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a b s t r a c t 

Dynamic balance eliminates the fluctuating reaction forces and moments induced by high- 

speed robots that would otherwise cause undesired base vibrations, noise and accuracy 

loss. Many balancing procedures, such as the addition of counter-rotating inertia wheels, 

increase the complexity and motor torques. There exist, however, a small set of closed-loop 

linkages that can be balanced by a specific design of the links’ mass distribution, poten- 

tially leading to simpler and cost-effective solutions. Yet, the intricacy of the balance con- 

ditions hinder the extension of this set of linkages. Namely, these conditions contain com- 

plex closed-form kinematic models to express them in minimal coordinates. This paper 

presents an alternative approach by satisfying all higher-order derivatives of the balance 

conditions, thus avoiding finite closed-form kinematic models while providing a full solu- 

tion for arbitrary linkages. The resulting dynamic balance conditions are linear in the iner- 

tia parameters such that a null space operation, either numeric or symbolic, yield the full 

design space. The concept of inertia transfer provides a graphical interpretation to retain 

intuition. A novel dynamically balanced 3- RSR spatially moving mechanism is presented 

together with known examples to illustrate the method. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

1. Introduction 

Fluctuating reaction forces and moments generated by fast moving robots cause unwanted base vibrations and accuracy

loss at the end-effector [1] . These shaking forces and moments may be reduced or even eliminated by a specific design of

the robot’s structure and inertia parameters [2] . Such mechanisms, that emit neither shaking forces nor shaking moments,

are termed dynamically balanced, or force-balanced when only the shaking forces are zero. We distinguish three major ap-

proaches to design mechanisms with this feature. Firstly, one may add supplementary counter-mechanisms to a given mecha-

nism, such as counter-rotating wheels [3,4] or idler loops [5–7] . Secondly, various synthesis methods combine and recombine

elementary dynamically balanced modules such as four-bar linkages [8,9] or pantograph-like structures [10–12] into force

balanced or dynamically balanced mechanisms with more degrees of freedom (DOFs). Thirdly, such an elementary module

itself is obtained for the analysis of its dynamic balance conditions. By inspecting the equations that describe its motion and
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dynamics, a range of inertia parameters, i.e. masses, centres of mass (COMs), and moments of inertia (MOIs) may be found

that balance this specific mechanism [8,13,14] . 

For the viability of dynamic balance, it is essential to find simple and low-weight mechanisms that still fulfil the desired

kinematic task. In this view, the addition of counter-mechanisms seems undesirable since it will increases the mass, com-

plexity and the required motor torque. The synthesis approaches, on the other hand, have proven to be versatile for force

balance, yet, incomplete for full dynamic balance [15] . In order to expand the scope of dynamic balance and to enable new

synthesis methods, the focus of this paper lies in the improvement of the third approach, i.e. the generalization and the

automation of the analysis approach. 

The necessary and sufficient dynamic balance conditions are a constant linear and angular momentum, as their deriva-

tives, the shaking forces and moments, then will be zero [16] . In practice, when the system is initially at rest, a zero linear

and angular momentum suffices. A set of inertia parameters that satisfy these conditions is said to be a dynamically bal-

anced solution, whereas the full description of all solutions is termed the design space of dynamically balanced inertia

parameters, or design space for sake of brevity. It should be noted that open-chain linkages cannot be dynamically balanced

without additional counter-mechanisms as they require zero or negative moments of inertia [4] . Closed-chain linkages, on

the other hand, can in some cases by dynamically balanced by a suitable choice of inertia parameters. However, obtaining

the complete design space for these linkages is not trivial as the dynamic balance conditions are to be expressed in minimal

coordinates [17] . This involves kinematic loop-closure models, which may be intricate, even for relatively simple linkages

[8] , or unavailable in closed-form for more complex mechanisms [18] . The lack of symbolic transparency and closed-form

description renders the process of solving the balance conditions an arduous task. 

This complexity of the balance conditions is partly overcome by the Linear Independent Vector Method [19] and derived

methods [20–22] and the Inertia Flow Method [23] . These methods eliminate only a subset of dependent coordinates, lead-

ing to simpler balancing conditions while still yielding the complete design space in general. However, in special kinematic

cases, such as parallelograms, these incomplete kinematic models lead to spurious force or moment balance conditions and

therefore to an incomplete description of the design space [17] . Such special kinematic cases are of particular interest for

dynamic balance as they permit more solutions than the general case. For instance, Ricard and Gosselin [8] showed that the

kite-type and antiparallogram-type of the planar 4 R four-bar linkage may be fully dynamically balanced by a specific mass

distribution. This in contrast to the general four-bar linkage that does require additional counter-rotating measures. 

To prove the work of [8] formally, Moore et al [24] . factorized the balance conditions and loop-closure equations by means

of toric geometry and Laurent polynomials. Subsequently they showed through a similar algebraic approach that the spher-

ical four-bar linkage cannot be dynamically balanced without additional structures [25] . Currently, these algebraic methods

still require a tailored inspection per mechanism and are yet to be extended to multi-DOF mechanisms. An alternative

method to deal with the kinematic complexity of the loop-closure equations was adopted in [26] . There, screw theory was

applied to find instantaneous dynamic balance, yielding a single pose in which mechanism accelerations will not induce

shaking forces and moments. Since outside this pose the balance quality is not guaranteed, this method yields and solves

only the necessary but not sufficient conditions for dynamic balance. 

To summarize; in literature several systematic analysis methods were presented that solve the dynamic balance condi-

tions for given linkages. Yet, no method yields the complete dynamically balanced design space of arbitrary linkages without

a tailored manipulation of the loop-closure equations. Such a method is desired to advance our understanding of dynamic

balance and to find new, simple and lightweight balance solutions. 

In this paper, this long-standing problem is tackled by extending the instantaneous approach of [26] over the complete

workspace by including and solving a sufficient number of higher-order derivatives of the dynamic balance conditions. The

higher-order kinematic and dynamic models are readily available through recursive application of the implicit function theo-

rem [27] , thus avoiding the use of closed-form kinematic models. This method leads to the necessary and sufficient dynamic

balance conditions, and an automatic and complete characterization of all dynamically balanced designs of any given non-

singular mechanism consisting of lower kinematic pairs. To that end, this paper for the first time presents an algorithm to

compute the derivatives of the bodies’ mass matrices and momentum equations in open- and closed-loop linkages up to

arbitrary order. 

This paper starts with a synopsis of the method to guide the reader through the following sections ( Section 2 ). Thereafter

the higher-order derivatives of kinematics is outlined ( Section 3 ), followed by a recapitulation of the rigid body dynamics in

the screw theory framework ( Section 4 ). This leads to a recursive algorithm that yields the higher-order derivatives of the

linear and angular momentum equations (the dynamic balancing conditions) of open and closed-chain linkages ( Section 5 ).

The resulting higher-order momentum equations are then recast into the parameter-linear form [28,29] to provide dynamic

balance conditions that are linear in the inertia parameters and solvable by null space algorithms ( Section 6 ). General null

space algorithms, i.e. singular value decomposition or Gaussian elimination, yield a complete description of all dynamically

balanced mass distributions. This description however, is strongly mixed in the inertia parameters, causing a loss of in-

terpretation and design intuition. Therefore, an alternative, meaningful description of the design space of open-chain and

closed-chain linkages is presented ( Section 7 ). This description is derived from the concept of inertia transfer and the multi-

pole representation of the inertia parameters , as used in the parameter identification of robots [30] . This interpretation, here

termed the multipole-rod representation, is shown to aid the feasibility study of dynamic balanced linkages. It should be

noted that open chains receive quite some attention in this work. Although they cannot be dynamically balanced them-

selves, they provide insight into the solution space of closed-loop linkages. More specifically, it will be shown that a large
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portion of the design space of a closed-loop linkage is build up from the open-chain equivalents into which the linkage

may be decomposed. Case studies of a 6-DOF serial robot, a 4 R planar four-bar linkage, and a 3- RSR mechanism illustrate

the higher-order dynamic balance method ( Section 8 ). This results in a novel 3- RSR mechanism design that is dynamically

balanced for the 2-DOF that lie on three planes of mirror symmetry. Refer to Table A.1 for a list of symbols used in this

paper. 

2. Synopsis of the higher-order dynamic balance method 

Ground-based open-chain linkages are dynamically balanced if the momentum h is zero for all n b joint coordinates q

and all joint velocities ˙ q . Note that this h is a combination of the linear and angular momentum and thus a 6-dimensional

vector. Since the momentum must be zero for all joint velocities and since these joint velocities are linear in the momentum

we obtain the following balancing condition 

h̄ ( q , ̄z ) ≡ 0 (1)

in which h̄ = { ∂ / ∂ ˙ q 
1 
( h ) , . . . , ∂ / ∂ ˙ q n b ( h ) } denote the collection of the basis vectors of h with respect to ˙ q . z̄ denotes the

collection of the inertia parameters of the linkage, i.e. masses, centres of mass, and moments of inertia. The aim of this

paper now lies in the derivation of the complete set of inertia parameters z̄ that guarantee dynamic balance for any given

open- or closed-chain linkage. 

For closed-loop linkages the joint coordinates q are no longer independent since a set of loop closure constraint equations

hold for all motion 

f ( q ) ≡ 0 (2)

This leads to dependencies in q and 

˙ q , and consequently, in a reduced set of balancing conditions. Conventionally, this de-

pendency would be incorporated into Eq. 1 by selecting a set of minimal coordinates u and solving Eq. 2 for the dependent

coordinates q = c( u ) . However, this approach is not always applicable as there is in general no closed form solution to the

loop-closure equation, i.e. c is not always known explicitly. Furthermore, if the solution is found nevertheless, it is typically

a set of involved equations that are hard to use in the balancing procedure. 

In this paper we take a different, Taylor-based approach. It relies on three features. Firstly we leverage the fact that,

although c might not be available in closed form, its higher-order derivatives D 

k 
u ( c ) are available in the reference configura-

tion u 0 through a recursive application of the implicit function theorem ( [27] and recapitulated in Section 3 ). The resulting

higher-order derivatives enable a Taylor expansion of the dynamic balance conditions such that with a slight abuse of nota-

tion these read 

h̄ ( u , ̄z ) = h̄ ( u 0 , ̄z ) + D u 

(
h̄ ( u 0 , ̄z ) 

)
( u − u 0 ) + 

1 

2! 
D 

2 
u 

(
h̄ ( u 0 , ̄z ) 

)
( u − u 0 ) 

2 + · · · = 

∞ ∑ 

k =0 

1 

k ! 
D 

k 
u 

(
h̄ ( u 0 , ̄z ) 

)
( u − u 0 ) 

k ≡ 0 (3)

As this must hold for all motion u , all Taylor coefficients (the higher partial derivatives D 

k 
u 

(
h̄ 

)
) are required to be zero for

dynamic balance. Since h and f are analytic functions in a non-singular configuration, we obtain the following necessary and

sufficient conditions 

D 

k 
u 

(
h̄ ( u 0 , ̄z ) 

)
≡ 0 for k = 0 . . . k max . (4)

Note that this does not require an explicit solution to the loop-closure equations ( Section 5 ). Furthermore since the bal-

ance conditions are analytic, only a finite (but unknown) number k max of partial derivatives is sufficient to ensure dynamic

balance, enabling an algorithmic treatment of this problem. 

