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Abstract

The growing population of objects in Low Earth Orbit (LEO) presents challenges for space situational

awareness and catalogue maintenance. With proliferation of small satellites and debris, maintaining

accurate orbital data is essential for collision avoidance and space traffic management. This thesis

evaluates ground-based optical surveillance strategies for LEO catalogue generation, comparing three

fixed-pattern scanning methods (declination stripe, right ascension stripe, grid) as baseline, against a two-

phase Probabilistic Admissible Region (PAR) approach that incorporates initial detection information

into follow-up observation planning.

Simulations were performed using the SPOOK (Special Perturbations Orbit determination and Orbit

analysis toolKit) framework developed by Airbus Defence and Space, covering 1,562 sun-synchronous

LEO satellites and validated against observations made by the Airbus Robotic Telescope (ART) from

September 2025. Additional validation examined Medium Earth Orbit (MEO) satellites to assess

surveillance difficulty dependence on orbital regime.

For LEO targets, baseline scanning patterns achieved 0.0116% detection rates and zero redetections. The

PAR pipeline achieved 23.71% redetection rate across 194 follow-up attempts, providing the multiple

observation epochs required for initial orbit determination. MEO results revealed strong regime-

dependence. Baseline methods achieved 49–62% MEO redetection rates compared to 0% for LEO, while

PAR achieved 91.94% for MEO versus 23.71% for LEO. MEO baseline detection rates exceeded LEO

rates by three orders of magnitude, reflecting differences in satellite angular motion and observation arc

duration between regimes.

Parameter sensitivity analysis demonstrated PAR robustness, with performance largely insensitive

to configuration choices within tested ranges. Observation duration emerged as the primary factor

influencing success, while exposure time, orbital constraints, and sampling density showed minimal

systematic effects. Validation against ART observations confirmed 63.6% pipeline accuracy with mean

angular separation of 40.53 arcseconds, consistent with SGP4 propagation accuracy.

The results establish that surveillance strategy effectiveness depends on orbital regime. For LEO

surveillance, where rapid motion and brief observation windows prevent fixed-pattern redetections,

PAR-based approaches provide a viable solution for catalogue generation. For MEO surveillance,

both fixed-pattern and adaptive strategies achieve high success rates, though PAR maintains superior

performance.
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1
Introduction

The expanding population of objects in Low Earth Orbit (LEO) presents significant challenges for Space

Situational Awareness (SSA), which concerns the tracking and characterisation of space objects [45].

The proliferation of small satellites, debris, and other objects (see Figure 1.1 & Figure 1.2) has made

maintaining an accurate catalogue of objects in orbit increasingly critical for collision avoidance, national

security, and space traffic management. However, the strategies used for accurate surveillance of the

night sky remain an active field of research, with room for innovation and improvement.

Figure 1.1: Evolution of absolute number of objects penetrating LEO. Image from: [35].

The task of efficiently detecting LEO objects using optical sensors faces unique complications. These

objects have brief visibility windows from any single observation point, typically lasting only minutes

per pass. Observations are further constrained by local weather conditions, atmospheric visibility, and

the limitations of the tracking sensors’ field of view. The high orbital velocities of LEO objects, combined

with various perturbation forces, lead to rapid uncertainty growth in their predicted positions when

observations are sparse [9].

A fundamental challenge in LEO object tracking is that these measurements, collected during short

passes of often just a few minutes or less, cover only a small portion of the complete orbit. This limited

observation window makes determining an accurate orbit from a single pass difficult, creating what is

known as the Too Short Arc (TSA) problem [25].

Passive optical sensors play a crucial role in catalogue maintenance and generation due to their

1
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Figure 1.2: Density profiles in LEO for different space object size ranges. Image from: [35].

widespread use and relatively low operational costs compared to radar systems [9]. However, in the

case of LEO, these sensors yield angular measurements only (in the form of TSAs, i.e. tracklets), which

presents challenges in determining an object’s complete orbital state. Because tracklets represent only

a small section of the object’s orbital path, they provide insufficient information for robust Initial

Orbit Determination (IOD). This limitation requires techniques for generating and correlating multiple

tracklets separated in time, such that a representative sample of the complete orbit is obtained.

This research specifically focuses on comparing different surveillance strategies for LEO catalogue

generation using ground-based optical telescopes. The investigation encompasses both fixed-pattern

surveillance strategies and adaptive approaches that leverage initial detection information to optimise

subsequent observations. By implementing various strategies through simulation software and analysing

their performance metrics, this study aims to identify optimal approaches for maximising catalogue

generation efficiency under realistic operational constraints.

Key to this investigation is the development of a surveillance strategy for tracklet correlation, for

which Admissible Region (AR) techniques play key roles. AR methods address the challenge of

extracting maximum information from sparse optical observations by constraining the possible state

space of detected objects by setting bounds on the range and range-rates, values that are missing

from a simple tracklet. The Constrained Admissible Region (CAR) extends this approach by setting

additional constraints on orbital parameters and maximum energy. Building upon the CAR, the

Probabilistic Admissible Region (PAR) technique introduces uncertainty in both the observations and

the orbital parameters. The goal of PAR-based algorithms is to develop probability distributions of state

uncertainties using knowledge about measurement process statistics and orbital parameter distributions.

These probability distributions can then be propagated forward in time to predict where follow-up

observations are most likely to yield successful detections, thereby enhancing the efficiency of the overall

surveillance strategy.

By leveraging these AR techniques, it becomes possible to generate orbit hypotheses from short arc

optical observations, addressing the challenge of insufficient information. These hypotheses are then

utilised in subsequent steps to design an effective multi-step surveillance strategy [18, 14] that maximises

the probability of redetection and ultimately leads to more complete and accurate orbit determinations.

This work aims to implement, test, and validate these strategies for creating follow-up observation

plans. By successfully re-observing LEO objects after initial detections, this thesis will demonstrate the

effectiveness of AR methods for catalogue generation. The proposed strategies will be evaluated both

through simulation and experimentally using the Airbus Robotic Telescope (ART) to verify real-world

applicability.
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1.1. Thesis Structure
This thesis is structured as follows: Chapter 2 provides a review of the literature, establishing the

context for SSA, the challenges of catalogue generation, and the theoretical development of AR methods.

Chapter 3 builds upon this review to identify specific research gaps in LEO surveillance and formulates

the primary research objective and questions that guide this investigation. Chapter 4 establishes the

theoretical background, covering the principles of astrodynamics, reference frames, and optical detection.

Chapter 5 details the various surveillance strategies under investigation, including their operational

constraints, and discusses the mechanics of stripe scanning, grid patterns, and leakproof searches.

Chapter 6 presents the mathematical framework for the AR methodology, detailing the formulation

of the AR and its various forms. Chapter 7 describes the software implementation and methodology,

detailing the two-pipeline approach (Baseline and PAR) and the integration of the SPOOK simulation

tool. Chapter 8 validates the simulation framework by comparing simulation predictions against

real-world observations from ART. Chapter 9 presents and analyses the results from the simulation

campaign, comparing the performance of the different strategies and evaluating the efficacy of the

pipeline under various parameter settings. Finally, Chapter 10 concludes the thesis by summarising the

key findings, addressing the research questions, and providing recommendations for future work.



2
Literature Summary

This chapter describes the literature used to conduct the research in this thesis. In Section 2.1, the

fundamentals of space object catalogues are presented to provide context. Section 2.2 examines various

surveillance strategies for observing objects in orbits. Section 2.3 discusses the TSA problem and ARs.

2.1. Space Object Catalogue
In order for space to stay economically and technologically available for future generations, it is vital to

have a continuously updated catalogue of all objects in Earth orbit. Without comprehensive tracking,

the growing population of orbital debris poses collision risks that could trigger cascading destruction

(known as Kessler Syndrome) [26], potentially rendering entire orbital bands unusable for decades or

centuries and jeopardising trillions in space infrastructure investments. Moreover, the applications

relying on space systems are essential to today’s everyday life. Telecommunication and navigation

services, as well as Earth observation for environmental and disaster control are some examples. The

U.S. Space Surveillance Network has catalogued around 45,000 artificial objects in space as of June

2024 [41]. The vast majority of artificial objects remain in orbit, of which about 94% are non-functional

objects, commonly known as space debris [9]. It is therefore pivotal to catalogue as many new objects

as possible for space to remain safely accessible and to enable responsible traffic management in an

increasingly congested orbital environment.

2.1.1. Space Situational Awareness
SSA consists of three major components: space weather, knowledge of the current artificial orbital space

object population and the tools to propagate the states of these objects into the future [7], see Figure 2.1.

Figure 2.1: Three components of SSA. Image from: [22].

4
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A large part of SSA is made up of creating a catalogue of orbiting space objects with the aim of protecting

active assets from collision, minimising the future risk of space debris production. Moreover, SSA

extends to gathering knowledge of the space capabilities of each object. Through manoeuvre analysis,

spacecraft functionality can be determined. This is useful for applications such as the overpass time of

certain spacecraft at a certain point on Earth [22].

Weeden and Samson [54] highlights that a new generation of SSA sensors, along with a growing

number of actors seeking to conduct independent SSA analysis, is expected to produce a vast and

varied set of measurements and analytical methods. Effectively utilising this wealth of information

will require advanced data fusion techniques to create practical tools for planning and operations.

To achieve a comprehensive approach to SSA, coordination among these diverse measurements and

analytical methods is essential [22]. Consequently, this research is dedicated to the comparison of various

surveillance strategies for maximising catalogue generation of LEO objects, as well as investigating

different scheduling methods for an increase in successful observations.

2.1.2. Catalogue Generation
As stated previously, in order to achieve efficient SSA it is crucial to build up a space object catalogue, this

consists of two parts, generation and maintenance. The entire catalogue generation and maintenance

sequence is as follows [9, 36]:

1. Initial detection of objects through systematic surveillance strategies which generates a tracklet

2. Collection of tracklets (sequences of closely-spaced observations) of sufficient quality

3. Initial orbit determination (from correlated tracklets in the case of TSAs)

4. Orbit determination through subsequent observations

5. Orbit refinement and maintenance through additional observations

In catalogue maintenance, tracking observations are performed, leveraging prior knowledge of an

object’s position to obtain multiple measurements. The object appears as a point source in the Field of

View (FoV), while stars appear as streaks. For catalogue generation, without prior information, sidereal

observations are conducted, compensating for Earth’s rotation. Stars appear as point sources, while

satellites appear as streaks due to their angular velocity.

The processing pipeline involves multiple steps: image processing, measurement linking, IOD, and

orbit determination. The first step is to process images to extract sky coordinates and/or magnitudes.

Software is used for astrometry, identifying objects as points (stars) or streaks (satellites). Stars are

matched to a star catalogue to plate solve the images, associating sky coordinates with each pixel [36].

The next step involves linking measurements that plausibly originate from the same object to form

tracklets. Due to the close temporal proximity of the measurements, those originating from the same

object exhibit well-behaved behaviour (linear movement across the focal plane), applicable to both

sidereal and tracking observations [17].

IOD, which can require tracklet correlation in the case of TSAs, is the process of determining a preliminary

orbit from a limited set of observations. Vallado [52] describes how techniques such as Gauss’s or

Gooding’s method are typically used to estimate the orbital elements from angular measurements

assuming simple two-body dynamics. These initial orbit solutions serve as a starting point for more

refined orbit determination processes.

The final step, Orbit Determination (OD), refines the initial orbit estimate by incorporating additional

measurements, better quality measurements and better dynamical models. This process typically

employs statistical estimation techniques such as batch least squares or Kalman filtering to minimise the

difference between observed and predicted measurements [32]. Tapley, Schutz, and Born [47] explain

how OD accounts for perturbations from Earth’s non-spherical gravity field, atmospheric drag, solar

radiation pressure, and third-body gravitational effects to produce accurate orbital solutions. The

quality of the orbit determination directly impacts the effectiveness of SSA operations [8].
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2.2. Surveillance Strategies
This section examines different approaches to observe and track objects in Earth orbit. The goal is to

optimise optical surveillance strategies to increase the number of meaningful observations in as small of

a time window as possible.

Xue et al. [56] mentions various strategies of sensor tasking with this goal in mind. One such strategy is

the stripe strategy (see Figure 2.2). This strategy uses fixed declination or right ascension values and

varies the other. The aim is to allow the maximum number of objects to pass through the stripe(s). In

GEO, where the motion is well-known, a leakproof strategy (meaning guaranteed detection opportunities

of certain objects) can be easily designed by positioning stripes such that bins are revisited faster than

objects are expected to move through them, capturing all objects if bright enough. However, this

becomes more challenging when the motion of objects is less predictable or when sensor resources are

limited.

Flohrer, Schildknecht, and Musci [10] used such a stripe strategy. The observation campaign employed

specialised scanning techniques for different orbital regimes: in GEO, Resident Space Objects (RSO)

were monitored through systematic declination stripe scanning, while for Medium Earth Orbit (MEO),

RSOs were observed by focusing on right ascension stripes situated at low declination values. This

strategy can be implemented using a single stripe [39, 15], pairs of stripes [16], or in multiples, as

described by Manresa Ortiz [28]. For multiple stripes, the time interval between consecutive exposures

is efficiently utilised, broadening the search area [56]. However, the selection of these strategies depends

on the needs of the operator. For example, a single stripe strategy can be effectively used for observations

for GEO objects, as the location of the objects is fairly well known and their orbits well-behaved [39].

Multiple pairs can be utilised for situations were the sensors resources must be allocated more delicately

or when an object must be observed multiple times in a shorter time span, such as in the case of MEO

and LEO objects, as described by Herzog [15].

Figure 2.2: Pair of declination stripes. The arrows indicate the repositioning actions. Image from: [56].

This research is primarily interested in strategies dedicated to LEO objects. Mulligan and Stephens [33],

describe a so-called bullseye strategy that guarantees an opportunity for detection within a certain area

(leakproof). This can be employed to rule out a region of space with certainty, but does not cover the

same region of space as quickly as the aforementioned more conventional scans.

Frueh, Fiedler, and Herzog [12] formulate a new strategy by formulating surveillance as an optimisation

problem. Weights were assigned to different viewing directions by how many objects were defined in

that space in the space objects catalogue. The strategy was then compared to conventional single and

two stripe strategies. For the conventional strategy, 63% of the visible objects were observed once within

the FoV on a single summer night using the single stripe strategy and 40% twice with the two stripe

strategy. For the optimised strategy, 100% of the objects were observed at least once and 80% twice.

Although this was applied to GEO objects, this research shows promising results, also for applications in

multi-step strategies. This research shows that the use of prior knowledge helps observation efficiency.

Similar work was done by Murphy and Holzinger [34]. They discuss a multi-step search strategy,

creating a general framework for searching for unknown space objects with prior knowledge of the

region of state space or an uncorrelated track. They use this information to create a follow-up tasking

strategy which can occur at a variable location and time. This allowed for optimised follow-up search
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strategies for GEO short arc observations. This demonstrates the benefits of using known object locations

in surveillance strategies.

2.3. Observation Principles
This section examines principles related to making observations for catalogue generation.

2.3.1. Too Short Arcs
Optical measurements from a single short observation arc cannot determine an orbit on their own.

The angular position data lacks the range and range-rate information needed to determine the object’s

precise location in space. This is known as the TSA-problem. Maruskin, Scheeres, and Alfriend [29]

address this limitation by fitting the measurements to extract an attributable. An attributable is a partial

state the represents the mean angular position and velocity of the object during the observation window.

While this reduces noise in the individual measurements, it does not solve the missing range and

range-rate problem.

To fill in the missing orbital information, observations from multiple passes are required. When the

same object is observed at different points along its orbit, the changing perspective allows the range to

be inferred through orbit determination. The difficulty is that before this can be done, the observations

must be linked across different passes. Without a known orbit, there is no way to predict where an

object will appear next, making it unclear which tracklets correspond to the same object. This represents

the problem of tracklet correlation [36, 42]. The steps involved in building a catalogue from observations

are outlined in Figure 2.3.

Object Catalogue Short Arc Tracklet Catalogue

T2O Correlation T2T Correlation

More than 3?
Orbit Determination

Initial Orbit Determination

Observation Planning

y
e
s

no

no

y
e
s

y
e
s

no

Figure 2.3: Object Catalogue Generation Diagram. T2O stands for Tracklet-to-Object and T2T for Tracklet-to-Tracklet. Image from:

[36].

2.3.2. Admissible Region
The AR, first described by Milani et al. [30] and Tommei, Milani, and Rossi [48], describes constrained

regions of possible solutions for the unobservable part of the complete state, which would mean the

range and range-rate in the case of a tracklets using optical measurements, to create a complete 6D

orbit state. The way the admissible part of the AR is defined is through orbits that physically can exist

(negative orbital energies) [20]. A complete state in topocentric coordinates is defined as follows:

𝒙 = [𝛼, 𝛿, 𝜌, ¤𝛼, ¤𝛿, ¤𝜌] (2.1)

here, 𝛼 is the right ascension of the object, 𝛿 is the declination of the object, and 𝜌 is the range (distance

to the observer). An optical tracklet will retrieve an observable equal to𝒜 = [𝛼, 𝛿, ¤𝛼, ¤𝛿], this is called
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the attributable (as mentioned in Subsection 2.3.1). Evidently, the range and range-rate are missing.

This is the basis of which the AR approach is built, building a solution space for physically feasible

orbits that fit the measured𝒜 by filling in the missing 𝜌 and ¤𝜌 values.

