
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2018

MSc. THESIS

Operating system support for a dynamically
reconfigurable VLIW processor

Anurag Kulkarni

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2018-21

The ρ-VEX is a dynamically reconfigurable VLIW processor, de-
veloped at TU Delft, which is capable of extracting large amounts
of parallelism from applications running on it. However, without a
dedicated software layer to dictate the reconfigurations, the ρ-VEX
has to depend on another processor to carry out its reconfigura-
tions meaningfully. Otherwise, this task can be left to the applica-
tions themselves, which would increase their complexity. In order
to make the ρ-VEX capable of behaving as a stand-alone processor,
with complex real-world applications running on it benefiting from
its dynamic properties, while remaining abstract from the hardware
changes, such a dedicated piece of software is needed. An operat-
ing system can equip the ρ-VEX with such functionality, as well as
with other desired features like memory management support. Run-
ning applications in virtual memory is an important step towards
multitasking. Therefore, the envisioned goal of this project is to
make the ρ-VEX processor a truly independent and dynamic envi-
ronment, capable of extracting large amounts of thread-level as well
as instruction-level parallelism from programs running on it.

In this project, the Linux kernel 2.6.32 has been ported on
simrvex: a cycle-accurate architectural simulator for the ρ-VEX pro-

cessor. To test the port, three benchmarks from the Powerstone benchmark suite, crc, ucbqsort and jpeg,
have been chosen to run as user programs on the ported Linux kernel. The timing performance of these
benchmarks for the 2-issue, 4-issue and 8-issue configurations of the ρ-VEX is also presented.

Operating system support for a dynamically
reconfigurable VLIW processor

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Anurag Kulkarni
born in Pune, India

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Operating system support for a dynamically
reconfigurable VLIW processor

by Anurag Kulkarni

Abstract

The ρ-VEX is a dynamically reconfigurable VLIW processor, developed at TU Delft, which
is capable of extracting large amounts of parallelism from applications running on it. However,
without a dedicated software layer to dictate the reconfigurations, the ρ-VEX has to depend
on another processor to carry out its reconfigurations meaningfully. Otherwise, this task can
be left to the applications themselves, which would increase their complexity. In order to make
the ρ-VEX capable of behaving as a stand-alone processor, with complex real-world applications
running on it benefiting from its dynamic properties, while remaining abstract from the hardware
changes, such a dedicated piece of software is needed. An operating system can equip the ρ-VEX
with such functionality, as well as with other desired features like memory management support.
Running applications in virtual memory is an important step towards multitasking. Therefore,
the envisioned goal of this project is to make the ρ-VEX processor a truly independent and
dynamic environment, capable of extracting large amounts of thread-level as well as instruction-
level parallelism from programs running on it.

In this project, the Linux kernel 2.6.32 has been ported on simrvex: a cycle-accurate
architectural simulator for the ρ-VEX processor. To test the port, three benchmarks from the
Powerstone benchmark suite, crc, ucbqsort and jpeg, have been chosen to run as user programs
on the ported Linux kernel. The timing performance of these benchmarks for the 2-issue, 4-issue
and 8-issue configurations of the ρ-VEX is also presented.

Laboratory : Computer Engineering
Codenumber : CE-MS-2018-21

Committee Members :

Advisor: Dr. ir. Stephan Wong, CE, TU Delft

Chairperson: Dr. ir. Stephan Wong, CE, TU Delft

Member: Dr. ir. Mottaqiallah Taouil , CE, TU Delft

Member: Dr. ir. Ioan Lager, Microelectronics, TU Delft

i

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures vii

List of Tables ix

List of Acronyms xi

Acknowledgements xiii

1 Introduction 1
1.1 Context . 1

1.1.1 Modern age computing trends . 1
1.1.2 Multicore architectures and TLP 3
1.1.3 Reconfigurable Computing . 4
1.1.4 VLIW and ILP . 4
1.1.5 Advantages of the ρ-VEX processor 5
1.1.6 Current trends in operating systems supporting dynamic processors 6

1.2 Motivation . 7
1.3 Research Question, Goals and Methodology 9
1.4 Overview . 10

2 Background 13
2.1 The ρ-VEX toolchain . 13
2.2 The ρ-VEX processor . 14

2.2.1 Reconfiguration in the ρ-VEX . 15
2.2.2 Configuration word encoding . 16
2.2.3 Requesting a reconfiguration to the ρ-VEX processor 18
2.2.4 The ρ-VEX Instruction Set Architecture 18
2.2.5 The concept of generic binary . 20
2.2.6 Trap handler in the ρ-VEX . 20

2.3 Simrvex: The architectural simulator for the ρ-VEX 22
2.3.1 TLB in simrvex . 23

2.4 Linux . 25
2.4.1 The Linux kernel structure . 25
2.4.2 Processes and threads in Linux . 27
2.4.3 Scheduling in Linux . 28
2.4.4 The Linux kernel’s notion of time 29
2.4.5 The Linux boot process . 29
2.4.6 Memory management in Linux . 30

2.5 Related Work . 31
2.6 Conclusion . 32

v

3 Porting Linux to ρ-VEX 35
3.1 Choosing the ρ-VEX platform . 35
3.2 Choosing the operating system kernel for the port 36
3.3 Porting Linux on simrvex . 37

3.3.1 Modifications to the architecture-independent part of the Linux
kernel . 38

3.3.2 The architecture-specific kernel code 40
3.4 Conclusion . 46

4 Experimentation and Results 47
4.1 The Linux kernel image . 47

4.1.1 Compressed kernel image . 49
4.2 Booting . 49
4.3 Evaluating timing performance of benchmarks from the Powerstone

benchmark suite . 53
4.4 Thread switch latency . 57
4.5 Conclusion . 59

5 Conclusion 61
5.1 Summary . 61
5.2 Main contributions . 63
5.3 Future work . 65

Bibliography 69

vi

List of Figures

2.1 Some configurations of the ρ-VEX processor[1] 16
2.2 A 1x4-issue and 2x2-issue configuration of the ρ-VEX processor[2] 17
2.3 The different layers of operation in a Linux-based system[3] 26
2.4 The Linux kernel structure[3] . 26

3.1 Components of the Linux kernel structure that were ported[3] 44

4.1 The ELF header information for the vmlinux 48
4.2 The section headers inside vmlinux . 48
4.3 The program headers inside vmlinux . 49
4.4 The directory structure of the simple initramfs created to test the boot . 51
4.5 The Linux kernel boot logs observed on passing the kernel image to simrvex 52
4.6 Some of the kernel boot logs to show a shell can be started 53
4.7 Latency due to the use of Linux kernel code and virtual memory for the

three benchmarks . 56
4.8 Logs indicating constant thread switching between the two kernel

threads created, along with the cycle counter register values 58

vii

viii

List of Tables

2.1 TLB configuration for simrvex . 24

3.1 Register translation scheme for st200 to ρ-VEX[4] 40

4.1 Execution cycles consumed by the benchmarks when run on Linux
ported on simrvex, for different configurations of simrvex 56

4.2 Execution cycles consumed by the benchmarks when run bare-metal on
simrvex, for different configurations of simrvex 56

4.3 Latency in terms of percentage of increase in the execution cycle count
for the three benchmarks when run on Linux ported on simrvex 57

ix

x

List of Acronyms

ASIC Application Specific Integrated Circuit

BSS Block Started by Symbol

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DTLB Data Translation Lookaside Buffer

ELF Executable and Linkable Format

FPGA Field Programmable Gate Array

GNU GNU’s Not Unix

GDB GNU Debugger

HP Hewlett-Packard

ILP Instruction-level Parallelism

ISA Instruction Set Architecture

ITLB Instruction Translation Lookaside Buffer

JPEG Joint Photographic Experts Group

MMU Memory Management Unit

OS Operating System

RTOS Real-time Operating System

SASH Stand-alone Shell

SMP Symmetric Multiprocessing

TLB Translation Lookaside Buffer

TLP Task-level Parallelism

UTLB Unified Translation Lookaside Buffer

UNIX UNiplexed Information and Computing System

VEX VLIW Example

VLIW Very Long Instruction Word

xi

xii

Acknowledgements

Firstly, I would like to thank my MSc. thesis supervisor, Dr. Stephan Wong, for this
project opportunity, as well as for guiding me throughout the project. I would also like
to thank the thesis committee members, Dr. Ioan Lager and Dr. Mottaqialla Taouil, for
agreeing to invest their valuable time on the evaluation of my work.

A very special thanks to Dr. Joost Hoozemans, my guide, for his support throughout
the project. I could receive his support irrespective of his work location, and I consider
myself fortunate for having gained so much through his intelligence and experience. I
would also like to thank Jeroen van Straten from the Computer Engineering department
at TU Delft for some important ρ-VEX toolchain fixes that he provided which were
required for this project.

I would like to extend my thanks to all the EWI staff members involved in conducting
the thesis formalities. My friends played a very important role in keeping my motivation
high, for which I would like to thank them all from the bottom of my heart.

Most importantly, I would like to thank my parents, without whose emotional and
financial support I would not have been able to reach this stage, and also my brother,
Aditya, for taking care of things at home while I was away.

Anurag Kulkarni
Delft, The Netherlands
November 12, 2018

xiii

xiv

Introduction 1
This thesis documents the software implementation towards providing operating system
support to the ρ-VEX processor. The intention of such an implementation is to make
the ρ-VEX capable of behaving as a stand-alone system running complex, real-world
applications which can benefit from its dynamic reconfigurability.

While the work involved (as would be described in detail in the following chapters)
would appeal most to operating system and computer architecture enthusiasts, this
chapter assumes a general computer engineering target audience. It focuses on providing
an overview of the topics needed to understand the project, along with the motivation be-
hind it, and also, the research question and the ultimate goals of this graduation project.

1.1 Context

The context of this project revolves around the advantages the ρ-VEX processor brings
and the importance of porting an operating system to it, and will be discussed in detail
in this section. We begin by discussing some modern age computing trends and a few
techniques to exploit parallelism. These topics help understand the characteristics of the
ρ-VEX processor that prove to be advantageous, which is discussed thereafter. Some
modern operating systems which support dynamic processors will be discussed next.
Together, the contents of this section would lead to understanding the motivation behind
this project, discussed in Section 1.2.

1.1.1 Modern age computing trends

The ever-increasing demand for computing power and reduced system size and power
consumption has lead to the evolution of modern computing. Improvements that have
led to such an evolution can be broadly seen targeted to the following three aspects
associated with a computer design[5]:

• Computer Architecture

• Computer Organization

• Computer Realization

Computer architecture refers to the conceptual structure and behaviour of a computer
system as observed by its immediate user. It deals with, for example, the instructions
and arithmetic a computing system is capable of executing. The logical organization
of the dataflows and controls of a computer design is called computer organization,
which is also its microarchitecture. Examples can include the different types of adder

1

2 CHAPTER 1. INTRODUCTION

units like the Manchester Carry Chain adder, for instance. Some texts use the term
computer implementation for computer organization. Basically, computer organization
establishes a method to achieve a desired functionality (architecture). Computer realiza-
tion is the physical structure embodying the organization or implementation. It refers
to the underlying technology, e.g., CMOS. Even FPGAs are computer realizations, as
after manufacture (i.e., before any functionality is implemented on them), they merely
exist as configurable blocks of logic gates.

Examples of improvements targeted towards computer realization or technology may
include:

1. Technology scaling, which enables an increase in transistor density and speed

2. 3D-stacked memory, which reduces wire delays and maximizes throughput, and
hence speeds up memory accesses multifold

Improvements in computer organization can be brought about by implementing tech-
niques like pipelining and multi-level caches. However, the discussion which lies under
the scope of this project pertains to an improvement in computer architecture.

We are, therefore, left with considering one of the most interesting themes of research
in computer engineering: exploiting parallelism in all its forms. At the application
level, parallelism can exist by virtue of multiple independent data or independent tasks.
Computer organization and architecture styles can exploit these two types of parallelism
in the following ways[6]:

1. Instruction-Level Parallelism (ILP)1 - deals with compile-time scheduling of in-
structions such that data-level parallelism is exploited. It is concerned with aspects
such as pipelining, speculative execution, etc.

2. Vector Architectures and Graphic Processor Units (GPUs) use the single instruc-
tion multiple data (SIMD) concept, and find applications in areas like Digital Image
Processing.

3. Thread-Level Parallelism (TLP) - seeks to exploit either Task-Level or Instruction-
Level Parallelism primarily through the Multiple Instructions Multiple Data
(MIMD) concept. It involves identifying and executing independent “tasks” over
multiple processing units. It is, hence, implied that Thread-Level Parallelism pri-
marily focuses on multiprocessor and multicore architectures.

4. Request-Level Parallelism (RLP) - deals with Distributed Computing which in-
volves executing largely decoupled tasks over computer clusters with multiple
servers connected to a network.

Only ILP and TLP lie within the scope of discussion of this project. The means through
which they are exploited are discussed next. It should be noted here that limitations of
ILP approaches directly led to the rise of multicore architectures[6].

1ILP is the potential overlap between instructions

1.1. CONTEXT 3

1.1.2 Multicore architectures and TLP

The notion of (truly) parallel processing is not new. It is a logical solution to physically
running multiple threads (tasks2) in parallel, and thus exploiting thread-level parallelism.

In fact, the first parallel computers were developed in the 1960s, e.g., ILLIAC IV[7].
These were, however, difficult to program and were expensive, which limited their use
to supercomputers. The 1990s saw the rise of multiprocessor systems, but these also
suffered from the drawbacks of programming difficulties, cache consistency maintenance
difficulties[8], and size. The computer industry then shifted to multicore architectures.
The first non-embedded multicore processor was IBM’s POWER 4, which was released
in 2001[9]. It featured two processor cores on a single chip, 4-bit PowerPC architecture
and two cache levels.

Some of the reasons as to why multicore architectures became popular quickly were3:

1. The operating systems now had to manage a single memory hierarchy as the pro-
cessor cores on the chip shared caches and MMUs.

2. Thread management was easier and so was cache synchronization.

3. Lesser inter-processor communication latency.

4. Better power performance - as they can run on lower clock frequencies than a single
processor, to achieve the same performance.

Of course, they are still popular in the market, with their areas of application ranging
from handheld devices to super computers. The number of processor cores is often used
as a selling point.

While designing a multicore processor chip, the area of application dictates the num-
ber of cores to exist on the chip and their size. According to [10], general-purpose
computers benefit from a small number of large computing cores, as they have course-
grained threads which depend on the instruction-level parallelism for performance. A
larger number of small processors is suited for applications which exhibit a lot of thread-
level parallelism4. Architectures lying in between these extremes are suited only for
specific workloads for which there is a granularity match.

Another point to be considered here is that the growing popularity of multicore pro-
cessors has caused a focus shift towards parallelizing programs. However, sequential
(single-threaded) code still remains important, and may often be difficult to parallelize.
It can be argued that asymmetric multicore processors may attempt to solve this issue
by dedicating a (more) powerful core to the sequential program, but the parallel appli-
cations’ performance often suffers due to this: the resources dedicated to powerful cores
could be used instead for more simple (small) cores for parallel execution.

It is, therefore, desirable to have a dynamic reconfiguration of processor cores based
on the nature of the task(s) being executed. For example, Core Fusion[11] is capable
of fusing multiple cores into a larger one dynamically through reconfiguring caches and

2Tightly-coupled tasks implied here
3ET4C07 Advanced Computing Systems 2017, TU Delft, Lecture 2 - Cores
4Popular terminology: Bulldozers, Chainsaws and Termites

4 CHAPTER 1. INTRODUCTION

other resources. Speculative multi-threading executes different portions of a single thread
in parallel on different cores[12], and Intel’s Turbo boost can dynamically change the
frequency of processor cores based on their temperature[13]. Such reconfigurations can
take place in microseconds[12].

1.1.3 Reconfigurable Computing

Reconfigurable computing aims to provide a balance between the flexibility of General
Purpose Processors (GPPs) and the performance of ASICs. ASICs have the highest
performance and consume the least power and area among the three, but they are not
flexible. GPPs, on the other hand, are the most flexible due to their versatile instruction
sets, but are not optimized for a particular application[14]. In the words of Andre DeHon,
“Reconfigurable Computing is computing via post-fabrication, spatially programmed con-
nection of processing element.” Field-Programmable gate Arrays (FPGAs) are a popular
choice for the high-speed flexible computing fabric needed to implement reconfigurable
hardware. It is to be noted here that reconfigurable architecture refers to the changing
functionality, and not the technology (like FPGAs).

In a way, reconfigurable computing enables controlling the underlying microarchitec-
ture through software[5]. Reconfigurable computing itself is a vast space of computer
designs with the ρ-VEX falling in the category of dynamic processors, with software
being required to run on top of it. Reconfigurable hardware implementations are not
discussed here. These implementations are suitable for a specific type of applications
like streaming applications.

1.1.4 VLIW and ILP

Another way of looking at exploiting ILP is decreasing CPI (Cycles Per Instruction), or
effectively, increasing IPC (Instructions per cycle). According to [6], the CPI value for
a pipelined processor can be given by:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls

+ Control stalls (1)

The ideal pipeline CPI is a measure of the maximum performance attainable by
the implementation[6]. Ideal pipeline CPI is the only relevant parameter (among
those in the R.H.S. of the above equation) for discussion from a computer architecture
point of view. One of the ways to decrease the ideal pipeline CPI is issuing multiple
instructions per cycle. Such multiple-issue processors can be of the following types:

1. Superscalar Processors - These issue varying number of instructions per cycle.

2. VLIW (Very Long Instruction Word) Processors - These issue fixed number of
instructions per cycle.

Superscalar processors can in turn be statically scheduled (compiler intelligence required)
or dynamically scheduled (reliance on hardware to discover and exploit parallelism dy-
namically). An example of a statically scheduled superscalar processor can be ARM

1.1. CONTEXT 5

Cortex A8 while Intel Core series and ARM Cortex A9 are dynamically scheduled su-
perscalar processors[6]. VLIW processors are inherently statically scheduled.