The second feature is that these Taylor coefficients ( Eq. 4 ) are linear in inertia parameters z̄ ( Section 4 ). The balance

conditions can therefore, with the help of the regression matrix X k , be written in the form 

X k ( u 0 ) ̄z ≡ 0 for k = 0 . . . k max (5)

and consecutively solved by null space algorithms ( Section 6 ), leading to a full description of the dynamically balanced mass

distributions z̄ ∈ ker ( X k ) , provided that a sufficient number of derivatives is used. 

Thirdly, in this paper we present a systematic partitioning and interpretation of the resulting design space in order to

retain some insight in of the design dependencies and the feasibility of the solution ( Section 7 ). We illustrate the method

on known and new examples ( Section 8 ). 

3. Kinematics 

In this section the groundwork of the method is laid by describing the notation and kinematics, and by recapitulating

the higher-order derivatives of kinematics. 
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3.1. Kinematics of open-chain and closed-chain linkages using lie group and screw theory 

Screw theory is used throughout this work as it gives a concise representation of the higher-order derivatives of kine-

matics and dynamics. This screw theory framework interprets motion of a body as a combination of an angular velocity ω 

around an axis in space, passing through point r t , and a velocity along that axis, termed the pitch λt 

t = 

[
ω 

v 

]
= 

[
ω 

r t × ω 

]
+ λt 

[
0 

ω 

]
(6) 

The twist t is a function of the angular velocity ω and the velocity v of the body’s particles that instantaneously pass

through the origin of the reference frame. Two special cases exist: 1) a pure rotation, i.e. the angular velocity is orthogonal

to the velocity, resulting in a zero pitch ( λt = 0 ), and 2) a pure translation, when the angular velocity is zero and the pitch

is infinite ( λt = ∞ ). 

The twist of the n b bodies in a open chain is linearly dependent on the joint velocities ˙ q of the joints in the chain. The

twist basis vector s j associated to each joint j is termed unit twists or instantaneous screw axis (ISA). In the current context

s j is always taken in the reference configuration q 0 . The joints in a single chain are numbered 1 to n b , from the base to the

end-effector. Therefore, the Jacobian J i of body i is formed by the ISAs lower in the chain 

t i = J i ̇ q = 

[
s 1 · · · s i 0 

]
˙ q , s = 

[
n 

r s × n 

]
+ λs 

[
0 

n 

]
, s ∞ 

= 

[
0 

n 

]
(7) 

These ISA are pure geometric quantities that solely dependent on the joint location r s , the orientation of the joint, encoded

by unit vector n , and the pitch of the joint λs . In this case we treat the three single DOF lower kinematic pairs: revolute R ,

helical H , or prismatic P . For an R -joint the pitch is zero λs = 0 , while for a P -joint the pitch is infinite λs = ∞ , resulting in a

limit case s ∞ 

and is therefore treated separately. Multi DOF joints, such as ball-socket joints, are treated as instantaneously

identical to a set of serially connected single DOF joints. 

In closed-chain linkages, the body twists are restricted by a set of loop closure conditions f . The resulting twists may be

found by regarding each loop as a connection of multiple open chains. A single loop for example is opened by cutting an

arbitrary body, resulting in two open chains of which the last ‘virtual’ bodies have the same twists. These loop-closure con-

ditions constrain the twists of the bodies, as encoded by matrix K . By selecting an independent set of n d input coordinates

u , this system is solved and all dependent joint velocities determined 

D q ( f ) ̇ q = K ̄J ̇ q ≡ 0 , ˙ q ∈ ker ( K ̄J ) , ˙ q = C ̇ u (8) 

The linkage Jacobian J̄ 
� = [ J � 1 · · · J � n b 

] is the collection of all n b body Jacobians. The n b × n d C -matrix denotes the first-order

solution to the loop-closure equations. 

To express finite motion, a reference frame ψ i is associated to each body i . A homogeneous transformation matrix H i ,

consisting of a rotation matrix R i and a translation vector o i , express a point a from a body-fixed frame into the inertial

frame of reference a 

0 = H i a 

i . In this convention the a 

i vector consist of four values; 3 Cartesian coordinates and a 1. The

superscripts denote the frames of expression of the vector. These transformation matrices relate again to the ISAs in a open

chain through a product of matrix exponentials, leading to the general forward kinematics of open-chain linkages [31] 

H i = 

i ∏ 

j=1 

exp (q j 
[
s j ×

]
) , H = 

[
R o 0 1 

]
, 
[
s ×

]
= 

[[
n ×

]
r s × n + λs n 0 0 

]
(9) 

in which exp (q j 
[
s j ×

]
) denotes the matrix exponential of the 4 × 4 matrix of the ISA in the reference (initial) configuration

( q = q 0 = 0 ) , and 

[
n ×

]
the 3 × 3 skew symmetric matrix of n . 

The ISA are expressed in another coordinate frame by the adjoint transformation matrix Ad 

(
H 

)
. The ISA is expressed

from the body fixed reference frame s i 
i 

in the inertial frame of reference s 0 
i 

according to 

s 0 i = Ad 

(
H i 

)
s i i , Ad 

(
H 

)
= 

[
R 0 [

o ×
]
R R 

]
(10) 

The time derivative of the transformation matrix relates to the body twist through the matrix form of the adjoint twist

transformation, here termed adjoint twist matrix ad( t i ) 

d 

dt 
( Ad 

(
H i 

)
) = ad ( t i ) Ad 

(
H i 

)
, ad ( t ) = 

[[
ω ×

]
0 [

v ×
] [

ω ×
]] (11) 

3.2. Higher-order derivatives of kinematics 

For parallel mechanism a closed-form solution to the kinematic loop-closure equations does not exist in general. Yet, a

higher-order approximation of the motion is available by treating the closed loop as a connection of several open chains.

For such a connection, the higher-order derivatives of the loop-closure equations are found and solved yielding a Taylor
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approximation of finite motion [27] . In that approach, the higher-order partial derivatives of the body twists are found from

the adjoint twist matrices corresponding to the ISA that are lower in the open-chain equivalent linkage [32] . Since each ISA

is constant when expressed in a local body-fixed frame, all these derivatives follow from a repetitive application of Eq. 11 to

Eq. 10 , such that 

D 

α
q ( s i ) = 

i −1 ∏ 

j=1 

ad 

(
s j 

)α j 
s i (12)

In here D 

α
q ( A ) = ∂ k / (∂ q 

α1 
1 

· . . . · ∂ q αn 
n ) ( A ) denotes the higher-order partial derivatives with respect to the elements of q . Vec-

tor α = (α1 , . . . , αn ) comprises the order of the derivatives corresponding to q , running from the base to the end-effector.

Hence we assume an ordered sequence, i.e. αi corresponds to the joint q i . The k = α1 + . . . + αn = | α| is the total order, see

Appendix A . The joints higher in the chain have no contribution to the motion of the lower joints, such that this derivative

( Eq. 12 ) is set to zero, i.e. if αj � = 0 for j ≥ i . By this, all the higher-order partial derivatives of the body Jacobians D 

α
q ( J i ) are

available. 

This procedure is used for the solution of the higher-order closed-loop constraints [27] by recasting it into the matrix

derivative framework of Vetter for bookkeeping [33] and Appendix A . In this notation the collection of all first-order partial

derivatives of matrix A = [ a 1 · · · a m 

] are sorted according to 1 

D q ( A ) = 

[
D q ( a 1 ) · · · D q ( a m 

) 
]
, D q ( a i ) = 

[
∂ / ∂q 1 ( a i ) · · · ∂ / ∂q n ( a i ) 

]
(13)

With this, the derivatives of the loop-closure solution D u ( C ) are found through application of the chain rule and product

rule ( Appendix A ) to Eq. 8 . The collection of second-order loop-closure constraints read 

D q 

(
K ̄J 

)
( C �C ) + K ̄J D u ( C ) ≡ 0 (14)

In here A �B denotes the Kronecker product of two matrices ( Appendix A ). From this equation D u ( C ) is determined. A recur-

sive application leads to the k -th order constraints 

D 

k 
u 

(
K ̄J C 

)
= 

n b ∑ 

i =1 

[
D 

k 
q 

(
K ̄J 

)
· · · K ̄J 

]
C̄ k ≡ 0 , ( ̄C k ) 

� = 

[
( C �k ) � · · · D 

k 
u ( C ) 

� ] (15)

from which D 

k 
u ( C ) may be solved through the algorithm presented in [27] . The Kronecker power is denoted by a �k super-

script. The exact composition of the C̄ k collection matrix is found through repetitive application of the chain and product

rules, but is omitted here due to space limitation. 

4. Rigid body dynamics 

The rigid body dynamics of spatially moving objects and mechanisms is concisely written with the use of screw theory

[34,35] . This section briefly introduces the use of screw and Lie group theory in rigid body dynamics, followed by the

presentation of the multipole-rod representation of the inertia parameters as used in the interpretation of the dynamically

balanced solution later on. 

4.1. Momentum wrench and mass matrix 

The momentum of a body is the product of the body’s spatial mass matrix M and the twist t associated to it. The

momentum is a co-screw or a wrench-like entity and therefore termed momentum wrench hereafter 

h = 

[
ξ
p 

]
= M t . (16)

The mass matrix of a body is formed by the integral over the body volume 

M = 

∫ 
V 

[
−
[
r ×

]2 [
r ×

]
−
[
r ×

]
I 3 

]
d m = 

[
E 

[
m c ×

]
−
[
m c ×

]
m I 3 

]
. (17)

This gives rise to the classical description with a mass m , a centre of mass c and inertia matrix E with respect to the inertial

frame of reference. The inertia matrix E contains 3 inertia moments and 3 products of inertia, respectively on its diagonal

e � 
d 

= [ e 1 e 2 e 3 ] and its off diagonal e � o = [ e 4 e 5 e 6 ] . The matrix I 3 denotes a 3 × 3 identity matrix. Due to the frame

invariance of kinetic energy K = 1 / 2 t � M t , the mass matrix transforms with an adjoint transformation matrix on the right

and its transposed on the left. By choosing a frame that is located at the centre of mass and aligned with the principal axis
1 Please note the two distinct uses of the differentiation operator. When the superscript is a vector, i.e. D αq , it denotes a repeated partial derivatives, but 

when the superscript is a scalar, i.e. D k q , it is a collection of partial derivatives of order k ( Appendix A ). 
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Fig. 1. Three representations of the inertia parameters of a body. (a) The conventional representation with a mass m , a centre of mass c and an inertia 

matrix G around c . (b) The multipole representation [30] with parameters that are linear in the mass matrix; a monopole m at r , a dipole δ in the direction 

a , and a quadripole η in the direction of b . One monopole, three dipoles and six quadripoles are sufficient to describe arbitrary bodies. (c) The multipole- 

rod representation reduces the number of graphical elements by interpreting the quadripole as an infinitely long, slender rod, termed ‘pure-inertia rod’ 

and depicted as a striped bar. The monopole is termed ‘point mass’, whereas the dipole is treated as a ‘displacement’ of the point mass with negative 

pure-inertia rod in the same direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of inertia, any mass matrix can be diagonalized. The corresponding transformation matrix from this principal axes frame to

the current frame is Ad 

(
H p 

)
. This gives rise to three principal MOIs g 1 , g 2 , and g 3 

M = Ad 

(
H p 

)−� 
diag (g 1 , g 2 , g 3 , m, m, m ) Ad 

(
H p 

)−1 
. (18) 

