler but also highly efficient
in capturing the essential structural effects. Compared
to CG94, which shows notably lower R2 values, particu-
larly at lower and higher temperatures, our new method
shows a clear advantage in balancing model complexity
with predictive reliability.

Table 7. Absolute and relative root mean square deviations for
predicted�H0f at various temperatures using our GCM.

Temperature/[K] Absolute RMSD Relative RMSD

0 4.08 0.0242
200 4.084 0.0202
273 3.992 0.0185
298 3.968 0.0183
300 3.967 0.0182
400 3.922 0.017
500 3.907 0.0162
600 3.945 0.0164
700 3.948 0.0152
800 4.013 0.0152
900 4.011 0.0151
1000 4.043 0.0152
1100 4.073 0.0153
1200 4.106 0.0157
1300 4.126 0.016
1400 4.164 0.0165
1500 4.192 0.017

Table 8. Absolute and relative root mean square deviations for
predicted�G0f at various temperatures using our GCM.

Temperature/[K] Absolute RMSD Relative RMSD

0 4.08 0.0243
200 4.229 0.0958
273 4.403 2.41
298 4.456 0.858
300 4.464 0.4793
400 4.774 0.0522
500 5.027 0.0269
600 5.507 0.0194
700 6.449 0.0162
800 6.379 0.0133
900 6.862 0.0119
1000 7.352 0.0109
1100 7.874 0.0103
1200 8.393 0.0096
1300 9.457 0.0095
1400 10.182 0.0095
1500 41.381 0.048

To better compare the model performance in prac-
tical applications, Figure 8 presents �H0

f at 298K for
linear alkanes of C4 to C20 using these three different
GCMs. The predictions for C4 to C10 represent the fit-
ted results, while the experimental data for C11 to C20
are extrapolated values, intended to evaluate generaliz-
ability of each model beyond the training range. When
extrapolated to longer alkanes, significant differences in
performance emerge. The Sharma et al. method exhibits
the best consistency with the experimental data, fol-
lowed by our method, while the CG94 shows the largest
deviations, particularly for higher carbon numbers. This
comparison shows the improved extrapolation capability
of our method over CG94.

Having demonstrated the strong performance of the
reduced second-order group set in predicting �G0

f and
�H0

f for a wide temperature range, we next explored
whether this our method also retains predictive power
for other key thermodynamic properties. Specifically, we
applied the same group framework to estimate critical
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Figure 8. Prediction of �H0f (298 K) for linear alkanes using three GCMs: Sharma et al. method [13] (yellow squares), CG94 [10] (green
crosses), and our method (red stars). The black circle line represents extrapolated experimental values of C11–C20. The region on the
left (purple ellipse) shows the fitted range C4–C10, while the right region (blue ellipse) indicates the extrapolation zone. The dashed
lines correspond to linear trendlines for each method. Among the three models, the Sharma et al. method shows the best extrapolation
performance, followed by our method, while CG94 exhibits the largest deviation from the experimental data.

Table 9. First-order group contribution Ci for Tc , Pc , ω and Vm
using our method.

Group Tc Pc ω Vm

CH3 1.571 0.456 0.538 19.725
CH2 1.681 0.405 0.005 15.942
CH 1.676 −0.623 −0.531 10.714
C 1.967 −1.282 −1.069 4.506

Table 10. Second-order group contribution Dj for Tc , Pc , ω and
Vm using our method.

Group Tc Pc ω Vm

CH3(C) −0.030 0.195 1.124 × 10−4 0.214
CH3(CH) 0.114 0.187 −1.488 × 10−4 −0.303
CH3(CH2) 0.223 0.001 −5.382 × 10−4 −1.320
CH2(CH)(CH) −0.909 −0.388 1.296 × 10−3 3.082
CH2(CH)(CH2) −0.486 −0.390 1.207 × 10−3 1.976
CH2(CH2)(CH2) −0.028 −0.391 5.621 × 10−5 0.554
CH2(C)(CH3) −0.688 −0.386 1.053 × 10−3 1.295
CH2(C)(CH2) 0.246 −0.204 −4.237 × 10−4 −0.426
CH2(CH)(CH3) −0.096 −0.203 1.036 × 10−4 0.414
CH2(C)(CH) −1.109 −0.384 8.907 × 10−4 3.622
CH2(C)(C) −1.051 −0.378 2.045 × 10−3 2.241
CH2(CH2)(CH3) 0.073 −0.210 −2.176 × 10−4 −1.037

temperatures (Tc), critical pressures (Pc), acentric factors
(ω), and liquid densities at standard conditions (ρl), to
assess the broader applicability and structural relevance
of these selected groups. Unlike before, these properties

Table 11. Parameters fitted trough non-linear regression using
Equations (7)–(9).