Statically scheduled superscalar processors witness diminishing returns with increase
in issue width (above 2)[6] and dynamically scheduled superscalar processors require
complex hardware circuitry5. VLIW processors, therefore, tend to be more area and
power efficient than superscalar processors6. The simplicity and mutability7 of VLIW
processors work in their favour to be considered for exploiting ILP over superscalars.

1.1.5 Advantages of the ρ-VEX processor

As discussed in Section 1.1.2, it is advantageous to have processors which can be recon-
figured to change their behaviour as per the nature of the application(s) executing on
them. The ρ-VEX itself is a reconfigurable processor, and exists as a softcore, but it
does not involve an FPGA reconfiguration8. This means that there is no loading of a
bitstream to perform partial or full reconfiguration, as is common with FPGAs. The
overhead of a reconfiguration is thus equivalent to that of a pipeline flush and is of the
order of 5 cycles[15]. This proves to be an advantage as FPGA reconfiguration time can
be of the order of 100ms[16].

Also, the ρ-VEX is a dynamic VLIW processor, meaning, it can execute a variable
number of instructions per cycle9, and this number can be decided runtime. Therefore,
it combines the simplicity of VLIWs with the dynamism of superscalars. As per [8], the
dynamic nature of the ρ-VEX can ease the implementation of hyperthreading. (Dynamic)
Superscalars use this feature to save resources in case the program under execution has a
lower ILP than predicted. For more information on hyperthreading, [17] can be referred.

Specifically, the ρ-VEX processor is a (reconfigurable) VEX implementation[8]. VEX
stands for VLIW Example and is a system comprising of a flexible ISA, a C compiler and
a simulation system. It is introduced in [18] for the purpose of experimental use.

As per [15], the ρ-VEX can constantly adapt to the available ILP and TLP by
dynamically changing the mapping between the available threads and issue slots. Thus,
it can dynamically reconfigure between many small processors10 (when more TLP is
available), and one large processor (when more ILP is available). Such characteristics
of the ρ-VEX make it a suitable candidate for research to further obtain performance
gains for tasks running on it. The idea of adding an operating support to the ρ-VEX
stems from the need to abstract “how and when the ρ-VEX is reconfigured to maximally
exploit available parallelism, while saving resources” from the applications running on
top of it. Section 1.2 describes in detail the motivation behind the OS support and the
choice of the OS.

5Although the advantage is that programs need not be recompiled for processors with different
degrees of parallelism

6The disadvantage being recompilation requirement for processors with different instruction issue
widths

7The ease of morphing an existing VLIW design to a similar design
8Reconfiguration mechanism is discussed in detail in Chapter 2
9Number of instructions (issued) per cycle can be 2, 4 or 8; to be discussed in detail in Chapter 2

10Actually, virtual cores - to be discussed in Chapter 2

6 CHAPTER 1. INTRODUCTION

1.1.6 Current trends in operating systems supporting dynamic proces-
sors

As discussed in Section 1.1.3, the ρ-VEX falls under the category of dynamic proces-
sors, i.e, it can change some of its properties runtime. There exist other such dynamic
processors, e.g., CoreFusion[12], which can do this. Often, it is the cores and the caches
that are considered for reconfiguration. It is important that an operating system main-
tains its state during the reconfigurations of the processor hardware, and also is able to
control such reconfigurations, for multiple reasons. Some examples of modern operating
systems11, and their mechanisms, supporting such dynamic processor reconfigurations
and environments are as follows:

1. The Linux hotplug mechanism
Hotplugging became a standard feature in the Linux kernel from version 2.4[19].
Through the hotplug mechanism, the Linux kernel can update itself when devices
are added to the processor system or removed. A classic example of such a device-
level hotplug support by the Linux kernel is for USB devices. In a similar manner,
Linux also supports CPU hotplugging. This means that one or more cores can be
selectively disabled by the kernel, which helps in removing a dysfunctional pro-
cessor or allocating processor cores from virtual machines to the host machine[12].
Hotplugging mechanisms, however, suffer from a delay of the order of 200ms while
performing the activation or deactivation of a core[12].

2. The Barrelfish OS
The Barrelfish is an operating system developed from scratch at ETH Zurich, for
research purposes[20]. Its development is motivated by the scalability issue faced
due to the rapid increase in the number of cores, and also, the need to manage
the increasing heterogeneity in computer hardware resources[21]. The Barrelfish is
capable of fast coupling and decoupling of the kernel state to and from the cores,
thereby resulting in a highly dynamic environment. Essentially, a lot of low-level
code is populated in databases, thereby doing away with driver software, which aids
in fast device interrupt rerouting and thereby resulting in fast kernel decoupling[22].
Kernel coupling and decoupling happens through dynamic booting and shutdown
of cores[22]. [22] reports a 2x decrease in boot time and a 57,500x decrease in
the shutdown time of a core12 when compared to the hotplug mechanism in Linux
kernel version 3.13.

3. The Chameleon OS
An operating system support for dynamic processors is presented in [12]. The
work results in an an extension to the Linux kernel which supports rapid dynamic
processor reconfigurations, called Chameleon, and basically involves the following:

(a) Providing processor proxies, which are abstraction structures running on ac-
tive processor cores, and representing offline processors. When the kernel

11Kernels mostly
12No load conditions

1.2. MOTIVATION 7

requires the presence of the processor cores for certain operations, these prox-
ies can be helpful. The kernel, therefore, need not wait for the offline pro-
cessor(s) to become active (through reconfiguration) for performing certain
core-specific operations, thereby enabling fast reconfiguration.

(b) Abstracting the cores through kernel structures called execution objects, which
act as representatives of the active cores. Basically, during scheduling, these
objects can be assigned to threads, while the actual dispatching to the real
hardware can be done after the assignment.

(c) Implementing a gang scheduling based technique called cluster scheduling
in order to balance the needs of the sequential and parallel programs.
Chameleons scheduler can use intelligence to decide whether to execute a
thread on a single core or multiple cores via selective activation of an execu-
tion object.

[12] reports a speedup of upto 75,000 times for fusing cores (hot unplugging a
CPU) and upto 160,000 times for splitting an execution object of two CPUs (hot
plugging a CPU).

The ρ-VEX is a dynamic processor capable of rapid reconfigurations. Therefore,
the supporting operating system should also be able to control such reconfigura-
tions through minimum latency. Out of the kernel mechanisms discussed above,
the features of the Chameleon OS are the most desirable to have as it provides
the fastest reconfiguration support. Besides, it is an extension of the standard
operating system kernel, Linux, which itself is modular and portable. This
increases the chances of resulting in a successful port to the ρ-VEX. The Linux
hotplug mechanism is too slow for the rapid runtime reconfiguration capabilities of
the ρ-VEX. The Barrelfish OS is also a good option, though not as suitable as the
Chameleon OS. Besides, it is an experimental operating system as of now. Also, it
mainly targets heterogeneous multicore systems[21]. With these parameters taken
into account, the Barrelfish OS is not the best choice for porting to the ρ-VEX
processor.

1.2 Motivation

An operating system running on top of the ρ-VEX processor can provide the neces-
sary abstraction of the reconfiguration mechanism to the applications it runs. It can
take care of the software state while performing configuration changes in the ρ-VEX,
dynamically, to maximize parallelism exploitation. Due to this, applications meant to
run on static processors can also run on the ρ-VEX, which is not possible now in case
of a reconfiguration requirement. A program running on the ρ-VEX core can indeed
request a reconfiguration, but in order to decide upon a suitable configuration, a lot
of efforts would be required during the development of its code. Instead, intelligent
algorithms can be embed into another software layer, running on the ρ-VEX, which is
capable of scheduling such programs or tasks. The algorithms, for example, can monitor

8 CHAPTER 1. INTRODUCTION

the execution cycles consumed by a running task and also the NOP13 instructions in its
instruction stream to determine whether a task indeed benefits from a configuration. An
operating system can act as this intermediate layer, and can control the reconfiguration
by, for example, scheduling a reconfiguration request (as a task) after identifying the
suitable configuration for a task running on the operating system. Such a mechanism
can abstract:

1. The algorithm to determine a suitable configuration for a task running on the
ρ-VEX processor.

2. The reconfiguration request14 procedure.

3. The saving of the (software) context of a task before a reconfiguration.

4. Restoring the software context after the reconfiguration.

The general functions of an operating system like memory management, file system
management, input/output device handling, etc. are also desirable to have. If all these
functions are not provided, either the applications themselves have to take care of the
hardware control and finding out a suitable configuration for themselves, or the ρ-VEX
needs to behave as a co-processor, with another processor, running an OS, controlling
its configurations as suited for the applications meant to run on the ρ-VEX core. In the
former situation, programs meant to run on the ρ-VEX processor need to include the
necessary code for hardware control, and configuration determination and reconfiguration
request if runtime reconfiguration is to happen, which is not logical at all. In the latter
situation, the communication latency between the main processor and the co-processor
or the accelerator (here, the ρ-VEX) will affect performance of applications to a great
extent.

[23] also mentions the desirability of an operating system for the ρ-VEX. While [23]
reports a uCLinux variant ported on the ρ-VEX softcore, this variant of Linux is without
an MMU (Memory Management Unit) support. During the time of implementation
of [23], the ρ-VEX did not have an MMU. It still does not have it, but its simulator,
simrvex, has this unit included. Basically, an MMU allows programs to use virtual
memories and serves as a translator between virtual and physical memories. An MMU
support is important for paging and preventing illegal memory accesses by processes.
Every process is given its own address space, therefore, there is a protection from
accesses of address spaces/secure data between processes. Each such address space is
broken into fragments called pages, which give the illusion of contiguous memory. Not
all the pages have to be mapped to physical memory. If a process accesses a page
which is mapped to physical memory, a direct translation is provided by the MMU.
However, if the page does not lie in the physical memory, an exception is triggered by
the operating system, which fetches the corresponding page by evicting some other,
and re-executes the failed instruction. It is also very important that the kernel address
space and the user address space is maintained (and mapped) separately, which can be
achieved effectively by using virtual memory. Virtual memory also allows for memory

13No Operation
14Reconfiguration request to the ρ-VEX processor

1.3. RESEARCH QUESTION, GOALS AND METHODOLOGY 9

to be swapped to an external storage, such as a disk, or a memory mapped file,
thereby creating an illusion of sufficient physical memory (RAM). This is not a problem
nowadays as it is common to have physical memories larger than 4GB (for systems with
32-bit address spaces, for instance) but virtual memory still makes it effective to run
multiple processes simultaneously. With these advantages of using virtual memory, it
becomes very much desirable to have an operating system for the ρ-VEX which supports
memory management.

1.3 Research Question, Goals and Methodology

The facts discussed earlier provide a good motivation to move ahead with the project
implementation. However, as with any project, the goals need to be clearly defined and
as this is a research-based project, a research question needs to be formulated. Our
entire discussion will therefore be along the lines of the answer to this question. The
long term goal of this project is:

To make the ρ-VEX capable of behaving as a stand-alone processor, with the ap-
plications running on it benefiting from its dynamic properties, while remaining abstract
from the hardware changes.

However, to limit the scope of the project to that of a graduation project, the
research question which this thesis intends to answer is:

How to provide operating system support to the ρ-VEX?

With an operating system support, the ρ-VEX can result in a stand-alone dy-
namic environment, which can maximally exploit parallelism in applications running
on it. At the same time, the necessary abstraction with regard to the (dynamic) core
reconfiguration mechanism can be achieved. As we already know, without an operating
system, the ρ-VEX would have to depend on the programs to take care of their contexts
themselves while performing core reconfigurations, or an external processor which would
decide upon the reconfigurations of the ρ-VEX and run programs on it. In the latter
case, the ρ-VEX would behave as a co-processor or an accelerator.

The answer to the above-stated research question involves many considerations rang-
ing from the choice of the OS, to ensuring whether the ρ-VEX processor and the associ-
ated toolchain support it, and also the modifications in the chosen OS to make it “fit”
for the ρ-VEX. Testing the implementation for the port is implicit.

It can be realized that the task requires a thorough knowledge of the ρ-VEX archi-
tecture, functionality of the chosen microarchitecture, toolchain functionality and lim-
itations, operating system internals, boot sequence and thread creation in the ρ-VEX.
Now that the focus of this project has been identified, the following project goals, along
with the methodologies to achieve them, can be demarcated:

1. Porting an operating system to the ρ-VEX.

10 CHAPTER 1. INTRODUCTION

The approach to be considered to accomplish this goal would be of a multi-
faceted nature, and can be said to consist of the following:

i) Choose an appropriate microarchitecture of the ρ-VEX which would act
as the platform upon which the operating system will be ported.
ii) Ensure that the toolchain is capable of supporting an operating system port.
iii) Choose the right operating system for porting.
iv) Implement the changes in the chosen operating system’s kernel code in order
to accomplish the port.

What is also desirable to achieve under this goal is the compression of the
end product of the operating system kernel compilation. This would help achieve
faster startup time15, apart from the reduction in the requirement of external
memory for storing the kernel.

2. Evaluating performance of applications run by the operating system ported to the
ρ-VEX.

The performance of applications can be evaluated by measuring the execution
time taken by them while running on the OS running on the ρ-VEX processor.
Appropriate infrastructure needs to be implemented to read (and naturally,
output) the count of execution cycles consumed by a running application.

In order to limit the scope of this project to that of an MSc. graduation project, the
above two goals have been set for the same. However, in the event of availability of
further time, the following goal is highly desirable to be pursued.

Implementing modifications in the kernel as mentioned in [12] to support fast
runtime reconfiguration in the ρ-VEX, thereby creating a truly dynamic environment.

The implementation for this goal together with that for the first two will help
accomplish the long term goal of this project. The third goal stated above gives rise
to interesting research opportunities towards development of the ρ-VEX project. Even
in case of no implementation towards it, a superficial discussion alone would provide
useful insights for the next project which aims to implement it.

1.4 Overview

So far, the relevance of the project work has been discussed with an introductory flavour.
Chapter 2 provides a detailed background of the ρ-VEX system essential to proceed

15In most processors, the total time required to read a compressed kernel image from an external
storage, decompress it and then boot it, is often less than the total time required to read the uncompressed

kernel from an external storage and then boot it[24]. In other words, in most processors, decompression
is faster than I/O operations.

1.4. OVERVIEW 11

with the implementation. It discusses the study of the compiler, linker, the ρ-VEX
architecture, as well as simrvex. Work related to this project and already been done is
also discussed in Chapter 2.

Chapter 3 details the implementation of the entire project. It describes the porting
in detail, including new implementations, modifications, workarounds done to achieve
the goals.

Chapter 4 provides some results of the implementation, like timing performance of
applications running on the ported operating system.

Chapter 5 consists of the conclusion for the entire project work, along with the main
contributions towards the project. It also explains how this project lays the foundation
for future work. Approaches to goal(s) not achieved are presented with the hope to
provide a direction for future research.

12 CHAPTER 1. INTRODUCTION

Background 2
In the previous chapter, an overview of the project, along with the topics relevant to
its context were discussed. This chapter discusses the concepts that are needed to be
known in order to proceed with the implementation of the project. The discussion will
now proceed from an introductory style to one which contains details of the topics with
a higher relevance to this project.

The most important points to be analyzed while porting an operating system to a
new processor is whether the processor can support it, and whether the toolchain is
mature enough. Hence, we proceed with a discussion about the platform, which includes
the compiler, the linker and the processor. Then, we move on to discussing the processor
architecture details relevant for this project. Since porting an operating system involves
modification of the source code, it is highly desirable to explore open source operating
systems for the port. Linux is an open source operating system with rich documentation
and online support available. As a result, the structure and organization of the Linux
kernel will also be discussed in this chapter. Related work will be discussed after
that. This chapter then concludes with a summary of the discussed topics to rein-
force relevant concepts needed to understand the implementation presented in Chapter 3.

2.1 The ρ-VEX toolchain

The ρ-VEX comes with an Open64-based compiler and a GNU binutils port which
comprises of the GNU Assembler and Linker modified for the ρ-VEX. This Open64-
based compiler and binutils port together form part of the toolchain for the ρ-VEX1.

Open64 is an open source and GCC compatible C/C++/Fortran compiler, suitable
mainly for 32-bit architectures. A compiler, based on the Open64 compiler, was devel-
oped for the Lx architecture, which was designed by HP and STMicroelectronics[25]. Lx
makes use of a scalable issue width VLIW technology and is introduced in [26]. The
st200 family of processors is based on this Lx architecture. The ρ-VEX compiler’s front
end gcc compatible, while its backend is modified to be compatible with the instruction
set of the ρ-VEX processor. In common terminology, this is a port from an Open64-
based compiler meant for Lx to one meant for the ρ-VEX. It is to be noted here that the
compiler (and the binutils, which will be discussed shortly) for the ρ-VEX, themselves
can run on x86 machines. Therefore, a cross-compilation environment can be set up on
the host machine which runs Linux.

The binutils port for the ρ-VEX is the GNU binutils open source project with the
target modified for the ρ-VEX. It consists of the following tools:

1Actually, the ρ-VEX toolchain currently also includes a debugger (gdb modified for the ρ-VEX).

13

14 CHAPTER 2. BACKGROUND

1. The ρ-VEX assembler (rvex-elf32-as)
2. The ρ-VEX linker (rvex-elf32-ld)
3. Elf manipulation tools like rvex-elf32-objcopy, to copy the contents of one object
file to another, and rvex-elf32-objdump to display internal information of ρ-VEX
specific object files
4. Library manipulation tools like rvex-elf32-ar and rvex-elf32-ranlib

5. The GNU debugger modified for the ρ-VEX (rvex-elf32-gdb)

Out of the above, only the assembler and linker will be discussed as they are vis-
ible to the programmer in the sense they are explicitly referred to in the Makefiles of
the Linux kernel. The rvex-objdump is also useful while analyzing object files for the
ρ-VEX as they provide valuable information as to what part of the code goes in which
section (or segment) of the memory. The ρ-VEX toolchain must be capable of generating
Linux kernel images as outputs (will be discussed later). But as a background study, it
is very difficult to determine whether the kernel compilation will be successful using the
toolchain without any modifications. Even though the compiler is Open64-based, and
Open64 itself is gcc compatible and the Linux kernel also uses extensions specific to
the GCC[23], compilation and linking incompatibilities can be expected. Therefore, the
tool chain was initially tested by compiling some very basic C programs (like a “Hello
World” printing application) for the ρ-VEX, and then running them on simrvex, while
verifying the output (of simrvex as well as the application) observed on the terminal.
The errors that were expected to be encountered while compiling the entire kernel were
deemed to be resolved during the implementation stage.

