

Delft University of Technology

HINT on Steroids
Batch Query Processing for Interval Data
Bouros, Panagiotis; Titkov, Artur; Christodoulou, George; Rauch, Christian; Mamoulis, Nikos

DOI
10.48786/edbt.2024.38
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the 27th International Conference on Extending Database Technology, EDBT 2024

Citation (APA)
Bouros, P., Titkov, A., Christodoulou, G., Rauch, C., & Mamoulis, N. (2024). HINT on Steroids: Batch Query
Processing for Interval Data. In Proceedings of the 27th International Conference on Extending Database
Technology, EDBT 2024 (3 ed., pp. 440-446). (Advances in Database Technology - EDBT; Vol. 27, No. 3).
OpenProceedings.org. https://doi.org/10.48786/edbt.2024.38
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.48786/edbt.2024.38
https://doi.org/10.48786/edbt.2024.38

HINT on Steroids: BatchQuery Processing for Interval Data
Panagiotis Bouros

Johannes Gutenberg University
Mainz

Germany
bouros@uni-mainz.de

Artur Titkov
Johannes Gutenberg University

Mainz
Germany

artitkov@uni-mainz.de

George Christodoulou
Delft University of Technology

Netherlands
g.c.christodoulou@tudelft.nl

Christian Rauch
Johannes Gutenberg University

Mainz
Germany

crauch@uni-mainz.de

Nikos Mamoulis
University of Ioannina

Greece
nikos@cse.uoi.gr

ABSTRACT
A wide range of applications manage interval data. HINT was re-
cently proposed to hierarchically index intervals in main memory.
The index outperforms competitive structures by a wide margin,
but under its current setup, HINT is able to service only single
query requests. In practice however, real systems receive a large
number of queries at the same time and so, our focus in this paper
is on batch query processing. We propose two novel evaluation
strategies termed level-based and partition-based, which both
work in a per-level fashion, i.e., all queries for an index level are
computed before moving to the next level. The new strategies op-
erate in a cache-aware fashion to reduce the cache misses caused
by climbing the index hierarchy or accessing multiple partitions
per level, and to decrease the total execution time for a query
batch. Our experimental analysis with both real and synthetic
datasets showed that our batch processing strategies always out-
perform a baseline that executes queries in a serial fashion, and
that partition-based is overall the most efficient strategy.

1 INTRODUCTION
Given a discrete or continuous 1D space, an interval is defined
by a starting and an ending point in this domain. For instance,
in the space of all non-negative integers N, an interval [𝑠𝑡, 𝑒𝑛𝑑]
with 𝑠𝑡 , 𝑒𝑛𝑑 ∈ N and 𝑠𝑡 ≤ 𝑒𝑛𝑑 , is the subset of N, which in-
cludes all integers 𝑥 with 𝑠𝑡 ≤ 𝑥 ≤ 𝑒𝑛𝑑 .1 Collections of such
intervals are found in a wide range of applications; for example,
in temporal databases [4, 29], where each tuple has a validity
interval to capture the period of time that the tuple is valid. In
statistics and probabilistic databases [12], uncertain values are
often approximated by (confidence or uncertainty) intervals. In
data anonymization [27], attribute values are often generalized
to value ranges. Several computational geometry problems [13]
(e.g., windowing) use interval search as a module. The internal
states of window queries in Stream processors (e.g. Flink/Kafka)
can be modeled as intervals [2].

We target the case of range (selection) queries as a fundamental
retrieval task on intervals. Let S be a set of objects, all carrying
an interval attribute. We model each object 𝑠 ∈ S as a ⟨𝑖𝑑, 𝑠𝑡, 𝑒𝑛𝑑⟩
triple, where 𝑠 .𝑖𝑑 is the object’s identifier, used to access all other

1Note that the intervals in this paper are closed. Yet, our techniques and discussions
apply on generic intervals where the start and end sides are either open or closed.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

attributes of the object. Given a query interval 𝑞 = [𝑞.𝑠𝑡, 𝑞.𝑒𝑛𝑑],
the goal is to find the ids of all objects 𝑠 ∈ S, whose intervals
overlap with 𝑞, i.e., with 𝑠 .𝑠𝑡 ≤ 𝑞.𝑠𝑡 ≤ 𝑠 .𝑒𝑛𝑑 or 𝑞.𝑠𝑡 ≤ 𝑠 .𝑠𝑡 ≤
𝑞.𝑒𝑛𝑑 . Such selection queries are known as time travel or timeslice
queries in temporal databases [19, 26], e.g., to find the employees
of a company, employed sometime in [1/1/2021, 2/28/2021].