In Keplerian elements, the state can be defined as:

𝒙 = [𝑎, 𝑒 , 𝑖,Ω, 𝜔, 𝜈] (2.2)

where, 𝑎 is the semi-major axis, 𝑒 the eccentricity, 𝑖 the inclination, Ω the right-ascension of the ascending

node (RAAN), 𝜔 the argument of perigee, and 𝜈 the true anomaly. Constraining the semi-major axis

and eccentricity values can further constrain the AR and allow for a narrower solution space for possible

complete state solutions. The Constrained Admissible Region (CAR) is built around these principles

with constraints on the perigee [20] and inclination [18] also being possible. These constraints are then

translated to range and range-rate [21]. The CAR has been used by Milani et al. [30] to deal with the

problem of identifying asteroids using TSA observations. The same can be done for objects for which

only TSA measurements are available. An example CAR is shown in Figure 2.4. In this work, the focus

is on constraints on the semi-major axis and eccentricity. These two values are user-defined, aiming to

define most likely orbital parameters based on the area of space in question. In the case of (circular-orbit)

LEO objects, one can imagine relatively low values for the semi-major axis and eccentricity constraints.

Figure 2.4: Constrained Admissible Region, showing semi-major axis, eccentricity, and inclination limits, which are translated to

range and range-rate. Image from: [18].

DeMars, Jah, and Schumacher [5] compared the use of CARs with semi-major axis constraints for

near-geosynchronous orbits against angles-only approaches for tracking three closely-spaced RSOs. The

CAR method converged to smaller uncertainties in both position and velocity. The primary advantage is

its ability to capture the entire region of possible range and range-rate pairs. This research shows the use

of CARs, to reduce the uncertainty while still capturing all possible solutions (granted the constraints

are selected appropriately).

Sampling the CAR can be done in various ways. Given the lack of statistics on the measurements and

orbital elements in the CAR method alone, in most cases, uniform sampling of the CAR is done [20].
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However, Hobson et al. [17] showed, using a catalogue based CAR sampling strategy, that sampling

uniformly from the CAR may lead to inferior results if more than just the bounds are known about an

IOD target’s orbital constraints, highlighting the need for an optimised method to sample points within

the CAR.

This problem of how to best sample the CAR to perform data association remains a challenge within the

field of SSA. For example, DeMars and Jah [6] used a Gaussian Mixture Model (GMM) to approximate

the uniform distribution and propagate this for subsequent tracking using an Unscented Kalman Filter

(UKF). This showed promising results, tracking every set of data applied to it over a Monte Carlo

sampling in a set of synthetic data.

Siminski et al. [44] and Siminski, Fiedler, and Schildknecht [43] used an ISO-energy-grid method to

optimise the search pattern within the AR. The search method was shown to reduce computational

burden compared to complete sampling. It found feasible orbit solutions in a few iterations, unlike

sampling the entire AR, which requires propagating and comparing many possible state solutions to a

common epoch.

The aforementioned research demonstrates the superiority of the CAR over the simpler not-constrained

AR approach. When prior knowledge of the semi-major axis and eccentricity solution space is available,

as is the case for LEO objects (the focus of this work) incorporating these constraints narrows the set of

possible states to sample. However, care must be taken in determining how to best sample the CAR.

One way of sampling the CAR aims to achieve a representation of the uncertainty in the variables (𝜌, ¤𝜌)
given the statistical properties of the angles-only measurement process. Essentially, the goal is to derive

a probability density function (pdf) 𝑝(𝜌, ¤𝜌) that characterises the probability of the range and range-rate

space used for the CAR. This Probabilistic Admissible Region (PAR), as described in Hussein et al. [20,

21], improves CAR sampling efficiency by concentrating samples in high-probability regions. Since

the range and range-rate probability distribution is typically sparse rather than uniformly distributed

across the entire CAR, sampling according to 𝑝(𝜌, ¤𝜌) rather than uniformly leads to more robust state

estimation with fewer samples.

The use of the PAR is to generate possible states based only on incomplete state information derived

from single sensor detections. It can also be used for a priori IOD for subsequent observations for

tracklet correlation and orbit refinement. Hypotheses can be formed to enable sensor operators to define

multiple decision criteria with which one can prioritise sensor tasking [18].

Pedone, Utzmann, and Forstner [36] show the use of a CAR in LEO observations, where most of the

aforementioned work looked at GEO data. They describe the limiting factor to be the high angular rates

of the objects at LEO, leaving short passages on a sidereal pointing FoV. Real-time stare-and-chase is

highlighted to be a possible solution in future developments of this problem. This research shows the

usage of CAR approaches in LEO, serving as an initial proof-of-concept of the feasibility of this work.

2.4. Conclusion
Looking at the work mentioned in this chapter, it is clear that in the field of SSA, the problem of TSAs

remains relevant, especially for LEO. Several surveillance strategies have been developed and serve as a

baseline against which subsequent approaches can be compared. The use of admissible regions has

shown promising results in past works, with probabilistic principles (PAR) enhancing the method’s

effectiveness.

From this literature review on catalogue generation, several research gaps emerge: the collection of

tracklets for LEO objects remains challenging, and the practical application of AR methods (specifically

PAR) for LEO surveillance is not broadly established. Furthermore, a direct comparison between AR

methods and stripe-based approaches is lacking for the LEO regime. This work aims to provide such a

comparison. Given the extensive use of these surveillance strategies and admissible region approaches

for GEO and MEO documented in this literature review, they serve as an initial validation baseline

before analysing the LEO regime.



3
Research Gaps and Questions

Based on the literature review presented in Chapter 2, several key research gaps emerge in the domain

of LEO catalogue generation using ground-based optical sensors. This chapter identifies these gaps and

formulates the research objectives and questions that will guide this investigation.

The literature reveals that while considerable progress has been made in space object cataloguing

techniques, significant challenges remain in optimising surveillance strategies, specifically for LEO

objects. The high angular velocities of LEO objects, their brief visibility windows, and the large

population density in these orbits create unique challenges that current surveillance methodologies do

not fully address.

Several critical gaps have been identified. First, while various surveillance strategies such as stripe

scanning have been applied effectively to GEO objects, their application and comparative effectiveness

for LEO catalogue generation remains understudied. Studies by Frueh, Fiedler, and Herzog [12]

demonstrated significant improvements in GEO object detection rates using optimised strategies

compared to conventional approaches, but similar comprehensive comparisons for LEO are lacking.

Second, the integration of advanced correlation techniques such as CAR and PAR with specific

surveillance strategies for LEO objects is an underdeveloped area. Holzinger et al. [18] showed

promising results in IOD using PAR for LEO polar objects, but the application of these techniques

in designing optimal multi-step surveillance strategies for LEO catalogue generation requires further

investigation. Third, multi-step approaches that leverage initial detection information to optimise

subsequent observations have shown potential in studies by Murphy and Holzinger [34] for GEO

objects, but their effectiveness for LEO catalogue generation has not been thoroughly explored. The

rapid orbital dynamics of LEO objects may present both unique challenges and opportunities for

multi-step strategies that differ significantly from those encountered in GEO applications. Finally, while

performance comparisons for surveillance strategies have been conducted for GEO objects such as

the work by Frueh, Fiedler, and Herzog [12] which shows significant improvement in detection rates,

comprehensive comparative analysis of different strategies optimised specifically for LEO catalogue

generation remains limited. These identified gaps form the foundation for the research objective and

questions presented below.

Research Objective

To evaluate and compare the effectiveness of different surveillance strategies for LEO catalogue

generation using ground-based optical sensors under realistic operational constraints.

The research questions below have been formulated to address the identified gaps in the literature:
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Research Questions

Which surveillance strategies most effectively contribute to LEO catalogue generation using

ground-based optical sensors?

• How do different scanning patterns compare in terms of catalogue generation efficiency?

• How do different surveillance strategies compare for use in a follow-up observation in the

case of a multi-step observation?

• How do different parameter settings influence the efficacy of the admissible region

approach?

This research will implement various surveillance strategies in simulation and validate findings using

ART. By addressing these questions, this study aims to contribute to the development of more efficient

approaches for LEO space object cataloguing using passive optical sensors. The investigation will build

upon existing methodologies in the field while addressing the specific challenges posed by LEO objects.

Both conventional fixed-pattern surveillance strategies and adaptive approaches will be evaluated to

determine optimal methods for maximising catalogue generation efficiency under realistic operational

constraints.



4
Observation Fundamentals and

Astrodynamics

This chapter presents the theoretical foundation underlying the use of optical ground-based telescopes

for tracking Earth-orbiting objects and modelling their orbital propagation over time. The following

sections describe the theory on reference frames, optical detection, measurement processing, coordinate

transformations, and orbital dynamics.

4.1. Reference Frames

(a) Topocentric Equatorial Coordinate System. Origin at a specific

site, typical for optical observations.

(b) ECI Coordinate System. Origin at Earth’s centre, commonly

used for orbital mechanics.

Figure 4.1: Comparison of Topocentric and ECI Coordinate Systems. Image from [52].

Reference frames provide the necessary coordinate systems to describe the position and motion of

objects in orbit. Two primary reference frames are essential for optical tracking of Earth-orbiting objects

in this thesis: Earth-Centred Inertial (ECI) frames and the Topocentric Equatorial Coordinate System.

ECI frames have their origin at the centre of the Earth with the 𝑧-axis aligned with the Earth’s rotation

axis pointing toward the north pole. The 𝑥-axis points toward the vernal equinox, and the 𝑦-axis

completes the right-handed system 90
◦

east along the equatorial plane. The fundamental plane is

the Earth’s equator. These frames are quasi-inertial, meaning they do not rotate with the Earth [52].

In this work, satellite orbital elements from Two-Line Elements (TLEs) are provided in the TEME

(True Equator Mean Equinox) frame, while telescope pointing coordinates are computed in the TOD

(True of Date) frame. Both are ECI-type coordinate systems that account for precession effects at the

observation epoch. The key difference is that TEME uses the mean equinox (averaged over short-period

variations) [50], while TOD uses the true equinox that includes nutation corrections. This distinction

is important for high-precision pointing: TEME provides efficient orbital propagation from TLE data,

while TOD coordinates account for Earth’s short-term wobbles, ensuring accurate telescope positioning

12
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for observations.

The Topocentric Equatorial Coordinate System is centred at the observation site (topocentre) rather

than Earth’s centre, with axes parallel to the corresponding ECI frame at the observation epoch. Its

fundamental directions are: the 𝑧-axis points toward the celestial pole (parallel to the ECI 𝑧-axis),

the 𝑥-axis points toward the vernal equinox (parallel to the ECI 𝑥-axis), and the 𝑦-axis completes the

right-handed system. This system is used for observability computations, as it directly relates to the

angular measurements made by telescopes. In this system, objects are located by their right ascension

(𝛼, measured eastward from the vernal equinox) and declination (𝛿, measured north or south from the

celestial equator), which are analogous to longitude and latitude on the celestial sphere. Elevation and

azimuth angles derived from the topocentric frame are used to determine whether a satellite meets

minimum elevation and Sun/Moon separation constraints. These coordinate systems can be found

in Figure 4.1. The geometric relationship between the observer’s position, satellite position in the ECI

frame, and the line-of-sight range is illustrated in Figure 4.2.

Earth

𝑋 (ECI)

𝑍 (ECI)

Observer

R𝑠

Satellite

r

𝜌

Figure 4.2: Geometric relationship between observer position (R𝑠 ), satellite position in ECI frame (r), and line-of-sight range (𝜌)

used for computing topocentric observability constraints.

4.2. Optical Detection
Ground-based optical systems represent an important infrastructure component for space surveillance

activities. To detect sunlight reflected from objects in Earth orbit, optical sensors are needed to capture

these light waves using lenses and store the resulting images. In this thesis, the telescope used for

experimental validation is ART (see Appendix A), a remotely operated telescope in Spain equipped

with a Complementary Metal-Oxide-Semiconductor (CMOS) camera, which captures and stores images

of sunlight reflected from objects in Earth orbit.

CMOS detectors are characterised by three key parameters. Quantum efficiency (QE) measures the

fraction of incident photons converted to electronic signal. Modern scientific CMOS sensors achieve

60–90% efficiency. Read noise (𝜎𝑟𝑒𝑎𝑑) represents electronic noise during pixel readout, typically 1–5

electrons per pixel. Dark current (𝐼𝑑𝑎𝑟𝑘) captures thermally generated noise accumulated during

exposure, usually 0.001–0.05 electrons/pixel/second [49, 19].

The relations between these parameters determine the signal-to-noise ratio (SNR) achievable for a given

observation, which Howell [19] expresses as:

SNR =
𝑁∗√

𝑁∗ + 𝑛pix(𝑁𝑆 + 𝑁𝐷 + 𝜎2

read
)

(4.1)

where 𝑁∗ is the total source signal in electrons from the target object, 𝑛pix is the number of pixels in

the measuring aperture, 𝑁𝑆 is the sky background contribution per pixel in electrons, 𝑁𝐷 is the dark

current contribution per pixel in electrons, and 𝜎2

read
is the total number of electrons per pixle from the

read noise.

Detection of orbital objects requires specialised exposure techniques. Three primary methodologies are

employed [39, 53]:
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1. Sidereal tracking: The telescope tracks at the sidereal rate matching Earth’s rotation (15.041

arcsec/s), causing stars to appear as point sources while orbital objects manifest as streaks. This

technique provides excellent SNR for stars (used as astrometric reference points) while allowing

velocity vector estimation for detected objects.

2. Rate tracking: The telescope tracks at the expected angular rate of the target object, causing it to

appear as a point source while stars appear as streaks. This method maximises SNR for known

objects but complicates astrometric reduction (see Section 4.3) due to streaked reference stars.

3. Streak detection: Employing fixed-pointing or very short exposures to capture instantaneous

positions of objects as they transit the field of view. This approach is particularly useful for

wide-field survey operations but imposes greater requirements on detector sensitivity.

An example of each exposure technique can be found in Figure 4.3.

(a) Sidereal tracking (b) Rate tracking (c) Streak detection

Figure 4.3: Various tracking methods. In (a), the stars appear as dots, and the satellite as a streak. In (b), the satellite appears as

the dot while the stars as streaks. Lastly, in (c), the long streak shows the satellite and the shorter streaks the stars. The direction

of the star streaks in this image is due to the short rotation of the Earth and the direction of the satellite streak is associated with

its direction of movement. The satellite streak remains straight due to the images being taken at a fixed point. Image from: [53].

4.3. Coordinate Transformations
The transformation of raw pixel measurements to astronomical coordinates is a necessary step to make

sense of sensor readings. This section describes the steps required to convert pixel coordinates to

topocentric celestial coordinates.

The detection of an object in an optical image initially yields pixel coordinates (𝑥𝑝 , 𝑦𝑝) within the

detector reference frame. Because optical observations typically provide angles-only measurements, the

transformation process yields topocentric right ascension and declination (𝛼, 𝛿)without direct range

information. These angular measurements must be transformed through multiple stages to obtain the

celestial coordinates required for subsequent orbital analysis. The astrometric plate solution typically

employs a polynomial model relating pixel positions to standard coordinates as described by Veis [53].

This process is known as astrometric reduction or plate solving [9].

The resultant observation consists of a time-stamped pair of angular measurements expressed as topocen-

tric right ascension and declination (𝛼, 𝛿, 𝑡) referenced to the J2000.0 epoch. For orbit determination

and propagation, the angular rates ¤𝛼 and
¤𝛿 are also required. In practical optical observations, a series

of consecutive measurements are typically collected and grouped into tracklets. From these sequential

observations, an attributable vector can be derived, which consists of four parameters representing the

angular position and angular velocity at a reference epoch (as described previously):

𝒜 = [𝛼, 𝛿, ¤𝛼, ¤𝛿] (4.2)

The attributable encapsulates the observational information available from a short-arc optical observation

sequence. Several methods exist to determine the attributable from a set of angular measurements in

a tracklet. A common approach involves polynomial fitting of the angular motion, typically using a

second-order model to account for the slightly non-linear motion of objects over the observation period.

The fitting process generally employs least squares techniques that minimise the residuals between

measured angles and the polynomial model, weighted by the measurement uncertainty [29].
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The precision of the derived angular rates depends on several factors including the number of

measurements in the tracklet, the temporal spacing between observations, and the inherent measurement

precision of the optical system. Generally, wider temporal spacing improves angular rate determination

but risks complications from non-linear motion, especially for LEO objects. With sufficient temporal

spacing, the tracklet is no longer a TSA and IOD can be performed.

For optical observations, the complete measured attributable also consists of the observation time 𝑡:
(𝛼, 𝛿, ¤𝛼, ¤𝛿, 𝑡). When multiple observations are available, statistical orbit determination techniques can

be applied to refine the estimate of the orbital state, see Chapter 6.

4.4. Orbital Dynamics
The transformation of optical measurements into orbital elements and the subsequent propagation of

the object state are the final steps of catalogue generation. This section establishes the mathematical

foundation for orbit determination and propagation.

4.4.1. Two-Body Problem
The fundamentals of orbital motion follow from the two-body problem, where the satellite motion is

described by Newton’s law of gravitation:

¥r = − 𝜇

𝑟3

r (4.3)

where r is the position vector, 𝜇 = 𝐺𝑀𝐸 = 398600.4418 km
3
/s

2
is Earth’s gravitational parameter, and

𝑟 = |r|.
The resulting orbit can be expressed either as a Cartesian state vector X = [𝑥, 𝑦, 𝑧, ¤𝑥, ¤𝑦, ¤𝑧]𝑇 in the ECI

frame, or as a set of classical Keplerian orbital elements (𝑎, 𝑒 , 𝑖,Ω, 𝜔, 𝜈) [52, 4]:

• 𝑎: Semi-major axis (km), defining the orbit’s size

• 𝑒: Eccentricity (dimensionless), defining the orbit’s shape (𝑒 = 0 for circular, 0 < 𝑒 < 1 for elliptical)

• 𝑖: Inclination (degrees or radians), the angle between the orbital plane and the equatorial plane

• Ω: Right ascension of ascending node (RAAN, degrees or radians), defining the longitude where

the satellite crosses the equatorial plane from south to north

• 𝜔: Argument of perigee (degrees or radians), the angle from the right ascension to the perigee

point within the orbital plane

• 𝜈: True anomaly (degrees or radians), the angle from perigee to the satellite’s current position

A visualisation of these elements can be found in Figure 4.4.