T0/[K] P0/[bar] a/[-] α/[-] β/[-]

218.880 7.301 −5.364 2.938 0.575

require functional forms that can accommodate dimin-
ishing returns or saturation as molecular size increases,
which shows non-linear beheviors [31]. This justifies fit-
ting curves such as power-laws or logarithmic relation
rather than relying on a simple additive linear model.
Such an approach aligns with prior works [23, 32–34] in
the field, where GCMs using nonlinear regression have
successfully improved accuracy for critical properties of
hydrocarbons. The fitting equations for Tc, Pc and ω are
as follows:

e
Tc
T0 =

∑
i
NiCi + W

∑
j
MjDj + K (7)

Pc = P0 +
⎛
⎝∑

i
NiCi + W

∑
j
MjDj + K

⎞
⎠

a

(8)

ω = α

⎡
⎣ln

⎛
⎝∑

i
NiCi + W

∑
j
MjDj + K

⎞
⎠

⎤
⎦

β

(9)
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Figure 9. Parity plots comparing predicted and experimental values for (a) critical temperatures (Tc), (b) critical pressures (Pc), and (c)
acentric factors (ω) using the proposed nonlinear regression. The red dashed line represents the ideal correlation (y = x). All three prop-
erties show strong agreement between predicted and actual values, highlighting the accuracy and robustness of themodel for a diverse
range of hydrocarbon structures.

These equations are fitted through non-linear regres-
sion using the curve_fit function from the scipy.
optimise module in Python. All training data used
in this non-linear regression were obtained from Yaws’
Handbook [17]. Similarly, the regression was conducted
in a two-step procedure consistent with the philosophy
illustrated in Equation (6). First, only first-order group
parameters Ci were fitted with W = 0. Once the contri-
bution values for first-order groups Ci were established,
second-order group effects Di were introduced and opti-
mised in a separate regression step by setting W = 1. It
is important mentioning that all the parameters, includ-
ing T0, P0, a, α, β and K, in Equations (7)–(9) were fitted
together with Ci (when K = 0) and these fitted parame-
ters can be found in Table 11. The group countsNi andMj
are determined from SMILES string [35] using Python.
The first- and second-order groups contributions Ci and
Dj for Tc, Pc and ω can be found in Tables 9 and 10. All
the fitted parameters can be found in the file SI2.xlsx in
the Supporting Information.

Figure 9 shows the parity plots of the predictive per-
formance of our proposed model for Tc, Pc and ω. For
all three properties, the predicted values exhibit a strong
linear correlation with experimental data, as evidenced
by the close alignment of the data points along the ideal
y = x reference line. The prediction of ω, Tc, and Pc
also demonstrates excellent accuracy, although minor
deviations appear in more complex or highly branched
compounds. This high degree of agreement reflects
the ability and robustness of our model to incorporate
non-linear structural effects through tailored functional
forms. Quantitative performance metrics including R2,
themean absolute error (MAE), the average relative devi-
ation (ARD), the absolute root mean square deviation,
and the relative root mean square deviation for each

Table 12. The mean absolute error (MAE), the average relative
deviation (ARD), R2, and absolute and relative root mean square
deviation (RMSD) for Tc, Pc, ω, Vm, and ρl using nonlinear regres-
sion (our method).

Property MAE ARD R2
Absolute
RMSD

Relative
RMSD

Tc 3.73 K 0.63% 0.9967 5.978 0.0105
Pc 0.17 bar 0.70% 0.9974 0.312 0.0124
ω 0.0091 2.43% 0.9968 0.022 0.0844
Vm 0.95ml/mol 0.50% 0.9968 0.964 0.0052
ρl 0.80 g/ml 0.51% 0.9667 0.004 0.0052

property are summarised in Table 12, which shows a
decent accuracy for these three properties.