2.2 The ρ-VEX processor

The ρ-VEX adopts a 32-bit big endian architecture. It currently exists as a flexible
microarchitecture[23]. It has FPGA2 and ASIC3 implementations, and also has sim-
rvex as its architectural simulator. [25] provides detailed information about the ρ-VEX
processor, such as registers, instruction set architecture (ISA), debugging, etc. The char-
acteristics of the ρ-VEX that prove to be advantageous have been discussed in Chapter
1. Here, the intention is to discuss the architectural details of the ρ-VEX, which would
be helpful to understand the implementation presented in Chapter 3.

As we can recall, the ρ-VEX is a dynamically reconfigurable VLIW processor. In
VLIW processors, a single instruction can actually contain multiple instructions, or
rather, operations. Only independent operations are allowed to lie inside a VLIW in-
struction. The operations are called syllables, and the instructions are called bundles,
and further discussion adheres to this terminology. In the VEX architecture, upon which
the ρ-VEX is based, the boundaries between bundles are specified by means of a so-called
stop bit [25]. Therefore, the placement of this stop bit decides the size (in terms of number

2ML605 and VC707 FPGA development boards[8]

3Application Specific Integrated Circuit

2.2. THE ρ-VEX PROCESSOR 15

of syllables) of the next issued bundle. If stop bits are not enabled, and if the number of
syllables in a bundle comes out to be less than the configured bundle size, the compiler
should place NOP (no operation) instructions to align the bundle boundary with the
configuration. A configuration capable of executing n syllables per cycle is referred to
as an n-way or an n-issue configuration. So, basically, reconfiguration here refers to
changing such a configuration of the processor, and the reconfiguration specific to the
ρ-VEX is discussed next.

2.2.1 Reconfiguration in the ρ-VEX

In the ρ-VEX, the distribution of the pipelanes between different programs running in
parallel is altered during reconfiguration. Pipelanes are basically groups of computational
resources which execute a syllable, and their total number is fixed[25]. They are, however,
not entirely reconfigurable, in the sense, there exist groups of inseparable pipelanes,
which are called lane groups. The pipelanes in such lane groups have to remain activated
together.

To be able to run multiple programs in parallel, the ρ-VEX processor supports mul-
tiple contexts4. As of now, the ρ-VEX supports 4 contexts (Context 0 to Context 3).
Contexts are independent units with each having its own complete state, which consists
of the program counter (PC), register files and other control registers. Contexts can run
instructions independently are therefore very much like cores in a multicore processor,
and [25] states that they can be considered as virtual cores. The terms cores, contexts
and virtual cores will be used interchangeably henceforth.

Reconfiguration here involves changing the “connections” between the lane groups
and the contexts. As per the current state of the ρ-VEX, the maximum number of
execution pipelanes supported is 8 and the minimum number of pipelanes a lane group
can consist of is two. The number of pipelanes a core is connected to is called its issue
width, and such a number has to be a power of two. Therefore, some of the possible
configurations of the ρ-VEX processor are: 1x8-issue, 2x4-issue, 4x2-issue, 1x4-issue and
2x2-issue. These configurations assume all contexts being activated. In fact, contexts
can be deactivated by assigning no lane groups to them. Further configurations can
then easily be identified. Such selective deactivation of the contexts is important for
reducing power consumption, and also, the deactivated contexts can hold some extra
states of the programs under execution on the active contexts, thereby enabling faster
context switching. Figure 2.1 helps visualize some of the configurations of the ρ-VEX
processor. As can be seen from this figure, a core of any issue width can get a cache
block of appropriate size. This happens because the instruction and data cache blocks
in the ρ-VEX can work together as well as independently. Also, no cache flushes are
required during core reconfigurations.

As also discussed in Chapter 1, configurations with many small cores are suited for
applications which exhibit a high TLP, while those with a few large cores are suited for
applications with a high ILP. The word “suited”, here, refers to better performance and
more efficient resource utilization. The ρ-VEX processor can therefore adapt itself to a
wide variety of applications.

4Actually, hardware contexts

16 CHAPTER 2. BACKGROUND

Figure 2.1: Some configurations of the ρ-VEX processor[1]

2.2.2 Configuration word encoding

In order to enable certain configuration in the ρ-VEX core, an encoding needs to be
written to one of its context control registers. This encoding, referred to as configuration
word, should follow certain rules to result in a valid ρ-VEX configuration. The configu-
ration word consists of 32 bits, with each nibble concerning with the context a particular
lane group is mapped to. For each such nibble, the most significant bit decides whether
the lane group is enabled or disabled, with the value ’1’ standing for disabled. However,
the values 9 to F for a single nibble are reserved for future use, therefore, the value a
nibble can take lies within the range 0 to 8. This leaves the last three bits of a nibble
to represent the context the corresponding lane group is connected to. However, as the
ρ-VEX currently supports only upto 4 contexts, the 3 least significant bits of the nibble
can represent values from 0 to 3. If the nibble has a value of 8, the lane group is effec-
tively disabled. Therefore, configuration encoding like 0x7000 is an invalid configuration.
Moreover, there are some other special rules governing configuration encoding. These
are listed below.

• A context can only be mapped to contiguous lane groups, and the number of such

2.2. THE ρ-VEX PROCESSOR 17

lanes groups has to be a power of two. For example, 0x0103 is invalid, but 0x0013
is valid.

• The configuration word is of length 32 bits, which means 8 nibbles, therefore, in
theory, 8 lane groups can be mapped to contexts. However, as of now, testing
has been performed only for design-time configurations of upto 4 lane groups[25].
The nibbles representing non-existent lane groups should be 0. For example, for
a configuration of the ρ-VEX to support 4 lane groups, 0x88888800 is invalid,
whereas, the configuration 0x00008800 is valid.

Based on these rules, the configuration of the ρ-VEX can be identified via the
configuration word encoding. For example, an encoding 0x8800 represents a 1x4-issue
configuration, 0x0 represents a 1x8-issue configuration, and so on. Figure 2.2 helps
visualize a 1x4-issue and 2x2-issue configuration of the ρ-VEX, with context 3 being
deactivated. The corresponding encoding would be 0x2100. It should be noted here
that a context can be deactivated by not assigning any lane group to it, and a lane
group itself can be deactivated by writing an ’8’ to the corresponding nibble in the
configuration word encoding.

Figure 2.2: A 1x4-issue and 2x2-issue configuration of the ρ-VEX processor[2]

18 CHAPTER 2. BACKGROUND

2.2.3 Requesting a reconfiguration to the ρ-VEX processor

There are three ways to request a reconfiguration to the ρ-VEX processor[25].

• Writing the configuration word to the context control register, CR CRR, via a
program running on a context.

• Writing the configuration word to the global context control register, CR BCRR,
via the debug bus by a program running outside the ρ-VEX core.

• Writing the configuration word to the wake-up configuration register, CR WCFG,
and setting the appropriate flag in the sleep and wake-up control register,
CR SAWC. These registers only exist on context 0. When an interrupt is pending
on context 0 while it is not already active, reconfiguration as per the encoding
occurs, provided there is no other reconfiguration request present. After the re-
configuration, the flag which was set in the CR SAWC is cleared, and the old
configuration word in CR WCFG is restored. This mechanism is called reconfigu-
ration using the sleep and wake-up system.

A new configuration commit process consumes execution cycles of the order of tens
of cycles, depending upon how many cycles the reconfiguration controller hardware con-
sumes to halt concerned contexts. A reconfiguration request may be rejected if the
encoding does not follow the rules stated in Section 2.2.2, or when another such request
from another core or the bus occurs simultaneously, and the arbitration is lost.

2.2.4 The ρ-VEX Instruction Set Architecture

The instruction set architecture of the ρ-VEX is based on the VEX architecture, which
is introduced in [18]. As the ρ-VEX user manual ([25]) explains the ISA in sufficient
detail, the discussion here is kept limited and only as required to understand a few parts
of the implementation presented in Chapter 3.

Assembly syntax
The following piece of assembly code has been taken directly from [25] for illustration
purposes.

s t a r t :
c0 stw 0x10 [$r0 . 1] = $r0 .53
c0 add $r0 . 3 = $r0 . 0 , −32
c0 and $b0 . 2 = $r0 . 0 , $r0 . 10
c0 c a l l $ l 0 . 0 = i n t e r r u p t
; ;

The first line represents a label. Labels always end in a colon. Any non-empty line
which is not a label, and does not begin with a semi-colon is a syllable. The ‘c0’ at the
beginning of each syllable represents the cluster the syllable belongs to. The ρ-VEX
does not support clusters, hence specifying the cluster is optional, and if specified, it

2.2. THE ρ-VEX PROCESSOR 19

is always cluster 0. ‘Stw’, ‘add’, etc. are opcodes. The parameter list, which can be
seen following the opcodes in each line has an ‘=’ sign. The ‘=’ sign separates the
destination on the left from the source (which provides the operands) on the right. The
string immediately after the ‘$’ sign represents the register. The ‘r’, ‘b’, ‘l’, etc., stand
for general-purpose, branch and link registers respectively. The types of registers in
ρ-VEX will be discussed shortly. The ‘0’ in ‘0.xx’ specifies cluster 0, while the number
following the decimal point represents the register number. There are restrictions on
the usage of these numbers, heavily depending on the availability of registers. More on
this can be found in [25]. The load and store instructions require a memory reference as
one of their operands. A memory reference is represented in the form: literal [$r0.index],
which means, at runtime, the index is added to the value in the r0.index to generate
the required address. Finally, the ‘;;’ marks the end of a bundle. The above piece of
code, therefore, is actually one complete bundle.

Registers
The ρ-VEX currently uses 5 types of registers, as described below.

1. General-purpose registers

There are 64 32-bit general-purpose registers in the ρ-VEX core, numbered
from 0 to 63. These are intended for arithmetic. Register 0 always reads a 0 when
read by the processor. It is, however, also writable. Register 1 is intended to be
used as a stack pointer.

2. Branch registers

The ρ-VEX core contains 8 1-bit branch registers. They are labeled from 0
to 7 and are used for branch conditions, select instructions, divisions, and
additions of values wider than 32 bits.

3. Link registers

The ρ-VEX core contains 1 32-bit link register (l0.0), which is used to store
the return address during a function call or a jump. It can also be used as the
destination address for an unconditional indirect jump or call, in cases where the
branch offset field is too small or when the jump target is determined at runtime.

4. Global and context control registers

The global control registers contain information about the processor state
which is not specific to any context. The context control registers contain status
information which are specific to a context. The processor can access these register
files through memory operations only. A program can only read from a global
register file and can only access its own hardware context control registers.

20 CHAPTER 2. BACKGROUND

2.2.5 The concept of generic binary

A VLIW processor depends on compiler intelligence to figure out the maximum number
of syllables per bundle. Also, there is a one-to-one mapping between a pipelane and
a syllable in each bundle in the binary resulting after compilation for the ρ-VEX[23].
The ρ-VEX, being a VLIW processor with dynamic issue width, would then require
programs to be (re-)compiled each time its configuration changes, and somehow reload
the (re-)compiled programs. This would spoil the whole purpose of introducing the ρ-
VEX, and the latter is actually infeasible as restoring the context of an evicted binary
into the new one, compiled for a different issue width, is next to impossible.

To overcome these difficulties, the concept of generic binaries was introduced in [27].
Generic binaries are compiled for the largest possible bundle size. Also, they can be
executed by ρ-VEX configurations of any issue width. For example, for a binary compiled
for 8-issue configuration of the ρ-VEX, the eight syllables in a bundle can (theoretically)
be run in parallel by an 8-issue core, and sequentially by a 2- and a 4-issue core in 4 and
2 steps respectively. There are, however, disadvantages to this approach, for example,
the restriction that the branch instruction is placed as the last syllable in a bundle,
and performance hampering[23]. But the reconfiguration flexibility gained outweighs the
disadvantages by a huge margin.

2.2.6 Trap handler in the ρ-VEX

There are many situations in which a processor needs to pause its execution to handle
another event. The nature of such an event can vary from an external interrupt to a
situation which the processor cannot handle, like encountering an instruction which it
cannot execute. Such events are known as traps in the ρ-VEX terminology. The ability of
a processor to handle such exceptions plays an important role in deciding the capability
of running an operating system. While there are various other aspects of the ρ-VEX
processor architecture to be described, the trap handler is one of the most important
features, hence, it is chosen to be presented in details. For other details of the ρ-VEX
architecture, [25] can be referred.

We split the study here between sources of traps and the way traps are handled. The
sources of traps can be categorized into the following six types[25]:

• Interrupts
When interrupts are enabled, and an interrupt occurs, a
TRAP EXT INTERRUPT trap is generated. This trap causes the control
to jump to the trap or panic handler, which has code to handle the event, like in
an interrupt service routine.

• Faults
A fault occurs when an instruction cannot be executed for some reason. It usually
leads to halting the execution altogether, except in case of a page fault.

• Context switch request
In order to help represent a change of a software context, two registers, CR RSC

2.2. THE ρ-VEX PROCESSOR 21

(Requested software context) and CR CSC (Changed software context) are pro-
vided. These do not exist on context 0 and are hardwired to their equivalents on
context 0.

The encoding for these registers depends on the user, provided the end result
is that the memory location of the software context becomes known. When
the values in these registers do not match and the context switching system is
enabled by setting the C flag in CR CCR (the main context control register),
the TRAP SOFT CTXT SWITCH trap is generated. After handling the context
change, the trap handler routine should update CR CSC with the value in CR RSC.

• Debug traps
These are generated when a hardware or a software breakpoint is reached. De-
pending on the contents of the Debug control register, the debug traps are handled
in different manners.

• The TRAP instruction
This instruction is used to explicitly generate a trap from a program. This is useful
when a new functionality is to be implemented with the help of the trap handling
mechanism.

• The STOP instruction
This instruction is used to halt the execution of the core altogether. On encounter-
ing this instruction, the A TRAP STOP trap is generated while the next execution
is executing.

Usually when a trap occurs, the control jumps to the trap handler. A trap handler is
a subroutine which contains code to handle the situation. The trap handler subroutine
always ends with either a RFI (return from interrupt) or a STOP instruction. The address
of the trap handler is to be stored in the CR TH control register by the initialization
code. In most of the cases of a trap occurrence, the software is responsible for storing
the state of the processor’s registers. After the trap is handled, it is expected that
the processor state is restored by the software and the execution is resumed from the
instruction before which the trap occurred.

The ρ-VEX processor identifies a trap with the help of contents of the trap cause
(CR TC) and trap argument (CR TA) control registers. The trap cause register stores
an 8-bit encoding for the trap cause and the trap argument register stores a 32-bit value
depending on the cause of the trap. For a complete list of encodings for the different
trap causes, [25] can be referred.

Another feature worth considering here is the panic handler. A major difference
between the panic handler and the trap handler is that for the former it is not expected
to return to the program. In case of a trap, the control can also jump to the panic
handler. The ready for trap (R) flag in the CR CCR register decides whether the control
will jump to the trap handler or the panic handler. If the flag is set, the control jumps
to the trap handler. Two such handlers are necessary to avoid loss of context for the
first trap if two consecutive traps occur. The normal way of working is that the ρ-VEX
clears the R flag in the CR CCR register upon entering the trap handler, so that the
next trap is handled by the panic handler.

22 CHAPTER 2. BACKGROUND

2.3 Simrvex: The architectural simulator for the ρ-VEX

An architectural simulator is a software that models the behaviour of a computer such
that its performance and output for a given input can be predicted[28]. Architectural
simulators can be classified into different types depending on the following contexts[28]:

• Scope
Simulators can be microarchitectural or full system simulators (emulators). A
microarchitectural simulator simulates the processor only, while a full system sim-
ulator includes I/O devices, memory, drivers, etc. into its scope apart from the
processor. Full system simulators can run software meant for the real system as it
is.

Microarchitectural simulators can in turn be classified into instruction set simu-
lators and cycle accurate simulators. Instruction set simulators can simulate the
behaviour of a real processor by reading instructions like the real processor and
representing the registers via internal variables. Cycle accurate simulators, as the
name suggests, simulate the design and behaviour of a processor at the microarchi-
tectural level in a cycle accurate manner. The drawback is that these simulators are
slow. However, they are useful for prototyping a new architecture and accurately
predicting timing performance.

• Detail
Under this context, simulators can be classified into functional and timing simu-
lators. These focus on simulating as accurately as possible the functionality and
timing behaviour of a processor respectively.

• Nature of input
Simulators here can be classified into trace-driven and execution-driven simulators.
Trace-driven simulators run a predetermined set of instructions with known inputs
(like in a script), whereas execution-driven simulators allow for dynamic changes
in instructions, depending on the nature of input.

Simrvex falls under the category of cycle accurate simulators. It was developed at TU
Delft and is a heavily modified version of the architectural simulator for the st200 family
of processors, with all dynamic capabilities, control registers and other characteristics
implemented as per the ρ-VEX concept. It is written in C, and can run on x86 machines
after being compiled using gcc. As mentioned before, the st200 family of processors
is based on the Lx architecture, which is a 32-bit architecture and uses a scalable issue
width VLIW technology. The architecture of st200 is therefore very much similar to
the ρ-VEX architecture.

Simrvex has an MMU integrated and this component is very much similar to the one
used in the st200 simulator. To be specific, in simrvex the TLB (Translation Lookaside
Buffer) carries out the memory translation and protection, the way an MMU does. An
operating system with memory management support is what this project intends to port,
hence a study of the TLB is necessary before proceeding with the implementation. This
study is presented next. Only the TLB will be discussed in the context of simrvex,

2.3. SIMRVEX: THE ARCHITECTURAL SIMULATOR FOR THE ρ-VEX 23

as its other characteristics are similar to the ρ-VEX processor, and have already been
discussed.