In this body-fixed frame, the mass matrix is constant, i.e. ˙ m and ˙ g i = 0 , due to the rigid body assumption. Since the mass

matrix is formed by a collection of positive mass particles, the mass matrix itself is symmetric positive definite, leading to

7 inequality conditions on the mass and the principal MOIs 

m > 0 , g i > 0 , g i + g j > g k (19)

4.2. Momentum wrench basis 

Similar to the twist basis, we define a linkage’s momentum basis that spans all possible momentum wrenches at a given

pose. The basis vectors, termed the instantaneous momentum wrenches (IMW) and denoted with 

ˆ h i , are the momentum

wrenches generated by unit actuation of each joint. The total momentum wrench of a open chain is therefore given by 

h = 

∑ 

M i t i = M̄ ̄J ̇ q = 

[
ˆ h 1 · · · ˆ h n 

]
˙ q ≡ 0 , ̂  h i = 

n b ∑ 

j= i 
M j s i ≡ 0 (20) 

In here M̄ = [ M 1 · · · M n ] denotes the collection of all mass matrices in the chain. For dynamic balance all the IMWs

must be zero for arbitrary motion. For closed-chain linkages the momentum wrench basis is computed by applying the first

order loop-closure solution C 

h = M̄ ̄J C ̇ u ≡ 0 . (21) 

4.3. Multipole-rod interpretation of the mass matrix 

In the current dynamic balancing procedure we will use the fact that the balancing conditions are linear in the elements

of the mass matrix such that they can be solved through a set of linear operations. The conventional mass matrix parametri-

sation, consisting of masses m , COMs c and principal MOIs g , is not suitable for the interpretation of the resulting design

space, since it is not linear in the elements of the mass matrix. Therefore we will use a slight adaptation of the multipole

concept of Ros et al [30] ., termed the multipole-rod representation ( Fig. 1 ). This interpretation relies on the fact that a mass

matrix can be decomposed into three primitive elements; 1) a single point mass at r , denoted with a subscript m , 2) a

displacement of the point mass in the direction of a unit vector a combined with a pure-inertia rod of opposite magnitude,

denoted with a subscript δ, and 3) a pure-inertia rod in the direction of a unit vector b , denoted with a subscript η. These

pure-inertia rods are interpreted as infinitely long slender rods in the direction of their unit vector. Their mass is assumed

zero such that only the rotational velocity component in a perpendicular direction generates angular momentum. A rotation

around their longitudinal axis generates no angular momentum. The sole difference with the method of [30] is the graphical

representation. This reduces the larger number of point masses (poles), which otherwise might congest the figures. 

Now, any mass matrix can be represented by choice of 10 of these primitive elements, one point mass, three displace-

ments, and six pure-inertia rods, as long as the unit vectors a i and b i are unique 

M = m M m 

( r ) + 

∑ 

i =1 ···3 
δi M δ( a i , r ) + 

∑ 

i =1 ···6 
ηi M η( b i ) . (22) 

The mass, the moment of mass, and the moment of inertia of these elements are given by 
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m m 

= 1 , (m c ) m 

= r , E m 

= −
[
r ×

]2 
, m δ = 0 , (m c ) δ = a , E δ = 1 / 2 

[
r − a ×

]2 − 1 / 2 

[
r + a ×

]2 
, 

m η = 0 , (m c ) η = 0 , E η = −
[
b ×

]2 
. (23)

For the planar case, this representation requires one point mass, two displacements and one pure-inertia rod, of which the

elements reduce to 

m m 

= 1 , (m c ) m 

= r , e m 

= ‖ r ‖ 

2 , m δ = 0 , (m c ) δ = a , e δ = 2 a 

� r , m η = 0 , (m c ) η = 0 , e η = 1 . (24)

For feasibility of each body, they must consist of at least one positive point mass, and three non-coplanar positive pure-

inertia rods ( Eq. 19 ), since two pure-inertia rods represent an infinitely flat object. A negative pure-inertia rod requires at

least 3 arbitrarily oriented positive pure-inertia rods (or two positive coplanar pure-inertia rods) of sufficient magnitude to

represent a feasible body. A closed-form feasibility description of an arbitrary collection of these elements can be found

through eigendecomposition of the resulting mass matrix, but lies outside the scope of this paper. 

5. Higher-order derivatives of the momentum equations and of the dynamic balance conditions 

The previously presented higher-order analysis of the kinematics is extended to rigid body dynamics in this section. The

aim is to find and solve the necessary and sufficient dynamic balance conditions of arbitrary linkages without invoking the

closed-form solution to the loop-closure equations. For dynamic balancing purposes this study is confined to the change of

rigid body momentum. Other effects such as gravity, elasticity, or external forces are not taken into account. The dynamic

balance conditions are obtained from the partial derivatives of the mass matrices and momentum equations of open-chain

linkages, which are extended thereafter to closed-chain linkages by including the higher-order derivatives of the loop-closure

solution. It should be noted that although open-chain linkages cannot be dynamically balanced without additional counter-

mechanisms, their description is important for dynamic balance since closed-loop linkages can be regarded as connected

open chains. 

5.1. Derivatives of the mass matrix in a open chain 

The mass matrix of a body i in a open chain depends on the pose of the joints that are lower in the kinematic chain

according to Eq. 9 and Eq. 18 . Therefore, its partial derivative with respect to a joint j , lower in the chain ( j ≤ i ), is found by

applying Eq. 11 to Eq. 18 

∂ 

∂q 
j 

( M i ) = −ad 

(
s j 

)� 
M i − M i ad 

(
s j 

)
(25)

Here we have used the fact that the mass matrix is constant in the body-fixed frame. For all partial derivatives with respect

to joints higher in the chain ( j > i ) this derivative is zero. 

A second (non-zero) partial derivative is either with respect to a joint higher ( j ≤ l ≤ i ) or joint lower ( l ≤ j ≤ i ) in the

chain. In the first case ( j ≤ l ≤ i ) the partial derivative becomes 

∂ 

∂q l 

∂ 

∂q 
j 

( M i ) = ad 

(
s l 
)� (

ad 

(
s j 

)� 
M i + M i ad 

(
s j 

))
+ 

(
ad 

(
s j 

)� 
M i + M i ad 

(
s j 

))
ad 

(
s l 
)
. (26)

Here the Jacobi identity ∂ / ∂q 
l 
( ad 

(
s j 

)
) = ad ( ad 

(
s l 
)
s j ) = ad 

(
s l 
)
ad 

(
s j 

)
− ad 

(
s j 

)
ad 

(
s l 
)

is used. For the second case ( l ≤ j ≤ i )

only the derivative of the mass matrix has to be taken into account as a higher joint does not influence a lower ISA

( ∂ / ∂q 
l 
( ad 

(
s j 

)
) = 0 ). This results in a similar equation as Eq. 26 , with the sole difference that the indices j and l are swapped.

This also follows from the symmetry of partial derivatives. This nested structure, i.e. the pre- and postmultiplication of ad-

joint twist matrices, is preserved for the higher orders, leading to a recursive formula for all partial derivatives of the mass

matrix 

∂ 

∂q j 
( D 

α
q ( M i ) ) = −ad 

(
s j 

)� 
D 

α
q ( M i ) − D 

α
q ( M i ) ad 

(
s j 

)
(27)

in here j is the lowest joint to which a partial derivative is taken, i.e. αl = 0 for all l < j . In case αl � = 0 for any l > i , this

equation is set to zero. 

5.2. Derivatives of the momentum wrench in a open chain 

Now that the derivatives of the mass matrix up to arbitrary order are available, we consider the partial derivatives of

the momentum wrench with the aim of obtaining all higher-order dynamic balance conditions. Consider the momentum

wrench generated by the j th body due to unit actuation of joint i , which is lower in the chain. Two types of non-zero

partial derivatives appear. Either joint l — with respect to which the derivative is taken — is below the joint i , or between
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the joint i and the j th body. In the first case ( l ≤ i ≤ j ), the partial derivative of both the mass matrix and the ISA have to

be taken into account, partially canceling out 

∂ 

∂q 
l 

(
M j s i 

)
= 

∂ 

∂q 
l 

(
M j 

)
s i + M j 

∂ 

∂q 
l 

( s i ) = −ad 

(
s l 
)� 

M j s i. (28) 

In the second case ( i < l ≤ j ), the partial derivative of the ISA vanishes ∂ / ∂q 
l 
( s i ) = 0 . Therefore, the partial derivative of the

momentum wrench becomes 

∂ 

∂q 
l 

(
M j s i 

)
= 

∂ 

∂q 
l 

(
M j 

)
s i = −( ad 

(
s l 
)� 

M j + M j ad 

(
s l 
)
) s i. (29) 

The higher-order partial derivatives are found similarly by making a split between the partial derivatives related to joints

lower than the momentum generating ISA, and the ones related to the joints between the ISA and the body. Therefore. a

second multi-index is introduced for which holds βl = αl for all i < l ≤ j and βl = 0 for all l ≤ i . The partial derivatives of

the momentum wrench are found from Eq. 27 according to 

D 

α
q 

(
M j s i 

)
= 

i ∏ 

l=1 

(
−ad 

(
s l 
)� )αl 

D 

β
q 

(
M j 

)
s i . (30) 

Again this equation is zero if αl � = 0 for any l > j . These partial derivatives may be summed to obtain the derivatives of

the total momentum of the linkage. Notice that in this equation the momentum derivatives are formulated as a sequence of

matrix operations, which are linear in the mass matrix. 

5.3. Derivatives of the dynamic balance conditions of a open-chain linkages 

The dynamic balance conditions dictate that the momentum wrench of a linkage is zero for all motion. Therefore also all

higher-order derivatives of the momentum wrench must be zero. With a large enough number of derivatives k m ax these are

not only the necessary but also the sufficient dynamic balance conditions for nonsingular linkages. In fact, here it will be

shown that for open-chain linkages only derivatives up to the second order are needed ( k max ≤ 2). When these are satisfied,

all the higher-order dynamic balance conditions satisfied, and the linkage is dynamically balanced for finite motion. 