Figure 4.4: Keplerian orbital elements. Image from: [57].



4.5. Chapter Summary 16

4.4.2. Perturbation Forces
Real orbital motion deviates from the ideal two-body problem due to various perturbing forces. Orbit

propagation requires modelling of these perturbations acting on the orbiting object. The equations of

motion with perturbations can be expressed as [52, 4]:

¥r = − 𝜇

𝑟3

r + a𝐽2 + adrag + a3-body + aSRP + . . . (4.4)

where the additional acceleration terms represent perturbations due to:

• a𝐽2 : Earth’s oblateness (dominant perturbation for most orbits), given by:

a𝐽2 =
3

2

𝐽2𝜇𝑅2

𝑒

𝑟5


𝑥
(
5
𝑧2

𝑟2
− 1

)
𝑦
(
5
𝑧2

𝑟2
− 1

)
𝑧
(
5
𝑧2

𝑟2
− 3

)


(4.5)

where 𝐽2 = 1.08263 × 10
−3

is Earth’s second zonal harmonic coefficient and 𝑅𝑒 = 6378.137 km is

Earth’s equatorial radius.

• adrag: Atmospheric drag:

adrag = −1

2

𝜌𝑎𝑡𝑚
𝐶𝐷𝐴

𝑚
|vrel|vrel (4.6)

where 𝜌𝑎𝑡𝑚 is atmospheric density (altitude-dependent), 𝐶𝐷 is the drag coefficient (typically

2.0–2.5), 𝐴 is the effective cross-sectional area, 𝑚 is the object’s mass, and vrel is the velocity relative

to the rotating atmosphere.

• a3-body: Third-body gravitational effects, primarily from the Sun and Moon

• aSRP: Solar radiation pressure

4.5. Chapter Summary
This chapter presented the theoretical foundation for the optical tracking of Earth-orbiting objects. It

began by defining the required coordinate systems, the ECI frame for orbital propagation and the

Topocentric Equatorial Coordinate System for ground-based observations. The principles of optical

detection were described, including sensor characteristics and the primary tracking methods (sidereal,

rate, and streak). The process of coordinate transformation was then described, showing how raw

image data is converted via astrometric reduction into an attributable vector (𝛼, 𝛿, ¤𝛼,
¤𝛿). Finally, the

chapter reviewed the principles of orbital dynamics, progressing from the ideal two-body problem to

the inclusion of perturbation forces, such as Earth’s oblateness (J2) and atmospheric drag, which are

required for LEO propagation. This astrodynamic framework serves as the basis for the propagation

and observation models used in this research.



5
Surveillance Strategies

This chapter examines space surveillance strategies applied to LEO catalogue generation. The formulation

builds upon established methodologies in the literature.

5.1. Constraint Formulation
Optical observations of orbiting objects require three primary visibility constraints to be satisfied. These

constraints ensure the object is illuminated, the observer is in darkness, and interference from celestial

bodies is minimised.

Constraint 1: Phase Angle

The phase angle 𝜃 is the angle between the observer, the object, and the Sun (observer-object-Sun). For

the object to be visible, it must be illuminated by the Sun while the ground-based observer is in Earth’s

shadow [9]. This requires:

0
◦ ≤ 𝜃 ≤ 𝜃max (5.1)

where 𝜃max depends on instrumental and operational constraints, ensuring the Sun does not appear in

the FoV.

Constraint 2: Sun and Object Elevation Angles

Two elevation angle constraints need to be satisfied simultaneously. First, the Sun must be sufficiently

below the horizon to ensure dark sky conditions. A minimum Sun elevation angle of −9
◦

(nautical

twilight) is typically used, as shown in Figure 5.1. Although the Sun is technically below the horizon at

0
◦
, the −9

◦
threshold prevents stray light when the Sun is close to the horizon, which would otherwise

interfere with detection of dim objects

Second, the target object must be above the horizon with sufficient elevation to minimise atmospheric

effects. A minimum object elevation angle of +20
◦

is enforced to ensure the object is accessible and to

minimise atmospheric refraction and signal attenuation. At low elevation angles, reflected light must

travel through significantly more atmosphere, which attenuates the signal and degrades observation

quality.

Constraint 3: Moon Separation Angle

To prevent the Moon from interfering with observations of dim orbital objects, a minimum angular

separation between the Moon and the target object must be maintained. For this thesis, a minimum

Moon separation angle of 5
◦

is implemented.

5.2. Surveillance Strategies
In order to survey the areas of space, surveillance strategies must be employed. The selection of an

appropriate surveillance strategy directly impacts the efficiency of search operations and the probability

of successful object detection.

17
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Figure 5.1: Average night time for different twilight conditions, with Northern Hemisphere shown as solid lines and Southern

Hemisphere as dashed lines, with minimum elevation angles indicated above them. Image from [9].

5.2.1. Declination & Right ascension Stripe Scanning
One approach for systematic sky surveys involves scanning along declination stripes. The method

involves fixing the telescope at a constant right ascension and scanning up and down in declination

while following the stars. This creates a vertical "fence" in the sky through which satellites drift due to

their orbital motion. This technique is typically used for GEO surveillance [39].

For declination stripe scanning, the scanning trajectory follows:

𝛼(𝑡) = 𝛼𝑐 (5.2)

𝛿(𝑡) = 𝛿0 + 𝑣𝛿 · 𝑡 (5.3)

where 𝛼𝑐 is the fixed right ascension coordinate of the stripe, 𝑣𝛿 is the scanning velocity in declination,

and 𝛿0 defines the starting declination. In practice, this continuous motion is implemented as discrete

pointings: the telescope dwells at fixed (𝛼𝑐 , 𝛿𝑖) positions for exposure time, then repositions to the next

declination step. The spacing between pointings is determined by the FoV and overlap requirements.

This approach is particularly effective for GEO surveillance because GEO satellites appear nearly

stationary relative to Earth but exhibit slow drift relative to the fixed stars. By maintaining a fixed

right ascension and repeatedly scanning in declination, the telescope creates a observational fence that

captures objects as they drift through the stripe. An illustration can be found in Figure 5.2.

Figure 5.2: Observation sequence for a declination stripe. Image from: [15].

Right ascension stripe scanning is an alternative approach where the telescope scans along fixed right

ascension coordinates while varying declination. This strategy proves particularly effective for certain

orbital regimes and observational geometries, such as MEO [56].
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For right ascension stripe scanning, the stripe is defined by a central right ascension value 𝛼𝑐 and spans

a width 𝑤𝛼 typically measured in hours of right ascension. The relationship between angular width

and time is:

𝑤𝛼,deg = 𝑤𝛼,hours · 15
◦/hour (5.4)

The scanning trajectory follows:

𝛼(𝑡) = 𝛼0 + 𝑣𝛼 · 𝑡 (5.5)

𝛿(𝑡) = 𝛿𝑐 (5.6)

where 𝑣𝛼 is the scanning velocity in right ascension and 𝛼0 defines the starting declination position.

As for the declination stripe, in reality, the continuous motion is implemented as discrete pointings

at fixed (𝛼𝑐 , 𝛿𝑖) positions for exposure time before moving on. Flohrer, Schildknecht, and Musci [10]

demonstrated its utility for MEO by focusing on right ascension stripes situated at low declination

values. This effectiveness stems from MEO orbital geometry. Objects in this regime cross the celestial

equator approximately twice per 6-hour orbital period, ensuring that right ascension scanning along

low declinations intercepts the majority of the MEO population during a single observation night.

The number of pointing positions required within a right ascension stripe depends on the FoV and

desired overlap factor. For a stripe of width 𝑤𝛼,hours hours in right ascension:

𝑁positions =

⌈
𝑤𝛼,hours · 15

𝑤FoV,eff

⌉
(5.7)

where the effective FoV accounts for overlap:

𝑤FoV,eff = 𝑤FoV · (1 − 𝑓overlap) (5.8)

The time required to scan a complete stripe depends on the number of images and the total observation

time per position:

𝑇stripe = 𝑁images · (𝑡exposure + 𝑡readout + 𝑡slew) (5.9)

5.2.2. Multi-Stripe Strategy
The single-stripe strategy is the simplest implementation of stripe scanning. A single continuous sweep

covers the search region. The multi-stripe approach extends single-stripe scanning by implementing

parallel tracks across the search region. If the combined exposure and detector readout time is less

than the time interval required for desired overlapping coverage, multiple declination stripes may be

observed simultaneously [39]. See Figure 5.3. The number of required stripes 𝑁𝑠 depends on the search

region dimensions:

𝑁𝑠 =

⌈
𝐿𝛿

𝑤𝐹𝑜𝑉

⌉
(5.10)

where 𝐿𝛿 is the characteristic dimensions in declination of the search region (𝐿𝛼 in the case of right

ascension stripes). Each stripe 𝑖 follows the trajectory:

𝛿𝑖(𝑡) = 𝛿0 + 𝑣𝛿 · 𝑡 (5.11)

𝛼𝑖 = 𝛼0 + 𝑖 · 𝑤𝐹𝑜𝑉 (5.12)

The strategy includes transition periods between stripes, introducing dead time where no observations

occur. For 𝑁 stripes with desired overlap factor 𝑓 , the available time per exposure becomes:
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𝑡exp =
𝑡field

𝑁 · 𝑓 (5.13)

where 𝑡field is the time for a field to transit the FoV.

Figure 5.3: Simultaneous scanning of two declination stripes. Image from: [39].

5.2.3. Grid Strategy
A simple strategy is the to descritise the search region into a grid. The grid is made up of cells

corresponding to individual pointing positions. For a grid with 𝑁𝛼 × 𝑁𝛿 cells, pointing positions are:

𝛼𝑖 , 𝑗 = 𝛼min +
(
𝑖 + 1

2

)
· 𝐿𝛼
𝑁𝛼

(5.14)

𝛿𝑖 , 𝑗 = 𝛿min +
(
𝑗 + 1

2

)
· 𝐿𝛿
𝑁𝛿

(5.15)

The grid strategy requires determining an optimal sequencing pattern to minimise telescope slewing

time while maintaining coverage.

5.2.4. Leakproof Search Strategies
Non-leakproof survey patterns cannot guarantee detection even when objects are within the searched

area, as moving objects may transition from unsearched to previously searched regions. Stripe strategies

can be made leakproof for desired areas of interest such as GEO in the case of declination stripes.

Mulligan and Stephens [33] introduce a leakproof search pattern that kinematically guarantees detection

opportunities for objects within specified constraints.

The so-called bullseye pattern consists of overlapping concentric rings of discrete dwells, as illustrated

in Figure 5.4. A leakproof search pattern ensures that any object moving slower than maximum angular

rate 𝜔𝑚𝑎𝑥 within the search area will be detected.

The pattern must satisfy leakproof constraints ensuring ring boundaries account for object motion

during observation. However, the bullseye approach becomes ineffective when object angular rates

exceed sensor capabilities. Mulligan and Stephens [33] define the "point of futility" as:

𝜔𝑚𝑎𝑥(𝜏 + 𝑡𝑠)
Ψ

≳ 0.05 (5.16)

where 𝜏 is the integration time, 𝑡𝑠 is the slew time, and Ψ is the sensor FoV. Beyond this threshold,

bullseye patterns cannot establish leakproof areas larger than a single FoV.
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Figure 5.4: Bullseye search pattern showing concentric rings of overlapping dwells. Image from: [33].

The bullseye pattern is interesting as it introduces a leakproof strategy that can be applied for different

sensors and orbital regimes, unlike stripe strategies that are not leakproof if used for LEO if only one

sensor is used.

LEO Applicability Limitations
In this thesis, LEO is the regime of interest. The bullseye strategies is analysed in order to serve as way

to compare against AR approaches. The following subsection explains why the bullseye strategy was

declared not feasible for the purpose of this work.

For LEO objects, typical angular velocities range from 0.1-1.0 deg/s, significantly higher than GEO

objects at 0.001-0.01 deg/s. Table 5.1 presents a representative LEO scenario for evaluating the futility

criterion. The futility criterion becomes:

Table 5.1: Representative LEO scenario parameters for bullseye pattern feasibility assessment.

Parameter Value Description
𝜔𝑚𝑎𝑥 0.5 deg/s (1800 arcsec/s) Maximum angular velocity

𝜏 2.0 s Exposure + Read-out Time

𝑡𝑠 5 s Telescope slew time

Ψ 3.18 deg (11448 arcsec) ART sensor field of view (Appendix A)

1800 × (2.0 + 5)
11448

=
9900

11448

≈ 1.10≫ 0.05 (5.17)

This greatly exceeds the futility threshold, indicating that leakproof bullseye patterns are impractical for

LEO surveillance when using a telescope similar to ART due to the high angular velocities involved.

5.3. Chapter Summary
This chapter provided an examination of space surveillance strategies relevant to LEO catalogue

generation. It first established the three visibility constraints, phase angle, Sun and object elevation,

and Moon separation, that govern ground-based optical observations. Following this, the chapter

described the formulation and operational mechanics of several survey patterns. These included "fence"

approaches like declination and right ascension stripe scanning, multi-stripe strategies, and grid strategy.

Leakproof search strategies, specifically the "bullseye" pattern, were also analysed. A finding of this

chapter was the demonstration of the bullseye pattern’s infeasibility for LEO surveillance with ART. The

high angular velocity of LEO objects causes the "point of futility" criterion to be exceeded, making the

strategy impractical. The remaining strategies described here form the basis for the "Baseline Pipeline"

(see Chapter 7) that will be implemented and tested. While these strategies provide coverage of the
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observable sky, they treat all regions equivalently without incorporating prior knowledge of detected

objects. Chapter 6 introduces the mathematical framework for an alternative approach that leverages

initial detection information through AR techniques to guide subsequent observations.



6
Mathematical Background and

Admissible Regions

This chapter establishes the mathematical foundation for the analysis methods employed in this research.

The techniques presented here enable the characterisation of orbital populations through Gaussian

Mixture Models (GMMs). The problem formulation for follow-up observations is presented, and

the search region discussion is extended to ARs. The frameworks described form the basis for the

methodology and analysis presented in subsequent chapters.

6.1. Gaussian Mixture Models for Orbital Populations
GMMs are used to approximate an arbitrary distribution as a weighted sum of Gaussian pdfs, which

are easier to work with mathematically. This can be applied to characterise orbital element distributions

within satellite populations and to subsequently synthetic populations for simulation purposes. In this

work, this is used to identify high-value sky regions for targeted surveillance strategies.

The primary data source for orbital population analysis consists of TLE sets [51], which are standardised

orbital parameter descriptions maintained by the U.S. Space Force. Each TLE provides data of a satellite’s

Keplerian orbital elements at a specific epoch [3]. For a catalogue containing 𝑁 tracked objects, the

orbital elements are extracted to construct a dataset {x𝑛}𝑁𝑛=1
, where each observation is a single satellite’s

orbital state.

The GMM fitting process transforms this satellite distribution into a parametric probabilistic model.

This learned model serves multiple purposes: (1) identifying distinct orbital families or constellations

within the population, (2) generating synthetic satellite populations for Monte Carlo simulations, (3)

predicting high-density orbital regions for effective surveillance, and (4) detecting orbits that deviate

from established patterns. In this thesis, the GMM is used for generation of synthetic populations for

surveillance strategies.

A GMM describes a probability density function (pdf) as a weighted sum of 𝐾 Gaussian components [2]:

𝑝(x) =
𝐾∑
𝑘=1

𝜋𝑘𝒩(x|𝝁𝑘 ,𝚺𝑘) (6.1)

The mixing weights 𝜋𝑘 satisfy

∑𝐾
𝑘=1

𝜋𝑘 = 1 and 𝜋𝑘 ≥ 0, while 𝝁𝑘 and 𝚺𝑘 are the component means and

are covariance matrices, respectively. The multivariate Gaussian distribution is defined as [46]:

𝒩(x|𝝁,𝚺) = 1

(2𝜋)𝑑/2|𝚺|1/2
exp

(
−1

2

(x − 𝝁)𝑇𝚺−1(x − 𝝁)
)

(6.2)

23
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where 𝑑 is the dimensionality of the data space. For space surveillance applications, the feature vector

comprises five Keplerian orbital elements extracted from TLE data:

x = [𝑎, 𝑒 , 𝑖,Ω, 𝜔]𝑇 (6.3)

The GMM parameters {𝜋𝑘 , 𝝁𝑘 ,𝚺𝑘}𝐾𝑘=1
are fit to the observed orbital element dataset {x𝑛}𝑁𝑛=1

using the

Expectation-Maximisation (EM) algorithm. This method iterates between two steps until convergence is

reached [46]:

Expectation Step: Compute the posterior probability that observation x𝑛 belongs to component 𝑘:

𝛾𝑛𝑘 =
𝜋𝑘𝒩(x𝑛|𝝁𝑘 ,𝚺𝑘)∑𝐾
𝑗=1

𝜋 𝑗𝒩(x𝑛|𝝁𝑗 ,𝚺𝑗)
(6.4)

Maximisation Step: Update the model parameters using the weighted statistics:

𝝁𝑛𝑒𝑤
𝑘

=
1

𝑁𝑘

𝑁∑
𝑛=1

𝛾𝑛𝑘x𝑛 (6.5)

𝚺𝑛𝑒𝑤
𝑘

=
1

𝑁𝑘

𝑁∑
𝑛=1

𝛾𝑛𝑘(x𝑛 − 𝝁𝑛𝑒𝑤𝑘
)(x𝑛 − 𝝁𝑛𝑒𝑤𝑘

)𝑇 (6.6)

𝜋𝑛𝑒𝑤
𝑘

=
𝑁𝑘

𝑁
(6.7)

where 𝑁𝑘 =
∑𝑁
𝑛=1

𝛾𝑛𝑘 is the effective number of observations assigned to component 𝑘. The algorithm

iterates between these steps until the log-likelihood converges or a maximum iteration count is reached.