2.3.1 TLB in simrvex

The TLB in simrvex allows for experimenting with porting operating systems with mem-
ory management support. A TLB is like a cache for the system memory, in the sense,
it stores the recent translations of virtual memory to physical memory[29].Most systems
with virtual memory support resort to paging. Usually, the mapping between the (vir-
tual) pages and page frames, which are the corresponding physical memory units, is
done by a physical structure called page table. The more the number of accesses to the
page table, the lower is the performance. This is where TLB comes into picture. It is a
small hardware unit usually incorporated into the (hardware) MMU[3]. A TLB consists
of a small number of entries, each containing some information about a page, and most
importantly, its corresponding page frame. In most cases, the program generates the
virtual address while referencing a piece of memory. This address goes to the MMU
for decoding, instead of directly being sent on the memory bus, the MMU first checks
whether the address is available in the TLB. If yes, and if the access is valid, the TLB
returns the page frame. If not, the MMU finds the page frame from the page table and
places it in the TLB after evicting another entry, following certain algorithm.

It is extremely important to note here that the discussion in the paragraph about ex-
plains TLB management in hardware by the MMU, but simrvex uses a software-managed
approach. It leaves the task of adding TLB entries to the operating system. Also, in case
of a TLB miss, a fault is generated (page fault) to notify the operating system, which
takes the necessary page frame replacement action and then re-executes the instruction
which led to the fault. When the TLB is software-managed the MMU becomes much
simpler, which is why the entire memory translation and protection related operations
can be carried out by the tlb unit itself, in simrvex. Therefore, while referring to MMU
in simrvex, we are actually referring to the tlb unit. For TLBs with sizes greater than
or equal to 64 entries, the performance of a software-based TLB management approach
becomes acceptable[3]. Besides, various strategies have been researched which help im-
prove the efficiency of the software-based TLB management approaches. It is also to be
noted here that in the context of simrvex, since it is a piece of software itself, a hardware
component concerning the ρ-VEX is actually a piece of (C) code which emulates the
hardware.

Simrvex follows the TLB implementation very much in line with the one in the st200
simulator. Therefore, the specifics related to the simrvex TLB presented are referred
from the st200 instruction set architecture manual[30] and by observing the simrvex
code. Simrvex uses a small instruction TLB (ITLB), a small data TLB (DTLB) and a
larger unified TLB (UTLB). The ITLB performs instruction address translations, while
the DTLB performs address translation for data. Both of these act as caches for the
UTLB. Changes in the UTLB are not reflected in the ITLB or DTLB, however, this
is untrue for the other way round. The DTLB, ITLB and TLB control registers have
to arbitrate for access to the UTLB, with the priorities of accesses being in the order:
TLB control registers, DTLB and then ITLB. The TLB for simrvex currently has the

24 CHAPTER 2. BACKGROUND

following configuration, with each ‘entry’ being 128 bits wide.

TLB component Number of entries

ITLB 4

DTLB 8

UTLB 64

Table 2.1: TLB configuration for simrvex

As the ρ-VEX has a 32-bit architecture, the virtual address space becomes 232 =
4Gbyte. The TLB in simrvex performs mapping between virtual and physical addresses
with the help of pages of size 8KB. The TLB operation can be controlled by means of
certain control registers. These control registers are not explicitly given any memory in
the ρ-VEX architecture, but were accommodated (not under this project) in the unused
memory space in simrvex to support the TLB. We discuss next these control registers
and register flags which govern the operation of the TLB.

• The CCR TLB ENABLE flag
This bit, on position 10 of the main context control register (CR CCR), decides
whether the TLB unit will be enabled or disabled. If this bit is 0 or disabled, the
virtual addresses are treated as physical addresses.

• The TLB ENTRYx registers
Here, ‘x’ can be 0, 1, 2 or 3. These 4 registers together can map all the 128 bits of
a TLB entry.

• The TLB INDEX register
This register is, like all other registers, 32 bits wide. Only the 8 least significant
bits [7:0] are used. These bits represent the entry out of the 64 UTLB entries
mapped to the TLB ENTRYx registers.

• The TLB REPLACE register
This register is used by the software to decide which TLB entry to replace.

• The TLB CONTROL register
Only the two least significant bits of this register are used. Writing a ’1’ to the
bit at the 0th position flushes the ITLB, while writing a ’1’ to the bit at the 1st

position flushes the DTLB.

• The TLB ASID register
This register holds the 8-bit current process ID. Rest of the bits are unused.

• The TLB EXCAUSE register
This register stores the encoding for the cause of the exception when the TLB
raises one.

2.4. LINUX 25

TLB Exceptions

Knowledge of the TLB exceptions is vital for debugging purposes. The TLB
raises an exception on multiple occasions, for example, if there is no mapping for
a page available in the UTLB, or if there are multiple mappings, illegal access to a
page, etc. When an exception occurs, the TLB jumps to the exception vector and
updates accordingly the TLB EXCAUSE, TLB EXADDRESS and TLB EXCAUSENO
registers. When a DTLB exception occurs, the TLB EXADDRESS register will contain
the virtual effective address that caused the exception. When an ITLB exception
occurs, the TLB EXADDRESS register will contain the virtual address of the syllable
that caused an exception. In the case of multiple ITLB exceptions, the exception with
the lowest syllable address is thrown.

Simrvex, like any other open source processor simulator, offers a lot more to ex-
plore, particularly because of the source code availability. However, here the intention
is to limit the discussion to the most important features. With the TLB of simrvex, the
presentation of the background study of the platform concludes. We now move on to
the software side of the study - the Linux kernel.

2.4 Linux

As already mentioned, the Linux kernel code is open source, which allows for studying
and understanding the code to a great extent. It is written entirely in C and assembly.
Besides, there are detailed standard references available. This makes Linux a suitable
candidate for the port. The entire kernel operation is complex, and it is impossible
to cover everything in this thesis. This is not even the intention, as there are standard
references which provide in-depth information about the kernel. The discussion here per-
tains to those components which are deemed important to understand the bare minimum
porting of the kernel to the ρ-VEX.

Figure 2.3 shows the different layers of operation in a typical Linux-based system.
The hardware at the bottom consists of the CPU, I/O devices, etc. The operating
system is in charge of directly controlling the hardware, while providing a clean system
call interface to the programs running over it. System calls are made by writing to the
registers, or sometimes on the stack, and issuing trap instructions to switch from user
mode to kernel mode[3]. Trap instructions need to be written in assembly, so, procedures
implementing them are written in assembly and are provided by the libraries. A system
call from C invokes the corresponding procedure. The standard utility programs are
something the user interacts with.

2.4.1 The Linux kernel structure

As can be seen from Figure 2.4, the kernel subsystems can be divided into three main
components: the I/O component, the memory management component and the process
management component. The virtual file system in the I/O component provides the

26 CHAPTER 2. BACKGROUND

Figure 2.3: The different layers of operation in a Linux-based system[3]

Figure 2.4: The Linux kernel structure[3]

2.4. LINUX 27

necessary abstraction, such that the interaction with, for example, the terminal appears
similar to the interaction with a file on the disk or in memory. The drivers located
at the lower level take care of the necessary real interaction. All Linux device drivers
are either character device drivers or block device drivers. Network device drivers are
actually character device drivers but are handled differently[3]. The memory manage-
ment component is responsible for maintaining the mapping between virtual and physical
memory, handling page replacement and also maintaining a record of recently accessed
pages. The processes management component deals with process and thread creation
and destruction, scheduling of threads, etc. Signals, which are sort of notifications from
the operating system, are also handled by this component. All these modules exhibit a
high level of interdependency.

2.4.2 Processes and threads in Linux

A process is an instance of an executing program. It has its own address space, which
means it has its own (virtual) memory5, own set of variables and current values of the
processor registers as well as open file descriptors. A copy of a process can be made
using the fork system call[3]. In the process of forking, the original process is called the
parent process, while the copy is called the child process. When a child process is forked
from a parent process, it also gets its own address space.

Linux allows a process to create additional threads upon its creation6. Threads are
like mini processes and share the address space of a process, and are said to be more light-
weight when it comes to creation, destruction, and communication. In fact, processes
can be considered to be comprised of one or more threads. Like fork, there exists a
system call clone to create a new thread, either in the same or a different process.

Each thread gets its own stack and stack pointer, and registers (including the pro-
gram counter) from within the memory allocated for a process, but all threads within
a process share the same heap and other memory segments. The Linux kernel repre-
sents threads as tasks. Such tasks, with the information they contain are encoded as
task struct structures. A task struct represents an entire execution context, with one
object of type task struct representing the state of and other information about a single
thread. It is important to note here that Linux schedules threads and not processes,
therefore, when a process is said to be running, in reality, one or more of its threads
are under execution (Naturally, in a uniprocessor system, in reality, only one thread
executes at a time, whereas in a multiprocessor/multicore system, multiple threads can
be executed simultaneously).

A thread’s program counter holds the address of the next instruction to be executed.
Such program counters are actually logical program counters, provided by the operating
system. When a thread executes, the contents of its logical program counter are loaded
into the physical program counter available on the processor core[3].

For each process, there is a process descriptor, which is an object of type task struct.
When a process is created, a task struct object is created, and also, memory is allocated

5Text segment(for instructions), data segment (for static and global data), BSS segment (for unini-
tialized data) and stack (for local variables, temporary variables, return addresses, etc.)[31].

6Upon creation, a process is said to have a single thread.

28 CHAPTER 2. BACKGROUND

for the kernel-mode stack. Again, Linux does not differentiate between processes and
threads, hence, when a thread is created, an object of type task struct is created. How-
ever, threads share some elements of this task struct structure if they lie within the same
process. Linux can identify processes by means of process identifiers (PID), which are
nothing but integers identifying a process, or rather, a group of threads.

We now seek to mitigate the confusion between kernel threads and user threads. The
kernel and user modes of operation can be distinguished with the help of Figure 2.3. At
the kernel level, there is no such thing called a process. As already mentioned, the kernel
schedules threads. Every process has a user part, which runs user-level programs[3].
However, when a thread inside such a process makes a system call, it begins executing in
kernel mode and thereby gets a different memory map. This is still the same thread, the
user thread, running in kernel mode, with elevated access privileges. Threads created by
Linux, and always running in the kernel mode are kernel threads. Such threads are not
associated with any user process, but only with kernel-specific code. User threads usually
map to kernel threads. This mapping can be one-to-one, many-to-one, or many-to-many.

2.4.3 Scheduling in Linux

Linux distinguishes the following three classes of threads[3], listed in the order of their
priorities:

1. Real-time FIFO

2. Real-time round robin

3. Timesharing

A real-time FIFO thread can only be preempted by another real-time FIFO thread.
A real-time round robin thread is similar to a real-time FIFO thread, except for the fact
that the former has time quanta associated with it. If multiple real-time round robin
tasks are ready, each gets a time duration for execution equal to the time slice. This list
of round robin threads is maintained in a round robin fashion. For timesharing threads
also, time quanta are assigned for each task, based on its priority. The priorities of
real-time tasks are higher. Linux maintains 140 priority levels for all the types of tasks,
numbered from 0 to 139 for highest to lowest priorities[3].

Linux uses a data structure called runqueue, per core, to aid in scheduling. A run-
queue maintains two fields, active and expired, each of which points to an array of 140
list heads, each representing a priority level. Lists of tasks having the same priority are
linked to list head representing the corresponding priority. A doubly linked list of tasks
can thus be visualized. The scheduler selects the highest priority task from the active
array to run. When the quantum for this task expires, it is moved to the expired list.
If a task enters a blocked state, it is moved to another data structure called waitqueue.
When the conditions for the blocked state are over, the task is brought back to the
runqueue, with its time quantum adjusted to reflect the time spent during its earlier
execution. The priorities for the tasks can be static or dynamic, the latter requiring an
algorithm to continuously calculate its priority. The higher the priority of a task (the
lower its priority level), the higher the time quantum assigned to the task. When the

2.4. LINUX 29

queue pointed to by the active field becomes empty, the active and expired fields are
swapped, so that the expired tasks now become active[3], and their execution continues,
as Linux can only schedule runnable tasks.

2.4.4 The Linux kernel’s notion of time

The kernel depends upon the hardware timer of the processor to keep track of time. To
keep a record of passage of time is very important for the kernel, as many operations are
time-driven. The hardware timer is usually a programmable digital clock, which works
on an internal or an external crystal oscillator. It is also called system timer. When this
timer overflows, an interrupt is generated. The kernel handles this interrupt using an
interrupt handler [32] in a manner specific to the processor architecture. The time period
between two such consecutive interrupts is called a tick [32]. Keeping track of such ticks
helps the kernel maintain a knowledge of system up time and the wall time7.

The frequency of the system timer is setup by the kernel during booting. This value
is dependent on the processor and is called the internal kernel time frequency. The kernel
maintains a global variable named jiffies, which keeps track of the number of ticks
occurred since startup. This variable is important for many internal operations, like
delay loop calibration, which occurs during booting.

2.4.5 The Linux boot process

The boot process - a series of steps occurring after powering on the processor, depends
on the processor, but in general can be said to consist of the following steps[3]:

1. Hardware initialization through BIOS
BIOS stands for Basic Input Output System. It is a firmware in the flash memory
of the mother board and is responsible for performing the POST (Power On Self
Test) to check for hardware integrity and also to load and execute the bootloader.

2. Reading and executing MBR
MBR stands for Master Boot Record. It is the first sector of the boot disk. MBR
contents are first loaded into the memory and executed. MBR contains a small
program, which loads a standalone program called bootloader, located on the boot
disk. The bootloader copies itself to a fixed memory location such that the specific
region of memory reserved for the operating system is made available.

3. Loading of the kernel image into memory
The bootloader, for example the GRUB (GRand Unified Bootloader), should un-
derstand the file system of the boot device. It finds the kernel image on the boot
device and loads it at a specific location into the main memory. The bootloader
then jumps to the kernel, and the kernel then takes over.

4. Mounting of the root file system
The kernel does the job of mounting the root file system. Often, the initial RAM
disk or the initrd, which is a temporary root file system, is mounted before the

7Wall time is the time taken by a task to complete.

30 CHAPTER 2. BACKGROUND

actual root file system is available. A root file system is a file system located on
the same partition of the disk as the root directory.

The kernel also performs important initializations of the internal data structures.
Finally, it starts Process 0, which is also known as the idle task. This marks the
beginning of the program execution in user space.

5. Jumping to user space
The init program represents the first user space program the kernel can execute.
This program should be available on the mounted root file system, and its location
can be made known to the kernel. The init program executes as the init process,
which is actually the child process of Process 0. The init process gets a PID of
1 and gives rise to all the other processes, which execute a variety of user space
programs, including the shell.

This marks the end of the booting process.

2.4.6 Memory management in Linux

The virtual address space which each process can access is 32GB for 32-bit machines. It
can be said to consist of four segments: text segment, data segment, BSS segment and
stack segment. The text segment contains machine instructions. The data segment con-
tains initialized variables, strings and constants. The BSS segment contains uninitialized
data, which is initialized to zero after loading. The BSS and data segment contents can
be changed, but this is not true for text segment. Furthermore, for dynamic memory
allocation, the system call brk is often used to alter the size of the data segment. The
C library function malloc makes use of this system call internally[3]. The stack starts
near the top of the virtual address space and grows down to zero. If the stack crosses
the lower limit of the stack segment, a fault occurs, which is to be handled as a trap. In
situations like this, the kernel can adjust the stack segment boundaries.

The purpose of implementing memory management in Linux is to allow multiple
processes to run simultaneously by creating an illusion for a process that 32GB of
address space is available to it and by ensuring that each process has its own virtual
address space. For the kernel, physical pages are the basic units of memory management.
Objects of type page structure represent a physical page or a page frame. Such objects
are called page descriptors[3], and the kernel maintains an array of such descriptors
called mem map. Each page descriptor has a pointer to the address space it belongs
to, among other information. The memory management operations by Linux can be
described in the following manner[3]:

• Physical memory management

Linux differentiates three physical memory zones:

1. ZONE DMA - For pages that can be used for direct memory accesses

2. ZONE NORMAL - For pages that can be normally mapped

2.5. RELATED WORK 31

3. ZONE HIGHMEM - For pages with high memory addresses and which are
not permanently mapped

The layout for these zones depends on the architecture. The kernel maintains
a zone structure for each of these zones, called the zone descriptor. It contains
information such as the number active and inactive pages in the corresponding
zone. Furthermore, the Linux kernel divides the entire physical memory into three
parts. In the first two, the kernel and memory map reside, paging is not performed.
It is only the remaining part of the memory that is paged, i.e, it is divided into
page frames.

• Memory allocation mechanisms
Linux supports many memory allocation mechanisms, with a so-called page alloca-
tor being the main mechanism for allocating new page frames. Details about this
mechanism can be found in [3].

• Virtual address space representation
The virtual address space can be said to be divided into page-aligned regions. The
properties of each such region are described by objects of type vm area struct. All
such objects for a process are linked together in a list and are sorted on the basis
of virtual addresses. This way all pages belonging to a process can be found.

• Paging
With paging, the kernel can run a process without it being completely in physical
memory. Only its descriptor and the page tables need to be in the memory, the
process can then be scheduled. During the execution of the process, the pages of
the text, data and stack segments can be dynamically loaded as required. Another
process which helps in paging is the page daemon. This is the process 2 which
is forked from Process 0, as is the init process. The job of page daemon is to
periodically check the number of free memory pages. If this number is low, it is
replenished by freeing more pages. Linux adopts a so-called PFRA (Page Frame
Reclaiming Algorithm) to make more free pages available.

With the memory management functionality, we conclude the discussion over the
Linux kernel.

2.5 Related Work

This section describes some other projects of similar nature, and also highlights the
differences.

1. uCLinux on ρ-VEX
The ρ-VEX already has a uCLinux ported to it. This is a 2.0 Linux kernel no MMU
version. The work is detailed under [23]. Some important changes were made to
the ρ-VEX toolchain and also a vectored trap controller was designed to support

32 CHAPTER 2. BACKGROUND

the Linux port. These modifications are important for experimenting with porting
other kernels on the ρ-VEX as well.

However, the current project aims to port an operating system having an MMU
support to the ρ-VEX. The importance of memory management by the hardware
and its support in the software have already been discussed.