For zeroth-order dynamic balance, the condition ( Eq. 20 ) imposed on each IMW is 

ˆ h i = 

n b ∑ 

j= i 
M j s i = 

˜ M i s i ≡ 0 , ˜ M i = 

n b ∑ 

j= i 
M j = 

[
˜ E i 

[ ˜ m i c i ×
]

−
[ ˜ m i c i ×

]
˜ m i I 3 

]
(31) 

The aggregated mass matrix ˜ M i is the sum of the mass matrices belonging to bodies higher in the chain than s i . Consider

now the following momentum derivatives of ˆ h j and 

ˆ h l , involving any triplet s l , s j , and s i of zero or finite pitch ISA, which

are arranged in ascending order ( l ≤ j ≤ i ) 

∂ 

∂q 
i 

(
ˆ h l 

)
= 

∂ 

∂q 
i 

(
˜ M i 

)
s l ≡ 0 , 

∂ 

∂q 
i 

(
ˆ h j 

)
= 

∂ 

∂q 
i 

(
˜ M i 

)
s j ≡ 0 (32) 

∂ 

∂q l 

∂ 

∂q 
i 

(
ˆ h j 

)
= −ad 

(
s l 
)� ∂ 

∂q 
i 

(
ˆ h j 

)
− ∂ 

∂q 
i 

(
˜ M i 

)
ad 

(
s l 
)
s j ≡ 0 (33) 

Notice that these dynamic balancing conditions impose constraints on the same aggregated mass matrix ˜ M i since q i is higher

in the chain than q l and q j such that ∂ / ∂q 
i 
( M j ) = 0 for j ≤ i . As the first-order balancing conditions ( Eq. 32 .b) ensure that

∂ / ∂q 
i 
( ̂ h j ) = 0 , the second-order dynamic balance conditions ( Eq. 33 ) reduce to 

∂ 

∂q 
i 

(
˜ M i 

)
ad 

(
s l 
)
s j ≡ 0 (34) 

A recursive application shows that this extends to the higher orders, such that all balance conditions are of the form 

∂ 

∂q 
i 

(
˜ M i 

) i ∏ 

l= j 

(
ad 

(
s l 
)� )αl 

s j ≡ 0 (35) 

Moreover, the zeroth-order balance conditions ( Eq. 31 ) satisfies all higher-order force balancing conditions since ∂ / ∂q 
i 
( ̃  M i )

is a function of the linear momentum and the mass is assumed to be constant 

∂ 

∂q 
i 

( ̃  m i c i ) = 

ˆ p i ≡ 0 , 
∂ 

∂q 
i 

( ̃  m i ) = 0 (36) 

Therefore, only the following first- and second-order moment balance conditions remain: 

∂ 

∂q 

(
˜ E i 

)
n l ≡ 0 , 

∂ 

∂q 

(
˜ E i 

)
n j ≡ 0 , 

∂ 

∂q 

(
˜ E i 

)[
n l ×

]
n j ≡ 0 (37) 
i i i 
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In the general case, when n j � n l , this imposes 9 independent constraints on the derivative of the inertia matrix, requiring

∂ / ∂q 
i 
( ̃  E i ) = 0 , thus directly satisfying all higher-order partial derivatives ( Eq. 35 ). This shows that derivatives of a higher

order than k max = 2 impose no new dynamic balance conditions for open-chain linkages. When, in the special case, all non-

infinite pitch ISA lower in the chain are parallel, i.e. n j ‖ n i for all j < i , the moment balance conditions ( Eq. 37 ) vanish or

become equivalent. Then, only three higher-order constraints are imposed on the aggregated inertia matrix ˜ E i . Prismatic

joints (infinite pitch ISA) lower in the chain impose no higher-order moment balance conditions as their angular velocities

n j are zero. 

To summarize: for open-chain linkages the zero-order force and moment balance conditions ( Eq. 31 ) and the first- and

second-order moment balance conditions ( Eq. 37 ) are necessary and sufficient, leading to a k max = 2 . 

5.4. Derivatives of the dynamic balance conditions of closed-chain linkages 

The dynamic balance conditions of closed-chain linkages dictate a zero momentum wrench ( Eq. 21 ) for all independent

velocities ˙ u . Therefore the zeroth-order balancing conditions read 

M̄ ̄J C ≡ 0 (38)

Also all higher-order partial derivatives with respect to u should be zero for dynamic balance. These conditions are found

by repetitive application of the chain rule, the product rule and derivatives of the Kronecker product. Similar to Eq. 15 , the

first-order dynamic balancing conditions become 

D u 

(
M̄ ̄J C 

)
= D q 

(
M̄ ̄J 

)
( C �C ) + M̄ ̄J D u ( C ) ≡ 0 (39)

This generalizes to higher-orders by a repetitive application of the chain and product rules 

D 

k 
u 

(
M̄ ̄J C 

)
= 

[
D 

k 
q 

(
M̄ ̄J 

)
· · · M̄ ̄J 

]
C̄ k ≡ 0 (40)

From the analyticity of the momentum equations it may be deduced that there is finite k max which renders these con-

ditions not only necessary but also sufficient for the dynamic balance for closed chains in nonsingular poses. Refer to

Section 9 for a discussion on the necessity and sufficiency of these conditions. 

It should be noted that these higher-order dynamic balance conditions are linear in the mass matrices and can be ob-

tained through a series of matrix multiplications and linear operations. This method is therefore able to treat symbolic or

numerical input. 

6. Dynamic balance solution using the parameter-linear form 

Now, to solve these higher-order dynamic balance conditions, we recast Eq. 40 in the parameter-linear form [28,29] as

used in the parameter identification. This enables null space procedures to extract the dynamically balanced mass distribu-

tions. 

6.1. Parameter-linear form 

Since the m, m c and E ( Eq. 17 ) are linear in the momentum equation, the following parameter-linear form holds 

h = M t = 

[
t ∗

]
z , z � = 

[
m m c � e � 

d 
e � o 

]
(41)

in which the z -vector is formed by the inertia parameters of the body. The twist dependent ‘regression’ matrix is given by

[
t ∗

]
= 

[
0 −

[
v ×

]
diag ( ω ) 

[
ω ∗

]
v 

[
ω ×

]
0 0 

]
, 
[
ω ∗

]
= 

[ 

ω 5 ω 6 0 

ω 4 0 ω 6 

0 ω 4 ω 5 

] 

. (42)

Notice that the ordering of the inertia parameter slightly differs from [29] . The parameter-linear form of the momentum

basis of a open-chain linkages is directly computed from Eq. 20 

h̄ = vec ( M̄ ̄J ) = 

⎡ ⎢ ⎣ 

ˆ h 1 

. . . 
ˆ h n 

⎤ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

[
s 1 ∗

]
· · ·

[
s 1 ∗

]
. . . 

. . . 
. . . 

0 · · ·
[
s n ∗

]
⎤ ⎥ ⎦ 

⎡ ⎣ 

z 1 
. . . 

z n 

⎤ ⎦ = W ̄z (43)

in here h̄ and z̄ denote the concatenation of all IWM and all inertia parameters in the chain, respectively. 

To obtain the parameter-linear form of closed-chain linkages, the vectorization of matrix products ( Appendix A ) is applied

to Eq. 38 

h̄ = vec ( M̄ ̄J C ) = ( C � �I 6 ) W ̄z = X ̄z (44)

where I is a 6 × 6 identity matrix. 
6 
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6.2. Higher-order dynamic balance conditions in the parameter-linear form 

The parameter-linear form also applies to higher-order derivatives of the balance conditions as they are formed through

a sequence of matrix operations that are linear the inertia parameters. The higher-order open chain regression matrices W k 

can be found accordingly, i.e. by the application of Eq. 41 to Eq. 27 and Eq. 30 , resulting in the following condition 

vec 
(
D 

k 
q 

(
h̄ 

))
= W k ̄z ≡ 0 (45) 

For closed chains the parameter-linear form is found by applying the matrix vectorization to Eq. 40 , such that 

vec 
(
D 

k 
q 

(
h̄ 

))
= ( ̄C 

� 
k �I 6 ) W̄ k ̄z = X k ̄z ≡ 0 (46) 

in which W̄ 

� 
k = 

[
W 

� 
1 · · · W 

� 
k 

]
. Now we have arrived at the parameter-linear form of the higher-order derivatives of the

momentum equations of open- and closed-chain linkages. It should be observed that all these steps solely rely on matrix

operations suitable for algorithmic treatment. 

6.3. Solving the dynamic balance condition 

Dynamic balance requires inertia parameters z̄ that are on the intersection of the null spaces of all the X i matrices 

z̄ ∈ ker ( X i ) , ̄z ∈ ker ( ̄X k max 
) , ̄z = N y (47) 

in which X̄ 

� 
k max 

= 

[
X 

� 
1 · · · X 

� 
k max 

]
is the collection of all regression matrices up to order k max . It should be emphasised

that there is a finite k max , which makes the approach practically feasible. The columns of the N matrix form a basis that

span this null space and therewith describe the full design space of the dynamically balanced inertia parameters. This N

matrix is termed the design space matrix and may be found through numeric or symbolic null space algorithms such as

Gauss-Jordan elimination or singular value decomposition. The corresponding design parameters are collected in y . With

this the complete set of dynamically balanced inertia parameters of any given nonsingular linkage may be found. 

7. Partitioning and interpretation of the dynamic balance solution 

The application of null space algorithms to the dynamic balance problem ( Eq. 47 ) may result in a design space descrip-

tion that is strongly mixed in the inertia parameters, compromising structure and design intuition. To aid the designer, a

partitioning of the design space with respect to the joint topology is presented alongside a multipole-rod representation

( Fig. 1 ) of these partitions. We shall show that 6 types of inertia transfer matrices completely describe the design space

of open-chain linkages. These inertia transfer matrices contain all inertia parameters that may be transferred between two

hinged bodies, i.e. subtracted from one body and added to the other, without changing the momentum generated by the

linkage. This partitioning will lead to a general description of the design space of open-chain linkages that, more importantly,

also covers a large part of the design space of closed-loop linkages. Closed-loop linkages may be seen as a connection of

multiple open chains. A balancing solution that is valid for open-chain linkages is therefore also valid for closed-chain link-

ages. Although the open-chain design space itself is always unfeasible, in combination with a closed-chain design space it

allows for more feasible solutions as shown later in the examples. 

7.1. Partitioning the design space of open-chain linkages 

The dynamic balancing conditions of open-chain linkages ( Eq. 31 and Eq. 37 ) are formulated in terms of aggregated

mass matrices ˜ M i . Before presenting the general solution it may already be observed that solution to these equations will

also be in terms the aggregated mass matrices. From these aggregated solutions each individual mass matrix can be found

accordingly 

M i = 

˜ M i − ˜ M i +1 , z i = N i y i − N i +1 y i +1 . (48) 

Therefore, the complete design space matrix N of an open chain ( Eq. 47 ) may be partitioned as a band diagonal matrix ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

z 1 
z 2 
. . . 

z n −1 

z n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

N 1 −N 2 · · · 0 

N 2 −N 3 

. . . 

. . . 
. . . 

. . . N n −1 −N n 

0 · · · N n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

y 1 
y 2 
y 3 
. . . 

y n −1 

y n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(49) 

in here the submatrix N i describes all inertia parameters that can be exchanged between the two bodies connected by joint

i without changing the dynamic behavior of the chain. These N i submatrices are therefore termed inertia transfer matrices.

In Section 7.3 it is shown that there exist actually 6 types of inertia transfer matrices depending on the type of joint and

parallelism with the joint axes lower in the chain. 
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Table 1 

The dimensions of the 6 inertia transfer matrices. Each joint i in 

a chain extends the design space depending on the type of joint; 

revolute ( R ), helical ( H ), or prismatic ( P ) and the alignment with all 

non-prismatic joints j < i lower in the chain; a) skew or b) parallel. 
∗With a prismatic joint, the prismatic joint direction applies n i = 

n i, ∞ . 