A plethora of data structures have been proposed for manag-
ing intervals. The interval tree [16] divides the domain hierarchi-
cally by placing all intervals strictly before (after) the domain’s
center to the left (right) subtree and all intervals that overlap
with the domain’s center at the root. The timeline index [18] is
a general-purpose access method for temporal (versioned) data,
implemented in SAP-HANA. It maintains the endpoints of all
intervals in a dedicated table, called the event list. Another sim-
ple and practical data structure is a 1D-grid, which divides the
domain into 𝑘 pairwise disjoint in terms of their interval span,
partitions 𝑃1, 𝑃2, . . . , 𝑃𝑘 ; the partitions collectively cover the en-
tire data domain. Each interval object is assigned to all partitions
that it overlaps. The period index [3] is a self-adaptive structure
which splits the domain into coarse partitions as in a 1D-grid,
and then further divides each partition hierarchically, in order
to organize the contained intervals based on their positions and
durations. HINT [10, 11] applies a hierarchical partitioning ap-
proach. Similar to 1D-grid, an interval is assigned to all partitions
that it overlaps, but to at most two partitions per level and so,
HINT has controlled space requirements. To enhance query pro-
cessing, the contents inside every partition are further split based
on whether they begin inside or before the partition boundaries.

Motivation. The above indexing structures are all optimized to
service single-query requests. However, modern transactional
databases, OLTP systems and cloud services (e.g., maintained
by Amazon and Google) must deal with query-heavy workflows
with thousands or millions of queries received per second. For
instance, according to the official statistics, Amazon S3 receives
1M requests per second.2 Under such a setting, systems opt for
processing the queries in batches to save resources and reduce
the overall time. AWS for instance allows users to run batch pro-
cessing jobs on their analytical services, e.g., Amazon RedShift.3
Given a batch of selection queries Q, a straightforward approach
is to execute these queries in a serial fashion by probing an in-
terval index. Such a query-based approach though operates in a
cache agnostic fashion; consequently, cache misses will affect the

2https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-
requests-second/
3https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/ batch-data-
processing.html

Short Paper

Series ISSN: 2367-2005 440 10.48786/edbt.2024.38

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.38

total execution time. Alternatively, we could treat batch Q as a
second input, and then compute the Q ⊲⊳ S interval join, using
the state-of-the-art optFS method from [5, 6]. Compared to query-
based, this join-based evaluation allows for sharing computations
and comparisons among objects, but as the size of batch Q is
typically smaller than the cardinality of the input collection S,
the strategy is expected to be slower than query-based, as shown
in [11]. In contrast, multi or batch query processing relies on
specialized computation sharing techniques to reduce the total
execution time of a batch. Such processing techniques have been
widely used e.g., for traditional relational data [17, 28, 30], spatial
data [8, 9, 24] and graphs [20, 21, 31], and in IR systems [15, 22].

Contributions. To the best of our knowledge, this is the first
work that investigates batch processing for selection queries on
intervals. For this purpose, we build on the state-of-the-art HINT
index (Section 2), which is shown to be typically an order of
magnitude faster than the competition, because it minimizes the
number of data accesses and comparisons. In addition, HINT also
exhibits the lowest space complexity, while offering a competitive
building time. We devise two novel strategies for batch process-
ing (Section 3), termed the level-based and the partition-based
strategy. Both strategies capitalize on HINT’s structure and how
the intervals are organized in memory. They operate on a per-
level fashion, i.e., they first evaluate all queries for an index level
before moving to the next. Some of our ideas can be applied to
other interval indices; for example, 1D-grid can successfully adopt
a partition-based batch processing approach. Our experimental
analysis (Section 4) with both real and synthetic datasets show
that our advanced strategies always outperform the query-based
baseline and an 1D-grid enhanced by the partition-based strat-
egy, and that partition-based is overall the most efficient strategy.
For inputs with long intervals, partition-based achieves a 33%
average decrease on the total execution time over query-based,
while for datasets with short intervals, a 50% drop is observed.