2. FreeRTOS on ρ-VEX
The ρ-VEX also has FreeRTOS ported on it. The work is detailed under [33].
FreeRTOS was ported on the ρ-VEX processor to exploit its reconfigurability for
real-time robotics applications. FreeRTOS is a real-time operating system kernel
developed and licensed by MIT, USA[34]. It is a highly portable kernel consisting
of only three C files, along with architecture-specific assembly code.

FreeRTOS is more of a thread library than a complete operating system kernel[34].
An operating system, besides thread management, performs many other functions
like memory management, implementing device drivers, and file handling. The
current project aims at making ρ-VEX suitable for a wide range of applications,
which need not necessarily be real-time. The emphasis here is more on providing
near full-fledged functionality to the ρ-VEX, like dynamically loading applications
located on the file system, memory protection for applications running simultane-
ously, etc.

2.6 Conclusion

Porting an operating system to a processor requires a thorough knowledge of the pro-
cessor architecture, the toolchain capabilities, and of course, the operating system code
itself8. This is the reason a study for these three components was presented in detail in
this section. The contents of this chapter were presented with the intention of making
the understanding of the implementation, presented in Chapter 3, easier.

The discussion related to the toolchain part was kept short, and was emphasized
more on a study of the visible (and known) capabilities, rather than internal working.
Implementing toolchain modifications was not a desired component of this project. The
emphasis is more on modifying the operating system code to make it suitable for the
current ρ-VEX system as much as possible, before considering toolchain modifications.
However, knowledge of the toolchain limitations is important to consider modifying the
operating system for the port, and will be presented along with the implementation for a
better reference. The functionality/characteristics of the ρ-VEX visible to the program-
mer, including some details of its internal working to gauge the impact of changing such
functionality through program, were considered.

As far as discussion over the Linux kernel is considered, efforts were put into dis-
cussing the required details, keeping in mind audience having some basic operating
system background (particularly UNIX-based operating systems). This is not to say,
however, that the discussion about the Linux kernel presented in this chapter completely
covers the background for the implementation, or completely lies within the scope of the

8At least the part interacting with the hardware

2.6. CONCLUSION 33

implementation, but the overlap is high. Much more detailed and extensive documenta-
tion about the Linux kernel can be found online, and in standard references. The same
goes for the discussion about the ρ-VEX characteristics and the TLB unit presented in
this chapter - the ρ-VEX user manual[25] and the ST231 Core and Instrucion Set Ar-
chitecture manual[30], respectively, are more detailed sources of reference, and relevant
topics out of these manuals were chosen for discussion.

Finally, a discussion about projects related to this one was presented, while
highlighting the key differences.

34 CHAPTER 2. BACKGROUND

Porting Linux to ρ-VEX 3
Availability of the source code of an operating system kernel is a prerequisite to porting
the kernel to any architecture. Linux is the most popular open source operating system
kernel available today. In fact, it is the largest open source project in the world, with a
plethora of documentation available. This is not however the only reason for choosing
Linux for the port. Factors which strengthen the choice of Linux, and the choice of the
particular Linux kernel version will be discussed in this chapter first. As can be recalled,
the ρ-VEX is implemented in hardware (on FPGAs and as an ASIC) as well as software
(the simrvex architectural simulator). The choice of the ρ-VEX implementation and its
justification also lies within the scope of this chapter.

This chapter, however, mainly describes the implementation of this project, i.e,
modifications in the kernel code to make it run on the ρ-VEX. The entire implementation
is in line with the goals mentioned in Chapter 1.

3.1 Choosing the ρ-VEX platform

Although in literature platform can mean different things, in this context, it strictly
refers to the processor hardware or simulator as seen by the operating system running
on top of it. As discussed in Section 1.2, one of the strong motivations behind this project
is to make applications run in virtual memory on the ρ-VEX. Advantages of using virtual
memory have been discussed before. The ρ-VEX currently has FPGA (on ML605 and
VC707 FPGA development boards) and ASIC implementations. However, these lack a
memory management unit. A hardware-based memory management unit for the ρ-VEX
has been implemented under [35], however, it is currently not integrated in the release
version of the ρ-VEX. As discussed in Chapter 2, simrvex has an MMU integrated, which
is similar to the one in the architectural simulator for the st200 family of processors. The
presence of an MMU in simrvex proves to be a huge advantage as it saves the time to
implement an new MMU from scratch, or to integrate one in the hardware and then
verifying it. The time thus saved can be effectively invested in the main objectives of
this project. Apart from this, simrvex, being an architectural simulator of the ρ-VEX
processor, it possesses the following advantages:

• Simrvex is written in C and its source code is available. This makes understanding
its working easier through a code walk through, and also through implementing
printf statements and tracing the execution flow via terminal output.

• If at all any changes are required in any of the components of the processor to
support the port, they can be easily implemented. Moreover, such modifications
are convenient to test - the simulator just needs to be compiled and rerun.

35

36 CHAPTER 3. PORTING LINUX TO ρ-VEX

• Debugging is much easier on simulators than on hardware processors.

• Simrvex is a cycle accurate simulator for the ρ-VEX, therefore, it mimics the timing
performance of the ρ-VEX accurately1. This way, it is possible to accurately report
the execution cycles consumed by user space applications running on the ρ-VEX.
Performance evaluation of applications running on the operating system after it is
ported to the ρ-VEX is also one of the goals of this project.

These advantages make simrvex the most suitable candidate among the available ρ-VEX
processor implementations to carry out the operating system porting, and therefore,
was chosen for the task.

3.2 Choosing the operating system kernel for the port

Writing an operating system from scratch is a tedious task. An interesting alternative
is studying existing and mature operating system codes and modifying them to suit the
ρ-VEX platform. For this, the source code of the operating systems is desired to be free
or open source. The Linux kernel is the largest open source project in the world, with a
plethora of documentation online, and its availability further motivates this project. A
kernel is the core component of an operating system. Linux itself is an operating system
kernel, while distributions, such as Ubuntu, package this kernel along with essential
utilities and thereby qualify to be called a complete operating system. This project
mainly aims to port the kernel to the ρ-VEX architecture, while adding essential utility
support to test the performance of standard applications.

The fact that the Linux kernel code is open source is not the only reason it for choos-
ing it as an operating system kernel for the ρ-VEX. Linux has been ported to many
standard architectures like ARM, x86, MIPS, etc., and its kernel code is available with
such architecture-specific code included. This was sought to be an important reference
while writing the architecture specific code for the ρ-VEX. The other reason for choosing
Linux is its modularity. The architecture-specific code in the kernel is well separated
from the architecture-independent code2[36]. This makes it easier in the sense only the
architecture-specific code needs to be written for the new architecture. The code con-
cerning features such as file system management, scheduling, networking, device drivers,
etc. need not be re-written for a new port (although these require some functionality in
the architectural specific code to be implemented).

The toolchain of the ρ-VEX system has matured over the years. [23] also implements
a trap controller in the ρ-VEX processor to support interrupts and exceptions. These
features enable further explorations of experimenting with operating system ports. The
ρ-VEX compiler, rvex-gcc, is a modified version of the gcc compiler, as discussed in
Chapter 2. The entire Linux kernel code is written in C and assembly, which makes it a
favourable choice.

1Provided, caches are disabled.
2Actually, little overlap

3.3. PORTING LINUX ON SIMRVEX 37

Now that simrvex has been chosen as the platform over which the Linux kernel is
to be ported, it is important to choose the version of the Linux kernel to be modified
to implement the port. This is because Linux is being developed by many companies
and individuals all over the world, and has many releases till date, and the existing
ρ-VEX toolchain may not be able to support all Linux kernel versions. The version of
the Linux kernel modified for the ρ-VEX is 2.6.32. Versions 2.6 onwards have matured
documentation availability, but more importantly, the same version of Linux has been
ported to the st231 processor, which belongs to the st200 family of processors. Again,
as discussed in Chapter 2, st200 has a similar architecture to that of ρ-VEX, and it
is interesting to further recall that simrvex is based on the architectural simulator for
the st200 series of processors. The idea of modifying this very Linux kernel port is
therefore considered for the work to fall under the scope of a master’s thesis. Also, the
efforts thus saved are deemed to be utilized in exploring the dynamic properties of the
ρ-VEX.

3.3 Porting Linux on simrvex

According to [37], there can be three different types of porting, when it comes to porting
Linux to a processor:

1. Porting Linux to a new processor, but with an architecture already supported by
Linux.

2. Porting Linux to a new processor with an architecture not directly supported
through standard Linux ports, but falling in the same family as a supported archi-
tecture.

3. Porting Linux to a new processor with an entirely new architecture.

The implementation under this project can be said to belong to the third category
above, as we are dealing with a completely new architecture here3. Although, as men-
tioned in Section 3.2, the task comprises of modifying the st200 port, the implementation
belongs to category 3, as the ρ-VEX architecture does not lie under the st200 family of
architectures, even though it is similar.

As mentioned in Section 3.2, Linux kernel has a modular structure, with the
architecture-specific code separated from the architecture-independent code. This is
what makes Linux portable. Therefore, all the steps required to modify the Linux ker-
nel version 2.6.32, modified for the st200 architecture, can be broadly divided into the
following two parts:

1. Making the architecture-independent part of the Linux kernel code compilable for
the ρ-VEX.

3Meaning an architecture entirely different from the standard ones to which Linux has already been
ported.

38 CHAPTER 3. PORTING LINUX TO ρ-VEX

2. Writing the architecture-specific part of the Linux kernel code and making it com-
pilable and working for the ρ-VEX.

Before discussing the above two steps in detail, a discussion about the initial setup is
necessary. With the ρ-VEX toolchain and the source code of the Linux kernel available,
the first step is to set the kernel configuration. This configuration decides which modules
of the kernel will be compiled, while taking care of the dependencies. From the linux/

directory, the following command needs to be run, in order to start configuring the kernel.

make CROSS_COMPILE=rvex- menuconfig

An interactive screen appears, allowing to selectively enable the required kernel com-
ponents. The Linux kernel source code is huge, and apart from the essential operating
system components, includes code to support, for example, different file systems, USB
devices, display devices, networking, etc. Rather than going for such extra features, the
focus here is to have a minimalistic kernel comprising of the essential operating system
functions and support for running standard C programs. This would ease achieving the
main objectives of this project, saving (potential) debugging time. Keeping this in mind,
only the very basic required components are enabled for compilation.

3.3.1 Modifications to the architecture-independent part of the Linux
kernel

Most of the architecture-specific code in the Linux kernel lies in a specific directory under
the linux/arch directory4. Most of the remaining architecture-specific code lies under
a directory called linux/include meant to contain all the header files. Almost all of the
other code forms the architecture-independent part of the Linux kernel. The strategy
applied here, in order to make the architecture-independent part compatible with the
ρ-VEX, was to write minimal architecture-specific code as required for compilation, and
then try to compile the entire kernel code to eliminate/fix non-compilable components.
The process is important as it exposes non-compatibilities with the compiler early, and
it also makes debugging the architecture-specific code related compilation and linking
errors manageable.

To begin with the minimal architecture-specific code, a directory named rvex was
created under path linux/arch/. This is where most of the architecture-specific code
resides. Inside this folder, subdirectories were created following a standard layout. Some
of these are listed below, along with the functionality of the code contained in them.

• include/asm/ - for header files which are required by the kernel source code

• kernel/ - functions for management of core kernel operations

• mm/ - code for memory management

• lib/ - some important utility routines

4Here, linux is the name of the directory which contains the entire kernel source code.

3.3. PORTING LINUX ON SIMRVEX 39

The necessary files, with bare minimum code were included within these directories,
including the Makefiles. A Makefile is a file which defines certain compilation and linking
rules on UNIX-based systems. Linux follows a recursive build structure, meaning, there
is a top-level Makefile in the linux/ directory, which looks for Makefiles in appropriate
subdirectories and thus carries out the build process in a branching fashion. The whole
kernel can be built by running the following command from inside the linux/ directory:

make CROSS_COMPILE=rvex- ARCH=rvex

An important part of the architecture-specific code that needs to be added to proceed
with the compilation is the vmlinux.lds script. This script, along with specifying the
format of the build result, specifies which piece of code goes in which segment of the
memory. The script from the st200 port was directly used with minor modifications
related to the output binary format, the start address of physical memory, the entry
point function name, the base address of control registers, etc.

It is important to note here that since many of the needed architecture-specific mod-
ules would be missing, many linking errors would be encountered. In order to tackle only
the compilation incompatibilities first, relocatable linking was adopted. The linker can
be told beforehand that relocatable linking is to be performed by passing a -r flag to it.
With the relocatable linking option enabled, the final executable, or rather object file,
does not include the object files generated from the source code files of the submodules,
and is therefore not executable. Basically, references to the symbols in the object files of
the submodules are not yet provided correct memory addresses. Therefore, linking does
not happen and naturally, no linking errors were reported.

With relocatable links creation enabled, the compilation for the entire kernel, along
with a small amount of architecture-specific code, was proceeded with. The following
techniques were employed in order to resolve the errors encountered, depending on the
nature of the errors:

1. Changes were made in the kernel source code wherever possible, in order to make
the code compilable for the ρ-VEX.

2. When 1. was not possible, different compiler versions were tried.

3. When 2. also did not work, the kernel configuration was adjusted to remove the
error causing components which were not crucial for core kernel functionality.

A noteworthy modification at this stage was removing the optimization option and the
debug symbol generation option from the top Makefile. These are currently not sup-
ported by any of the ρ-VEX toolchain versions. Also, dynamic loading of libraries is
not possible with the current toolchain, therefore, the vDSO feature from the st200 port
had to be disabled. “vDSO” stands for Virtual Dynamic Shared Object and is a shared
library maintained by the kernel (from versions 2.6 onwards[38]) to speed up certain
system calls.

With the compilation errors now resolved, completing the architecture-specific code
was pursued, and also, the option to create relocatable links was removed to resolve
further linker incompatibilities.

40 CHAPTER 3. PORTING LINUX TO ρ-VEX

3.3.2 The architecture-specific kernel code

As the porting is based on the st200 Linux port, the entire architecture-specific code
from the st200 was taken and a register translation was performed on it by running
a script. Most of the architecture-specific code in Linux is written in assembly, which
makes use of registers specific to the processor architecture. Although the layout of the
registers in the st200 architecture is broadly similar to that in the ρ-VEX architecture,
it is not exactly the same. Equivalent registers exist in the ρ-VEX in most cases, and
also, in some cases, there is no one-to-one mapping for a particular group of registers.
This was taken care of by the translating Python script and was possible due to the
availability of the register translation table between st200 and ρ-VEX registers. This
table, which can also be found in the README file of the open64-rvex repository, which is
used by TU Delft to maintain the source code of the ρ-VEX compiler, is presented below.

ST200 ρ-VEX Register type

r0 r0 general-purpose

r1 - r7 r57 - r62 callee-saved

r7 r63 stack pointer, but not always used

r8 - r11 r11 - r56 scratch

r12 r1 stack pointer

r13 r55 thread pointer

r14 r56 global pointer

r15 r2 struct/union return pointer

r16 - r23 r3 - r10 arguments

r24 - r62 r11 - r56 scratch

r63 l0 link register

Table 3.1: Register translation scheme for st200 to ρ-VEX[4]

After the the register translation, further modifications to the st200 code were pur-
sued in steps. The relocatable links creation option was also disabled, so as to deal with
linker errors on build attempt.

The next step was to identify the interfaces between the architecture-specific
and the architecture-independent code. The header files to be included under
linux/arch/rvex/include/ would provide such interfaces. As Linux has evolved a lot
over time, with porting being done on many architectures, developers have aggregated
most commonly used header files under the directory linux/include/asm-generic/.
The task here was to examine these files, along with the custom header files for st200,
and come up with custom header files for the ρ-VEX, wherever required. Fortunately,
most of the declarations specific to the ρ-VEX were present under the header file rvex.h

written during previous ρ-VEX-based projects, and this header file was appropriately
included in the architecture-specific code.

The architecture-specific code in Linux can be broadly divided into two categories[37].
The first part deals with the booting process, i.e, from the moment the kernel comes
into picture till init is executed. The second part deals with operations post booting,

3.3. PORTING LINUX ON SIMRVEX 41

like thread management, interrupt handling, handling of other system calls, etc. The
implementation pertaining to the first part will be covered in this chapter, as running
the init typically signifies the end of porting[39]. The implementation pertaining to
the second part comes under experimentation to evaluate the timing performance of
benchmarks. This will be briefly discussed in Chapter 4.

The boot code

Before starting with the boot code implementation, it is important to identify
the boot sequence for the ρ-VEX processor. The general booting process was discussed
in Chapter 2, however, since the porting is done on a simulator, a bootloader is not
required. The starting memory address can therefore be kept as 0, specified by the
option CONFIG MEMORY START in the kernel configuration file. Also, the discussion here
is of a more microscopic nature as compared to the general booting process discussed in
Chapter 2, which means the functions called during the booting phase will be discussed
here.

Many functions are executed during the booting process, with some of them being
architecture-specific. The task was to identify these architecture specific functions and
modify/implement them accordingly.

The boot sequence, once the kernel takes over, starts with a function written in
assembly called start in the file head.S located under linux/arch/rvex/kernel/. The
head.S for the ρ-VEX was formed by referring to the same file for the st200 architecture
and the mmu start.S file, developed under another project to test the MMU on the
simrvex. The documentation in these files in particular was helpful in identifying the
required sequence of activities to be performed. The sequence is as noted below:

1. Clear and initialize the TLBs

2. Clear the BSS section of the kernel

3. Initialize the stack pointer

4. Jump to the start kernel function

The caches are not activated throughout the project so as to maintain the cycle-
accurate property of the simulator and justify the timing performance of benchmarks.
Therefore, initialization of the caches is not required in the startup code. The MMU
is activated just before initializing the BSS section. Before that, the accesses to the
kernel symbols, all of which lie in the kernel’s virtual address space[40], are done by
means of a macro, PHYS ADDR. This macro subtracts the start of the kernel address space
appropriately to obtain the physical address. For the ρ-VEX, the kernel’s virtual address
space spans the higher two GB of the 4GB address space. This essentially results in the
kernel’s virtual address space starting from address 0x80000000.