Joint type R ( λi = 0 ) H ( λi = finite ) P ∗ ( λi = ∞ ) 

Skew n j � n i 3 1 6 

Parallel n j ‖ n i 5 4 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that a similar concept is used in the context of parameter identification to describe the set of unidenti-

fiable inertia parameters [30,36] . Broadly speaking, inertia parameters are said to be unidentifiable if they do not contribute

to the kinetic energy of the linkage. The dynamically balanced design space of open-chain linkages, as found here, is formed

by unidentifiable inertia parameters as zero momentum in this case also implies zero kinetic energy. The inverse is not true

in general. This also shows that the inertia parameters in this design space do not affect the required motor effort of the

linkage. 

7.2. Partitioning the design space of closed-chain linkages 

We have already seen that closed-loop linkages can be converted into an open-chain equivalent by opening the loop.

Therefore, the dynamic balance conditions, and hence the solutions, for open chains are also valid for closed-chain linkages.

Yet, this is not necessarily the complete design space, since the loop-closure equations allow for dynamically balanced mass

distributions that lie outside the design space of open-chain linages, i.e. rank ( ̄X ) ≤ rank ( W̄ ) . The design space of closed-

chain linkages can therefore be partitioned into N O , dealing with the equivalent open-chains, termed open-chain design

space matrix , and into a remainder N C associated to the loop closure, termed closed-chain design space matrix 

N = 

[
N O N C 

]
, N O = 

[
N I · · · N N 

]
. (50)

The open-chain equivalent design space matrix N O is found by cutting the loops of a closed-loop linkage such that a set of

N chains are found. The open-chain design space matrix N I associated to chain I has the band-diagonal form of Eq. 49 . The

complete open-chain design space is the union of the open-chain design spaces of the chains into which the linkage may

be decomposed. The open-chain design spaces of the individual chains are not necessarily disjoint, e.g. two design spaces

bases N I and N II of a single loop may partly cover the same design space. This means that the rank of the open-chain design

space is equal to, or smaller than, the sum of the rank of the individual open-chain design spaces. Furthermore it should be

noted that the open-chain design space is invariant to where a loop is opened, although the basis might be different. 

A meaningful closed-chain design space matrix is found by introducing a suitable test matrix T , whose inertia parameters

are not in the span of the open-chain design space. The null space basis ( ̄X T ) ⊥ of the resulting higher-order momentum

wrenches X̄ T yields an interpretable design space matrix N C 

N C = T ( ̄X T ) ⊥ . (51)

7.3. Interpretation of the design space via the concept of inertia transfer 

In Section 5.3 , it was shown that dynamic balance imposes two conditions on the aggregated mass matrices of open-

chain linkages: Firstly, each aggregated mass matrix ˜ M i should be chosen such that its IMW vanishes ( ̃  M i s i ≡ 0 ). Secondly,

the actuation of the corresponding joint q i should not change the angular momentum generated by aany joint lower in the

chain ( ∂ / ∂q 
i 
( ̃  E i ) n j ≡ 0 for all j < i ). From the first condition three cases arise; an ISA of zero, finite or infinite pitch, while

for the second condition two cases exist; either all axes up to n i are parallel ( n j ‖ n i for all j < i ) or at least one is skew

( n j � n i for j < i ). This gives rise to 6 types of design space for 1-DOF lower kinematic pairs, and, consequently, 6 types of

inertia transfer matrices N i ( Eq. 49 ). These are discussed now. For higher-DOF joints and joints in planar linkages a similar

representation exist as shown subsequently. 

7.3.1. Six inertia transfer matrices 

Here, the multipole-rod representation of these six inertia transfer matrices are given ( Fig. 2 ). In this notation the point

mass, displacement and pure-inertia rod elements of the multipole-rod representation ( Eq. 23 ) are respectively denoted by

z m 

( r ), z δ( r , n ), and z η( n ). The dimensions of these inertia transfer matrices are in Table 1 . Starting from a revolute joint,

whose axis has no particular alignment, the six cases are discussed and interpreted. 

N 0, � The inertia transfer matrix associated to a revolute joint ( λ = 0 ) — whose joint axis is skew ( � ) with respect to one

or more preceding revolute or helical joints — comprise of three inertia parameters. These three parameters can be

freely exchanged (added to one and subtracted from the other) between the two bodies hinged by this joint without
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Fig. 2. The interpretation of the six sets of inertia parameters that can be exchanged between the two (grey) bodies attached to joint i (subtracted from 

one and added to the other) without changing the dynamic behaviour of the chain as a whole. These six cases arise from the three types of 1-DOF lower 

pairs, and parallelism with all preceding revolute and helical joints. The orientation of the preceding prismatic joints have no influence. It should be noted 

that for clarity sake the effect of the displacement δ on the MOIs is not shown, as it can be compensated by, or absorbed in η1 . Since the pure-inertia rods 

have no application point, they are displayed at an arbitrary location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

affecting the momentum generated by the chain as a whole. These parameters are: 1) a point mass z m 

on the joint

axis r s , 2) a displacement of this point z δ in the direction of the joint axis n , 3) a pure-inertia rod η in the direction

of the joint axis n . The corresponding inertia transfer matrix therefore reads 

N 0 , ∦ = 

[
z m 

( r s ) z δ( n , r s ) z η( n ) 
]
. (52) 

The reason for these three inertia transfers is that the actuation of a joint with a point mass m anywhere on its axis

r s does not induce any linear or angular momentum, nor does it change the IWM of lower joints ( Eq. 37 ), since and

equal and opposite point mass is attached to the connecting body. This yields the design freedoms z m 

and z δ . The

third design freedom, a pure-inertia rod η, generates no angular momentum as it is aligned with the joint axis. This

alignment also makes sure that the rotation of this pure-inertia rod by the joint will not cause a change in the inertia

matrix felt by the lower joints. 

Any other exchange of mass or inertia between the two bodies connected by this joint will either change the mo-

mentum generated by this joint or by the joints lower in the chain. 

N 0, ‖ When the revolute joint ( λ = 0 ) is parallel with respect to all preceding revolute and helical joints, two additional

parameters are obtained, in comparison to N 0, � . These parameters are two perpendicular pairs of pure-inertia rods.

All these all four rods are on a single plane perpendicular to n . These pure-inertia rod are of opposite magnitude in a

pair wise manner ( Fig. 2 ). 

These four additional pure-inertia rods allow for a modification of the inertia tensor without changing the dynamics

of the chain. The first of the pure-inertia rod pairs η2 is in the direction of b 2 , which is perpendicular to n . The

angular momentum induced by b 2 is cancelled by an equal and negative pure-inertia rod in a direction perpendicular

to both n and b 2 . This also holds for a second pair η3 with corresponding b 3 . This additional pure-inertia rods arise

since their common plane which is perpendicular to n is not changing by actuation of the joints lower in the chain.

The inertia transfer matrix is therefore parametrized according to 

N 0 , ‖ ( s ) = 

[
z m 

( r s ) z δ( n , r s ) z η( n ) z η( b 2 ) − z η( n × b 2 ) z η( b 3 ) − z η( n × b 3 ) 
]

(53) 
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N f, � For a helical ( λ = finite ), non-parallel joint any point mass will generate a linear momentum through its pitching

motion such that its inertia transfer matrix only contains a pure-inertia rod in the direction of the joint axis. The

displacement ( z δ) would cause a pose dependent inertia matrix and non-constant IWMs associated to the lower joints.

The sole inertia change is therefore 

N f , ∦ = z η( n ) (54)

N f, ‖ When a helical joint is parallel to all preceding revolute and parallel joints it has a similar inertia transfer space as

N 0, ‖ ( Eq. 53 ) with the sole difference that the mass should therefore equate to zero as the pitching motion would gen-

erate a linear momentum. The displacement ( z δ) on the other hand does not induce linear momentum and therefore

remains 

N f , ‖ = 

[
z δ( n , r s ) z η( n ) z η( b 2 ) − z η( n × b 2 ) z η( b 3 ) − z η( n × b 3 ) 

]
(55)

N ∞ , � The inertia transfer of a prismatic joint ( λ = ∞ ) whose joint axis is not aligned with all preceding revolute or

helical joint axes has a size 6, since its E can be selected freely. As these moments and products of inertia will not

induce angular momentum (and are constant) they can be selected as desired. Here this choice is parameterized by 6

pure-inertia rods 

N ∞ , ∦ = 

[
z η( b 1 ) · · · z η( b 6 ) 

]
. (56)

N ∞ , ‖ When the prismatic joint ( λ = ∞ ) is aligned with preceding zero and finite pitch joints it gains a displacement z δ
in the direction of the joint axis, leading to an inertia transfer matrix with size 7 

N ∞ , ‖ = 

[
z δ( n ∞ 

, n ∞ 

) z η( b 1 ) · · · z η( b 6 ) 
]
. (57)

7.3.2. Multi-DOF joints 

This approach also holds for multi-DOF joints that can locally be modelled as a serial connection of 1-DOF joints, e.g.,

cylindrical, planar, universal or spherical joints. These multi-DOF joints can the transmit inertia parameters that are common

in the lower kinematic pair analogue. For example, a cylindrical joint can be modelled as prismatic and a revolute joint

in series such that its inertia transfer matrix is the intersection of the image of N 0 and N ∞ 

, which is the inertia transfer

associated to a helical joint N f . Depending on the parallelism with the joints lower in the chain, either type is to be selected.

A planar joint is serial connection of two prismatic joints such that its inertia transfer is N ∞ 

. Universal and spherical joints

locally behave as a serial connection of multiple non-parallel, intersecting revolute joints. The associated inertia transfer is

therefore a point mass z m 

( r ) on the intersection point r of these axes. We assume here that the joint itself does not contain

intermediate bodies with mass or inertia. 

7.3.3. Joints in planar linkages 

In the planar case only zero and infinite pitch ISA exist. Therefore, three types of inertia transfer matrices appear, 1) the

ISA is revolute and therefore automatically parallel to all other revolute joints, 2) the ISA and all lower ISA are prismatic

joints or 3) the ISA is prismatic but at least one of the lower joints is a revolute joint 

N 0 = z m 

( r s ) , N ∞ , ‖ = 

[
z δ( n ∞ 

) z η
]
, N ∞ , ∦ = z η (58)

In the first case, the point mass should be on the revolute joint and the MOI around that point should be zero. In the second

case, the body solely translates, therefore the mass should be zero and the first and second moments of mass are free, as

parameterized by a displacement and a pure-inertia rod. In the third case, when the ISA under inspection is prismatic and

one or more lower joints are revolute, this displacement will causes a changing MOI associated to the rotation of the lower

joints. This the displacement should therefore be zero. 

With this description of the inertia transfer matrices N i of common joints, the dynamically balanced design space of any

open-chain linkage may be obtained. Also for closed-chain linkages, the open-chain equivalent design space matrix N O is

completely determined, generalizing [23] to spatial linkages. It should be noted that open linkages cannot be dynamically

balanced without addition of counter-mechanisms. This can also be established from the inertia transfer matrices as none

of them permit both a positive mass and positive MOIs. Therefore, a specific N C is required to render a feasible dynamically

balanced design space. The existence of this additional design space is found on a case-by-case basis in the next section. 