To analyze the liquid densties (ρl) at 298K and 1 bar
pressure of alkanes, we followed an indirect regression
procedure. First, we compiled a dataset of experimen-
tal ρl values from literature [18], which covers of a wide
range of linear and branched alkanes. Next, the values of
ρl were converted into molar volumes (Vm) using

Vm = M
ρl

(10)

where M is the molar mass. Both Vm and ρl depend
on molecular size and structure, with ρl being inversely
proportional to Vm. In our approach, linear regression
is applied to Vm, and the predicted molar volumes are
subsequently converted back to ρl for direct compari-
son with the training dataset. The first- and second-order
group contributions (Ci and Dj) for Vm are reported in
Tables 9 and 10. Figure 10 presents parity plots of the
predictive performance of the proposed model for both
Vm and ρl. For Vm, the predictions show near-perfect
alignmentwith the experimental values, closely following
the ideal correlation line (y = x). In sharp contrast, the
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Figure 10. Parity plots comparing predicted and experimental values of (a) Vm and (b) the values of ρl. Vm were directly fitted using
linear regression, while ρl were obtained by converting the predicted Vm values. The excellent agreement in (a) shows the suitability of
Vm for linear regression CGMs while the slightly larger deviations in (b) reflect the additional complexity inherent in density predictions.

converted predictions of ρl display somewhat larger devi-
ations. This can be attributed to the narrower range of
experimentalρl values (0.66–0.78 g/mL) compared to the
broader range ofVm (125–300mL/mol). Asρl is inversely
related to Vm, even small errors in the predicted Vm
are amplified on conversion, particularly at higher den-
sities. While the overall correlation remains strong, the
scatter around the ideal line is visibly larger for ρl than
for Vm. This deviation reflects the nonlinear transfor-
mation between volume and density, which inherently
magnifiesminor discrepancies in the underlyingVm pre-
dictions. Combined with the quantitative performance
shown in Table 12, these results confirm the advantage
of modelling Vm as the primary regression target. This
approach not only yields more accurate and stable pre-
dictions, but also better reflects the physical relationship
between molecular structural and thermodynamic prop-
erties. Together with the high predictive performance
for Tc, Pc and ω shown earlier, these results validate the
applicability of our method to both linear and nonlinear
thermodynamic properties.

4. Conclusions

In this work, we proposed a simplified CGM that applies
the second-order approximation approach of the Con-
stantinou andGanimethod [10]with a sensitivity-guided
selection of second-order groups inspired by the Sharma
et al. method [13]. By identifying twelve most impactful
second-order groups based on sensitivity, we were able
to develop a new model that strikes a balance between

predictive accuracy and model simplicity. Our method
shows a promising predictive performance for both�H0

f
and �G0

f of alkane isomers for a wide temperature range
from 0–1500K. It retains accuracy comparable to the
Sharma et al.method,which uses 69 second-order groups
as fitting parameters, while using only 16 parameters.
This shows that only a reduced subset of second-order
groups can be essential for capturing the key struc-
tural variations relevant to thermochemical properties.
Beyond linear regression of �H0

f and �G0
f , we tested the

broader applicability of this reduced group set by fitting
experimental Tc, Pc, ω, and ρl at 298K using nonlinear
regression. The results showed excellent agreement with
experimental data, e.g. R2 > 0.996 for Tc, Pc, andω, con-
firming the effectiveness of our approach in modelling
thermodynamic properties that require nonlinear fitting
procedures. These results collectively demonstrate that
our methodology is not only efficient but also broadly
applicable to both linear and nonlinear regression tasks
in group contribution modelling. The high accuracy for
diverse property types validates the robustness of our
approach, and shows its potential use in industrial appli-
cations where interpretability, scalability, and efficiency
are essential. This new methodology has been imple-
mented only to alkanes. Encouraged by the excellent
results, future work will expand its implementation to
a wide range of pure organic compounds and proper-
ties (thermodynamic, transport, environmental-related,
safety related, etc.) that would allow the availability of
a powerful tool for process optimisation and design of
molecules with properties of environmental importance.
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Supporting information

The Supporting Information consists of the file SI1.xlsx,
SI2.xlsx and SI3.py. All training data are listed in SI1.xlsx
together with the first- and second-order model predic-
tions. In SI2.xlsx, the contributions, Ci and Di, of each
group for each property and other fitted parameters,
including K, T0, P0, a, α and β in Equations (7)–(9),
are listed in the sheets containing ‘contributions’, and the
predictions of each property are listed in the sheets con-
taining ‘predictions’. On SI2.xlsx, the sheets starting with
‘CG94’ show the group contributions and properties pre-
dictions for CG94 [10], the sheets starting with ‘Sharma’
show the group contributions and properties predictions
for the Sharma et al. method [13], and the sheets start-
ing with ‘New method’ show the group contributions
and properties predictions for our method. The code to
convert to the SMILES string and the code to count the
numbers of first- and second-order groups for CG94 are
in SI3.py.
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