It is particularly important to clear the BSS section of the kernel, as it contains
uninitialized data, and the state of the memory is unknown during startup. The function
start kernel represents the first architecture-independent function in the boot process,

42 CHAPTER 3. PORTING LINUX TO ρ-VEX

and performs most of the subsystem initialization. However, many of the functions
called from start kernel require architecture-specific implementation. The important
ones are described below[40].

1. setup arch() - This function starts with an attempt to register the available
console. This is done by the console driver. The st200 port already has the code for
this driver. The driver for the ρ-VEX is almost entirely based on this, along with
minor modifications. The console initialization, performed by the console driver, is
important the obtain early printks - the first step towards a debug infrastructure. A
printk is a function used exclusively by the kernel to print messages on an available
console, thereby serving as an important kernel-level debugging mechanism. To enable
these early printks, however, the configuration option CONFIG SIMULATOR CONSOLE was
enabled.

The setup arch() function also sets up the page table and performs the initialization
of the trap handler5. The code for the page table set up was taken as it is from the st200
port, as the ρ-VEX uses almost the same TLB mechanism. The page size used is also
the same, and equal to 8192 bytes. The code for the trap handler, written in assembly,
required modifications mainly taking into account the register layout difference between
st200 and ρ-VEX, and also some modifications to eliminate incompatibilities with the
assembler.

2. mem init() - This function zeros the zero page6 It also initializes certain global
variables, representing boundaries of the different segments of the memory, to appro-
priate memory address values. The code from the st200 port, with certain changes
in the macros used, does the job for the ρ-VEX. However, simrvex does not have the
Speculative Control Unit (SCU) which the st200 series of processors possess. Therefore,
code related to this unit had to be deactivated.

3. init st200 irq() - This function, specific to the st200 family of processors, was
analyzed, and it was found that it could be used without major modifications due to
large similarities in interrupt handling techniques by the two architectures. Basically,
this function tries to map the interrupt controllers to the kernel’s address space.

4. time init() - The main purpose of this function is to initialize timer parame-
ters as well as timer control registers. It also performs memory mapping of the
clock source driver. Again, the code from the st200 port was usable due to similar
timekeeping infrastructure followed by st200 and the ρ-VEX. However, there a few
important modifications were identified. Fortunately, the code for simrvex revealed a lot
about the timekeeping infrastructure followed. The information about the macros to be
used to write to the registers, as well as the appropriate offsets of the register addresses
in the memory map of the ρ-VEX’s register layout, were gathered from here and [25].
For example, it was noted that there are four timer control registers in simrvex, the

5This means providing address of the ρ-VEX’s trap handler routine to its trap handler control register
6A zero page is the first page mapped to kernel memory which exists to trap null pointer references

in the kernel [41].

3.3. PORTING LINUX ON SIMRVEX 43

corresponding timer IRQ descriptor7 is mapped to IRQ line 8, and so on. Changes to
the interrupt infrastructure (e.g., enabling and disabling the interrupts) also follow along
a similar line - writing to and reading from registers with appropriate memory address
offsets, and following ρ-VEX’s convention for macros, as observed from the simrvex code.

The last function called by start kernel() is rest init(). A successful call to this

function indicates that it is possible to execute in virtual memory[39]. It is here that
two kernel threads are created:

1. kernel thread

2. kthreadd

The kernel thread is spawned first, after which it waits for the creation of kthreadd.
The kthreadd is actually a kernel thread daemon8, which gives rise to other kernel
threads when required. After the kthreadd is created, kernel thread proceeds with
executing the remaining part of the boot process[39]. This includes certain device driver
initializations, unpacking and mounting of the provided initial root filesystem [39], etc.
Here, the involvement of the architecture-specific code is only for the device drivers. The
kernel needs to be provided with an initial root filesystem, which it mounts in memory.
This initial filesystem should contain the init. A successful execution of the init marks
the end of the porting process. Setting up the init is a part of experimentation to
(ultimately) execute and obtain timing performance of benchmarks. Details regarding
this are discussed in Chapter 4.

Ported kernel components

Figure 2.4 provides a block diagram representation of the components of the
Linux kernel. This figure can be adapted to show the components of the Linux kernel
actually ported as a result of the implementation discussed so far. The corresponding
representation is shown in Figure 3.1. This is actually a very early stage for considering
input-output handling capabilities. The ported kernel lacks essential driver support.
Besides, at such an initial stage, before going for I/O testing, important features like
process handling, memory management, etc., need to work correctly, in order to proceed
with the desired benchmark evaluation. Therefore, the entire I/O block was removed
from the kernel configuration (as can be seen by dashed-line boxes and lightened text in
Figure 3.1) while modifying the st200 port for the ρ-VEX, and the process and memory
handling related blocks were retained and modified. Even support for file systems
was not considered as it was not required yet. The entire implementation of the boot
code, as discussed previously, has effectively equipped the kernel9 with the ability to
execute in virtual memory (through memory management support implementation),

7An IRQ is an external interrupt request to the processor and interrupt descriptors are basically
structures maintained by the kernel internally to store the description of an interrupt.

8A daemon is basically a background process.
9theoretically, yet

44 CHAPTER 3. PORTING LINUX TO ρ-VEX

and handle tasks as independent execution units. The architecture-specific code port
to support the C functions, especially the ones called from the start kernel() function,
has resulted in this. Some other noteworthy features of the kernel resulting from the
port are availability of system calls and timer and interrupt handling. One important
point to note here is that the kernel was not yet built, therefore, a minimalistic
kernel, with bare-essential working features was very much desired to efficiently handle
unforeseen compiling/linking errors. Due to this, even important components like
the implementations of different scheduling policies were not included. The kernel, as
of now, is only capable of performing time-sharing of the CPU among the different
runnable tasks. Of course, scheduling is an important area for exploration, but at this
stage, the time-sharing feature was deemed sufficient for benchmark evaluation, which
will be discussed in Chapter 4.

Figure 3.1: Components of the Linux kernel structure that were ported[3]

Overcoming linker limitations

So far, the implementation of the boot code was discussed, something which is
expected to lead to the execution of the init. However, as can be recalled, overcoming
other toolchain (especially linker) limitations, after disabling the relocatable link
creation option from the top-level Makefile, was remaining. This was done, and the
entire kernel was compiled. Many linker errors were encountered, which can be placed
into two categories. These categories, along with the solution approaches are described
below:

1. Relocation errors - An example of such an error is presented below:

kernel/built-in.o: In function ‘hrtimer_nanosleep’:

3.3. PORTING LINUX ON SIMRVEX 45

(.text+0x4772c): relocation truncated to fit: R_RVEX_BRANCH against

‘.sched.text’

To debug such an error, e.g., the one presented above, the object file
linux/kernel/builtin.o was dissembled using the tool rvex-objdump from the
ρ-VEX toolchain. This resulted in the following log:

4772c: 22 00 00 02 call l0.0 = 47730 <hrtimer_nanosleep+0x160>;;

The call was made from inside the function ‘hrtimer nanosleep’ to a function
‘do nanosleep’ which has the signature:

static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum

hrtimer_mode mode)

The ‘ sched’ indicates that the function needs to be placed in the sched region in
the final object file (this is specified in the custom linker script vmlinux.lds.S).
This error is usually caused when the code becomes too large for call/br/goto
instructions, in this case, the (large) value 47730 being stored in the link register.
To overcome this error, ideally the link register should be made capable of handling
larger offsets, by making appropriate modifications in the assembler. However, for
this project, a preference is given to making changes in the kernel code, due to the
high impact of changes in the toolchain. Therefore, the direct function calls were
made indirect through the use of function pointers. For example, in the above case,
inside the function ‘hrtimer nanosleep’, for invoking the function ‘do nanosleep’,
a function pointer was created using appropriate signature, and the function was
called using this function pointer. This essentially causes the compiler to generate
icall instructions instead of call instructions. The icall instruction is used
for dynamic function calls or calls to functions that cannot be reached using the
branch offset immediate method[25]. The same approach was adopted for all the
errors, and 746 such section mismatches were resolved for the entire code.

2. Undefined reference to function errors, in spite of the presence of function bodies
- An example of this type of error is given below:

kernel/built-in.o:(.text+0x1168): undefined reference to

‘__xchg_called_with_bad_pointer’

The above error was specific to the file pgtable.c located under
linux/arch/rvex/mm/. This error occurred due to a bug present in gcc,
upon which the ρ-VEX compiler is based. This bug causes the compiler not to
generate code for functions which it thinks can never be called. The workaround
for this bug was discussed in [42] and involves adding the following function
declaration in the same file:

void __attribute__ ((weak)) __xchg_called_with_bad_pointer(void)

{ panic(__func__); }

46 CHAPTER 3. PORTING LINUX TO ρ-VEX

In this manner, dummy functions are made available, in case compiler tends to
generate code to call these functions[42]. The other linker errors belonging to this
category were fixed using the same solution.

With these approaches, the entire kernel compiled successfully to generate the expected
vmlinux executable.

3.4 Conclusion

This chapter dealt with the implementation details for this project. The choice of the
ρ-VEX simulator, simrvex, as the platform, and modifying the st200 Linux port for the
ρ-VEX, were justified. Thereafter, the porting of this chosen Linux kernel on simrvex
was discussed in detail. Although, there can be many approaches to porting, and the ap-
proach presented may or may not have been employed before, but the end result (porting)
was achieved. The approach followed under this project for porting took advantage of
the modular nature of Linux and its separation of the architecture-specific code from the
architecture-independent code. The architecture-independent part was dealt with first
by writing the bare minimum code for the architecture-specific part for compilation’s
sake. Also, at this stage the relocatable linking option was enabled ensuring objects
were not linked into the final kernel object upon successful build, so as to approach the
toolchain incompatibilities in a systematic manner. The compiler errors were resolved
through a combination of kernel source code changes and compiler version changes. Af-
ter the unlinked final kernel image was successfully built, which essentially meant that
compiler-related incompatibilities were resolved, the architecture specific code was pro-
duced through heavy modification of the st200 Linux port. Thereafter, linker errors
were tackled after disabling the relocatable linking option, which allowed exposing the
linker’s limitations while attempting to link the entire kernel code. All these modifi-
cations resulted in the successful generation of the Linux kernel image vmlinux built
using the ρ-VEX toolchain, and meant to be executed on simrvex. This chapter only
dealt with implementing the kernel modifications in order to boot Linux on simrvex, the
experimentation to test this boot, by executing some useful user space programs will be
discussed in the next chapter.

Experimentation and Results 4
In this chapter, the results obtained after experimentation with the implementation
presented in Chapter 3 will be discussed. The implementation done to produce the
results for evaluation will also be discussed. So far, the implementation discussed
pertains to making the kernel compilable and bootable on simrvex. Of course, after the
kernel was compiled successfully, debugging efforts were involved in making the kernel
bootable on simrvex. The fixes were mainly concerned with the architecture-specific
initialization part of the Linux kernel, and were presented together with the imple-
mentation/modifications required to make the kernel compilable, in Chapter 3. Before
starting with execution-based results, it is important to describe the dissection of the
Linux kernel image, to review which part of the code went where in the kernel image
after a successful build.

4.1 The Linux kernel image

The end result of a successful compilation of the Linux kernel is the generation of the
binary called vmlinux. The size of this binary is 1957.3 kiB. In order to display
more information about object files compiled for the ρ-VEX, the rvex-objdump and
rvex-elf32-readelf tools are available with the ρ-VEX toolchain. Vmlinux is an ELF
(Executable and Linking format) executable. Compilers or linkers produce binary files in
this format for UNIX-based systems. Studying the details of binary files provides a better
insight into the internal working of an operating system. The rvex-elf32-readelf tool
was used to extract information from the generated vmlinux. The information obtained
can be divided into three parts:

1. ELF header

2. Section headers

3. Program headers

The ELF header information for the vmlinux can be found in Figure 4.1. Most of the
information under the ELF header is specific to the ELF format, such that the file is
identifiable as an ELF executable. A notable point is that ρ-VEX is a 32-bit big endian
architecture, and the executable complies with this.

47

48 CHAPTER 4. EXPERIMENTATION AND RESULTS

Figure 4.1: The ELF header information for the vmlinux

The next category is section headers, which provide information regarding different
sections present in the object file, like BSS, stack, heap, text, etc. Figure 4.2 shows this
information specific to the vmlinux generated.

Figure 4.2: The section headers inside vmlinux

The script vmlinux.lds.S aids in providing specifics for the generation of these
sections for the executable, conforming to the ELF format. If some function needs to be

4.2. BOOTING 49

assigned to a specific section, it can be specified in its signature. For example, functions
with sched in their declaration are inserted into the .sched.text section in the object file.
The placement of data and functions into such sections ensures that they are accessed
in intended ways only. The Linux kernel code is huge and complex, and hence difficult
to debug if an unwanted access causes an undesired behaviour. For example, functions
declared as init are placed in the .init.text section, and can only be invoked during
the initialization phase of the Linux kernel. Such separation also helps Linux decide the
release of allocated page frames when needed[43]. As can also be observed from Figure
4.2, the kernel symbols start above memory address 0x80000000, which is the region
assigned to the kernel. It can be observed that the first section, after the start of kernel
memory address space, starts with an offset of 0x2000 or 8192 bytes. This is precisely
the zero page.

The program headers, or simply, segments, basically exist to add information to the
sections so as to create an executable memory image[44]. The program headers for the
vmlinux can be observed in Figure 4.3.

Figure 4.3: The program headers inside vmlinux

4.1.1 Compressed kernel image

To generate a compressed image of the Linux kernel, the following command was used:

make CROSS_COMPILE=rvex- ARCH=rvex compressed

With everything else compilable, a compressed image of the Linux kernel is generated
called zImage. While booting with this image, however, an additional decompression
needs to be performed. The code to perform this decompression was available in the
st200 port. A different head.S file was created, which, along with supporting piece of
code, would be invoked only when the compressed option was passed while building the
kernel. The size of zImage is 794.14 kiB. A compressed image is desired under Goal 1,
discussed in Section 1.3.

4.2 Booting

The implementation towards booting, which involved writing/modifying code performing
a series of initializations from the entry point function (inside head.S) till before running
the init executable, was discussed in Chapter 3. Basically, with such implementation,
the stage till the formation of the first kernel thread can be reached in booting. The

50 CHAPTER 4. EXPERIMENTATION AND RESULTS

kernel needs to be provided with the init application, in an appropriate manner, so that
it can be executed after the creation of kernel thread. The init is actually the first user
space process and is created from kernel thread, thereby inheriting its PID of 1[39]. In
order to be able to run a fully functional init, the following should be ensured:

1. The function in the architecture-specific code to handle page faults must be
implemented.

The do page fault function in the file fault.c, located under
linux/arch/rvex/mm/ is responsible for handling page faults1. Basically,
the Linux kernel loads only the required kernel structures into the memory for
user space applications. The data and text segments are loaded when these
applications fault when they find during the execution of their first instruction
that the corresponding pages are not loaded in the memory[39]. Again, the code
for this function was present in the st200 port and was used as it is, except for the
change in the address space identifier field as per the ρ-VEX. This field basically
provides the process identifier.

2. The required system calls must be implemented.

The system calls had already been ported to the ρ-VEX through register
translation and omission/appropriate modification of unsupported instructions
and functions. Some important modifications were for the sim write function,
which is involved in writing to the UART. From inside this function, a trap was
generated which printed on the terminal using the simrvex’s write function. Since
a simulator is used as a platform, writing to the UART is not needed.

3. There should a C library for enabling C programs (in this case, the init) to be
compiled for running on Linux, which in turn runs on the ρ-VEX (or in this case,
simrvex).

Under another project at TU Delft, the uclibc library was ported for the
ρ-VEX. The uclibc is a standard C library intended for application development
for Linux-based systems. This library was primarily developed for the uCLinux,
intended for MMU-less systems. The port of this library, the uclibc-rvex, was
deemed helpful for compiling standard C programs to behave as inits.

4. A (known) file system should be provided to the kernel which would act as the
initial root file system.

For this purpose, the initramfs is the simplest file system, with a lot of
documentation available online related to its creation. The intended init binary
must be placed inside an appropriate location in the initramfs, so that it can be
located by the kernel and executed.

1Basically, it just identifies the fault and calls appropriate routines.

4.2. BOOTING 51

With the above conditions being satisfied, a simple “Hello World” printing program was
written in C, and compiled using the ρ-VEX toolchain, but also including uclibc-rvex.
The next task was to produce an initramfs with the binary so formed placed at an
appropriate location inside the file system. Steps to create a simple initramfs are available
in standard online references.

Figure 4.4: The directory structure of the simple initramfs created to test the boot

A directory hierarchy was formed as shown in Figure 4.4. The inits that can be seen
are actually C programs compiled using methods mentioned above and renamed as init.
Actually, inside file main.c, located under linux/init/, the sequence of execution of
user space programs can be known, and also the location inside the file system where the
kernel searches for these programs. The binaries were placed in the directory structure
accordingly and a compressed file system, initramfs data.cpio.gz, was created2. This
is a gzip compression, and the option to enable compression and decompression in the
gzip format was enabled in the kernel configuration file (.config) for the kernel to
identify the compressed file system. The size of this compressed file, as well as the
address in memory where it would be available, were required to be made known to the
kernel before the build. This was done via the list of command line parameters present
in the file setup.c located under linux/arch/rvex/kernel/. Then the simrvex binary
was run, instructing it to place the compressed root file system at a desired memory
address, and also, the kernel image, vmlinux, was passed to it. The boot logs obtained
can be seen in Figure 4.5.

2This file needs to be placed under linux/usr/ .

52 CHAPTER 4. EXPERIMENTATION AND RESULTS

Figure 4.5: The Linux kernel boot logs observed on passing the kernel image to simrvex

As can be noted from Figure 4.5, “Hello World” is printed, which indicates the
successful run of init. The clock ticks can be seen at the start of each line. These
kernel logs are obtained due to the printk statements. To differentiate kernel logs from
user space logs, the traces printing option needs to be enabled while running simrvex,
which results in memory addresses being printed corresponding to each instruction. Any
trace with address value more than 0x80000000 can be classified as a kernel trace. The
initialization operations and also, the unpacking and mounting of the initramfs can
be noted additionally from Figure 4.5. The kernel enters panic mode after the init is
executed, which is expected, as the init is expected to sustain execution and give rise to
or execute other processes. A shell, for example, can do this, and it can be made to run
as the first user space. For testing under this project, the sash3 shell was compiled using
uclibc-rvex for the ρ-VEX. The boot logs, indicating that sash has started execution, are
provided in Figure 4.6.