8. Case studies 

The higher-order dynamic balance approach is illustrated here with case studies of a serial 6-DOF robot, a planar 4 R

four-bar linkage, and a 3- RSR mechanism. In all cases an interpretation of the closed-chain design space bases N C will be

given, if present. 
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Fig. 3. The 16 dynamically balanced design parameters of the HPRS 6-DOF serial chain. Each of the four joints permits a transfer of inertia parameters N i . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.1. Serial 6-DOF robot 

Here we study a 6-DOF robot to show how the open-chain design space matrix is found. We consider a HPRS -robot

( Fig. 3 ) of which the first joint axis remains parallel to the third joint axis n 1 = n 3 . The second, prismatic joint has no

particular alignment. The fourth, spherical joint is modelled as three intersecting twists s 4 , s 5 , and s 6 with no intermediate

bodies. Therefore this linkages consists of four bodies in total. The zeroth-order regression matrix and the associated design

space matrix become 

W 0 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

[
s 1 ∗

] [
s 1 ∗

] [
s 1 ∗

] [
s 1 ∗

][
s 2 ∗

] [
s 2 ∗

] [
s 2 ∗

][
s 3 ∗

] [
s 3 ∗

][
s 4 ∗

][
s 5 ∗

][
s 6 ∗

]

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, N = 

⎡ ⎢ ⎣ 

N 1 −N 2 

N 2 −N 3 

N 3 −N 4 

N 4 

⎤ ⎥ ⎦ 

(59) 

This zeroth-order regression matrix has rank ( W 0 ) = 23 . Through application of the algorithm presented in Section 6 , it

is found that the regression matrix terminates at k max = 1 with rank ( W̄ 1 ) = 24 leaving n b × 10 − rank ( W̄ 1 ) = 16 design

parameters free. 

This can be explained by further investigation of W 1 . It is found that only one partial derivative ( ∂ / ∂q 
2 
( ̂ h 1 ) =

∂ / ∂q 
2 
( ̃  M 2 ) s 1 ) leads to additional dynamic balancing conditions in comparison to W 0 . All other derivatives are ‘covered’

by the zeroth-order conditions. Therefore, the only relevant rows of the first-order regression matrix are 

W 1 = −
[
0 36 ×10 

[
ad ( s 2 ) s 1 ∗

]
+ ad ( s 2 ) 

� [s 1 ∗
]

· · ·
[
ad ( s 2 ) s 1 ∗

]
+ ad ( s 2 ) 

� [s 1 ∗
]]

(60) 

It should be noted that the first 10 columns are zero, due to ∂ / ∂q 
2 
( M 1 ) = 0 . Since s 2 is not aligned with s 1 , the actuation

of q 2 will cause a displacement of the aggregated COM of bodies 2, 3, and 4, leading to a change of the aggregated mass

matrix felt by s 1 . As the other joints are either aligned ( n 1 = n 3 ) or spherical ( S , Section 7.3.2 ), no additional constraints are

placed. The corresponding inertia transfer matrices in Eq. 59 are therefore 

N 1 = N f , ‖ ( s 1 ) , N 2 = N ∞ , ∦ ( s 2 ) , N 3 = N 0 , ‖ ( s 3 ) , N 4 = z m 

( r 4 ) (61)

The first joint is a helical joint fixed to the base such that it inertia transfer matrix has rank ( N f , ‖ ) = 4 ( Eq. 55 ). The second

joint is a prismatic joint whose axis is not parallel to joint 1 such that is inertia transfer matrix has rank ( N ∞ , ∦ ) = 6 ( Eq. 56 ).

In fact, if only the zeroth-order balancing condition would be taken into account N 2 would gain an additional ‘displacement’

and it would be N ∞ , ‖ . The revolute joint, joint 3, is parallel and stays parallel to the preceding finite pitch ISA (joint 1)

such that it has an inertia transfer matrix of rank ( N 0 , ‖ ) = 5 ( Eq. 53 ). The spherical joint is seen as the intersection of three

perpendicular revolute joints such that it solely transmits a point mass at the intersection point z m 

( r 4 ). This leads to a total

design freedom of rank ( N ) = 16 , which again is in agreement with the order of the regression matrix W̄ k max 
that is found

with the presented algorithm. 

This shows that the complete design space is found through a combination of the inertia transfer matrices that are

readily available by inspecting the joint types and alignment of these joints in the chain. 
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Fig. 4. (a) The kinematic definition of the planar four-bar linkage, with the two dynamically balanced types (b) the kite and (c) the antiparallelogram 

(adapted from [8] ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2. Planar four-bar linkage 

The planar 4 R four-bar linkage is a classical example in the dynamic balance literature. Although studied for decades

[3,37,38] , a solution that does not rely on additional counter-mechanisms was not found until the year 20 0 0 by Ricard and

Gosselin [8] . Thereafter, this linkage has been used as dynamic balancing module to obtain 3-DOF and 6-DOF dynamically

balanced mechanisms [9] . Here, this linkage is studied to show that the current method replicates the results from literature.

The linkage consist of four revolute joints at r 1 up to r 4 . The first and last joints are attached to the base ( Fig. 4 ). The

moving links have lengths l 1 , l 2 , and l 3 and the base length is l 4 . We analyse this linkage by cutting the third link between

joint 3 and 4. Two kinematic branches I and II are obtained, consisting of joint 1, 2, and 3, and joint 4, respectively. Therefore,

the open-chain equivalent design space matrix becomes 

N O = 

[
N I N II 

]
, N I = 

[ 

N 1 −N 2 0 

0 N 2 −N 3 

0 0 N 3 

] 

, N II = 

[ 

0 

0 

−N 4 

] 

(62)

Since all joints are planar revolute joints, the inertia transfer matrices consist of a point mass at the joint location

( Eq. 58 ), i.e. N i = N 0 = z m 

( r i ) . This shows that the inertia parameter of link 3, at which the cut has been made, will lie

on the span of N 3 and N 4 . The loop opening can also be performed at another link resulting in another basis for the same

null space. Therefore, rank ( N O ) = 4 . 

Through application of the higher-order derivatives algorithm, the X̄ -matrix is obtained. Inspection of the rank X̄ -matrix

reveals that in the general case, this matrix has a maximum rank of rank ( ̄X k max 
) = 8 and requires k max = 3 derivatives to

reach this limit. Since there are 12 inertia parameters, this linkage has a design freedom rank ( N ) = 4 . This shows that

with the loop-opening method the complete design space of the general four-bar linkage has been found. This open-chain

equivalent design space has no feasible solutions, since the addition of a positive point mass to one link requires a negative

point mass on the connecting link. A feasible link with a positive MOI requires at least two positive point masses, which is

not supported by this general solution. 

Fortunately, there exist two special kinematic conditions in which the dimension of the design space increases and the

linkage permits feasible dynamically balanced solutions [8,14] . These are the anti-parallelogram ( l 1 = l 3 , l 2 = l 4 ) and the

kite-type four-bar linkage ( l 1 = l 2 , l 3 = l 4 ), as shown in Fig. 4 . In both cases, the base link has to be wider than two equal

moving links. Here we study only the anti-parallelogram case, for which the rank of the X̄ matrix drops to rank ( ̄X ) = 7 and

the design space is extended with a basis 

N 

� 
C = 

[
z � η −z � η z � η

]
(63)

This may be interpreted as three pure-inertia rods in which the inertia connected to the coupler is opposite to the other two

[39] . This solution arises since the links of the linkage follow a linear relation on the angular velocities ω 1 − ω 2 + ω 3 = 0

[40] . The solution is parameterized by y 1 up to y 5 . The first four parameters deal with the open-chain equivalent N O , while

the variable y 5 is associated to N C . The resulting body masses and local MOIs become 

m i = y i − y i +1 , g i = l 2 i 

(
1 − y i 

m i 

)
y i + (−1) i +1 y 5 . (64)

From the mass positivity condition ( Eq. 19 ) it follows that the design parameters should be selected decreasingly through

the chain 

y 1 > y 2 > y 3 > y 4 (65)

The positivity of the MOI places upper and lower bounds on the choice of y 5 

y 5 > l 2 1 

(
1 − y 1 

m 

)
y 1 , y 5 < l 2 2 

(
1 − y 2 

m 

)
y 2 , y 5 > l 2 1 

(
1 − y 3 

m 

)
y 3 . (66)
1 2 3 
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Fig. 5. The kinematic definition of the 3- RSR . During motion the end-effector stays tangential to an expanding sphere touching the platform centre and 

the base centre [41] . This mechanism is mirror symmetric with respect to a plane 
s passing through the spherical joints r 2 , r 5 , and r 8 .. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A similar result emerges for the kite-type four-bar linkage, with the sole difference that the crank and the coupler have

an equal positive moment of inertia whereas the rocker has a negative moment of inertia. With this example we have

shown that dynamic balancing results from literature could be replicated using the proposed higher-order dynamic balanc-

ing method. Furthermore we have shown an example in which the loop opening solution aids in interpreting the whole

dynamic balance solution and the feasibility conditions. The special kinematic cases, as found by Moore and Gosselin [14] ,

may also be derived from rank reduction of X̄ -matrix, but this lies outside the scope of this paper. 

8.3. 3-RSR spatial parallel mechanism 

To show that this procedure also holds for multi-DOF linkages, we investigate a symmetric 3- RSR mechanism [41] . In this

section we will show that the design space of the 3- RSR does not contain feasible designs when considering the whole of

its workspace. Fortunately, it permits a dynamically balanced solution for 2-DOF movements over three planes of symmetry.

8.3.1. Kinematics of the 3-RSR mechanism 

The 3- RSR under investigation ( Fig. 5 ) consist of 3 arms whose upper and lower links are of equal length l u = l l . The

platform and the base have identical dimensions l b = l p . The first arm consist of two revolute joints 1 and 3, respectively

hinged at the base at r 1 and at the platform at r 3 . Their joint axes n 1 and n 3 are co-linear in the reference configuration. The

spherical joint, which connect link 1 and 2, is located at r 2 . Arms 2 and 3 are similar yet rotated with φ and −φ around

the vertical axis. The platform is link 7. The three base joints are chosen to be the independent coordinates u 1 , u 2 , and

u 3 . Throughout motion the mechanism is mirror symmetric with respect to a plane 
s passing through the three S -joints

[41,42] . Due to this symmetry, the platform of this robot remains tangential ( r p ) to a variable sized sphere whose south pole

is fixed at the origin ( r b ) of the robot. 