2 INDEXING INTERVALS WITH HINT
HINT [10], is a hierarchical index for intervals, utilizing their
binary representation. Parameter𝑚 indicates the number of bits
for representing intervals, resulting in the establishment of𝑚 + 1
levels. Figure 1 exemplifies the case of𝑚 = 4 and a hierarchy
of 5 index levels. Each level ℓ (0 ≤ ℓ ≤ 𝑚), uniformly divides
the domain into 2ℓ partitions. As we ascend the HINT hierarchy,
each level ℓ corresponds to a more significant bit of the binary
representation. Consequently, the number of partitions in each
level decreases by a factor of 2 while covering double the size.
During the insertion process, every interval 𝑠 undergoes normal-
ization and discretization within the [0, 2𝑚 − 1] domain and is
inserted to at most 2 partitions per level. If a given interval spans
more than 2 partitions at a specific level, it is assigned to an upper
level, where partitions cover a larger part of the domain. Overall,
the assignment principle is based on selecting the smallest set of
partitions across all levels that collectively cover an interval 𝑠 .
Furthermore, intervals in each partition 𝑃 are divided into two
classes: those that start inside 𝑃 (called originals), denoted by 𝑃𝑂 ,
and those that start before 𝑃 (called replicas), denoted by 𝑃𝑅 .

Given a selection query 𝑞 = [𝑞.𝑠𝑡, 𝑞.𝑒𝑛𝑑], at each index level ℓ
only the sequence of partitions 𝑃ℓ,𝑖 that intersect 𝑞 are accessed;
we call these, relevant partitions. For example, consider query 𝑞2
in Figure 2; the relevant partitions at the bottom level of the index
are {𝑃4,10, . . . , 𝑃4,13}. To avoid duplicated results, originals and
replicas classes are only accessed for the first relevant partition at

Range queries

P0,0

P1,0 P1,1

P2,1 P2,2

P3,2 P3,3 P3,4

P4,5 P4,6 P4,7 P4,8 P4,9

q
10010101

010

Figure 1: Benefits of the bottom-up traversal

ALGORITHM 1: Selection query on HINT
Input :HINT index H, selection query 𝑞
Output : set of all intervals that overlap with 𝑞

1 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 ← TRUE;
2 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 ← TRUE;

3 foreach level ℓ =𝑚 to 0 do ⊲ bottom-up fashion
4 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡) ; ⊲ first overlapping partition

5 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑) ; ⊲ last overlapping partition

6 foreach partition 𝑖 = 𝑓 to 𝑙 do
7 if 𝑖 = 𝑓 then
8 if 𝑖 = 𝑙 and 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then
9 output

{𝑠.𝑖𝑑 |𝑠 ∈ H.𝑃𝑂
ℓ,𝑖
, 𝑞.𝑠𝑡 ≤ 𝑠.𝑒𝑛𝑑 ∧ 𝑠.𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑 };

10 output {𝑠.𝑖𝑑 |𝑠 ∈ H.𝑃𝑅
ℓ,𝑖
, 𝑞.𝑠𝑡 ≤ 𝑠.𝑒𝑛𝑑 };

11 else if 𝑖 = 𝑙 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then
12 output {𝑠.𝑖𝑑 |𝑠 ∈ H.𝑃𝑂

ℓ,𝑖
, 𝑠 .𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑 };

13 output {𝑠.𝑖𝑑 |𝑠 ∈ H.𝑃𝑅 };
14 else if 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 then
15 output {𝑠.𝑖𝑑 |𝑠 ∈ H.𝑃𝑂

ℓ,𝑖

⋃H.𝑃𝑅
ℓ,𝑖
, 𝑞.𝑠𝑡 ≤ 𝑠.𝑒𝑛𝑑 };

16 else
17 output {𝑠.𝑖𝑑 |𝑠 ∈ H.𝑃𝑂

ℓ,𝑖

⋃H.𝑃𝑅
ℓ,𝑖
};

18 else if 𝑖 = 𝑙 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then ⊲ 𝑙 > 𝑓