Synthetic Population Generation
Once the GMM has been fitted to the data, the generation of synthetic orbital element sets through

Monte Carlo sampling becomes possible:

1. Sample component index 𝑘 from the distribution defined by {𝜋𝑘}
2. Sample orbital elements x from 𝒩(𝝁𝑘 ,𝚺𝑘)
3. Apply constraint validation and coordinate transformations

To complete the Keplerian state a random value for the true anomaly 𝜃 between 0 and 2𝜋 is selected.

Through the generation of this synthetic population it is possible to simulate unknown space objects in

orbits using similar characteristics to their catalogued counterparts. This set of synthetic elements is

then propagated over time for subsequent (follow-up) strategies.

6.2. Problem Definition
Space surveillance for catalogue generation poses an optimisation challenge different from traditional

tracking scenarios. Unlike conventional tracking, where objects have known approximate locations,

surveillance operates without precise a priori knowledge of object positions [9]. This uncertainty requires

coverage strategies that balance detection probability against resource constraints while searching

through the complete set of possible orbits [56]. The challenge is particularly acute for LEO objects,

where brief visibility windows and high angular velocities severely constrain observation opportunities.

Following Murphy and Holzinger [34], the surveillance problem can be written as dynamic state

evolution. Let 𝒳 represent the complete state space containing all possible satellite orbital states. The

surveillance problem focuses on a search set 𝒮(𝑡0) ⊂ 𝒳 that evolves over time as satellites orbit the

Earth. Given the dynamical system:

¤𝑥 = 𝑓 (𝑥) (6.8)
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Objects within the search set evolve according to the flow function:

𝑥(𝑡1) = Φ(𝑡1; 𝑥(𝑡0), 𝑡0) (6.9)

where Φ denotes the flow function which represents the orbital propagation operator that evolves states

according to the dynamics of 𝑓 (𝑥). Consequently, the search set itself evolves as:

𝑆(𝑡) = Φ(𝑡; 𝑆(𝑡0), 𝑡0) (6.10)

This formulation captures the surveillance challenge: as time progresses, the search region typically

expands, requiring increasingly extensive observation campaigns to maintain adequate coverage. For a

sensor with measurement function ℎ : 𝒳 → ℋ , the search set projects into the measurement space as

(see Figure 6.1):

𝑆ℋ = ℎ(𝑆) = {𝑥ℋ : 𝑥ℋ = ℎ(𝑥), 𝑥 ∈ 𝑆} (6.11)

where ℋ is the measurement subspace accessible to the sensor. So 𝑆ℋ is the measurement space

resulting from the measurement function, and 𝑥ℋ is the component that can be measured by a particular

observer which exists within the subspace 𝑆ℋ .

Figure 6.1: Evolution of measurement space 𝑆ℋ . Image from: [34].

The optimisation objective maximises the weighted sum of viewing directions over an observation

window. This can be expressed as [11, 27]:

𝒥 = max

𝑚𝑔∑
𝑓=1

(
𝑛∑
𝑖=1

𝜇(𝑥̂𝑖) · 𝑝(𝑥̂𝑖) · 𝑑(ℎ, 𝑥̂𝑖)
)

(6.12)

where 𝑚𝑔 is the total number of viewing directions in an observation window, 𝑛 is the number of objects

to be observed, 𝜇(𝑥̂𝑖) quantifies the object-specific observational value (typically based on uncertainty

criteria or information gain), 𝑝(𝑥̂𝑖) is the detection probability for object 𝑖 derived from the probability

distribution, and 𝑑(ℎ, 𝑥̂𝑖) is the probability that object 𝑖 falls within the sensor’s search set ℎ. Using

this function viewing directions can be selected that maximise detection rates. This shows that the

propagation of the measurement space 𝑆ℋ evolves differently to its state space 𝑆 counterpart. When

designing a surveillance strategy for initial detection or for follow-up the evolution of the measurement

space is what has to be taken into account.

The search set ℎ is determined by the FoV and sensor constraints (see Section 5.1). A more detailed

representation of the search set in the form of ARs is described in Section 6.4.

6.3. Search Region Analysis
Looking back at the search regions 𝑆(𝑡), an analysis of the region is necessary to accurately survey this

space. Murphy and Holzinger [34] mention the area 𝐴ℎ of the search region to be a useful factor in the
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analysis of 𝑆(𝑡). The size of the search region directly affects the feasibility of tracking a set of objects.

In realistic scenarios, velocity uncertainties cause the search set to expand spatially over time. Each

observation reduces the remaining search area by constraining possible object locations. A successful

search strategy requires the observation-space reduction rate to exceed the rate of spatial expansion.

Given the constraints of dealing with high dimensional sets (6 orbital elements) a problem arises in the

measurement of this area. The area becomes a function of the search set which in turn is a function of

time itself:

𝐴ℎ(𝑆(𝑡)) = |𝑆|ℋ (6.13)

A search set is best analysed by projecting it into a specific observer’s measurement space. This allows

the search space to be evaluated according to that observer’s constraints and reference frame. The time

evolution of these regions is determined by the velocity vector field and higher-order derivatives, with

the divergence of these fields at the region boundary controlling the behaviour. This boundary analysis

enables analytical solutions for how the search region area changes over time, which is needed for

developing follow-up observation strategies.

Consider the projection mapping ℎ : R6 → R4
that transforms orbital state vectors into the measurement

space coordinates of right ascension, declination and their time derivatives. The search region boundary

𝜕𝑆(𝑡) in state space projects to a corresponding boundary 𝜕𝑆ℋ (𝑡) in measurement space:

𝜕𝑆ℋ (𝑡) = ℎ(𝜕𝑆(𝑡)) (6.14)

The divergence of this projected velocity field along the boundary determines the rate of area change.

Figure 6.2 illustrates the projection geometry of search regions, showing how high-dimensional state

uncertainty regions project into the two-dimensional measurement space. The divergence of this

projected velocity field along the boundary determines the rate of area change. Regions with positive

divergence expand rapidly, requiring increased observation frequency to maintain coverage, while

regions with negative divergence expand slowly, allowing for a lower observation frequency.

Figure 6.2: Projection mapping from state space to measurement space. Image from: [34].

This challenge of managing expanding search spaces makes surveillance for catalogue generation

particularly difficult, especially for LEO objects. When designing a follow-up strategy, the evolution of

the search space and its area relative to the observer must be taken into account. This analysis forms the

basis of this thesis. In this work, the search region is characterised through admissible regions.

6.4. Admissible Region
Multiple observations of the same object over a short time interval enable extraction of angular rates

through numerical differentiation, yielding the attributable𝒜 [13]. The attributable is a four-dimensional

vector combining position and velocity information in the angular measurement space:

𝒜 = [𝛼, 𝛿, ¤𝛼, ¤𝛿] (6.15)
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For any attributable vector, a corresponding range (𝜌) and range-rate ( ¤𝜌) value can be used to complete

the state. However, for optical observations these values are not measured. Care must be taken in

choosing these values as not all possible states correspond to objects that actually exist or are of interest.

In the case of this thesis, follow-up observations are desired. Therefore, the selection of range and

range-rate combinations must, as accurately as possible, represent the values that best describe the state

of the detected Earth-orbiting object.

Following this line of thought, Tommei, Milani, and Rossi [48] introduced the AR. The AR replaces

traditional search regions with a strategy that describes possible range and range-rate combinations

that fit with a given attributable. Following Milani et al. [30], several requirements are established to

generate this region. The AR expresses the limited knowledge regarding the unobserved variables 𝜌
and ¤𝜌, and defines a solution space that is representative of all physically possible states [13].

The AR is defined by physical constraints 𝒞 that restrict the observed object’s state space. The primary

constraint requires negative geocentric two-body energy per unit mass, ensuring the object remains in

Earth orbit [48]:

𝒞1 = {(𝜌, ¤𝜌) : 𝜀𝐸(𝜌, ¤𝜌) < 0} (6.16)

where [4]:

𝜀𝐸(𝜌, ¤𝜌) =
1

2

||¤𝑟||2 − 𝜇𝐸
||𝑟|| (6.17)

with 𝜇𝐸 = 𝐺𝑚𝐸, 𝑚𝐸 being the Earth’s mass, and 𝑟 the geocentric position of the object. Additionally, the

distance of the object from the observer must be within specified bounds:

𝒞2 = {(𝜌, ¤𝜌) : 𝜌MIN < 𝜌 < 𝜌MAX} (6.18)

The specific values of 𝜌MIN and 𝜌MAX depend on the orbital regime of interest. Following Tommei,

Milani, and Rossi [48], the basic AR is formally defined as:

𝒞 = 𝒞1 ∩ 𝒞2 (6.19)

The AR plotted in range-range rate (𝜌, ¤𝜌) space may have a complex structure. Tommei, Milani, and

Rossi [48] show that the energy constraint 𝒞1 produces either one or two disconnected regions. This

behaviour results from analysing a sixth-degree polynomial:

𝑉(𝜌) := 𝑄2(𝜌)𝑆(𝜌) ≤ 4𝜇2

𝐸 (6.20)

where 𝑆(𝜌) = 𝜌2+𝑤5𝜌+𝑤0 and𝑄(𝜌) = 𝑤2𝜌2+𝑤3𝜌+𝛾, with the coefficients depending on the observer’s

geocentric position and velocity, as well as the attributable angles and their time derivatives.

The AR topology varies based on how the range limits 𝜌𝑚𝑖𝑛 and 𝜌𝑚𝑎𝑥 intersect with the zero-energy

boundary. When the maximum range constraint exceeds all points on the 𝜖𝐸 = 0 curve, a single

continuous region emerges in (𝜌, ¤𝜌) space (Figure 6.3). However, if 𝜌𝑚𝑎𝑥 lies between two sections of the

zero-energy boundary, the AR splits into two distinct regions, each corresponding to different orbital

energy regimes (Figure 6.4).

For applications involving SSA and follow-up observations, Fujimoto and Scheeres [13] extends the AR

concept with additional physical constraints:

𝒞 =

4⋂
𝑖=1

𝒞𝑖 (6.21)
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Figure 6.3: AR for an object from optical data (one

connected component): 𝜀𝐸 = 0 is the curve of zero

geocentric energy, 𝜌𝑀𝐼𝑁 and 𝜌𝑀𝐴𝑋 are the lower

and the upper limit for the distance of the object

from the observer. Image from [48].

Figure 6.4: AR for an object from optical data (two

connected components): 𝜀𝐸 = 0 is the curve of zero

geocentric energy, 𝜌𝑀𝐼𝑁 and 𝜌𝑀𝐴𝑋 are the lower

and the upper limit for the distance of the object

from the observer. Image from [48].

where:

𝒞1 = {(𝜌, ¤𝜌) : 𝜀 ≤ 0} (6.22)

𝒞2 = {(𝜌, ¤𝜌) : 0 ≤ 𝜌 ≤ 14𝑟𝐸} (6.23)

𝒞3 = {(𝜌, ¤𝜌) : 1.03𝑟𝐸 ≤ 𝑟𝑝} (6.24)

𝒞4 = {(𝜌, ¤𝜌) : 𝑟𝑎 ≤ 25𝑟𝐸} (6.25)

here, 𝜀 is the specific geocentric energy, 𝑟𝑝 is the perigee radius, and 𝑟𝑎 is the apogee radius of the

observed object. The 𝐶2 constraint restricts the AR to objects within a sensible range (very few Earth

satellites would be at a range of > 14𝑟𝐸). The perigee constraint 𝒞3 ensures the object does not intersect

Earth’s atmosphere, while the apogee constraint 𝒞4 filters out extreme trans-lunar orbits.

6.4.1. Constrained Admissible Region
Beyond the fundamental energy and range boundaries, the AR can be narrowed by applying known

limits on orbital elements. Roscoe et al. [38] develop the CAR approach, which uses fixed values of

semi-major axis 𝑎 and eccentricity 𝑒 to trace curves through (𝜌, ¤𝜌) space. The CAR differs from the basic

AR through the application of Keplerian element constraints, which are then translated to the (𝜌, ¤𝜌)
space.

The CAR formulation combines two physical constraints: the two-body energy relationship and angular

momentum conservation. For a specified semi-major axis 𝑎, the energy constraint becomes:

𝐸 = − 𝜇

2𝑎
(6.26)

The position and velocity vectors can be expressed using observable parameters (𝛼, ¤𝛼, 𝛿,
¤𝛿) and

unobservable parameters (𝜌, ¤𝜌). Substituting these into the energy and angular momentum equations

produces a system of nonlinear constraint equations. For given values of 𝑎 and 𝑒, solving this system
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yields corresponding (𝜌, ¤𝜌) pairs that satisfy both constraints. These solutions define curves of constant

orbital elements within the AR [38]. An example CAR is shown in Figure 6.5.

Figure 6.5: Intersection of a given semi-major axis and eccentricity constraint on a GEO AR (Left), and the remaining CAR (right).

Image from [23].

The CAR assumes a uniform probability distribution across its bounded region, treating each point as

equally likely. However, this approximation has limitations. Some state solutions within the CAR are

more physically probable than others based on measurement uncertainties and typical orbital parameter

distributions. This motivates a probabilistic extension that weighs different regions of the solution space

according to their likelihood.

6.4.2. Probabilistic Admissible Region
The CAR generates deterministic curves in (𝜌, ¤𝜌) space for fixed orbital parameters. The PAR builds

on this foundation by accounting for uncertainty in both observations and orbital parameters. PAR

algorithms aim to derive a better representation of the CAR solution space by incorporating measurement

uncertainties and orbital parameter statistics [31, 38].

When analysing objects using angles-only observations, the starting point is the probability density

function (pdf) for the measured angles, which is written as 𝑝(𝛼, 𝛿). The observations themselves consist

of the object’s right ascension and declination, (𝛼, 𝛿). These measurements are used together with a

priori information about the object’s orbit, specifically its semi-major axis 𝑎, eccentricity 𝑒, inclination 𝑖,
and right ascension of the ascending node Ω. This combined data allows for the initial setup of the PAR

[31].

The distribution for these orbit parameters is denoted 𝑝(𝑎, 𝑒 , 𝑖,Ω). For simplicity in this initial modelling,

it is assumed that these orbit parameters are independent of each other, and also independent of the

angle measurements 𝑝(𝛼, 𝛿). This means the complete joint probability distribution covering all six

variables can be written by multiplying their individual pdfs together:

𝑝(𝑎, 𝑒 , 𝑖,Ω, 𝛼, 𝛿) = 𝑝(𝑎)𝑝(𝑒)𝑝(𝑖)𝑝(Ω)𝑝(𝛼, 𝛿) (6.27)

The next step involves using constraint equations that link these variables. These equations allow for

transforming the joint distribution 𝑝(𝑎, 𝑒 , 𝑖,Ω, 𝛼, 𝛿) to find the desired probability distribution for the

object’s range and range-rate or even the pdf for the complete state [38].

However, it is impossible to find a simple, direct mathematical formula for this transformation of the

uncertainty. This remains true even when the angle measurement errors themselves follow a simple

Gaussian distribution. This is because the constraint equations are nonlinear. This nonlinearity prevents

the final uncertainty for (𝜌, ¤𝜌) from being a simple Gaussian distribution [20].

Therefore, Monte Carlo methods are employed to obtain a particle representation of the uncertainty in

(𝜌, ¤𝜌) [38]. A visual representation of this can be found in Figure 6.6.

The Monte Carlo procedure can be summarised as follows:

1. Sample from the measurement pdf 𝑝(𝛼, 𝛿) and the orbital parameter pdfs 𝑝(𝑎), 𝑝(𝑒), 𝑝(𝑖), and 𝑝(Ω)
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Figure 6.6: Two examples of a PAR sampled using (various) PDFs. Image from [55].

2. For each sample (𝛼, 𝛿, 𝑎, 𝑒 , 𝑖,Ω), solve the nonlinear constraint equations to obtain corresponding

values of ( ¤𝛼, ¤𝛿, 𝜌, ¤𝜌)
3. The collection of these solutions forms a particle representation of the PAR

While the measurement uncertainty 𝑝(𝛼, 𝛿) is often assumed to be Gaussian, the distributions of

orbital parameters 𝑝(𝑎, 𝑒 , 𝑖,Ω) must be specified to complete the PAR formulation. In this work,

the orbital parameter distributions are defined through the physical constraints of the CAR (which

then produces a uniform distribution) rather than through independent probabilistic models. The

uncertainty distribution in (𝜌, ¤𝜌) space that results from the nonlinear mapping of these constraints

is non-Gaussian and cannot be represented analytically [20]. To enable practical computation and

sampling, a GMM is fitted to represent this uncertainty distribution. Following the approach described

in Section 6.1, the GMM parameters are estimated using the Expectation-Maximisation algorithm,

providing a representation of the PAR that enables Monte Carlo sampling and propagation of the

uncertainty distribution.