8.3.2. General dynamic balance solution 

Similar to previous example, the open-chain equivalent design space is found by cutting the three kinematic loops at the

platform leaving three RSR chains, respectively consisting of joints 1–3, 4–6 and 7–9. The corresponding design space matrix

is 

N O = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

N 1 −N 2 0 

0 N 2 −N 3 

N 4 −N 5 0 

0 N 5 −N 6 

N 7 −N 8 0 

0 N 8 −N 9 

0 0 N 3 0 0 N 6 0 0 N 9 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(67) 

with 

N 1 = N 0 , ‖ ( s 1 ) , N 2 = z m 

( r 2 ) , N 3 = N 0 , ∦ ( s 3 ) (68) 

N 4 = N 0 , ‖ ( s 4 ) , N 5 = z m 

( r 5 ) , N 6 = N 0 , ∦ ( s 6 ) (69) 

N 7 = N 0 , ‖ ( s 7 ) , N 8 = z m 

( r 8 ) , N 9 = N 0 , ∦ ( s 9 ) (70) 
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Fig. 6. The 3-RSR mechanism can be dynamically balanced for motion over three additional planes of symmetry. For movement over the first plane, 

indicated by 
1 , one may add a pure-inertia rods to the first arm and a negative pure-inertia rod to the platform η7,1 . Also on arms 2 and 3 extra pure- 

inertia rods may be placed in combination with a negative pure-inertia rod on the platform η7,2 . Although not shown here, arm 3 has to be identical to 

arm 2. Later the balance for the other planes 
2 and 
3 is solved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The base revolute joints have fixed axes while the platform joints have moving axes, giving rise to their respective inertia

transfer matrices. Since a spherical joint ( S ) is instantaneously equivalent to three perpendicular intersecting revolute joints,

its inertia transfer matrix N i is a point mass at the joint location r i , for i = 2, 5 and 8. This yields a open-chain equivalent

design space with a rank of 3 × (5 + 1 + 3) = 27 . The X̄ -matrix, which is found through the presented algorithm, terminates

at k max = 2 and has a rank ( ̄X k max 
) = 43 . With 7 moving links and 70 inertia parameters to determine, it is shown that the

complete design space is given by the open-chain equivalent design space ( 70 = 43 + 27 ) and no closed-chain design space

exists. Therefore, additional counter-mechanisms are required for the dynamic balance of this 3- RSR mechanism. 

8.3.3. Dynamic balance for 2-DOF motion on planes of symmetry 

Fortunately, the mechanism can be dynamically balanced when only a part of the workspace is considered. Here we will

investigate the case when the platform centre r p moves on another plane 
1 that normal to joint axis n 1 ( Fig. 6 ). This occurs

when the two other base joints move in unison u 2 = u 3 . During this 2-DOF motion the mechanism maintains kinematic

mirror symmetry with respect to this plane. Later on, we will show that this permits a symmetric mass distribution over

the 3 arms and the platform such that the mechanism is also dynamically balanced when moving over the other two planes

of symmetry, i.e 
2 when u 1 = u 3 and 
3 when u 1 = u 2 . 

When the mechanism’s end-effector is constrained to move on plane 
1 , the rank of the regression matrix drops by 8

to rank ( ̄X k max 
) = 35 , yielding a design space of dimension 35. A part of this enlarged design space can be explained by the

fact that the S -joint of arm 1 now behaves as a revolute joint ( n 1 ‖ n 2 ‖ n 3 ) enlarging the open-chain design space by 6. Now

the first arm’s inertia transfer matrices (Eq. ) become 

N 2 = N 0 , ‖ ( s 2 ) , N 3 = N 0 , ‖ ( s 3 ) (71)

Furthermore, an additional closed-chain design space of rank 2 appears, similar to that of the kite-type planar four-bar

linkage ( Section 8.2 ). When the first joint ( u 1 ) is actuated and the others ( ̇ u 2 = ˙ u 3 = 0 ) are fixed, the first arm and the

platform moves as a kite-type four-bar linkage due to the mirror symmetry with respect to the plane 
s through the S -

joints ( Fig. 5 ). Due to this symmetry for all poses, the angular velocities of the bodies have a particular linear relation

ω 1 + ω 2 = ω 7 . The first column of the closed-chain design space matrix is therefore 

N 

� 
C , 1 = 

[
z � η ( a 1 ) 1 / 2( z � η ( a 2 ) + z � η ( n 3 × a 2 )) 0 1 ×40 η7 , 1 z 

� 
η ( a 7 ) 

]
, η7 , 1 = −1 (72)

For the second ‘symmetric’ DOF u 2 = u 3 a second mirror symmetry is of importance; the mirror symmetry with respect

to the plane 
1 perpendicular to n 1 and passing through the centre of the base ( Fig. 6 ). This is encoded in an angular

velocity relation ω 1 + ω 2 + ω 7 = ω 3 + ω 4 + ω 5 + ω 6 . Since arms 2 and 3 move in mirror symmetry with this plane, the

second column is found to be 

N 

� 
C , 2 = 

[
0 1 ×20 z � η ( a 3 ) 1 / 2( z � η ( a 4 ) + z � η ( n 6 × a 4 )) z � η ( a 5 ) 1 / 2( z � η ( a 6 ) + z � η ( n 9 × a 6 )) η7 , 2 z 

� 
η ( a 7 ) 

]
(73)

with 

η7 , 2 = − 1 / 2( cos (2 φ) + 3) (74)

So arms 2 and 3 move in opposite directions with respect to this additional symmetric plane 
1 ( Fig. 6 ), cancelling the

angular momentum components in this plane. In the perpendicular direction ( n 1 ) the angular momentum is counter-acted

by the negative pure-inertia rod of the platform. 
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Table 2 

Geometric parameters of the simulated 3- RSR 

mechanisms. 

Name Symbol Value Unit 

Base width l b 3.00 [m] 

Platform width l p 3.00 [m] 

Lower arm length l l 1.00 [m] 

Upper arm length l u 1.00 [m] 

Arm angle φ 3/2 π [rad] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.3.4. Feasibility conditions 

The resulting 35-dimensional solution space contains a range of feasible solutions. These solutions compensate the neg-

ative pure-inertia rods ( η7,1 and η7,2 ) of the moving platform by addition of positive point masses to the shoulder, i.e the

z m 

( r i ) in the corresponding inertia transfer matrix N i , for i = 3, 6, and 9. We will illustrate this on a mechanisms with a

rotational symmetric base and platform ( φ = 2 / 3 π ). For demonstration purposes we reduce the rather large design space

by choosing 1) all 3 arms to have an equal mass distribution, 2) the COMs to be inline with the arms, 3) an axisymmetric

platform, and 4) the principal axis to be aligned with the links. 

The remaining parameters may be chosen freely as long as the mass and inertia feasibility conditions are satisfied

( Eq. 19 ). The mass of the links become the sum of the point mass transfers 

m 1 = m 3 = m 5 = y 1 − y 6 , m 2 = m 4 = m 6 = y 6 − y 11 , m 7 = 3 y 11 . (75)

The principal MOIs follow from the summation of the pure-inertia rods. Here the first principal axis is n 1 , the second is a 1 ,

and the third is a 1 × n 1 . The principal MOIs of the first link are 

g 1 , 1 = y 34 + l 2 l y 1 

(
1 − y 1 

m 1 

)
, g 1 , 2 = y 3 − y 5 − y 8 , g 1 , 3 = g 1 , 1 + g 1 , 2 + 2 y 5 . (76) 

For the second link the principal axes are oriented similarly; in the directions of n 3 , a 2 , and n 3 × a 2 , respectively 

g 2 , 1 = y 34 + l 2 u y 6 

(
1 − y 6 

m 2 

)
, g 2 , 2 = y 8 − y 13 + 

1 

2 

y 34 , g 2 , 3 = g 2 , 1 + g 2 , 2 − y 34 . (77) 

The MOIs of the links of the other 2 arms are equal g 1 = g 3 = g 5 and g 2 = g 4 = g 5 . The MOIs of the platform are formed

by the closed-chain design space basis y 34 , the added point masses at the shoulder y 11 , the inertia transfer y 13 over the

connecting joints (i.e. in the direction of n i for i = 3, 6, and 9), and the modification of by inertia transfer over the first

chain y 14 . The first principal MOI is around a 7 , the second around n 3 and in the third out-of-plane direction n 3 × a 7 

g 7 , 1 = 

3 

2 

(
l 2 p y 11 + y 13 

)
− 1 

2 

y 8 − y 14 , g 7 , 2 = 

3 

2 

(
l 2 p y 11 + y 13 − y 8 

)
− 9 

4 

y 34 , g 7 , 3 = g 7 , 1 + g 7 , 2 + 2 y 14 . (78)

Now the platform is chosen axisymmetric g 7 , 1 = g 7 , 2 by setting 

y 8 = y 14 − 9 

4 

y 34 . (79) 

This axisymmetric solution extends the dynamically balanced motion over the two other planes of mirror symmetry 
2 and


3 , which are perpendicular to the base joints n 4 and n 7 , respectively. It should be noted that the resulting mechanism is

force balanced for its complete workspace. 

By invoking the feasibility conditions ( Eq. 19 ) we obtain the following set of feasibility conditions for the 3- RSR mecha-

nism moving in a single plane 
1 . It should be noted that several shadowing inequality conditions have been removed 

0 < y 11 < y 6 < y 1 , y 13 < y 8 < y 3 , y 5 < 0 , y 14 < 0 , (80) 

2 l 2 u 

y 6 y 11 

m 2 

< y 34 , 0 < y 34 + y 5 + l 2 u y 1 

(
1 − y 1 

m 1 

)
, 0 < l 2 p y 

2 
11 + y 13 + y 14 − 3 

2 

y 34 . (81) 

It should be noted that similar feasibility conditions, yet more complex, can be obtained for the full 35-dimensional design.

Furthermore, the satisfaction of the feasibility conditions does not guarantee a practical implementation of the resulting

balance solution. The solution, for example, may require very slender links or centres of mass at a long distance from the

joint, which may be hard to realize in practice. 

8.3.5. Numerical study 

Based on these findings a geometry and design parameters y are selected for simulation ( Table 2 , and 3 ). The corre-

sponding mass distribution is found in Table 4 . In here the COM location of the arms are defined as c i = r i − c i a i . Whereas

c i denote the distance to the connecting joint ( Fig. 7 ). The COM of platform is at the centre of the platform c 7 = r p . 

Simulations of this mechanism in a multibody software package confirm the dynamically balanced mass distribution by

showing shaking forces and moments that are effectively zero for movement over the three symmetric planes ( Fig. 8 ). The

remaining shaking force and moments are attributed to round off errors. 
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Table 3 

The design parameters of the dynamically balanced 3- RSR mechanism as used in the 

numerical example. 

Subspace Range Value 

Arm 1 N I N 1 y 1 ... 5 2.00 0.00 –2.10 –0.05 –0.30 

N 2 y 6 ... 10 0.40 0.00 –2.30 –0.05 0.00 

N 3 y 11 ... 15 0.20 0.00 –2.40 –0.05 0.00 

Arm 2 N II N 4 y 16 ... 20 2.00 0.00 0.20 0.00 –0.30 

N 5 y 21 0.40 

N 6 y 22 ... 24 0.20 0.00 –0.10 

Arm 3 N III N 7 y 25 ... 29 2.00 0.00 0.20 0.00 –0.30 

N 8 y 30 0.40 

N 9 y 31 ... 33 0.20 0.00 –0.10 

Closed-chain N C y 34 ... 35 1.00 1.00 

Table 4 

The resulting masses, centres of mass (COMs) locations and moments of inertia (MOIs) 

for the different links of the 3- RSR as used in simulation. 