19 output {𝑠.𝑖𝑑 |𝑠 ∈ H.𝑃𝑂
ℓ,𝑖
, 𝑠 .𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑 };

20 else ⊲ in-between or last (𝑙 > 𝑓), no comparisons
21 output {𝑠.𝑖𝑑 |𝑠 ∈ H.𝑃𝑂

ℓ,𝑖
};

22 if 𝑓 mod 2 = 0 then ⊲ last bit of 𝑓 is 0
23 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 ← FALSE;

24 if 𝑙 mod 2 = 1 then ⊲ last bit of 𝑙 is 1
25 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 ← FALSE;

each level ℓ , while for the remaining partitions only originals are
considered. Finally, the endpoints of an interval 𝑠 are compared
to query 𝑞 only for the first and the last relevant partition at a
level; for every (original) interval 𝑠 inside the rest, intermediate
partitions 𝑞.𝑠𝑡 < 𝑠 .𝑠𝑡 < 𝑞.𝑒𝑛𝑑 holds, by construction of the index.

Bottom-up traversal. We further reduce the number of parti-
tions where comparisons are required by traversing HINT in a
bottom-up fashion, instead of a conventional top-down. Under the
bottom-up traversal, the expected number of partitions requiring
comparisons is 4, according to [10]. Consider again Figure 1. For
query 𝑞, no comparisons are needed in partition 𝑃3,4, because all
intervals assigned to 𝑃3,4 should overlap with 𝑃4,8 and the extent
of 𝑃4,8 is covered by 𝑞. Hence, the start of all intervals in 𝑃3,4 is
guaranteed to be before 𝑞.𝑒𝑛𝑑 (which is inside 𝑃4,9).

Algorithm 1 illustrates how HINT evaluates a selection query,
in a bottom-up fashion. The algorithm uses two auxiliary flags,
𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 to mark if it is necessary to perform
comparisons at the current level (and all levels above it), for the
first and the last relevant partition, respectively, At each level
ℓ , the sequence of relevant partitions to the query is identified

441

in Lines 4–5, based on the ℓ-prefixes of 𝑞.𝑠𝑡 and 𝑞.𝑒𝑛𝑑 , denoted
by 𝑓 and 𝑙 , respectively. Every relevant partition 𝑃ℓ,𝑖 is then
processed in Lines 6–21. For the first relevant partition 𝑃ℓ,𝑓 both
originals 𝑃𝑂

ℓ,𝑓
and replicas 𝑃𝑅

ℓ,𝑓
are accessed. If 𝑓 = 𝑙 , i.e., the first

and the last relevant partitions coincide, and both 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 ,
𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 are set, then comparisons are needed for both 𝑃𝑂

ℓ,𝑓

and 𝑃𝑅
ℓ,𝑓

. Otherwise, if only 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 is set, the algorithm safely
skips the 𝑞.𝑠𝑡 ≤ 𝑠 .𝑒𝑛𝑑 comparisons, while if only 𝑐𝑜𝑚𝑝𝑓 𝑖𝑠𝑡 is
set, regardless whether 𝑓 = 𝑙 , we only perform 𝑞.𝑠𝑡 ≤ 𝑠 .𝑒𝑛𝑑

comparisons to both 𝑃𝑂
ℓ,𝑓

and 𝑃𝑅
ℓ,𝑓

. If neither flag is set, then all
intervals in the first relevant partition are simply reported as
results. When the last partition 𝑃ℓ,𝑙 is examined and 𝑙 > 𝑓 (Line
17) the algorithm considers 𝑃𝑂

ℓ,𝑙
and applies only the 𝑠 .𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑

test for each interval there. Finally, for every partition in-between
the first and the last one, all original intervals are simply reported.