3Sash stands for Stand-alone Shell, and is a UNIX shell, which basically means it is a UNIX-specific
program which provides an interactive environment through interpreting user commands and thereby
enabling user-kernel interaction.

4.3. EVALUATING TIMING PERFORMANCE OF BENCHMARKS FROM THE
POWERSTONE BENCHMARK SUITE 53

Figure 4.6: Some of the kernel boot logs to show a shell can be started

Appropriate char driver code needs to be written, and keyboard input should be
enabled in the kernel configuration, so as to make sash accept user input, like a normal
shell. In fact, this has already been done, not under this project, however, and sash can
sustain its execution, while executing instructions entered by user through key strokes,
such as copy, move, list, etc., in the standard UNIX format.

4.3 Evaluating timing performance of benchmarks from
the Powerstone benchmark suite

Now that it is established that user space programs can indeed be run on Linux running
on simrvex, certain standard C applications could be tested for timing performance.
As can be noted from Section 2.3, simrvex is a cycle accurate simulator. Therefore,
the number of clock cycles required for execution of an application running on simrvex
would be the same as those obtained by executing the application on the hardware
ρ-VEX platform4. This essentially means that timing results obtained under this project
hold true for Linux ported to the ρ-VEX architecture with any implementation.

4When caches are not activated

54 CHAPTER 4. EXPERIMENTATION AND RESULTS

Infrastructure to read execution cycles

To obtain the execution cycle count, however, some groundwork needed to be
performed. The basic idea was to read the cycle counter register of the ρ-VEX (CR CNT)
before the start of execution of the application and after the end of the same, and
the difference between these values would give the execution cycles consumed by the
application. This figure is a worthy metric for evaluating the timing performance of the
applications because of the following two reasons:

1. Caches are disabled, therefore, performance obtained would be the same, irrespec-
tive of the repetition count of the application execution.

2. Only a single user space process is running during the evaluation, therefore, there
is no other (user space) process sharing the processor’s resources5.

The cycle counter register can only be read by the kernel, not by any user space
process. Therefore, the easiest way to enable a user space application to do this is to
make it generate a trap, and inside the trap, make the processor print out the value of
the register on the console. This is because by calling a trap essentially kernel mode is
entered. This obviously required changes in the simrvex source code, in the file instr.c.
This trap is assigned a code 0x946, and when a check for this code is satisfied inside
instr.c, the value of the cycle count register is simply read and printed on the console
using printf. To generate such a trap, inside the user space application source code, an
assembly instruction needs to be provided in the following manner:

asm volatile("trap 0x94\n");

Changing the simrvex configuration

The concept of generic binaries was discussed in Section 2.2.5. It is to be noted
that the compiled Linux kernel image, vmlinux, which was obtained after building the
kernel using the ρ-VEX toolchain, is actually a generic binary. Therefore, it can be run
on any configuration of the ρ-VEX. The configuration word encoding (hex value) can be
passed to simrvex as an argument using the option -i. Although there can be multiple
ρ-VEX configurations, the following configurations were used for evaluation:

1. 1x8-issue configuration

2. 1x4-issue configuration

3. 1x2-issue configuration

5It is interesting to note that even if other user space processes are scheduled in between by the
scheduler, this metric would still be valid, and would mean response time.

6Just a random, unused code.

4.3. EVALUATING TIMING PERFORMANCE OF BENCHMARKS FROM THE
POWERSTONE BENCHMARK SUITE 55

Choice of benchmarks

Benchmarks from the Powerstone benchmark suite were chosen as applications
for timing performance evaluation. The reason behind this choice was that these bench-
marks are standard C programs, having been used for evaluation in many projects, and
are of diverse nature. From this suite, the following three benchmarks were chosen for
performance evaluation:

1. CRC[45] - CRC (Cyclic Redundancy Check) is one of the most powerful error-
detecting schemes available and is commonly used in sender-receiver communica-
tion. One such implementation uses a polynomial generator at the sending end
which encodes messages by padding redundant bits. The receiver uses the same
polynomial generator on the received message to check for errors. The CRC scheme
finds its applications in:
1) The Data Link Layer of the Bluetooth protocol stack.
2) Digital networks and storage devices like hard disks.

2. Ucbqsort - This is a benchmark developed at UC Berkeley. It uses the quick sort
algorithm to sort an array of 1000 numbers. This array is provided through hard
coding within the program.

3. JPEG - JPEG (Joint Pictures Motion Group) is a well known (digital) image com-
pression algorithm. JPEG performs a lossy compression on an input image and
uses a technique based on the discrete cosine transform (DCT)[46]. The available
benchmark uses hardcoded matrices to hold image pixel values, the DCT coeffi-
cients, and other required data. It involves considerable number of mathematical
operations. This benchmark can be classified as computationally intensive and can
therefore prove to be a good candidate for evaluation under this project.

All the above benchmarks have their own verification techniques within the code. Before
the application exits, a log, indicating whether the operation ran successfully, is printed
out. This was verified for each benchmark during evaluation.

Evaluation of the benchmarks

The procedure to run these benchmarks is exactly the same as followed for the
“Hello World” application, as discussed in the previous section. However, for an
evaluation of the results, the same benchmarks were run on simrvex bare-metal[23]7.
For running the applications bare-metal, they need to be compiled by including the
newlib library, available for the ρ-VEX, instead of uclibc-rvex. The number of
execution cycles obtained for the chosen benchmarks when run on Linux and bare-metal
on simrvex are provided in Tables 4.2 and 4.2, respectively. The results have been
obtained for different simrvex configurations.

7Bare-metal means running the programs directly on the processor, without an operating system
running on top of it.

56 CHAPTER 4. EXPERIMENTATION AND RESULTS

Benchmark 1x2-issue 1x4-issue 1x8-issue

CRC 76557 73009 72429

Ucbqsort 747363 705107 704349

JPEG 9429951 8723667 8713776

Table 4.1: Execution cycles consumed by the benchmarks when run on Linux ported on
simrvex, for different configurations of simrvex

Benchmark 1x2-issue 1x4-issue 1x8-issue

CRC 72975 68882 68154

Ucbqsort 701870 646199 630414

JPEG 8525856 7998047 7997406

Table 4.2: Execution cycles consumed by the benchmarks when run bare-metal on sim-
rvex, for different configurations of simrvex

With the available data, the latency due to page faults, timer interrupts, etc. can be
calculated for the applications running on Linux. This would simply be the difference
between the execution cycle counts for the bare-metal and Linux cases. These figures
for the chosen benchmarks for different ρ-VEX configurations are shown in Figure 4.7.

Figure 4.7: Latency due to the use of Linux kernel code and virtual memory for the
three benchmarks

Applications running on Linux consuming more execution cycles is expected. For
example, as can be observed from Table 4.1 and Table 4.2, the timing performance of
even the 1x2-issue bare-metal case appears to be better than the 1x8-issue Linux case.
The increase in the number of execution cycles when using the kernel is actually the

4.4. THREAD SWITCH LATENCY 57

price paid for using the kernel code and virtual memory. The importance of operating
system support and virtual memory, however, have already been discussed under Section
1.2. Using virtual memory (and therefore, memory management) is an important step
towards multitasking, while the operating system (or rather, the kernel) can provide the
necessary abstraction of the reconfiguration mechanism to the applications. The kernel
also provides a scope for the ρ-VEX to perform its reconfigurations independently, and
also schedule meaningful reconfigurations. It is important to note here that the intention
is not to compare the performance of the benchmarks running on Linux and bare-metal.
The difference in the execution cycle count, or the latency, can however serve as a figure
to provide a scope for optimization. A higher latency in terms of number of execution
cycles for JPEG than CRC, for example, does not necessarily mean a largely worsening
performance with increasing complexity. It is logical that JPEG being a larger and
more complex code than CRC necessitates a higher number of page replacements and
witnesses the occurrence of a higher number of timer interrupts during its execution.
Therefore, latency in terms of percentage of increase in the number execution cycles when
using Linux is sometimes a better means of expression. For example, for the 1x8-issue
configuration, when using Linux, the latency for CRC is 6.27%, and for JPEG it is 8.96%.

Benchmark 1x2-issue 1x4-issue 1x8-issue

CRC 4.90% 5.99% 6.27%

Ucbqsort 6.48% 9.11% 11.73%

JPEG 10.60% 9.07% 8.96%

Table 4.3: Latency in terms of percentage of increase in the execution cycle count for
the three benchmarks when run on Linux ported on simrvex

The values now do not seem to vary as much as observed in Figure 4.7. The highest
latency among those obtained for all the test scenarios was observed to be 11.73% for
the ucbqsort benchmark for 1x8-issue configuration of simrvex. A possible reason for
this can be the fact that the bare-metal 1x8-issue situation is highly suited for the
ucbqsort benchmark, but with the involvement of the Linux kernel, the wider issue width
of the 1x8-issue configuration cannot be leveraged due to increased number of page faults.

4.4 Thread switch latency

Thread switching is the context switching between threads. It involves saving processor
register values specific to the thread being switched, switching the control to the new
thread, and restoring the state of the registers. The ρ-VEX provides a multithreaded
environment, and an operating system providing multithreading support would be bene-
ficial to it[8]. Linux provides a matured multithreading support, and could help channel
independent tasks on the ρ-VEX pipelanes by means of kernel threads. However, a mul-
tithreading environment often involves thread switching, which may turn out to be a
time consuming operation. An accurate measure of the thread switch latency is a step

58 CHAPTER 4. EXPERIMENTATION AND RESULTS

towards measuring the process context switch, which is a very important consideration
while going for parallelizing the execution of multiple programs for performance gains.

Two kernel threads were created in the Linux kernel ported on simrvex. The thread
functions corresponding to these threads contained infinite loops printing out logs and
calling the schedule() kernel function to schedule the next kernel thread. This way, the
two kernel threads were made to constantly switch between each other, as can be seen
from the logs in Figure 4.8.

Figure 4.8: Logs indicating constant thread switching between the two kernel threads
created, along with the cycle counter register values

The latency between such switches was calculated, this time by directly reading out
the cycle counter register values from the kernel code8. The entire operation was obvi-
ously placed before the init comes into picture. As can be observed from Figure 4.8, the
kernel thread switch consumes execution cycles of the order of 2400 cycles. This value
seems to be very low compared to a similar quantity derived in [23]. However, it is to be
noted here that the thread switch latency also depends on factors such as the number of
local variables being handled by the thread before the switch. For this project, the kernel
thread functions used are extremely simple - they just print out logs and schedule the
other kernel thread inside an infinite loop, which is not the exact test scenario used in
[23]. Nevertheless, the value obtained in the current project’s experimentation still quali-
fies as an indicative of the kernel thread switch latency, albeit for simple (kernel) threads.

8This latency also includes the cycles consumed due to invoking of the scheduler.

4.5. CONCLUSION 59

4.5 Conclusion

In this chapter, the results, and the infrastructure that was required to be established to
obtain the results, were discussed. The kernel image, obtained after a successful build of
the kernel code, was dissected and the information contained in it was discussed. Knowl-
edge of the memory organization followed by the kernel image object file is important
for understanding some crucial operating system internals. This also helps in debugging,
for instance, knowing what would result in a stack overflow.

Thereafter, the execution of the init process was presented, which signals the end
of porting. The kernel that has been ported on simrvex can start a shell, and can also
run some standard benchmarks. Any intended user space application needs to be fed
to the kernel through a filesystem, initramfs in this case. With the current level of
implementation, the user space applications need to be compiled using the C library for
the ρ-VEX, called uclibc-rvex. This library is actually a port of the standard uclibc for
the ρ-VEX, and provides important supporting code for compilation, for example, for
the printf function. As of now, the kernel enters a panic mode after execution of the
first user space application. This is because it is essential that the first user space process
should sustain execution and give rise to other (user space) processes. The benchmarks
used here are not capable of doing that, but that was also not their purpose. Along
with the uclibc-rvex components, only the sash binary, which is the standard SASH
(Stand Alone Shell) compiled for the ρ-VEX, was available, and therefore, this was the
only shell that could be tested. An equivalent of the standard pthread library needs
to be available for the ρ-VEX, so that new user-level threads can be created, which
can lead to multithreading at the user-level. As of now, kernel threads can be created
and the scheduler can schedule different kernel-level threads on a time-sharing basis
only. This is because currently, the kernel configuration has been kept to a minimum,
doing away with many components like those concerned with networking, file system,
drivers for inputs and outputs, and even scheduling policies. Therefore, enabling different
scheduling policies can yield some further interesting results.

The booting was also tested successfully on 2-issue, 4-issue and 8-issue configurations
of simrvex9. This was made possible due to the fact that the Linux kernel image obtained
after compilation by the ρ-VEX toolchain is a generic binary. Even the execution cycle
count for the chosen benchmarks could be obtained by reading the cycle counter control
register. There is actually a restriction imposed by the kernel regarding the resources
which user space programs can access. CPU registers fall under the kernel’s scope.
Therefore, to enable the user space programs to read the cycle counter register values
in order to get the execution cycle count, a new trap was incorporated into the simrvex
code. Switching to traps means switching to kernel code, and therefore, making register
access possible.

The overheads in the execution cycle counts obtained when benchmarks were run
on Linux ported on simrvex were calculated for the 2-issue, 4-issue and 8-issue config-
urations of simrvex. Memory management operations are clearly expensive, with the
maximum overhead being 11.73% for the ucbqsort benchmark for 1x8-issue configura-
tion of simrvex. With the involvement of the Linux kernel, the advantage of the wider

9These configurations were changed statically

60 CHAPTER 4. EXPERIMENTATION AND RESULTS

issue width of the 1x8-issue configuration was observed to be diminished due to the in-
creased number of page faults. However, virtual memory, which can be aided by memory
management, is a crucial step towards multitasking, which is more important than the
execution cycle overhead. In order to aid in future calculations of context switch latency,
the kernel thread switch latency was calculated for the ported kernel. This value was
found out to be of the order of 2400 execution cycles. Context switching is bound to
happen in largely multitasking systems, and is an important consideration when opting
for parallelization.

Conclusion 5
This chapter concludes the thesis, starting with a summary of discussed topics, moving
on to summarizing the contributions under this graduation project, and then finally the
future work desired by this project.

5.1 Summary

In Chapter 1, some important characteristics of the ρ-VEX, which enable it to extract a
high level of parallelism from applications, was discussed. Along with it, the motivation
behind providing an operating system support, especially in context of processor
reconfiguration management and usage of virtual memory, was discussed. Thereafter,
the research question was stated and the goals of this project were visited.

In Chapter 2, the background needed to understand the thesis was discussed. It was
noted that porting an operating system to a processor requires a thorough knowledge
of the processor architecture, the toolchain capabilities, and of course, the operating
system code itself (at least the part interacting with the hardware). This is the reason
a study for these three components was presented in detail. The discussion related
to the toolchain part was kept short, and was emphasized more on a study of the
visible (and known) capabilities, rather than internal working. Implementing toolchain
modifications was not a desired component of this project. The emphasis is more on
modifying the operating system code to make it suitable for the current ρ-VEX system
as much as possible, before considering toolchain modifications. However, knowledge of
the toolchain limitations is important to consider modifying the operating system for
the port, and were presented along with the implementation for a better reference. The
functionality/characteristics of the ρ-VEX visible to the programmer, including some
details of its internal working to gauge the impact of changing such functionality through
program, were considered. As far as discussion over the Linux kernel is considered,
efforts were put into discussing the required details, keeping in mind audience having
some basic operating system background (particularly UNIX-based operating systems).
This is not to say, however, that the discussion about the Linux kernel presented in this
chapter completely covers the background for the implementation, or completely lies
within the scope of the implementation, but the overlap is high. Much more detailed and
extensive documentation about the Linux kernel can be found online, and in standard
references. The same goes for the discussion about the ρ-VEX characteristics and the
TLB unit presented in this chapter - the ρ-VEX user manual[25] and the ST231 Core
and Instrucion Set Architecture manual[30], respectively, are more detailed sources of
reference, and relevant topics out of these manuals were chosen for discussion. Finally,

61

62 CHAPTER 5. CONCLUSION

a discussion about projects related to this one was presented, while highlighting the key
differences.

Chapter 3 dealt with the implementation details for this project. The choice of the
ρ-VEX simulator, simrvex, as the platform, and modifying the st200 Linux port for the
ρ-VEX, were justified. Thereafter, the porting of this chosen Linux kernel on simrvex
was discussed in detail. Although, there can be many approaches to porting, and the
approach presented may or may not have been employed before, but the end result
(porting) was achieved. The approach followed under this project for porting took
advantage of the modular nature of Linux and its separation of the architecture-specific
code from the architecture-independent code. The architecture-independent part was
dealt with first by writing the bare minimum code for the architecture-specific part
for compilation sake. Also, at this stage the relocatable linking option was enabled
ensuring objects were not linked into the final kernel object upon successful build, so as
to approach the toolchain incompatibilities in a systematic manner. The compiler errors
were resolved through a combination of kernel source code changes and compiler version
changes. After the unlinked final kernel image was successfully built, which essentially
meant that compiler-related incompatibilities were resolved, the architecture specific
code was produced through heavy modification of the st200 Linux port. Thereafter,
linker errors were tackled after disabling the relocatable linking option, which allowed
exposing the linker’s limitations while attempting to link the entire kernel code. All
these modifications resulted in the successful generation of the Linux kernel image
vmlinux built using the ρ-VEX toolchain, and meant to be executed on simrvex.