6.5. Chapter Summary
This chapter established the mathematical framework for orbital state characterisation and the adaptive

surveillance methodology. It began by introducing GMMs as a method for modelling orbital populations

and generating synthetic datasets from TLE catalogues. The surveillance problem was then defined,

describing the dynamic evolution of the uncertainty search set 𝑆(𝑡) in state space and its projection 𝑆ℋ
into the sensor’s measurement space. The chapter’s focus was the derivation of AR techniques. The

formulation progressed from the AR, which bounds the unobserved range (𝜌) and range-rate ( ¤𝜌) based

on physical energy and range constraints, to the CAR, which refines the solution space by applying

known constraints on orbital elements like semi-major axis (𝑎) and eccentricity (𝑒). Finally, the PAR was

introduced. The PAR extends the CAR by incorporating measurement and parameter uncertainties,

transforming the deterministic CAR boundary into a pdf over the (𝜌, ¤𝜌) plane, sampled via Monte Carlo

methods. This framework, makes the adaptive follow-up strategy of the "PAR Pipeline" detailed in

Chapter 7, possible.
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Methodology and Software

Implementation

This chapter describes the software pipeline developed for evaluating and comparing space surveillance

strategies for LEO catalogue generation. The implementation consists of two distinct approaches: a

baseline pipeline employing three fixed-pattern scanning strategies, and an adaptive PAR pipeline that

leverages initial detection data to guide subsequent observations. The chapter is organised following

the six major steps of the pipeline workflow. A simple overview of the full pipeline can be found in

Figure 7.1. All the algorithms that are referred to in the subsequent text can be found in Section 7.8.

7.1. Software Architecture and Implementation
The propagator used in this work is SGP4 (Simplified General Perturbations 4) [50]. This was selected

as its design for use with TLEs was critical. SGP4 is an analytical orbit propagation model that takes

TLE sets as input, which contain mean orbital elements and a ballistic drag coefficient. The model uses

simplified perturbation theory to analytically account for Earth’s gravitational harmonics (primarily

J2, J3, J4 effects) and atmospheric drag without requiring full numerical integration. To propagate a

satellite to a specific time, SGP4 applies analytical equations to update the orbital elements based on the

elapsed time and perturbation effects, then computes the satellite’s position and velocity vectors.

The surveillance pipeline integrates multiple software components. SPOOK serves as the core simulation

engine for optical detection analysis. SPOOK (Special Perturbations Orbit determination and Orbit

analysis toolKit) is a sensor simulator developed by Airbus Defence and Space [37] for space surveillance

applications. Operating in sensor simulator mode, SPOOK models the complete observation chain from

telescope pointing through detection and tracklet generation. The simulator accounts for telescope optical

characteristics (aperture, field of view, quantum efficiency), environmental conditions (background

brightness, atmospheric effects), and orbital dynamics using SGP4. Regarding object geometry, in this

work, SPOOK modelled each object as a perfect sphere with a diameter of 1 metre, and an albedo of 0.1.

SPOOK expects three primary input categories: telescope configuration specifying sensor properties and

observer location, satellite catalogue data via TLEs defining target population orbital characteristics, and

pointing schedules defining telescope attitude over time. The simulation enforces geometric observability

constraints including line-of-sight availability, target solar illumination, sun depression angle, and

minimum target elevation. Detection modelling incorporates sensor performance characteristics

including read noise, dark current, quantum efficiency, and SNR thresholds.

At each time step, SPOOK propagates all satellites using SGP4, evaluates observability constraints,

applies the telescope pointing schedule, simulates the detection process based on sensor performance

models, and generates measurements for detected objects.

Simulation outputs include detection statistics (unique satellites detected, observation counts per object),

tracking data in TDM (Tracking Data Message) format [1] containing angular measurements suitable

31



7.2. Step 1: Pipeline Initialisation and Input Validation 32

for further processing, and coverage analysis quantifying revisit times and detection opportunities.

The pipeline executes SPOOK as a subprocess, automatically configuring simulation timing to match

observation window parameters and managing execution with timeout monitoring. For each strategy

evaluation, the system updates temporal and planning parameters, executes the simulation, and collects

output products for subsequent analysis.

START

Input Validation

Pipeline

Selection

Baseline Pipeline

Strategy Generation

Run SPOOK

TDM Generation

PAR Pipeline

Run SPOOK

TDM Generation

PAR Computation and

Propagation

Run SPOOK

TDM Generation

ANALYSIS
COMPLETE

Baseline PAR

Figure 7.1: Simplified pipeline overview.

7.2. Step 1: Pipeline Initialisation and Input Validation
The pipeline begins with initialisation and validation processes that establish the foundation for both

baseline and PAR execution paths. This step implements checks on all inputs and determines which

pipeline path to execute based on user configuration. See Figure 7.2.

The system expects three primary input categories:

1. TLE Files: TLE sets from Celestrak, Space-Track, or local (synthetic) files

2. Telescope Configuration: Observer location, sensor specifications, operational constraints

3. Surveillance Parameters: Orbital regime constraints, strategy selection, timing parameters

For the PAR pipeline operations, the CAR requires validated orbital bounds. As described in Subsec-

tion 6.4.1, these constraints must satisfy physical requirements: 𝑟𝐸 < 𝑎𝑚𝑖𝑛 < 𝑎𝑚𝑎𝑥 and 0 ≤ 𝑒𝑚𝑖𝑛 < 𝑒𝑚𝑎𝑥 < 1.

Based on configuration flags, the system routes to either baseline or PAR pipeline. Both pipelines share
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START
Input Validation

(TLE Files, Config)

Pipeline

Selection

Figure 7.2: Step 1 input validation workflow. The system performs hierarchical validation checks on TLE structural format, orbital

element physical bounds, telescope configuration parameters, and temporal consistency. Invalid inputs cause the pipeline to

terminate.

common TLE processing and propagation infrastructure, which is initialised during this step regardless

of path selection.

7.3. Step 2: Baseline Pipeline - Sky Region Generation
The baseline pipeline’s first step generates high-value sky regions by propagating satellites and analysing

their spatial-temporal distribution. This step implements two operational modes: synthetic population

generation via GMM, or direct propagation of the original set of TLEs. The system supports optional

TLE updating from Celestrak repositories. See Figure 7.3. An optional night split mode divides the

observation window into two independent periods. If enabled, it calculates:

𝑡mid = 𝑡start +
Δ𝑡night

2

Period1 = [ 𝑡start , 𝑡mid ]

Period2 = [ 𝑡mid , 𝑡start + Δ𝑡night ]

Each period executes this step independently, enabling comparison of early-night versus late-night

detection efficiency. When direct TLE is enabled, the pipeline propagates the original satellite population

without statistical modelling. This mode preserves exact orbital characteristics from TLEs and eliminates

GMM fitting. This mode is used for validation and initial code testing (and ART testing). When this

is not the case, the system employs GMM (see Section 6.1) to characterise the orbital distribution and

generate synthetic populations. See Algorithm 1. The implementation of GMM fitting was done using

the SKLearn Python package [40]. This package utilises the EM equations described in Section 6.1. The

high-value sky regions identified here correspond to projections of the Search region 𝑆ℋ from Chapter 6

into observable RA-Dec coordinates. Regardless of mode selection, the system propagates all satellites

using SGP4 implementation. The propagation accounts for perturbations described in Subsection 4.4.2.

For each propagated satellite position at each time step, the system evaluates observability criteria,

according to Algorithm 2. Observable positions are aggregated spatially to identify regions with high

satellite density. The sky is discretised into a grid according to Algorithm 3. The histogram uses 48×36

bins and SciPy filter methods with kernel size 3. This output serves as input for Step 3.

7.4. Step 3: Baseline Pipeline - Strategy Generation and Execution
Step 3 generates three distinct surveillance strategies in parallel, executes SPOOK simulations (see

Section 7.1) for each, and compares their detection performance. All strategies operate on the same

sky region database from Step 2, allowing direct comparison. The three baseline scanning patterns

are configured with the parameters specified in Table 7.1. These parameters define the geometric

characteristics of each scanning strategy. The overlap factor for the grid ensures 10% overlap between

adjacent fields to prevent gaps in coverage due to positional uncertainties.

The grid configuration produces a checkerboard pattern covering 0.5 hours in right ascension and 5
◦

in declination per pointing. The declination stripe employs a single 10
◦
-wide strip at constant right

ascension. The RA stripe uses a single 1.0-hour-wide strip at constant declination. These configurations

remained constant across all simulations for each strategy, enabling direct performance comparison.

Three strategies are generated simultaneously (see Chapter 5):

• grid: systematic grid scanning
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Figure 7.3: Step 2 orbital propagation workflow. TLEs or synthetic orbital elements are propagated throughout the observation

window. Each state is transformed to topocentric coordinates and evaluated against observability constraints. Observable

positions are aggregated to form the regions of high interest (sky regions).

Table 7.1: Baseline Scanning Pattern Configuration Parameters

Scanning Pattern Parameter Value

Grid

RA Width 0.5 hours

Dec Width 5.0◦

Overlap Factor 0.1

Declination Stripe

Stripe Width 10.0◦

Number of Stripes 1

RA Stripe

Stripe Width 1.0 hours

Number of Stripes 1
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Figure 7.4: Example output for a single declination stripe: grey points are TLE positions, blue points are observable Monte Carlo

samples, and the yellow dashed stripe shows the high-value declination. The red line is the high-value right ascension. The

yellow highlighted region represents the declination stripe width (the telescope would slew along those values at the fixed right

ascension). The input data consisted of all LEO TLEs from SpaceTrack.

• declination_stripe: scanning along declinations at fixed right ascension

• ra_stripe: scanning along right ascensions at fixed declination

Each strategy loads the high-value regions from Step 2 and generates strategy-specific pointing positions:

• The grid strategy generates pointings covering each region using a uniform spacing with overlap,

see Algorithm 4.

• The declination stripe strategy generates pointings along constant right ascension paths with

multiple positions per stripe according to Algorithm 5.

• The RA stripe strategy generates pointings along constant declination paths, see Algorithm 6.

Each pointing undergoes observability evaluation, and accessible targets are assigned dwell times,

dwell-time is defined as the amount of time the telescope points at a specific pointing. This can be

seen in Algorithm 7. The complete pointing schedule is exported to a .radec file, see Algorithm 8.

The 45-second inter-dwell gap simulates telescope slewing and settling. Each strategy’s .radec file is

executed through SPOOK simulation, producing outputs for Step 6 analysis. An example declination

stripe simulation output is shown in Figure 7.4.

The strategies described in Steps 2-3 represent the baseline approach, where telescope pointings are

determined by predicted satellite distributions without feedback from actual detections. In contrast,

the PAR pipeline introduced in Steps 4-5 implements an adaptive strategy that uses initial detection

information to guide follow-up observations, simulating catalogue generation operations.

7.5. Step 4: PAR Pipeline - Direct Satellite Tracking (Phase 1)
The PAR pipeline diverges from the baseline approach by implementing a two-phase strategy designed

to simulate a realistic detection and follow-up scenario. In an operational setting, the workflow would

proceed as follows: an initial detection of a previously untracked object is made, the CAR/PAR is

formulated based on this detection, and multiple follow-up observation are then scheduled to re-detect

the object. To replicate this scenario in this test environment, Phase 1 tracks catalogued satellites solely

for the purpose of generating synthetic initial detections, which Phase 2 then uses to guide follow-up

observations as if these were real uncatalogued targets. Phase 1 operates differently from the baseline
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Figure 7.5: Step 3 parallel strategy generation. With observability checks including dwell time calculation as input for SPOOK for

result generation.

pipeline’s statistical sky region approach. Rather than identifying high-density regions, it prioritises

acquiring individual tracklets from known satellites to produce the initial detection data required

for subsequent CAR/PAR construction (see Figure 7.6). In practice, these initial detections would

come from survey observations of unknown objects (using e.g. one of the used baseline strategies).

Phase 1 loads satellites from the input TLE file and generates a satellite tracking strategy. For each

satellite, the system identifies observability windows using the same observability constraints as in Step

2. However, instead of aggregating positions into sky regions, Phase 1 selects one optimal observation

window per satellite to simulate a single initial detection event. The algorithm for Phase 1 can be seen

in Algorithm 9. The pointing schedule is exported to a .radec file using the same format as Step 3, with

entries generated for each second of the dwell time and 45-second inter-observation gaps for telescope

slewing. The schedule is then executed through SPOOK simulation. SPOOK generates TDM files

containing the optical tracklets for each detected satellite (see Section 7.1 for more details). These TDM

files serve as the foundation for Phase 2.

PAR PIPELINE
TLE File Configuration

(Update/Subset Creation)

Phase 1: Original

Satellite Tracking

Direct Satellite

Tracking Strategy
Run SPOOK

TLE File

Phase 1 Results

TDM Generation

Figure 7.6: PAR Phase 1 direct satellite tracking strategy. TLE input as in previous steps, followed by pointing generation tracking

observable satellite positions directly.

7.6. Step 5: PAR Pipeline - Real-Time Observations (Phase 2)
Phase 2 implements the PAR pipeline’s adaptive surveillance strategy by processing Phase 1 TDM files

to construct PARs and schedule follow-up observations. See Figure 7.7.

The system begins by grouping Phase 1 TDM files by satellite, extracting NORAD catalogue IDs and

satellite names from each file. For each satellite group, the latest observation epoch across all TDM files

determines the reference time. A processing delay is added to schedule follow-ups with a sufficient

temporal gap, in order to provide meaningful secondary observations according to Algorithm 10.

Figure 7.8 illustrates the AR constructed from a Phase 1 tracklet, showing the bounded region in

range-range-rate space satisfying energy, orbital element, and observability constraints. This AR is used
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Figure 7.7: Phase 2 sequential observation workflow. TDM files from Phase 1 are processed to extract attributables, construct

CARs, compute PARs via GMM sampling, propagate to a common start time, and dynamically schedule observations based on

real-time accessibility.

to generate the PAR using GMM. From the fitted GMM samples are drawn which are propagated to the

reference time + temporal gap. Once this is done for all phase 1-generated TDMs, samples are drawn

uniformly per propagated PAR. These few samples represent the satellites likely state at a certain point

in time. These states are propagated throughout the observation window.

The observation window extends from the start time to either the planned duration or a cutoff time

(default 06:00 local time), whichever occurs first. This is to simulate a single observation night (in

principle multiple nights could be simulated too). The scheduler operates in real-time, propagating

all PAR samples forward and evaluating accessibility at each decision epoch. See Algorithm 11. The

scheduler prioritises samples by elevation (favouring higher elevations for better detection), then by

sky position to maintain systematic coverage. Each selected sample is observed once, and the system

advances by the dwell time plus a 5-second slew duration. This 5-second slew is less than the 45-seconds

applied earlier, the reasoning behind this is the close proximity of the pointings in Phase 2 compared

to Phase 1. The loop continues until the cutoff time or all samples are observed. For Phase 2, dwell

time depends on the angular rate at which the satellite traverses the telescope’s FoV, ensuring the target

remains observable throughout the exposure, see Algorithm 12. The pointing schedule is exported and

converted to the .radec format for SPOOK execution, following the same process as Phase 1.

This produces a certain observation pattern. An example is shown in Figure 7.9. When multiple samples

become accessible in the same region simultaneously, the scheduler observes them before moving

elsewhere. The tight grouping of early observations in this example (0–15) around RA 0–5h occurs

because those sampled were all accessible at the same time. Later observations spread out as samples

moved or different regions became accessible. Each satellite contributes up to 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠-observations,

fewer if samples never satisfy observability constraints during the window.

Phase 2 SPOOK execution generates detection statistics and TDMs, enabling quantitative assessment of

the adaptive PAR strategy versus baseline catalogue tracking.
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Figure 7.8: Example AR constructed from Phase 1 TDM shown in two parameter spaces. Top: range (𝜌) versus range-rate ( ¤𝜌)

space showing the AR bounded by physical constraints. Bottom: semi-major axis (𝑎) versus eccentricity (𝑒) space showing the

triangular constraint region satisfying LEO orbital bounds.

Figure 7.9: Phase 2 observation sequence. Small points: PAR samples (3 per satellite in this example) at observation start time.

Large circles: pointings coloured by sequence (0–22).
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7.7. Step 6: Results Analysis and Strategy Comparison
The final step runs SPOOK, generates results, and possibly generates pointings for ART telescope

observations. See Figure 7.10.

Load Simulation

Parameters

Update SPOOK

Parameters

Run Simulation

Generate Detection
Results (TDMs)

Optional:

ART Pointing Generation

Figure 7.10: Step 6 SPOOK execution and results processing workflow. Simulation parameters are loaded, SPOOK parameters

updated, simulation executed, and detection results (TDMs) generated. Optional ART pointing generation converts results to

telescope-ready observation plans.

Figure 7.11 illustrates the analysis framework comparing telescope pointings, actual detections, and

TLE truth trajectories across both PAR phases. Detection statistics are extracted from SPOOK outputs,

including total detections, crossings and unique detections/crossings. The system computes detection

efficiency (ratio of detected to accessible satellites), coverage efficiency (productive pointings per total

pointings), and statistical distributions of observations per satellite. Having established SPOOK’s

prediction accuracy and the validity of the simulation framework, the following chapter presents the

comparative performance results that address the research questions formulated in Chapter 3.