Optimizations. A series of optimizations were proposed in [10]
to boost the query processing on HINT. First, the number of
performed comparisons are reduced by further dividing the 𝑃𝑂
and 𝑃𝑅 classes of a partition 𝑃 . Specifically, 𝑃𝑂 is split into subdi-
visions 𝑃𝑂𝑖𝑛 and 𝑃𝑂𝑎𝑓 𝑡 , so that 𝑃𝑂𝑖𝑛 (𝑃𝑂𝑎𝑓 𝑡) holds the intervals
from 𝑃𝑂 that end inside (resp. after) 𝑃 . Similarly, each 𝑃𝑅 is
divided into 𝑃𝑅𝑖𝑛 and 𝑃𝑅𝑎𝑓 𝑡 . Second, the storage optimization
reduces the memory footprint of the index. So far, each interval 𝑠
is stored as a ⟨𝑠 .𝑖𝑑, 𝑠 .𝑠𝑡, 𝑠 .𝑒𝑛𝑑⟩ triplet. But, only the 𝑃𝑂𝑖𝑛 subdivi-
sions require both endpoints. For 𝑃𝑂𝑎𝑓 𝑡 and 𝑃𝑅𝑖𝑛 , 𝑠 .𝑠𝑡 and 𝑠 .𝑒𝑛𝑑
are only needed, respectively, while for 𝑃𝑅𝑎𝑓 𝑡 , none of the end-
points are required, as no comparisons are performed. Another
optimization to save on comparisons is to keep the subdivisions
sorted; each using its own beneficial sorting. Due to data skew-
ness & sparsity, many partitions may be empty, especially at the
lowest levels. To deal with this, HINT merges the contents of all
𝑃𝑂 divisions at the same level ℓ into a single table𝑇𝑂

ℓ
and builds

an auxiliary index which is used to access non-empty divisions
upon querying. The last optimization deals with potential cache
misses while traversing the index. As no comparisons are needed
at most of the levels, HINT stores the 𝑖𝑑 and the endpoints of an
interval separately. When no comparisons are needed, the index
directly reports results from the 𝑖𝑑 array.

3 BATCH PROCESSING STRATEGIES
Given a collection of intervals S indexed by HINT, and a batch
of selection queries Q, we next discuss three evaluation strate-
gies. Without loss of generality and for illustration purposes, we
describe the strategies using an unoptimized HINT. As a running
example, we use the index and the Q = {𝑞1, 𝑞2, 𝑞3} batch in Fig-
ure 2. For each query𝑞, we highlight its relevant (i.e., overlapping)
partitions on each level according to its [𝑞.𝑠𝑡, 𝑞.𝑒𝑛𝑑] range.

3.1 Query-based
A straightforward approach for processing Q is to sequentially
and independently compute each query, using Algorithm 1. We
call this strategy, query-based, and show its pseudocode in Algo-
rithm 2. Despite its simplicity, the main shortcoming of query-
based is that the strategy operates in a cache agnostic fashion.
As every issued query 𝑞 typically overlaps multiple partitions
from different levels of the index, the computation of all queries
in Q requires accessing data in different parts of the main mem-
ory. Consequently, the memory access pattern is prone to cache
misses.

ALGORITHM 2: Query-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each 𝑞 ∈ Q

1 foreach query 𝑞 ∈ Q do
2 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑄𝑢𝑒𝑟𝑦 (H, 𝑞) ; ⊲ Using [10, 11]

ALGORITHM 3: Level-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each 𝑞 ∈ Q

1 foreach query 𝑞 ∈ Q do ⊲ Initialization
2 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 [𝑞] ← TRUE;
3 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 [𝑞] ← TRUE;

4 foreach level ℓ =𝑚 to 0 do ⊲ bottom-up fashion
5 foreach query 𝑞 ∈ Q do
6 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡) ; ⊲ first overlapping partition

7 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑) ; ⊲ last overlapping partition

...
Lines 6-21 in Algorithm 1
...

24 if 𝑓 mod 2 = 0 then ⊲ last bit of 𝑓 is 0
25 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 [𝑞] ← FALSE;

26 if 𝑙 mod 2 = 1 then ⊲ last bit of 𝑙 is 1
27 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 [𝑞] ← FALSE;

Consider our running example in Figure 2. Assuming that
the query-based strategy will execute the queries in the order
implied by their subscript, the first row in Table 1 illustrates the
occurred access pattern, i.e., the order in which the partitions
of the index will be accessed. First, all relevant partitions for
𝑞1 are accessed on each level of the index (highlighted in blue),
following the bottom-up approach proposed in [10]; similarly,
the relevant partitions for 𝑞2 (highlighted in gray) are accessed
next. The two sets of partitions are located on opposite sides of
the index, which causes several “jumps” to different parts of the
memory; we refer to these jumps as horizontal. Finally, for query
𝑞3, we need to “jump” back to the front part of the index to access
the partitions highlighted in red.