In Chapter 4, the results, and the infrastructure that was required to be established
to obtain the results, were discussed. The kernel image, obtained after a successful build
of the kernel code, was dissected and the information contained in it was discussed.
Knowledge of the memory organization followed by the kernel image object file is im-
portant for understanding some crucial operating system internals. This also helps in
debugging, for instance, knowing what would result in a stack overflow.Thereafter, the
execution of the init process was presented, which signals the end of porting. The ker-
nel that has been ported on simrvex can start a shell, and can also run some standard
benchmarks. Any intended user space application needs to be fed to the kernel through
a filesystem, initramfs in this case. With the current level of implementation, the user
space applications need to be compiled using the C library for the ρ-VEX, called uclibc-
rvex. This library is actually a port of the standard uclibc for the ρ-VEX, and provides
important supporting code for compilation, for example, for the printf function. As of
now, the kernel enters a panic mode after execution of the first user space application.
This is because it is essential that the first user space process should sustain execution
and give rise to other (user space) processes. The benchmarks used here are not capable
of doing that, but that was also not their purpose. Along with the uclibc-rvex compo-
nents, only the sash binary, which is the standard SASH (Stand Alone Shell) compiled
for the ρ-VEX, was available, and therefore, this was the only shell that could be tested.
An equivalent of the standard pthread library needs to be available for the ρ-VEX,
so that new user-level threads can be created, which can lead to multithreading at the

5.2. MAIN CONTRIBUTIONS 63

user-level. As of now, kernel threads can be created and the scheduler can schedule
different kernel-level threads on a time-sharing basis only. This is because currently, the
kernel configuration has been kept to a minimum, doing away with many components
like those concerned with networking, file system, drivers for inputs and outputs, and
even scheduling policies. Therefore, enabling different scheduling policies can yield some
further interesting results. The booting was also tested successfully on 2-issue, 4-issue
and 8-issue configurations of simrvex (These configurations were changed statically).
This was made possible due to the fact that the Linux kernel image obtained after com-
pilation by the ρ-VEX toolchain is a generic binary. Even the execution cycle count for
the chosen benchmarks could be obtained by reading the cycle counter control register.
There is actually a restriction imposed by the kernel regarding the resources which user
space programs can access. CPU registers fall under the kernel’s scope. Therefore, to
enable the user space programs to read the cycle counter register values in order to get
the execution cycle count, a new trap was incorporated into the simrvex code. Switching
to traps means switching to kernel code, and therefore, making register access possible.

The overheads in the execution cycle counts obtained when benchmarks were
run on Linux ported on simrvex were calculated for the 2-issue, 4-issue and 8-issue
configurations of simrvex. Memory management operations are clearly expensive,
with the maximum overhead being 11.73% for the ucbqsort benchmark for 1x8-issue
configuration of simrvex. With the involvement of the Linux kernel, the advantage
of the wider issue width of the 1x8-issue configuration was observed to be diminished
due to the increased number of page faults. However, virtual memory, which can be
aided by memory management, is a crucial step towards multitasking, which is more
important than the execution cycle overhead. In order to aid in future calculations of
context switch latency, the kernel thread switch latency was calculated for the ported
kernel. This value was found out to be of the order of 2400 execution cycles. Context
switching is bound to happen in largely multitasking systems, and is an important
consideration when opting for parallelization.

5.2 Main contributions

In Chapter 1, the research question for this project was presented. It is presented again
below:

How to provide operating system support to the ρ-VEX?

The answer to the above-stated research question involves many considerations
ranging from the choice of the OS, to ensuring whether the ρ-VEX processor and the
associated toolchain support it, and also the modifications in the chosen OS to make it
“fit” for the ρ-VEX. Testing the implementation for the port is implicit. Therefore, the
following two goals were identified for this project

1. Porting an operating system to the ρ-VEX

64 CHAPTER 5. CONCLUSION

The tasks to be done under this project in order to achieve this goal were identi-
fied and are stated below, along with the steps taken to achieve them:

1. Choose an appropriate microarchitecture of the -VEX which would act as the
platform upon which the operating system will be ported.

Simrvex was chosen as the platform, mainly because it had an MMU inte-
grated. The desirability of virtual memory and the other factors in favour of
simrvex have been discussed in Section 1.2 and Section 3.1 respectively.

2. Ensure that the toolchain is capable of supporting an operating system port.

This was mainly done by compiling and running simple programs on sim-
rvex. At this stage, it was not possible to completely determine whether the
toolchain was mature enough to support an operating system. Therefore, it was
deemed to attempt tackling the potential incompatibilities through code changes
and toolchain changes.

3. Choose the right operating system for porting.

The operating system kernel chosen for the port was the one ported to the
st200 architecture. The version of this kernel is 2.6.32.

4. Implement the changes in the chosen operating systems kernel code in order to
accomplish the port.

These have been discussed in Chapter 3.

What was also desirable to achieve under this goal is the compression of the end product
of the operating system kernel compilation. This was deemed help achieve faster startup
time, apart from the reduction in the requirement of external memory for storing the
kernel. This was also achieved, as described in Section 4.1.1.

To test whether an operating system port is successful is done by running appli-
cations on it. Validation of the end result achieved by following the steps described
above thus forms another implicit goal, the second goal:

2. Evaluating performance of applications run by the operating system ported to
the ρ-VEX

The setup required to achieve the results, as well as the achieved results were
discussed in Chapter 4.

Finally, coming to the long term goal of this project:

Implementing modifications in the kernel as mentioned in [12] to support fast

5.3. FUTURE WORK 65

runtime reconfiguration in the ρ-VEX, thereby creating a truly dynamic environment

This goal was beyond the scope of a graduation project, and could not be achieved due
to time constraints. However, an approach that was identified in order to achieve this
goal will be discussed in Section 5.3.

Summary of the contributions

Considering the discussion above, the main contributions made under this project
can be summarized as follows:

• Exploring and choosing the ρ-VEX implementation for the port.

• Exploring and choosing the Linux kernel version for the port.

• Implementing all the required modifications in the st200’s Linux kernel port in order
to achieve the operating system port on simrvex.

• Implementing the infrastructure to execute applications in user space and also to
evaluate their timing performance.

5.3 Future work

The implementation under this project is actually a step towards achieving the long
term goal of this project. If the techniques mentioned in [12] can be adapted, the ρ-VEX
can result in a truly dynamic environment. The Linux kernel version modified in the
implementation of [12] is 2.6, which is the same version used for porting on simrvex.
Modifications to this extension to suit the ρ-VEX can thus be the easiest method to add
dynamic properties to the kernel ported on simrvex.

As of now, simrvex needs to be statically configured to different ρ-VEX configura-
tions before executing the Linux kernel image. However, in order to achieve the long
term goal, it should be possible to do this dynamically. The means presented in [12]
would be helpful in understanding the operations to be undertaken in order to retain
software contexts during core reconfigurations. The most heavily impacted components
of the kernel would be the scheduler and the irq, for which, appropriate kernel con-
figurations also need to be activated. In fact, to support additional modules/features,
further kernel configuration options need to be enabled and the corresponding code must
be made compatible with the ρ-VEX. Like the structure task struct carries information
about a thread, a similar new kernel structure needs to be maintained for representing
information about the structures abstracting the cores. Information about core recon-
figurations must be communicated to concerned modules, in a manner similar to the
hotplug mechanism in Linux. If caches are enabled, their access synchronization needs
to be taken care of.

But before proceeding with the above implementation, the SMP (symmetric mul-
tiprocessing) module should be implemented in the kernel code specific to the ρ-VEX

66 CHAPTER 5. CONCLUSION

architecture. In fact, due to the lack of SMP support in the kernel, it can currently only
execute in one of the ρ-VEX contexts at a time. Multithreading support should also be
made available at the user level by porting appropriate thread libraries. Besides this, the
linker should be modified to accept dynamic loading of objects, thereby making creation
of shared object files possible. This is very important for the vDSO feature, which is
required to speed up certain system calls.

The kernel needs to be ported to the hardware ρ-VEX eventually. Therefore, another
interesting exploration would be to integrate a hardware-based MMU (free from OS
management) in the hardware ρ-VEX implementation, and port the kernel on it.

Bibliography

[1] M. U. Saleem, “Dynamically reconfigurable fault-tolerant design of ρvex softcore
processor,” Master’s thesis, TU Delft, The Netherlands, 2018.

[2] J. Hoozemans, “Targeting static and dynamic workloads with a reconfigurable vliw
processor,” Ph.D. dissertation, TU Delft, The Netherlands, 2018.

[3] A. S. Tanenbaum, Modern Operating Systems, 3rd ed. Pearson Education, 2009.

[4] “The ρ-vex compiler repository.”

[5] “ET4370 Reconfigurable Computing Design 2017, Lecture 2,” TU Delft, The
Netherlands.

[6] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 5th ed. Burlington, MA: Morgan Kaufmann, 2012.

[7] “Illiac — Wikipedia, the free encyclopedia,” 2018. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=ILLIAC&oldid=851409840

[8] J. van Straten, “A dynamically reconfigurable vliw processor and cache design with
precise trap and debug support,” Master’s thesis, TU Delft, The Netherlands, 2016.

[9] “Power4 — Wikipedia, the free encyclopedia,” 2018. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=POWER4&oldid=834358968

[10] S. W. K. Doug Burger and S. Sethumadhavan, Multicore Processors and Systems.
US: Springler, 2009.

[11] E. Ipek, M. Kirman, N. Kirman, and J. F. Mart́ınez, “Core fusion: accommodating
software diversity in chip multiprocessors,” in ISCA, 2007.

[12] S. Panneerselvam and M. M. Swift, “Chameleon: Operating system support for
dynamic processors,” SIGARCH Comput. Archit. News, vol. 40, no. 1, pp. 99–110,
Mar. 2012. [Online]. Available: http://doi.acm.org/10.1145/2189750.2150988

[13] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova, “Evaluation of
the intel R©core™ i7 turbo boost feature,” in Proceedings of the 2009 IEEE
International Symposium on Workload Characterization (IISWC), ser. IISWC ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 188–197. [Online].
Available: https://doi.org/10.1109/IISWC.2009.5306782

[14] A. Waza, R. N. Mir, and H. N. ud din, “Reconfigurable architectures,” Journal of
Advanced Computer Science & Technology, vol. 1, no. 4, pp. 337–346, 2012. [Online].
Available: http://www.sciencepubco.com/index.php/JACST/article/view/518

[15] “The ρ-vex official webpage.” [Online]. Available: https://rvex.ewi.tudelft.nl/

67

https://en.wikipedia.org/w/index.php?title=ILLIAC&oldid=851409840
https://en.wikipedia.org/w/index.php?title=POWER4&oldid=834358968
http://doi.acm.org/10.1145/2189750.2150988
https://doi.org/10.1109/IISWC.2009.5306782
http://www.sciencepubco.com/index.php/JACST/article/view/518
https://rvex.ewi.tudelft.nl/

68 BIBLIOGRAPHY

[16] K. Vipin and S. A. Fahmy, “Dyract: A partial reconfiguration enabled accelerator
and test platform,” in 24th International Conference on Field Programmable Logic
and Applications (FPL), Sept 2014, pp. 1–7.

[17] “Hyper-threading — Wikipedia, the free encyclopedia,” 2018. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Hyper-threading&oldid=850117761

[18] J. A. Fisher, P. Faraboschi, and C. Young, Embedded computing: a VLIW approach
to architecture, compilers and tools. Amsterdam, London: Elsevier, 2005.

[19] [Online]. Available: http://linux-hotplug.sourceforge.net/

[20] “Barrelfish — Wikipedia, the free encyclopedia,” 2018. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Barrelfish&oldid=838200632

[21] [Online]. Available: http://www.barrelfish.org/

[22] [Online]. Available: https://www.usenix.org/sites/default/files/conference/
protected-files/osdi14 slides zellweger.pdf

[23] J. Hoozemans, “Porting linux to the ρ-vex reconfigurable vliw softcore,” Master’s
thesis, TU Delft, The Netherlands, 2014.

[24] [Online]. Available: https://stackoverflow.com/questions/19055276/
why-compressed-kernel-image-is-used-in-linux

[25] J. van Straten, “The ρ-vex user manual,” 2017. [Online]. Available: http:
//rvex.ewi.tudelft.nl/wp/wp-content/uploads/2017/02/rvex-user-manual.pdf

[26] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoll, and F. M. O. Homewood, “Lx: a
technology platform for customizable vliw embedded processing,” in Proceedings of
27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201),
June 2000, pp. 203–213.

[27] A. Brandon and S. Wong, “Support for dynamic issue width in vliw processors using
generic binaries,” in Proc. Design, Automation and Test in Europe Conference and
Exhibition, March 2013, pp. 827–832.

[28] “Computer architecture simulator — Wikipedia, the free encyclopedia,”
2017. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Computer
architecture simulator&oldid=799049324

[29] “Translation lookaside buffer — Wikipedia, the free encyclope-
dia,” 2018. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Translation lookaside buffer&oldid=856161176

[30] STMicroelectronics, “St231 core and instruction set architecture manual,” March
2014.

[31] “Multithreading tutorial.” [Online]. Available: https://www.cs.rutgers.edu/∼pxk/
416/notes/05-threads.html

https://en.wikipedia.org/w/index.php?title=Hyper-threading&oldid=850117761
http://linux-hotplug.sourceforge.net/
https://en.wikipedia.org/w/index.php?title=Barrelfish&oldid=838200632
http://www.barrelfish.org/
https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_zellweger.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_zellweger.pdf
https://stackoverflow.com/questions/19055276/why-compressed-kernel-image-is-used-in-linux
https://stackoverflow.com/questions/19055276/why-compressed-kernel-image-is-used-in-linux
http://rvex.ewi.tudelft.nl/wp/wp-content/uploads/2017/02/rvex-user-manual.pdf
http://rvex.ewi.tudelft.nl/wp/wp-content/uploads/2017/02/rvex-user-manual.pdf
https://en.wikipedia.org/w/index.php?title=Computer_architecture_simulator&oldid=799049324
https://en.wikipedia.org/w/index.php?title=Computer_architecture_simulator&oldid=799049324
https://en.wikipedia.org/w/index.php?title=Translation_lookaside_buffer&oldid=856161176
https://en.wikipedia.org/w/index.php?title=Translation_lookaside_buffer&oldid=856161176
https://www.cs.rutgers.edu/~pxk/416/notes/05-threads.html
https://www.cs.rutgers.edu/~pxk/416/notes/05-threads.html

BIBLIOGRAPHY 69

[32] R. Love, Linux Kernel Development, 2nd ed. Novell Press, 2005.

[33] M. M. Yousaf, “Exploiting the reconfigurability of ρ-vex processor for real-time
robotic applications,” Master’s thesis, TU Delft, The Netherlands, 2016.

[34] “Freertos — Wikipedia, the free encyclopedia,” 2018.

[35] J. Johansen, “Implementing virtual address hardware support on the ρ-vex plat-
form,” Master’s thesis, TU Delft, The Netherlands, 2016.

[36] D. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd ed. O’Reilly Media,
2008.

[37] “Porting linux to a new processor architecture, part 1: The basics.” [Online].
Available: https://lwn.net/Articles/654783/

[38] [Online]. Available: http://man7.org/linux/man-pages/man7/vdso.7.html

[39] “Porting linux to a new processor architecture, part 3: To the finish line.” [Online].
Available: https://lwn.net/Articles/657939/

[40] “Porting linux to a new processor architecture, part 2: The early code.” [Online].
Available: https://lwn.net/Articles/656286/

[41] “Linux memory management overview.” [Online]. Available: https://www.tldp.
org/LDP/khg/HyperNews/get/memory/linuxmm.html

[42] [Online]. Available: http://lists.linux-xtensa.org/pipermail/linux-xtensa/
Week-of-Mon-20110321/000333.html

[43] [Online]. Available: https://lwn.net/Articles/531148/

[44] [Online]. Available: https://linux-audit.com/
elf-binaries-on-linux-understanding-and-analysis/

[45] “Cyclic redundancy check — Wikipedia, the free encyclopedia,” 2018. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Cyclic redundancy check&
oldid=864279455

[46] Wikipedia contributors, “JPEG — Wikipedia, the free encyclopedia,” 2018.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=JPEG&oldid=
865526554

https://lwn.net/Articles/654783/
http://man7.org/linux/man-pages/man7/vdso.7.html
https://lwn.net/Articles/657939/
https://lwn.net/Articles/656286/
https://www.tldp.org/LDP/khg/HyperNews/get/memory/linuxmm.html
https://www.tldp.org/LDP/khg/HyperNews/get/memory/linuxmm.html
http://lists.linux-xtensa.org/pipermail/linux-xtensa/Week-of-Mon-20110321/000333.html
http://lists.linux-xtensa.org/pipermail/linux-xtensa/Week-of-Mon-20110321/000333.html
https://lwn.net/Articles/531148/
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://en.wikipedia.org/w/index.php?title=Cyclic_redundancy_check&oldid=864279455
https://en.wikipedia.org/w/index.php?title=Cyclic_redundancy_check&oldid=864279455
https://en.wikipedia.org/w/index.php?title=JPEG&oldid=865526554
https://en.wikipedia.org/w/index.php?title=JPEG&oldid=865526554

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context
	Modern age computing trends
	Multicore architectures and TLP
	Reconfigurable Computing
	VLIW and ILP
	Advantages of the -VEX processor
	Current trends in operating systems supporting dynamic processors

	Motivation
	Research Question, Goals and Methodology
	Overview

	Background
	The -VEX toolchain
	The -VEX processor
	Reconfiguration in the -VEX
	Configuration word encoding
	Requesting a reconfiguration to the -VEX processor
	The -VEX Instruction Set Architecture
	The concept of generic binary
	Trap handler in the -VEX

	Simrvex: The architectural simulator for the -VEX
	TLB in simrvex

	Linux
	The Linux kernel structure
	Processes and threads in Linux
	Scheduling in Linux
	The Linux kernel's notion of time
	The Linux boot process
	Memory management in Linux

	Related Work
	Conclusion

	Porting Linux to -VEX
	Choosing the -VEX platform
	Choosing the operating system kernel for the port
	Porting Linux on simrvex
	Modifications to the architecture-independent part of the Linux kernel
	The architecture-specific kernel code

	Conclusion

	Experimentation and Results
	The Linux kernel image
	Compressed kernel image

	Booting
	Evaluating timing performance of benchmarks from the Powerstone benchmark suite
	Thread switch latency
	Conclusion

	Conclusion
	Summary
	Main contributions
	Future work

	Bibliography