Figure 7.11: Example TDM analysis comparing telescope pointings versus detections versus TLE truth. Left panels show Phase 1

(top) and Phase 2 (bottom) pointings (squares) and successful detections (circles) with telescope field of view overlays. Right

panel displays the full orbital trajectory from TLE truth (red line) with Phase 1 pointings (blue squares), Phase 2 pointings (green

squares), and corresponding detections (filled circles). NOTE: the FoV outline is for visualisation purposes, and not rotated which

is what SPOOK actually simulates.
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7.8. Algorithms
Algorithm 1 GMM-Based Sky Region Generation

Require: TLEs, number of 𝐾 components, number of 𝑁𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 synthetic satellites

Ensure: Synthetic satellite population

1: Extract orbital elements (𝑎, 𝑒 , 𝑖,Ω, 𝜔) from TLEs

2: Preprocess angular variables to handle wraparound at 0
◦/360

◦

3: Fit GMM using EM algorithm ⊲ See Equation 6.1 - 6.2, and Equation 6.4 - 6.7

4: for 𝑛 = 1 to 𝑁synthetic do
5: Select component 𝑘 with probability 𝑃(𝑘 = 𝑗) = 𝜋 𝑗
6: Sample orbital elements x ∼ 𝒩(𝝁𝑘 ,𝚺𝑘)
7: Sample true anomaly 𝜃 ∼ 𝒰(0, 2𝜋)
8: if orbital elements violate physical constraints then
9: Reject sample and resample

10: end if
11: end for
12: return Synthetic satellite population

Algorithm 2 Observability Check

Require: Satellite state x(𝑡), observer parameters, minimum sun, elevation and moon separation angles

Ensure: Boolean: True if observable, False otherwise

1: Compute sun altitude ℎ⊙ at observer

2: if ℎ⊙ > ℎ⊙,min then ⊲ Sun too high: not in twilight

3: return False
4: end if
5: Transform x(𝑡) to topocentric coordinates

6: Compute topocentric elevation 𝐸𝑙
7: if 𝐸𝑙 < 𝐸𝑙min then ⊲ Below horizon or minimum elevation

8: return False
9: end if

10: Compute moon angular separation Δ𝜃moon

11: if Δ𝜃moon < Δ𝜃moon,min then ⊲ Too close to moon

12: return False
13: end if
14: return True ⊲ All constraints satisfied

Algorithm 3 Sky Region Identification from Observable Positions

Require: Observable objects {(RA𝑖 ,Dec𝑖 , El𝑖 , satellite𝑖 , 𝑡𝑖)}, histogram bin counts, proximity thresholds,

minimum objects 𝑁min, 𝑛stripes

Ensure: High-value sky regions

1: Build 2D histogram of RA vs Dec

2: Apply local maximum filter to identify peaks

3: for each peak do
4: Count nearby objects within proximity thresholds

5: if count ≥ 𝑁min then
6: Compute info score: density ×mean elevation

7: Append region to high-value list

8: end if
9: end for

10: Sort regions by info score (descending)

11: return top 𝑛stripes regions
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Algorithm 4 Grid Generation

Require: High-value regions, FoV dimensions, overlap factor 𝑓overlap

Ensure: Grid pointing list

1: Compute effective spacing:

Δ𝛼 = 𝑤FoV,𝛼 · (1 − 𝑓overlap)
Δ𝛿 = 𝑤FoV,𝛿 · (1 − 𝑓overlap)

2: Initialise empty pointing list 𝒫
3: for each region 𝑅 in high-value regions do
4: Determine grid bounds: [𝛼min , 𝛼max], [𝛿min , 𝛿max]
5: Compute number of RA and Dec bins using effective spacing

6: for each (𝛼𝑖 , 𝛿 𝑗) in RA × Dec bins do
7: Add (𝛼𝑖 , 𝛿 𝑗) to 𝒫
8: end for
9: end for

10: return 𝒫

Algorithm 5 Declination Stripe Generation

Require: High-value regions, stripe width, Telescope config

Ensure: Stripe pointing list

1: for each high-value region 𝑅 do
2: Determine declination centre 𝛿𝑐 and RA centre 𝛼𝑐
3: Compute number of positions along declination using FoV and overlap from telescope config

4: for each declination position 𝛿𝑖 do
5: Add pointing (𝛼𝑐 , 𝛿𝑖) to list

6: end for
7: end for
8: return Stripe pointing list

Algorithm 6 RA Stripe Generation

Require: High-value regions, stripe width (hours), Telescope config

Ensure: Stripe pointing list

1: for each high-value region 𝑅 do
2: Determine RA centre 𝛼𝑐 and Dec centre 𝛿𝑐
3: Compute number of positions along RA using FoV and overlap from telescope config

4: for each RA position 𝛼𝑖 do
5: Add pointing (𝛼𝑖 , 𝛿𝑐) to list

6: end for
7: end for
8: return Stripe pointing list

Algorithm 7 Static Dwell Time Calculation

Require: Exposure time 𝑡exp, number of exposures 𝑁exp, readout time 𝑡read

Ensure: Total dwell time 𝑡dwell

1: 𝑡dwell = 𝑡exp · 𝑁exp + 𝑡read · (𝑁exp − 1)
2: Apply bounds: 𝑡dwell = max(15 s,min(𝑡dwell , 300 s))
3: return 𝑡dwell
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Algorithm 8 Generate .radec File

Require: Accessible pointing list with dwell times

Ensure: Time-stamped .radec file

1: 𝑡current ← 𝑡start

2: for each target (𝛼, 𝛿, 𝑡dwell) do
3: for 𝑡 from 𝑡current to 𝑡current + 𝑡dwell in 1s steps do
4: Write entry

5: end for
6: 𝑡current ← 𝑡current + 𝑡dwell + 𝑡slew ⊲ 𝑡slew = 45s for baseline

7: end for

Algorithm 9 Phase 1 Satellite Tracking Strategy

Require: TLE file, observation window parameters, telescope configuration

Ensure: Satellite tracking schedule with dwell times

1: Load satellites from TLE file using SGP4

2: Initialise empty pointing schedule 𝒮
3: 𝑡current ← 𝑡start

4: for each satellite in TLE file do
5: Propagate satellite using SGP4 over observation window

6: Find observable windows using constraints from Section 7.3

7: if observable windows exist then
8: Select best window: highest elevation, earliest time

9: Extract coordinates (𝛼, 𝛿, 𝑡obs , 𝐸𝑙)
10: Calculate dwell time using Algorithm 7

11: Create pointing: (𝛼, 𝛿, 𝑡obs , 𝑡dwell , sat_id)
12: Add pointing to 𝒮
13: 𝑡current ← 𝑡current + 𝑡dwell + 45 s

14: end if
15: end for
16: Sort 𝒮 by observation time

17: return 𝒮

Algorithm 10 Phase 2 TDM Processing and PAR Generation

Require: Phase 1 TDM, orbital constraints, processing delay Δ𝑡proc, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 number of PAR samples

Ensure: PAR sample clouds for all satellites

1: Group TDM files by satellite (NORAD ID)

2: Identify latest epoch: 𝑡latest = max(all TDM epochs)
3: Compute start time: 𝑡start = 𝑡latest + Δ𝑡proc

4: for each satellite group do
5: Read TDM and compute attributable

6: Create CAR with constraints: 𝑎min , 𝑎max , 𝑒min , 𝑒max (see Subsection 6.4.1)

7: Generate PAR at TDM epoch using GMM (see Section 6.1):

Sample 𝑁GMM = 10,000 samples from fitted GMM

Retain samples within CAR boundaries

8: Propagate PAR from TDM epoch to 𝑡start using J2

9: Sample PAR uniformly: draw 𝑁samples states

10: Store state

11: end for
12: return All PAR sample states
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Algorithm 11 Sequential Real-Time Observation Scheduler

Require: PAR sample states, 𝑡start, 𝑡cutoff, telescope configuration

Ensure: Pointing schedule

1: 𝑡current ← 𝑡start

2: Initialise unobserved samples𝒰 = all PAR samples

3: Initialise schedule 𝒮 = ∅
4: while 𝑡current < 𝑡cutoff and𝒰 ≠ ∅ do
5: Propagate samples in𝒰 to 𝑡current

6: Transform to topocentric coordinates

7: Evaluate accessibility for each sample (constraints from Section 7.3)

8: Filter accessible samples: 𝒜 = {𝑠 ∈ 𝒰 : 𝑠 is accessible}
9: if𝒜 = ∅ then

10: 𝑡current ← 𝑡current + 60 s ⊲ No targets, advance

11: continue
12: end if
13: Sort𝒜: elevation (descending), then RA, then Dec

14: Extract (𝛼, 𝛿, 𝐸𝑙) from𝒜
15: Calculate dwell time using Algorithm 12

16: Create pointing: (𝛼, 𝛿, 𝑡current , 𝑡dwell , sat_id)
17: Add pointing to 𝒮
18: Remove pointing from𝒰 ⊲ Mark as observed

19: 𝑡current ← 𝑡current + 𝑡dwell + 𝑡slew,PAR ⊲ 𝑡slew,PAR = 5s

20: end while
21: return 𝒮

Algorithm 12 Angular Rate-Based Dwell Time Calculation

Require: Satellite state (position, velocity), FoV dimensions 𝑤FoV,𝛼, 𝑤FoV,𝛿

Ensure: Dwell time 𝑡dwell

1: Transform satellite state to topocentric frame

2: Compute angular rates from velocity vector:

¤𝛼 = RA rate (rad/s)

¤𝛿 = Dec rate (rad/s)

3: Compute traversal times:

𝑡𝛼 = 𝑤FoV,𝛼/| ¤𝛼|
𝑡𝛿 = 𝑤FoV,𝛿/| ¤𝛿|

4: 𝑡dwell = min(𝑡𝛼 , 𝑡𝛿)
5: return 𝑡dwell
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Verification and Validation

This chapter validates the PAR pipeline’s observation planning algorithms and SPOOK’s optical

performance model through comparison against real ART observations during September 2025. The

validation campaign considered 73 unique satellites (54 LEO, 19 MEO) from sun-synchronous and

GPS/Galileo orbits. The PAR pipeline generated an observation plan based on simulated visibility and

geometry constraints, and TLEs as an input, as explained in Chapter 7. The observation plan tasked

both SPOOK and ART. ART executed 142 observations during the campaign period, while SPOOK

executed 110 observations. The validation establishes the reliability of the simulation framework used

to generate the results presented in Chapter 9. An illustration of the entire validation workflow can be

found in Figure 8.1.

The validation employs a three-tier approach. First, SGP4-propagated positions, using TLEs as input

for the observation plans, are compared against ART observations to filter detections from non-target

objects that might have passed through the FoV, and to identify which TLEs are accurate enough for

subsequent analysis. Second, validated ART detections of target satellites are cross-referenced with

SPOOK observations to quantify pipeline accuracy. Third, TDM-to-TDM (generated both by SPOOK

and ART) comparison is done at exact measurement epochs for successfully matched pairs. The angular

separation threshold of 200 arcseconds defines the correlation criterion throughout this validation. This

threshold corresponds to expected SGP4 accuracy for same-day orbital elements, typically representing

0.5-1 km position errors at LEO altitudes [51, 24].

8.1. SGP4-ART Validation
The first validation step filters target-object detections from non-target objects that might have crossed

ART’s FoV and establishes which ART observations have sufficiently accurate TLEs to use as baseline

for subsequent pipeline comparison. For each of the 142 ART observations, identified by NORAD

ID in the observation metadata (assigned during telescope tasking), the corresponding TLE from the

73-satellite target catalogue is propagated to the observation epoch using SGP4. The predicted position

(sky coordinate) is compared to the actual ART detection position. If the angular separation is within

200 arcseconds, the TLE is considered accurate enough for subsequent validation steps and the detection

is confirmed as a targeted satellite rather than a non-targeted object. This filtering is necessary because

some TLEs degrade rapidly due to outdated epochs, unmodelled manoeuvres, or orbital perturbations

beyond SGP4’s analytical capability, and because ART detects non-target satellites passing through its

field of view during scheduled observations.

Applying SGP4 propagation with the 200 arcsecond threshold to all 142 ART observations yields 71

validated target detections, representing 50% of the observation sample. This validation rate establishes

the set of target satellites successfully observed during the campaign. The 71 observations that failed

SGP4 validation represent predominantly detections of satellites outside the 73 non-targeted satellite,

as well as observations where TLEs were outdated at the observation epoch or satellites with orbital

perturbations exceeding SGP4 model accuracy, or false detections.

44
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Figure 8.1: Three-tier validation framework.
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Figure 8.2: Validation of angular threshold. Left plot shows drop-off of any new pipeline-TLE correlations after the 200 arcsecond

point in absolute numbers. Right plot shows the same in percentages.

8.2. Pipeline Accuracy
The second validation step quantifies the PAR pipeline’s accuracy by comparing its 110 observations

generated by SPOOK against the 71 validated ART detections established in the previous section. A

match is defined as a SPOOK observation and validated ART detection for the same NORAD ID. The

NORAD ID comes from the input TLEs and is used in the naming of the task scheduled both for SPOOK

and ART, allowing for comparisons.

Cross-referencing the 71 validated ART detections against SPOOK observations yields 70 matches.

From the ART perspective, the pipeline correctly predicted 70 of 71 observations successfully observed

by ART. This 98.6% detection capture rate demonstrates that when ART observes a target satellite with

good TLE quality, the pipeline almost always predicted that observation. From the pipeline perspective,

70 of 110 observations were confirmed by ART observations, representing 63.6% accuracy. The pipeline

accuracy quantifies how often SPOOK (and therefore the pipeline) observations prove correct when

compared against actual telescope observations.

The 40 unmatched observations represent satellites below ART’s detection capability, observations

during cloud cover or unfavourable atmospheric conditions, or observations at low elevation angles

with excessive atmospheric refraction.

The 1 validated ART detection without corresponding SPOOK observation represents a target satellite

that was included in the generated observation plan, successfully observed by ART with validated SGP4

propagation, but not observed by SPOOK despite being generated in the pipeline’s observation plan.

This shows a mismatch between SPOOK and reality. Possible explanations include algorithm gaps

where visibility constraints caused an incorrect rejection of these passes or temporal boundary effects

where observation at accessibility window edges were filtered by temporal constraints.

Figure 8.2 validates the angular separation threshold. The left plot displays the cumulative number

of ART/TLE correlations as the angular threshold increases, as well as a line that represents if that

correlated TLE was detected by SPOOK. The plateau after 200 arcseconds indicates that increasing the

threshold beyond this point produces no additional valid correlations, confirming that 200 arcseconds

captures all legitimate matches. The right plot presents the same data in percentage form. The starting

gap between ART and SPOOK observations is the 1 ART detection that has no SPOOK counterpart.

Breaking down the 70 successful correlations by orbital regime yields 43 LEO matches and 27 MEO

matches. The predominantly LEO validation sample reflects the observing campaign’s focus on low

Earth orbit targets. The MEO correlation was done for testing and comparison purposes before moving

on to LEO.

Figure 8.3 presents the error statistics for the ART detections compared to SGP4. The top left plot

shows the error distributions for both RA and Dec centre near zero, indicating no pointing bias in

either coordinate. The roughly Gaussian error distribution suggests random propagation uncertainties

dominate over systematic errors. Mean angular separation across all matches is 40.53 arcseconds and
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standard deviation 61.18 arcseconds. This mean error lies well within expected SGP4 performance for

same-day TLE propagation, where 1-3 km position errors translate to approximately 150-250 arcseconds

at typical LEO altitudes [24]. The top right plot shows that the direction of the RA and Dec errors is

uncorrelated, as indicated by the symmetric scatter across all quadrants. However, the magnitude of both

errors shows a linear relationship. The bottom left plot displays practically no (or very weak) correlation

between propagation time and position error, indicating TLE quality hardly impacts prediction accuracy

within the same-day propagation timeframe of this dataset. This indicates that the 71 unmatched ART

observations are due to non-target objects passing through the FoV during exposures. The bottom

right plot shows the same data as the bottom left plot with error bars representing standard deviation

across multiple measurements within each tracklet, demonstrating measurement consistency for most

satellites (note the logarithmic axis).
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Figure 8.3: Error analysis ART-SGP4. Top left plot shows distribution of RA and Dec errors with near-zero mean and

near-symmetric spread. The top right plot shows that the direction of the RA and Dec errors is uncorrelated, as indicated by the

symmetric scatter across all quadrants. However, the magnitude of both errors shows a linear relationship. Bottom left plot

displays very weak correlation between propagation time and position error, indicating TLE age effects are minimal. Bottom right

plot shows the same data as the bottom left plot with error bars representing standard deviation across multiple measurements

within each tracklet.

8.2.1. Redetection Validation
Analysis of the 70 validated correlations reveals same-night redetection capability. Among the matched

satellites, SPOOK made Phase 1 and Phase 2 observations for 20 satellites: 12 LEO cases and 8 MEO

cases. Of these observations, ART observed 12 redetections (4 LEO, 8 MEO). Comparing these yields a

redetection validation rate of 60.0% (12 of 20 pipeline-predicted redetections confirmed by ART). This

rate is comparable to the overall 63.6% pipeline accuracy, which would be expected if redetections do

not alter the accuracy of the SPOOK detections. Nevertheless, regime analysis shows that while MEO

has a 100% redetection rate, LEO has a much lower rate (33.33%). The lower rate for LEO is likely the

increased difficulty in reacquiring fast-moving LEO objects for Phase 2 observations, which have shorter
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time windows and are not as precise as Phase 1 observations (Phase 1 uses direct SGP4 pointing while

Phase 2 relies on admissible regions).