In an effort to improve the above access pattern, one solution
is to execute the queries according to their starting endpoint 𝑞.𝑠𝑡 .
In the example of Figure 2, the query-based strategy will now
execute first 𝑞1, followed by 𝑞3 and lastly, 𝑞2. The modified access
pattern is depicted in the second row of Table 1. This new pattern
enables us to finish first with the queries accessing partitions in
the front part of the index, before moving to the back.

3.2 Level-based
Sorting the queries by their start will reduce cache misses caused
by horizontal jumps and therefore, will enhance the query-based
strategy. However, the bottom-up approach employed for each
query will still incur cache misses because of the vertical jumps in
the index. For example in case of the adjacent 𝑞1 and 𝑞3 queries in
Figure 2, we have to first climb all levels of the index to compute
𝑞1 and then, start over from the bottom level for 𝑞3.

To deal with these vertical jumps, we propose a different strat-
egy which capitalizes on the fact that partitions in HINT are phys-
ically organized in a level-based fashion. The level-based strategy
still builds upon the bottom-up approach but the evaluation pro-
cess proceeds to the next level of the index only after the relevant
partitions for all queries in the batch Q are already accessed
and processed to report potential results. Algorithm 3 shows the
pseudocode of this strategy. Algorithm 3 extends Algorithm 1

442

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
𝑃4,2 → 𝑃4,3 → 𝑃4,4 → 𝑃4,5 → 𝑃3,1 → 𝑃3,2 → 𝑃2,0 → 𝑃2,1 → 𝑃1,0 → 𝑃0,0 →
𝑃4,10 → 𝑃4,11 → 𝑃4,12 → 𝑃4,13 → 𝑃3,5 → 𝑃3,6 → 𝑃2,2 → 𝑃2,3 → 𝑃1,1 → 𝑃0,0 →
𝑃4,4 → 𝑃4,5 → 𝑃4,6 → 𝑃3,2 → 𝑃3,3 → 𝑃2,1 → 𝑃1,0 → 𝑃0,0

Query-based 𝑃4,2 → 𝑃4,3 → 𝑃4,4 → 𝑃4,5 → 𝑃3,1 → 𝑃3,2 → 𝑃2,0 → 𝑃2,1 → 𝑃1,0 → 𝑃0,0 →
with sorting 𝑃4,4 → 𝑃4,5 → 𝑃4,6 → 𝑃3,2 → 𝑃3,3 → 𝑃2,1 → 𝑃1,0 → 𝑃0,0 →

𝑃4,10 → 𝑃4,11 → 𝑃4,12 → 𝑃4,13 → 𝑃3,5 → 𝑃3,6 → 𝑃2,2 → 𝑃2,3 → 𝑃1,1 → 𝑃0,0

Level-based

𝑃4,2 → 𝑃4,3 → 𝑃4,4 → 𝑃4,5 → 𝑃4,4 → 𝑃4,5 → 𝑃4,6 → 𝑃4,10 → 𝑃4,11 → 𝑃4,12 → 𝑃4,13 →
𝑃3,1 → 𝑃3,2 → 𝑃3,2 → 𝑃3,3 → 𝑃3,5 → 𝑃3,6 →

with sorting 𝑃2,0 → 𝑃2,1 → 𝑃2,1 → 𝑃2,2 → 𝑃2,3 →
𝑃1,0 → 𝑃1,0 → 𝑃1,1 →
𝑃0,0 → 𝑃0,0 → 𝑃0,0