Name Symbol 1 2 3 4 5 6 7 Unit 

Mass m i 1.60 0.20 1.60 0.20 1.60 0.20 0.60 kg 

COM c i 0.25 1.00 0.25 1.00 0.25 1.00 0.00 m 

MOI 1 g i ,1 0.40 0.20 0.40 0.20 0.40 0.20 0.30 kg m 

2 

MOI 2 g i ,2 0.50 0.60 0.50 0.60 0.50 0.60 0.30 kg m 

2 

MOI 3 g i ,3 0.50 0.60 0.50 0.60 0.50 0.60 0.50 kg m 

2 

Fig. 7. A side view (of 
1 ) of the dynamically balanced 3- RSR as used in the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Discussion 

The proposed method achieves dynamic balance by eliminating a finite but sufficient number of higher-order partial

derivatives of the momentum wrench. This results in the necessary and sufficient balancing conditions since the momentum

is an analytic function outside of singularities. Therefore, if the higher-order derivatives of such an analytic function are zero,

the function itself is identically equal to zero and no shaking forces and moments are exerted on the base. 

In this paper it is shown ( Section 5.3 ) that for open-chain linkages up to two derivatives ( k max = 2 ) are required to obtain

the necessary and sufficient conditions for dynamic balance. For closed-chain linkages such a general upper-bound on the

number of derivatives is not found. Therefore, each case requires an inspection of the X̄ -matrix, as done in the examples. Al-

though a constant rank of the X̄ -matrix for higher orders it is a strong indicator, verification of the balancing solution is still

formally required, for example by numerical simulation. Furthermore, different linkages, but also different geometries lead

to different k max values. For example, for the general planar four-bar k max = 3 while for the (anti–)parallelogram geometry

k max = 2 . 

By selection of a sub-matrix of the X̄ -matrix, a larger design space may appear and the conditions for exact dynamic

balance are relaxed in favour of other requirements. For example, force balance only may be obtained by selecting the

relevant rows. Alternatively, approximate balancing may be obtained by satisfying only derivatives up to a certain order,

yielding dynamic balance in a neighbourhood of the reference pose. Path balance may be obtained by only regarding paths

or planes through the reference pose, as shown by the 3- RSR example. This method therefore generalizes the result of [26] .

The feasibility conditions ( Eq. 19 ) dictate whether or not a desired mass distribution can be constructed. To check the

feasibility, an eigenvalue problem is to be solved. The non-linear nature of the eigenvalue problem however, prevents a

closed-form treatment for arbitrary linkages. Currently this study is done on an individual basis. Yet, for simple linkages

the partitioning and multipole-rod representation allowed for an interpretation and feasibility study without eigenvalues

decomposition. Furthermore, even though some of the linkages studied here have no feasible design space, the complete
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Fig. 8. A simulation of the 3- RSR mechanism moving on a trajectory (a) over the three symmetric planes ( 
i ) confirm dynamic balance as the resulting 

shaking forces (c) and shaking moments (d) effectively zero. The remaining shaking forces and moments are attributed to computation accuracy. For 

comparison, (b) shows the torques σ i that the motors exert on the base. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

characterization of the design space is expected to assist in the selection of the most favourable application dependent

solution, i.e. with minimal motor torque and/or minimal number of counter-mechanisms. 

10. Conclusion 

This paper presented a higher-order dynamic balancing method that yields and solves the necessary and sufficient dy-

namic balance conditions of open- or closed-chain, planar or spatial linkages in nonsingular configurations. This method

relies on a recursive algorithm to obtain the higher-order derivatives of the rigid body momentum equations up to an ar-

bitrary order. In the parameter-linear form these higher-order derivatives furnish the dynamic balance conditions that arise

from a rank deficiency of the regression matrix. This enables generic null space procedures to yield the complete set of dy-

namically balanced inertia parameters, i.e. the complete dynamically balanced design space of a given linkage. It was shown

that for open-chain linkages, derivatives up to the second order yield the necessary and sufficient balance conditions. For

such linkages the partial derivatives of higher orders will pose no new dynamic balance conditions. For closed-chain linkages

such an upper bound was found per case. Partitioning and interpretation of the design space of open-chain linkages was

presented based on the concept of inertia transfer. Six inertia transfer matrices where found that, depending on the align-

ment of the joints and the types of joints in the chain, allow for an exchange of inertia parameters without affecting the

momentum generated by the linkage as a whole. For general closed-loop linkages this open-chain equivalent design space

fully describe the dynamically balanced design space, resulting in non-feasible designs due to negative masses or moments

of inertia. Fortunately, in special cases a the loop-closure permits a larger design space enabling feasible and constructable

balance solutions. Also, a larger design space is found when only a part of the workspace is to be dynamically balanced. For

the 3- RSR mechanism, for instance, three dynamically balanced planes of symmetric 2-DOF motion were obtained without

resorting to counter-mechanisms. 

With this method a systematic, closed-form dynamic balance algorithm is presented that provides a uniform framework

to study linkages that require no or a minimal number of counter-mechanisms, paving the way for the dynamic balancing

of high-speed robots. 
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Appendix. Multivariate matrix derivatives using Kronecker product 

The higher-order partial derivatives of matrices are managed in this paper with the use of the Kronecker product [33] . In

this appendix the Kronecker product notation and some elementary properties are listed along with the application to the
Table A1 

List of symbols. 

Symbol Description Reference [
•×

]
Skew symmetric matrix Eq. 9 [

•∗
]

Regression matrix form of the parameter-linear form Eq. 42 

•�• Kronecker product Eq. A.1 

•̄ Collection of matrices Eq. 8 

˜ • Aggregated form, sum of masses, MOIs etc. of the higher 

links 

Eq. 31 

α, β Multi-index Eq. 12, 30 

δ The displacement multipole element Fig. 1, Eq. 23 

η The pure-inertia rod multipole element Fig. 1, Eq. 23 

ξ Angular momentum vector Eq. 16 


 Plane of kinematic mirror symmetry Fig. 6 

ω Angular velocity vector Eq. 6 

c Position of the centre of mass (COM) Eq. 17 

C Basis matrix expressing the solution of the first order 

solution to the loop closure equation 

Eq. 8 

D 

α
( •) Repeated derivatives according to multi-index α Eq. A.3 

D 

k 
( •) Collection of all partial derivatives of order k Eq. A.4 

e Vector with the moments and products of inertia Eq. 17 

E Moment of inertia matrix Eq. 17 

f Loop closure constraint equations Eq. 8 

g Principle moments of inertia Eq. 18 

h , ˆ h Momentum wrench and instantaneous momentum 

wrench, respectively 

Eq. 16, 20 

H j 
i 

Transformation matrix from frame i to frame j Eq. 9 

Ad 
(
H 

)
Adjoint transformation matrix Eq. 10 

ad( t ) Adjoint twist matrix Eq. 11 

I n Identity matrix of size n Eq. 17 

J Jacobian of the open-chain equivalent mechanism Eq. 8 

K First order loop closure constraints Eq. 8 

m Mass Eq. 17 

M Mass matrix Eq. 17 

n Unit vector in direction of screw axis Eq. 7 

N , N I , N O , N C Design space matrix of respectively the complete 

mechanism, of chain I , of the open-chain equivalent 

mechanism and of the loop closure 

Eq. 47, 50 

N i , N 0 , N f , N ∞ , N ‖ , N � Inertia transfer matrix, respectively associated to joint i , 

to a zero, finite, or infinite pitch joint, to a joint that is 

parallel or not with the preceding joints 

Eq. 49, 52 –57, Fig. 2 

p Linear momentum vector Eq. 16 

q Joint coordinate vector of an open-chain (equivalent) 

mechanism 

Eq. 7 

s Instantaneous screw axis (ISA) Eq. 7 

t Twist vector Eq. 6 

u Vector of minimal coordinates Eq. 8 

v Velocity vector Eq. 6 

W Regression matrix of an open-chain (equivalent) 

mechanism 

Eq. 43 

X Regression matrix of a closed-chain mechanism Eq. 46 

y Vector of design variables of the dynamically balanced 

mass distribution 

Eq. 47, 50 

z Vector of the inertia parameters in the parameter-linear 

form 

Eq. 41 

z m , z δ , z η Parameter-linear form of the elements of the multi-pole 

rod representation, respectively the mass, displacement 

and pure-inertia rod 

Eq. 23, 41 
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bookkeeping of the higher-order partial derivatives. The differences between the repeated higher-order partial derivatives

D 

α
x ( A ) and the collection of higher-order partial derivatives D 

k 
x ( A ) are highlighted. 

The Kronecker product is defined as the collection of the element-wise multiplication of all elements in the respective

matrices. Consider the following set of matrices: A ∈ R 

n ×m , B ∈ R 

p×q 

A � B = 

⎡ ⎣ 

a 11 B · · · a 1 m 

B 

. . . 
. . . 

. . . 
a n 1 B · · · a nm 

B 

⎤ ⎦ . (A.1) 

The vectorization of a triple matrix product is written by means of the Kronecker product 

vec ( ABC ) = ( C � �A ) vec ( B ) . (A.2) 

A set of nested higher-order partial derivatives is denoted with a vector in the superscript D 

α
x ( A ) = ∂ k / (∂ x 

α1 
1 

· · · ∂ x αn 
n ) .

Consider for example the following repeated partial derivatives 

∂ 

∂x 
1 

∂ 3 

∂x 3 
2 

∂ 2 

∂x 2 
5 

( A ) = D 

α
x ( A ) with α = [1 , 3 , 0 , 0 , 2] . (A.3)

The α-vector is an ordered multi-index corresponding to x . The total order is given by 
∑ 

i αi = | α| . These repeated higher-

order partial derivatives form the elements (rows and submatrices) of the collection of higher-order partial derivatives, i.e.

D 

k 
x ( A ) is formed by all nested partial derivatives with respect to α for which | α| = k . 

The collection of partial derivatives of a given vector a with respect to x ∈ R 

r are organized according to 

D x ( a ) = 

[
∂ 

∂x 1 
( a ) . . . ∂ 

∂x r 
( a ) 

]
, D x ( D x ( a ) ) = 

[
D x 

(
∂ 

∂x 1 
( a ) 

)
. . . D x 

(
∂ 

∂x r 
( a ) 

)]
. (A.4) 

This is extended to the partial derivatives of a matrix A = 

[
a 1 . . . a m 

]
, which are organized according 

D x ( A ) = 

[
D x ( a 1 ) · · · D x ( a m 

) 
]
, D 

2 
x ( A ) = D x ( D x ( A ) ) = 

[
D 

2 
x ( a 1 ) · · · D 

2 
x ( a m 

) 
]
. (A.5) 

The following entities may be found for the derivatives of matrices A ( x ) ∈ R 

n ×m , B ( x ) ∈ R 

m ×q and x ∈ R 

r 

Product rule For a matrix product the following derivative holds 

D x ( A B ) = D x ( A ) ( B � I r ) + A D x ( B ) . (A.6) 

Chain rule For matrix function A ( b ( c )) with nested variables b and c the derivative becomes 

D c ( A ( b ( c ) ) ) = D b ( A ) ( I m 

� D c ( b ) ) . (A.7) 

Kronecker product The derivative of the Kronecker product is written using the permutation matrix P q,r [33] 

D x ( A � B ) = ( D x ( A ) � B ) ( I m 

� P q,r ) + A � D x ( B ) . (A.8) 

Matrix inversion The derivative of a matrix inverse becomes 

D x 

(
A 

−1 
)

= −A 

−1 D x ( A ) ( A 

−1 
� I r ) . (A.9) 

A recursive application of these equations allow for the extension of these derivatives up to arbitrary order. 
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