The mean temporal offset between the correlated Phase 1 and Phase 2 observations was 101.1 minutes

for LEO, and 21.3 minutes for MEO (MEO’s longer visibility windows allow Phase 2 observations within

the same pass, while LEO’s shorter windows require waiting for subsequent passes), demonstrating

a sufficient gap between observations for tracklet correlation. The 60.0% redetection validation rate

demonstrates the PAR pipeline’s two-phase approach functions as designed when implemented on real

hardware. Table 8.1 shows a summary of the validation statistics.

Table 8.1: Summary statistics for pipeline-ART validation

Metric MEO LEO Total Unit
Dataset
Pipeline observations 31 79 110

ART observations 54 88 142

Validated ART target detections 27 44 71

Matched correlations 27 43 70

Pipeline redetections 8 12 20

ART observed redetections 8 4 12

Success Rates
Detection capture rate 100.0 97.73 98.6 %

Pipeline accuracy 87.10 54.4 63.6 %

Redetection validation rate 100.0 33.33 60.0 %

Angular Accuracy
Min separation 0.03 0.26 0.03 arcsec

Mean separation 49.97 34.60 40.53 arcsec

Median separation 0.41 5.35 5.17 arcsec

Max separation 195.02 199.02 199.02 arcsec

Standard deviation 64.26 58.40 61.18 arcsec

8.3. TDM-to-TDM Comparison
As supplementary validation, TDM-to-TDM (see Appendix B) comparison examines positional accuracy

at observation epoch by interpolating (or extrapolating if there is no time overlap) predicted positions

to match ART measurement times. For each matched pair, observation epochs are extracted from ART

TDM files (typically 5-10 measurements per tracklet), SPOOK predicted positions are interpolated to

these exact epochs, and angular separation is computed using spherical trigonometry. Aggregating

statistics across all measurement pairs yields 487 total comparison points with mean angular separation

86.2 arcseconds, median 83.7 arcseconds, and a maximum separation of 197.8 arcseconds.

Of the 70 matched correlations, only 16 produced usable TDM-to-TDM comparisons. The reduced

sample size results from SPOOK’s photometric model limitations. When SPOOK generates TDMs, no

light-time corrections are applied. Moreover, SPOOK simulates all objects as perfect 1-metre diameter

spheres with albedo 0.1. For satellites with complex geometries, large solar panels, or unusual aspect

ratios, this simplified model produces brightness predictions that differ significantly from reality. If

the predicted magnitude falls outside ART’s detection range or the geometric model produces poor

position estimates, the TDM cannot be reliably matched. The 16 successful TDM-to-TDM comparisons

provide valuable positional accuracy validation.

To illustrate the range of validation performance, three representative cases are described. NORAD 27663

(MEO, Table B.2) achieves an angular accuracy of 34.3 arcseconds. This precision demonstrates SPOOK’s

capability for accurate predictions in stable orbital regimes. NORAD 36036 (LEO, Table B.3) shows

similar performance with 33.2 arcsecond angular error, consistent with expected TLE accuracy for same-

day orbital elements. NORAD 40011 (LEO, Table B.15) shows angular error near the upper validation

threshold at 197.8 arcseconds, yet remains within the correlation criterion. Despite representing

near-maximum observed error, this case validates SPOOK’s prediction accuracy, with larger discrepancy

likely reflecting differential TLE quality or atmospheric drag effects.
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Physical characteristics extracted from ART and SPOOK TDMs provide additional validation dimensions.

SNR varies significantly between targets, with some achieving SNR exceeding 140 while others exhibit

SNRs near 7 (see Appendix B). While these values are well within observation limits (≥2), photometric

validation shows magnitude prediction irregularities across the observations. Some targets demonstrate

photometric consistency within 0.1-0.5 magnitudes, while others exhibit multi-magnitude discrepancies.

Satellite brightness depends on geometry, surface materials, attitude dynamics, and solar illumination

phase angle. Tumbling satellites, complex spacecraft geometries, and specular reflections from solar

panels produce highly variable brightness, none of which are accounted for in the photometric model in

SPOOK. NORAD 59588 is a noticeable case that includes solar sails where magnitude prediction errors

exceed 5 magnitudes. These photometric limitations do not impact positional validation but indicate

areas for future model refinement.

A summary of some of the above mentioned data can be found in Table 8.2. Lastly, in Appendix C, some

examples of ART images can be seen.

Table 8.2: Summary statistics for pipeline-ART TDM-to-TDM comparison

Metric Value Unit
Temporal Overlap
Mean 16.88 seconds

Median 3.00 seconds

Standard deviation 52.23 seconds

Range 1.00 – 219.00 seconds

Magnitude Difference
Mean 1.59 –

Median 1.15 –

Standard deviation 1.19 –

Range 0.13 – 4.22 –

8.4. Summary
The validation establishes the PAR pipeline’s observation planning methodology through comparison

with ART observations. The detection capture rate indicates that when ART successfully observes a

target satellite with accurate TLEs, SPOOK made the same observation in 98.6% of cases. The pipeline

accuracy indicates that 63.6% of pipeline observations were confirmed by actual ART observations.

The validation results establish the credibility of the PAR pipeline and SPOOK simulation framework

for the strategy analysis presented in Chapter 9. The 63.6% pipeline accuracy and strong positional

accuracy (mean 40.53 arcseconds, within SGP4 expected performance) demonstrate that the pipeline

produces realistic predictions of telescope observations. The 60.0% redetection validation rate further

confirms that the PAR pipeline’s two-phase strategy functions as intended when implemented on a real

telescope.
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Results

This chapter presents results from surveillance evaluations conducted using the PAR simulation

framework across LEO and MEO satellite populations. SPOOK served as the optical performance

model for all simulations. The evaluation addresses the research questions formulated in Chapter 3

through controlled experiments comparing surveillance strategies. The primary analysis focuses on LEO

sun-synchronous orbit satellites from Space-Track (1,562 satellites), with comparative MEO validation

presented in Section 9.4.

The chapter is structured to address each research question sequentially. Section 9.1 examines the

performance of different scanning patterns in detecting LEO satellites (Sub-Question 1). Section 9.2

compares the redetection capabilities of PAR-based and baseline surveillance approaches (Sub-Question

2). Section 9.3 analyses the sensitivity of PAR performance to parameter variations (Sub-Question 3).

Finally, Section 9.5 combines these findings to address the main research question regarding optimal

surveillance strategies for LEO catalogue generation.

9.1. Scanning Pattern Performance
Three scanning patterns were evaluated to determine their effectiveness in detecting LEO satellites:

declination stripe scanning, right ascension stripe scanning, and grid scanning. Each strategy was tested

across 22 observation simulations representing different observation dates and times. The temporal

variation results in different satellite positions and visibility windows while maintaining constant

telescope parameters. The evaluation simulated observations of 1,562 SSO satellites per simulation,

with exposure times varied between 0.2 and 3.0 seconds and observation durations of 10 hours.

The telescope operates from 38.2°N, 6.6°W at 570m elevation with a 3.18
◦ × 2.39

◦
field of view and

minimum elevation angle of 20
◦
. Observations were restricted to nautical twilight conditions (Sun

elevation ≤ −9
◦
) to ensure satellites remained illuminated while the sky background was sufficiently

dark for detection. The declination stripe pattern scans a 20
◦

wide band across fixed declination ranges.

The grid pattern samples 2 hours of right ascension by 5
◦

declination cells. The RA stripe orientation

spans 4 hours of right ascension. Strategy configurations are detailed in Table 7.1. The centre of

the stripes and grid was determined using the GMM approach described in Chapter 7. Using 1,562

TLEs, and propagating them over a 10-hour window, a synthetic population was made. The highest

density region was then selected for the centre point of the baseline strategies. Using the night-split

mode (dividing observation windows into two independent periods, see Chapter 7), redetections were

attempted. Different high-density regions were identified for the 2 different portions of the night. The

goal is to get as many objects as possible to pass through the stripe or grid at the beginning of the night

and to get those same objects to pass through the FoV again towards the end of the night.

9.1.1. Detection Performance
Table 9.1 presents the detection performance for each scanning pattern. Declination stripe and grid

scanning achieved equivalent detection rates of 0.0116%, corresponding to 0.18 satellites detected per

50
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10-hour observation session. RA stripe scanning produced zero detections across all 22 simulations.

These detection rates are effectively zero for practical surveillance purposes, with less than one satellite

detected per 10-hour observation session on average.

Table 9.1: Scanning Pattern Detection Performance

Strategy Simulations Detection Rate (%) Unique Detections

Grid 22 0.0116 ± 0.0253 0.18 ± 0.39

Declination Stripe 22 0.0116 ± 0.0253 0.18 ± 0.39

RA Stripe 22 0.0000 ± 0.0000 0.00 ± 0.00

The equivalent performance of declination stripe and grid scanning reflects similar effective sky coverage

patterns under the simulated conditions. Both approaches achieve similar intersection probabilities with

SSO satellite trajectories from the telescope’s mid-latitude location. The absence of detections from RA

stripe scanning indicates that the 4-hour wide RA stripe orientation misaligns with the predominantly

north-south ground track motion of SSO satellites as viewed from 38°N latitude. However, the

performance of all three baseline strategies indicates that detections are rare.

9.1.2. Redetection Capability
Baseline scanning methods achieved zero redetections. All eight satellites detected across the 22

simulations were observed exactly once. This demonstrates a limitation of fixed-pattern surveillance:

without incorporating prior detection information, redetection within the same observing session

is highly unlikely. The detection rate calculation is averaged across all 22 independent simulations,

each representing a separate 10-hour observation session. The night-split mode did not mitigate this

shortcoming, this indicates that baseline methods cannot effectively enable follow-up observations

required for IOD. However, given the practically 0% detection rate across all baseline strategies, it is

unlikely to achieve a redetection. Therefore, concluding that effective follow-ups are not possible using

baseline strategies comes from the fact that general detection rate are extremely low for LEO objects.

Important to note is that many objects in LEO have short and fairly irregular observation windows (w.r.t.

the location of the simulated telescope). As a result, simply splitting the night into two 5 hour windows

severely limits the possibility for redetection. Indeed, a better way would be to estimate the specific

position of each satellite and calculate their observation windows.

9.2. Redetection Rate Comparison
The PAR pipeline operates in two distinct phases designed to enable multi-epoch observations for

IOD. Phase 1 uses SGP4 propagation using TLEs to identify when satellites are observable and

generates observation schedules targeting these predicted passes. This approach aims to simulate a first

observation for which a follow-up will be scheduled. Phase 2 evaluates whether satellites successfully

detected in Phase 1 can be redetected during subsequent observation opportunities using PAR-derived

pointings from the initial tracklet.

9.2.1. Phase 1: Initial Detection
Phase 1 tested 1,562 unique SSO satellites for initial detection for a total of 3,911 total simulations. These

satellites represent the subset of the SSO catalogue selected across multiple evaluation simulations with

varying parameter configurations. In total, 2,897 simulations achieved successful Phase 1 detections,

representing 74.07% of all simulations. This discrepancy is in part due to TLE/SGP4 errors, but mostly

because of observation window overlap, and lack of accessibility to the telescope, meaning not all objects

could physically be observed during the observation window.

From the successful Phase 1 detections, 194 simulations had Phase 2 follow-ups. The limited Phase 2

sample size (compared to Phase 1) reflects the fact that many satellites lacked suitable second observation

windows due to unfavourable geometric conditions.
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9.2.2. Phase 2: Follow-up Redetection
Phase 2 evaluated the capability of the PAR pipeline to redetect satellites during subsequent observation

opportunities. Of the 194 simulations in Phase 2, 46 achieved successful redetections, corresponding

to a redetection rate of 23.71% (Table 9.2). At the satellite level, 15 of the 31 unique satellites (48.4%)

achieved at least one successful redetection across their various observation nights.

Table 9.2: Redetection Rate Comparison

Method Mean Rate (%)

PAR 23.71

Grid 0.00

Declination Stripe 0.00

RA Stripe 0.00

The redetection rate of 23.71% represents simulations for which predicted admissible regions successfully

guided telescope pointings to achieve follow-up observations. This rate is significantly higher than the

0% redetection rate observed for all baseline scanning methods.

The 76.29% of configurations that did not achieve redetection reflect several limiting factors. The

time span between the observation windows varies greatly between objects. One object might be

accessible again within an hour of initial detection, while the other only at the end of the night (≈ 8 hour

difference at times). Furthermore, PAR prediction accuracy depends on the quality of the initial tracklet.

Satellites with brief initial observations or unfavourable viewing geometry produce larger admissible

regions, decreasing the likelihood that telescope pointings intersect the satellite’s actual trajectory. The

combination of the separation of observation windows, large admissible regions for some targets, J2

propagation limitations, and unfavourable viewing geometry accounts for the majority of unsuccessful

redetections.

9.3. Parameter Sensitivity Analysis
Correlation analysis between parameter values and detection success across the satellites that achieved

successful redetection (see Table 9.3) shows observation duration (the time allocated to each Phase 1

surveillance session, ranging from 0.01 to 10 hours) as the primary factor affecting success rate (r = 0.275).

Longer observation sessions provide more Phase 1 detection opportunities, outweighing the reduction

in time available for Phase 2 follow-up. PAR sample density (r = -0.142) and eccentricity constraints

(r = -0.102) exhibit weak negative correlations. However, examination of the parameter distributions

(Figure 9.1) reveals these correlations are driven by extreme bins with small sample sizes (n < 50)

while well-sampled bins (n > 1000) show consistent performance around 70–72%. All other parameters

show negligible correlation (|𝑟| < 0.05). These patterns suggest PAR configuration parameters have

minimal systematic impact on redetection success within the parameter ranges tested in this work, with

observation duration as the dominant factor. One parameter not observed is the time separation between

Phase 1 and Phase 2 observation windows, which depends on both satellite accessibility windows

and the pipeline’s accuracy in building admissible regions and propagating samples. Although not

quantified in this work, this temporal separation may dominate redetection success, suggesting that

satellites with narrowly separated observation windows could be better candidates for PAR-based

follow-ups.

Table 9.3: PAR Parameter Sensitivity Analysis

Parameter Correlation Values Tested Unit

Duration 0.275 0.01–10.0 [hrs]

PAR Samples -0.142 3, 5, 10, 20, 50

Eccentricity Max -0.102 0.01, 0.05, 0.1, 0.15, 0.2

Exposure Time -0.028 0.1, 0.2, 0.5, 1, 2, 3, 5 [s]

Semi-major Axis Max 0.005 8000, 8500, 9000 [km]

Semi-major Axis Min -0.001 6500, 7000, 7500 [km]
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Figure 9.1 presents success rate distributions across parameter ranges for simulation attempts involving

satellites that achieved at least one successful redetection. Success rate represents the percentage of

attempts achieving redetection within this filtered subset. Bins are colour-coded: green (> 70%), yellow

(40–70%), red (< 40%).

Within this subset of redetectable satellites, observation duration shows the clearest pattern, with

success rates increasing from 26.1% for sessions under 1 hour to 74.8% for sessions exceeding 10 hours.

Eccentricity constraints demonstrate that tighter limits (≤ 0.1) achieve 70–74% success rates compared

to 43–48% for looser constraints (> 0.15). All other parameters show flat distributions with success rates

near 71–72%, indicating minimal variation within the tested ranges for satellites that are fundamentally

redetectable. This success rate distribution reflects the correlation coefficients presented in Table 9.3.

However, the low success rates for extreme parameter values (14 PAR samples: 35.3%, n=34; eccentricity

> 0.15: 43–48%, n=28–21) should be interpreted cautiously due to small sample sizes compared to larger

bins (n=1200–1400). The negative correlations may reflect insufficient sampling of certain configurations

rather than systematic effects.
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Figure 9.1: LEO success rate distributions for satellites achieving at least one successful redetection (filtered subset). Bins

colour-coded: green (> 70%), yellow (40–70%), red (< 40%). Duration and eccentricity show clear patterns. Other parameters

exhibit minimal variation.

9.4. MEO Catalogue Comparison
To evaluate the regime-dependence of surveillance approaches, the pipeline was tested on MEO satellites.

While LEO surveillance represents the primary research focus, MEO results provide insight into how

orbital regime affects detection and redetection performance.
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9.4.1. MEO Detection Performance
Unlike LEO surveillance, baseline scanning methods achieve substantial detection rates for MEO targets.

Declination stripe scanning achieved 17.95% detection rate, followed by grid scanning (11.17%) and

RA stripe scanning (7.86%) across 9 simulations each (Table 9.4). These rates are orders of magnitude

higher than the negligible detection rates observed for LEO baselines (0.0116%, Table 9.1).

Table 9.4: MEO Scanning Pattern Detection Performance

Strategy Simulations Detection Rate (%) Unique Detections

Declination Stripe 9 17.95 ± 7.82 2.56 ± 1.13

Grid 9 11.17 ± 5.24 2.11 ± 1.27

RA Stripe 9 7.86 ± 8.46 1.44 ± 1.51

The improved baseline performance reflects differences between orbital regimes. MEO satellites exhibit

slower angular motion, resulting in longer observation arcs and increased intersection probability with

fixed scanning patterns. The telescope’s 3.18
◦ × 2.39

◦
FoV captures MEO satellites for longer durations

than for LEO, enabling detection with predetermined pointing strategies.

9.4.2. MEO Redetection Performance
MEO redetection rates demonstrate the regime-dependence of surveillance difficulty (Table 9.5). The

PAR pipeline achieved 91.94% redetection rate, while baseline methods achieved 49–62% redetection

rates. These rates contrast with LEO performance, where PAR achieved 23.71% and baselines achieved

0%.