Partition-based

𝑃4,2 → 𝑃4,3 → 𝑃4,4 → 𝑃4,4 → 𝑃4,5 → 𝑃4,5 → 𝑃4,6 → 𝑃4,10 → 𝑃4,11 → 𝑃4,12 → 𝑃4,13 →
𝑃3,1 → 𝑃3,2 → 𝑃3,2 → 𝑃3,3 → 𝑃3,5 → 𝑃3,6 →

with sorting 𝑃2,0 → 𝑃2,1 → 𝑃2,1 → 𝑃2,2 → 𝑃2,3 →
𝑃1,0 → 𝑃1,0 → 𝑃1,1 →
𝑃0,0 → 𝑃0,0 → 𝑃0,0

with two modifications. First, we maintain a 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 [𝑞] and
a 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 [𝑞] flag for each query 𝑞 in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the first relevant partition 𝑓 and the
last 𝑙 . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ℓ . Each query 𝑞 is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
benefit from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the effect of the strategy,
we write the sequence of accessed partitions in five lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of 𝑞1, to the ones
of 𝑞3 and finally, to 𝑞2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; specifically, the first line which corresponds to the bottom
level of the index. The strategy will access partitions 𝑃4,4 and
𝑃4,5 first for 𝑞1 and then again for 𝑞2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can benefit
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be first
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key difference to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ℓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ℓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 𝑖 , i.e., all queries whose range overlaps with 𝑖 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will first finish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each 𝑞 ∈ Q

1 foreach query 𝑞 ∈ Q do ⊲ Initialization
2 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 [𝑞] ← TRUE;
3 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 [𝑞] ← TRUE;

4 foreach level ℓ =𝑚 to 0 do ⊲ bottom-up fashion
5 foreach partition 𝑖 in level ℓ do
6 foreach relevant query 𝑞 ∈ Q to partition 𝑖 do
7 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡) ; ⊲ first overlapping partition

8 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑) ; ⊲ last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach 𝑞 ∈ Q do
25 if 𝑓 mod 2 = 0 then ⊲ last bit of 𝑓 is 0
26 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 [𝑞] ← FALSE;

27 if 𝑙 mod 2 = 1 then ⊲ last bit of 𝑙 is 1
28 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 [𝑞] ← FALSE;

𝑃4,4 for both queries 𝑞1 and 𝑞3, then access 𝑃4,5, for the same
queries and finally, move on to partition 𝑃4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of 𝑃4,7, 𝑃4,8, 𝑃4,9 and 𝑃3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 𝑖 . A
straightforward approach for this purpose would compare every
query in Q to partition 𝑖 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the first and the last relevant partitions of a query. Specifically,
we define for every partition 𝑖 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 𝑖’s relevant queries
starts from the first query 𝑞 for which 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡) = 𝑖 , to the
last query with 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑) = 𝑖 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with flags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.

443

Table 2: Characteristics of real datasets
BOOKS WEBKIT TAXIS GREEND
[5] [5, 14, 25] [6] [7, 23]

Cardinality 2,312,602 2,347,346 172,668,003 110,115,441
Size [MBs] 27.8 28.2 2072 1321
Domain [sec] 31,507,200 461,829,284 31,768,287 283,356,410
Min duration [sec] 1 1 1 1
Max duration [sec] 31,406,400 461,815,512 2,148,385 59,468,008
Avg. duration [sec] 2,201,320 33,206,300 758 15
Avg. duration [%] 6.98 7.19 0.0024 0.000005

Table 3: Parameters of synthetic datasets
parameter values (defaults in bold)
Domain length 32M, 64M,128M, 256M, 512M
Cardinality 10M, 50M, 100M, 500M, 1B
𝛼 (interval length) 1.01, 1.1, 1.2, 1.4, 1.8
𝜎 (interval position) 10K, 100K, 1M, 5M, 10M

Setup. All implemented strategies were developed on top of
the subs+sort version of HINT/HINT𝑚 [10], which employs the
subdivisions and sorting optimizations. We also activated the
skewness & sparsity and the cache misses optimizations, but not
the storage one. According to [11], this HINT version exhibits the
best performance on selection queries for all basic relationships
in Allen’s Algebra [1]; without loss of generality, we tested only
the widely adopted G-OVERLAPS relationship for the rest of our
analysis. Similar to most of the previous works, we assume that
both the index and the queries fit in main memory.