Table 9.5: MEO Redetection Rate Comparison

Method Mean Rate (%)

PAR 91.94

Declination Stripe 62.02

RA Stripe 58.46

Grid 49.08

The high success rates across all methods indicate that MEO redetection is easier than LEO redetection.

Longer Phase 1 observation arcs produce more accurate initial orbit estimates, while slower satellite

motion results in slower admissible region growth during propagation. The combination enables

successful redetections even with baseline scanning patterns, which fail entirely for LEO targets.

Moreover, large observation windows allow more redetections to occur over a larger period of the

observation night, increasing rates.

PAR’s advantage persists (91.94% vs 49–62% for baselines) but is less pronounced than in LEO, where

PAR provided the only viable redetection capability. This demonstrates that PAR’s value increases with

surveillance difficulty.

9.4.3. MEO Parameter Sensitivity
MEO parameter correlations exhibit similar patterns to LEO (Table 9.6). Observation duration shows

weak positive correlation (r = 0.150), while all other parameters show negligible effects (|𝑟| < 0.10). The

weaker duration correlation compared to LEO (r = 0.275) reflects the overall higher success rates: when

most configurations succeed, parameter variations matter less.

Success rate distributions for MEO demonstrate consistently high performance (94–100%) across all

parameter ranges, contrasting with LEO’s wider variation (26–75%). This high success indicates that

MEO surveillance is less sensitive to configuration choices.

9.5. Main Research Question: Strategy Effectiveness
The evaluation results address the main research question: Which surveillance strategy most effectively
contributes to LEO catalogue generation? For LEO satellites, the PAR pipeline achieved a 23.71% redetection
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Table 9.6: MEO Parameter Sensitivity Analysis

Parameter Correlation Values Tested

Duration 0.150 0.01–10.0 hrs

Semi-major Axis Min -0.051 10,000, 12,000, 16,000 km

Eccentricity Max -0.036 0.01–0.2

Semi-major Axis Max -0.032 20,000, 25,000, 35,000 km

Exposure Time -0.030 0.1–5.0 s

PAR Samples -0.027 10, 20, 50

rate across 194 Phase 2 attempts, while all baseline scanning methods produced zero redetections.

MEO comparison results demonstrate that surveillance difficulty is regime-dependent. MEO baselines

achieved 49–62% redetection rates while PAR achieved 91.94%, indicating that traditional methods can

work for MEO but fail for LEO.

Table 9.7 presents the LEO redetection rate comparison. The absence of redetections in LEO baseline

scanning means these strategies contribute minimally to LEO catalogue generation, as follow-up

observations necessary for IOD cannot be achieved.

Table 9.7: Redetection Rate Comparison: PAR vs Baseline Methods (LEO)

Method Mean Redetection Rate (%)

PAR 23.71

Baseline 0.00

When successful, these redetections enable IOD as multiple observations separated by hours sufficiently

constrain the unobserved range and range-rate parameters that cannot be determined from single-pass

angular observations alone.
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Conclusion and Future Work

10.1. Conclusion
This research evaluated surveillance strategies for LEO catalogue generation through SPOOK simulations

and observational validation against ART telescope data from September 2025. The investigation

compared three baseline scanning patterns (declination stripe, right ascension stripe, grid) against a

two-phase admissible region pipeline across LEO and MEO orbital regimes. Baseline scanning methods

achieved detection rates of 0.0116% for declination stripe and grid patterns. Right ascension stripe

scanning produced no detections. These results indicate that these patterns do not effectively observe

SSO objects at ART’s latitude (see Appendix A). The equivalent performance of declination stripe and

grid scanning suggests both patterns provide comparable coverage under the tested conditions. No

baseline method achieved redetections within observation periods, all satellites detected were observed

exactly once.

The PAR pipeline achieved a 23.71% redetection rate compared to 0% for all baseline methods.

Of 194 satellites tested in Phase 2 follow-up observations, 46 were successfully redetected. This

redetection capability provides the multiple observation epochs separated in time required for orbit

determination beyond the precision achievable from single tracklets. Validation using MEO satellites

revealed that surveillance difficulty is strongly regime-dependent. MEO baseline methods achieved

49–62% redetection rates compared to (≈ 0%) for LEO baselines, while PAR achieved 91.94% for MEO

versus 23.71% for LEO. The improved performance across all methods for MEO reflects differences in

observability. Slower angular motion produces longer observation arcs and slower admissible region

growth. This regime comparison demonstrates that PAR provides value across orbital regimes but is

most critical where baseline methods fail entirely, specifically, for fast-moving LEO targets.

Parameter sensitivity analysis revealed that PAR performance is largely insensitive to configuration

choices within operationally relevant used parameter ranges. Observation duration emerged as the

primary factor, with longer sessions enabling more Phase 1 detections despite reducing Phase 2

follow-up time. Exposure time (0.1–5.0 seconds), semi-major axis constraints (6500–9000 km), and PAR

sample density (3–50 samples) showed minimal systematic effects on success rates, with well-sampled

parameter ranges consistently achieving 70–72% success rates among redetectable satellites. This

parameter insensitivity demonstrates PAR robustness across configurations.

Validation against ART observations established pipeline accuracy through correlation of 70 detections

of the 110 predictions (63.6% accuracy). Mean angular separation between SPOOK predictions and

validated ART measurements was 40.53 arcseconds, consistent with expected SGP4 propagation accuracy

for same-day TLE elements. Same-night redetection validation demonstrated 60.0% operational success

rate, confirming PAR pipeline performance for Phase 1 detection and Phase 2 follow-up scenarios. The

validation confirmed SPOOK’s reliability as an optical performance model and the pipeline’s working.

The results establish that surveillance strategy effectiveness depends on orbital regime. For LEO

surveillance, where rapid motion and brief observation windows challenge fixed-pattern methods,

56
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PAR-based approaches provide considerably more redetections necessary for orbit determination. For

MEO surveillance, both fixed-pattern and PAR approaches achieve high success rates, though PAR

maintains superior performance. The computational requirements of AR calculation, propagation, and

scheduling represent justified costs when redetection capability is critical.

10.2. Future Work
The results presented in this thesis establish the performance advantages of PAR-based surveillance

over traditional scanning methods for LEO catalogue generation. However, several limitations in the

experimental scope and methodology present opportunities for extension and refinement.

The evaluation campaign comprised 22 simulations per strategy, with validation data limited to

September 2025 observations. This constraint restricts analysis to a single seasonal configuration and

does not capture variations in satellite population distribution, atmospheric conditions, geometric

observability, or night lengths at different times of year. Extension of the evaluation period to span

multiple seasons would enable assessment of seasonal effects on detection performance and validation

of strategy robustness under varying environmental conditions.

Future work should prioritise quantifying observation window separation between Phase 1 and Phase 2

(or equivalent). This factor may dominate redetection success beyond the configuration parameters

evaluated in this work.

This work evaluated single-sensor performance. Extension to multi-sensor configurations would

enable investigation of distributed networks at different locations, different sensor capabilities, and

coordinated surveillance strategies to constrain ARs more rapidly than single-sensor approaches. This

could potentially result in faster follow-ups, leading to a smaller AR.

The evaluation focused on sun-synchronous orbits with near-circular trajectories. Several orbital

populations remain unexamined, including highly eccentric orbits, satellites transitioning between LEO

and higher orbits, and the full inclination space from equatorial through polar orbits. Testing across this

broader orbital parameter space would establish strategy performance beyond the near-polar inclination

bias of the SSO population.

The current PAR implementation samples uniformly in range and range-rate space when tasking the

telescope (when points are propagated continuously, checked for accessibility and scanned, after the

initial time for Phase 2). This approach treats all points within the AR boundary as equally probable.

Implementing sampling from a fitted probability density function (through implementation of a GMM

fit) prior to propagation would concentrate samples in high-likelihood regions and potentially improve

detection efficiency.

Several simplifications in the observation model present opportunities for increased fidelity. SPOOK

models all satellites as 1-metre diameter perfect spheres. Incorporating shape models would improve

brightness predictions and therefore detection predictions and validation. The PAR propagation model

incorporates J2 perturbations but neglects atmospheric drag. Incorporating drag would require defining

atmospheric density models and introducing ballistic coefficient as an additional constraint in the AR

formulation, extending the constraint space to higher dimensions.

The parameter sensitivity analysis examined six variables within limited ranges. Several parameters

merit expanded investigation, including extended eccentricity ranges to encompass highly eccentric

orbits (when simulated), introduction of inclination constraints (if implemented in the AR) across the

full orbital inclination spectrum, and extension of sampling density ranges to determine saturation

behaviour.

Three baseline scanning patterns were evaluated. Additional strategies merit investigation, including

adaptive grid spacing based on predicted satellite density, spiral scanning patterns for continuous

coverage, and stare-and-chase strategies for maximum SNR are some examples. The current evaluation

compares one prior knowledge based method vs 3 coverage based methods without examining other

prior knowledge strategies. Including other strategies that are built for follow-up might show more

insightful results.

The validation campaign compared SPOOK predictions against ART observations for known satellites.
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Operational catalogue generation requires detecting and tracking initially unknown objects. Field

testing should include detection campaigns without prior knowledge followed by PAR-based follow-up,

same-night reacquisition attempts to determine maximum time gaps for successful PAR application,

and assessment of whether PAR-guided observations provide sufficient information for accurate orbit

determination.

This work relied exclusively on TLE sets with SGP4 propagation for orbital modelling. Incorporating

alternative orbital representations could improve both simulation fidelity and validation accuracy.

Extending the observation campaigns by simulating more nights as well as additional validation nights

would strengthen the statistical significance of these findings.



A
ART Specifications

Table A.1: Airbus Robotic Telescope (ART) specifications.

Location Extremadura, Spain

(Lat., Long., Alt.) (38.21607
◦
, -6.62778

◦
, 570 m)

Tracking types Surveillance, tracking

Tasking methods Scheduler

Data format FITS, CCSDS TDM

Accuracy (1-𝜎) < 0.5 arcsec MEO, < 5 arcesc LEO.

Parameter ASA H8 ASA H400
Aperture diameter [mm] 200 400

Focal length [mm] (f-ratio) 590 (2.95) 960 (2.4)

Camera FLI ML11002 Moravian G5-150M

Detector type CCD, Interline CMOS, Back-illuminated

Shutter Global Rolling

Detector size [px] 4008×2672 14208×10656

Pixel size [𝜇m] 9.00 3.76

Pixel scale [”/px] 3.15 0.80

Field of view [deg] 3.50×2.34 3.18×2.39

Filters Clear, UBVRI and empty Empty and BVRI

Sensor peak QE [%] 50 ≈ 90

Typical readout time full frame <10 s < 1.5 s

Figure A.1: ART’s two-telescope configuration on June 2023.
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B
ART - SPOOK TDM Correlation

Table B.1: SPOOK-ART validation for LEO satellite NORAD 4327

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 02:28:59 - 02:29:12 02:29:00 - 02:29:09 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 9.14 - 9.27 9.21

0.15

ART 8.88 - 9.21 9.06

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 125.94 57.96

<85 arcsec

ART 125.89 57.96

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 34.52 - 36.38 Excellent detection quality
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Table B.2: SPOOK-ART validation for MEO satellite NORAD 27663

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 02:28:52 - 02:32:32 02:28:53 - 02:32:34 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 11.46 - 11.47 11.47

0.90

ART 12.23 - 12.56 12.37

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 27.17 21.13

<34 arcsec

ART 27.17 21.14

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 45.31 - 45.48 Excellent detection quality

Table B.3: SPOOK-ART validation for LEO satellite NORAD 36036

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:23:59 - 19:24:06 19:24:00 - 19:24:05 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 7.26 - 7.29 7.28

0.77

ART 6.39 - 6.58 6.51

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 140.85 70.12

<33 arcsec

ART 140.88 70.12

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 74.49 - 74.82 Excellent detection quality
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Table B.4: SPOOK-ART validation for LEO satellite NORAD 36122

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 04:25:05 - 04:25:20 04:25:15 - 04:25:21 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 11.20 - 11.32 11.26

1.19

ART 9.43 - 10.56 10.07

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 286.95 68.79

<22 arcsec

ART 286.96 68.78

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 12.99 - 13.60 Good detection quality

Table B.5: SPOOK-ART validation for LEO satellite NORAD 37214 (Passes 1-2)

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:18:00 - 19:18:03 19:18:00 - 19:18:04 0.0 sec

Pass 2 20:58:16 - 20:58:19 20:58:14 - 20:58:20 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
Pass 1 SPOOK 5.61 - 5.62 5.62

1.11

ART 4.38 - 4.65 4.51

Pass 2 SPOOK 6.89 - 6.89 6.89

0.13

ART 6.09 - 7.24 6.76

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 350.07 6.48

<157 arcsec

ART 350.09 6.52

Pass 2 SPOOK 271.03 -13.66

<31 arcsec

ART 271.03 -13.67

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Pass 1 Signal-to-Noise 141.57 - 142.13 Excellent detection quality

Pass 2 Signal-to-Noise 79.50 - 79.57 Excellent detection quality
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Table B.6: SPOOK-ART validation for LEO satellite NORAD 37214

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 20:04:29 - 20:04:31 20:04:30 - 20:04:32 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 4.89 - 4.91 4.90

1.59

ART 3.28 - 3.33 3.30

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 316.43 53.07

<84 arcsec

ART 316.43 53.04

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 138.38 - 139.28 Excellent detection quality

Table B.7: SPOOK-ART validation for LEO satellite NORAD 37730

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 03:38:00 - 03:38:03 03:38:00 - 03:38:06 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 9.87 - 9.91 9.89

2.51

ART 7.28 - 7.46 7.38

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 133.80 31.90

<143 arcsec

ART 133.83 31.93

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 17.23 - 17.45 Good detection quality
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Table B.8: SPOOK-ART validation for LEO satellite NORAD 29268

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:07:30 - 19:07:35 19:07:30 - 19:07:33 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 5.45 - 5.52 5.48

1.11

ART 6.57 - 6.63 6.60

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 353.18 70.01

<88 arcsec

ART 353.17 69.99

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 120.33 - 122.80 Excellent detection quality

Table B.9: SPOOK-ART validation for LEO satellite NORAD 39030

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:27:00 - 19:27:03 19:27:00 - 19:27:04 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 6.52 - 6.54 6.53

2.72

ART 3.60 - 3.97 3.81

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 6.19 27.16

<56 arcsec

ART 6.18 27.15

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 74.71 - 75.22 Excellent detection quality
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Table B.10: SPOOK-ART validation for LEO satellite NORAD 43440

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:32:59 - 19:33:01 19:33:00 - 19:33:02 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 7.82 - 7.85 7.83

0.55

ART 8.38 - 8.40 8.39

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 301.18 -13.90

<161 arcsec

ART 301.18 -13.94

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 39.62 - 39.91 Excellent detection quality

Table B.11: SPOOK-ART validation for LEO satellite NORAD 43797

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:43:29 - 19:43:31 19:43:30 - 19:43:33 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 7.78 - 7.80 7.79

0.72

ART 8.50 - 8.53 8.51

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 298.82 -16.71

<90 arcsec

ART 298.85 -16.71

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 40.42 - 40.72 Excellent detection quality
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Table B.12: SPOOK-ART validation for LEO satellite NORAD 43642

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:46:37 - 19:48:01 19:46:30 - 19:46:44 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 8.25 - 8.65 8.50

4.22

ART 4.16 - 4.48 4.29

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 291.55 -13.59

<64 arcsec

ART 291.53 -13.59

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 26.65 - 30.20 Good detection quality

Table B.13: SPOOK-ART validation for LEO satellite NORAD 28649

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:50:59 - 19:51:03 19:51:00 - 19:51:04 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 5.80 - 5.84 5.82

1.23

ART 4.56 - 4.63 4.59

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 287.99 -21.25

<53 arcsec

ART 287.98 -21.24

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 119.17 - 120.09 Excellent detection quality
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Table B.14: SPOOK-ART validation for LEO satellite NORAD 33434

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:52:30 - 19:52:33 19:52:30 - 19:52:35 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 11.52 - 11.54 11.53

3.69

ART 7.69 - 7.95 7.84

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 242.37 15.26

<79 arcsec

ART 242.37 15.23

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 7.29 - 7.38 Fair detection quality

Table B.15: SPOOK-ART validation for LEO satellite NORAD 40011

Temporal Correlation

Time Window SPOOK TDM ART TDM Δ𝑡

Pass 1 19:56:59 - 19:57:01 19:57:00 - 19:57:02 0.0 sec

Photometric Correlation

Source Mag Range Mean Mag Difference
SPOOK 11.10 - 11.10 11.10

2.79

ART 8.20 - 8.42 8.31

Angular Position Correlation

Source RA (deg) Dec (deg) Angular Separation
Pass 1 SPOOK 234.30 17.03

<198 arcsec

ART 234.32 16.98

Physical Characteristics (SPOOK Observations)

Parameter Value Range Consistency
Signal-to-Noise 8.46 - 8.46 Fair detection quality



C
ART Images

(a) Initial detection (b) Initial detection (zoomed)

(c) Follow-up observation (d) Follow-up observation (zoomed)

Figure C.1: ART observations from 16 September MEO validation night showing initial detection and follow-up pass with

zoomed views
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(a) ART observation from 29 September (full image) (b) ART observation from 29 September

Figure C.2: ART observations from 29 September LEO validation night (zoomed)

(a) ART observation from 5 September (b) ART observation from 5 September (zoomed)

Figure C.3: ART observations from 5 September LEO validation night
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