We experimented with 4 collections of real intervals, which
have also been used in previous works; Table 2 summarizes their
characteristics. BOOKS contains the periods of time in 2013 when
books were lent out by Aarhus libraries (https://www.odaa.dk).
WEBKIT records the file history in the git repository of the We-
bkit project from 2001 to 2016 (https://webkit.org); the intervals
indicate the periods during which a file did not change. TAXIS
stores the time periods of taxi trips (pick-up and drop-off times-
tamps) from NY City in 2013 (https://www1.nyc.gov/site/tlc/
index.page). GREEND records time periods of power usage from
households in Austria and Italy from January 2010 to October
2014. Collections BOOKS and WEBKIT contain around 2M, long
on average, intervals each; TAXIS and GREEND have over 100M
short intervals. For each dataset, we set parameter𝑚 using the
cost model and the analysis in [10], i.e., 10 for BOOKS, 12 for
WEBKIT and 17 for TAXIS, GREEND.

We also generated synthetic collections to simulate different
cases for the lengths and the skewness of the input intervals, fol-
lowing the approach in [10]. Table 3 summarizes the construction
parameters and their default values. The domain of the datasets
ranges from 32M to 512M while their cardinality ranges from
10M to 1B. The lengths of the intervals follow a zipfian distri-
bution, controlled by parameter 𝛼 . A small value of 𝛼 results in
most intervals being relatively long, while a large value results in
the great majority of intervals having length 1. The middle point
of every interval is positioned according to a normal distribution
centered at the middle point of the domain. We control this posi-
tion using the deviation parameter 𝜎 ; the greater the value of 𝜎 ,
the more spread the intervals are in the domain.

We measured the total execution time incurred by each strat-
egy for the entire query batch, which includes the sorting costs
when employed.5 On the real collections, we ran queries uni-
formly distributed in the domain, while on the synthetic, the
5To deal with latency, systems employ a waiting timeout for defining a batch. When
the waiting time exceeds this threshold, the batch is executed regardless its size.
Without loss of generality, we ignore this waiting time in our experiments.

positions of the queries follow the distribution of the data. For
both collection types, we vary the selectivity of the queries, in
terms of their extent as a percentage of the domain inside the
{0.01%, 0.05%, 0.1%, 0.5%, 1%} range, and the size of the query
batch inside {1𝐾, 5𝐾, 10𝐾, 50𝐾, 100𝐾}. In each test, we vary one
of the above parameters while fixing the other to its default value;
0.1% of the domain, for the query extend; 10K in the real datasets
and 1K in the synthetic, for the batch size.

Results. Figure 3 reports the total execution time for each strat-
egy on the real datasets. In the first row of plots, we vary the
selectivity of the queries, and in the second, the size of the query
batch. We consider the query-based strategy without sorting
as our baseline method. As the first observation, the tests con-
firm our intuition in Section 3.1; examining the queries in the
batch sorted by their start will enhance the performance, due
to reducing the number of horizontal jumps. Indeed, the query-
based strategy with this sorting clearly outperforms the baseline
query-based without, in all cases. The performance gain is more
pronounced in TAXIS and GREEND, where intervals are typically
stored at the bottom levels, rendering the horizontal jumps more
impactful. Under this prism, we test level-based and partition-
based with the query sorting always activated.

The experiments also show the benefits of batch processing
and the advantage of our proposed level-based and partition-
based advanced strategies over query-based with sorting. We
observe that the performance gain is in practice larger in case of
BOOKS andWEBKIT, compared to TAXIS and GREEND, because
of the length of the contained intervals (see Table 2). The intervals
in BOOKS andWEBKIT are stored at the higher levels of the index
due to their significantly large length. Consequently, the impact
of the vertical jumps is more pronounced in these datasets. As a
result, level-based has almost identical total times to query-based
with sorting on TAXIS and GREEND, while partition-based is
always faster, because additional horizontal jumps are avoided by
depleting all queries relevant to a partition before moving to the
next, at the current level. To highlight the impact of computation
sharing, Table 4 lists the percentage of the queries inside batch Q
that would have been executed in a serial fashion, within the total
time of each strategy; under this, the lower the percentage, the
largest the number of queries that are positively affected by batch
processing. The table shows both the benefit of batch processing
selection queries over a serial execution (with or without sorting)
and the advantage of the partition-based strategy.

Overall, we observe that partition-based is the most efficient
strategy, for all datasets and in all conducted tests. Regarding the
impact of the experimental parameters, all strategies are slowed
down (1) when increasing the query extent as the queries become
less selective and so, more time-consuming with larger result
sets, and (2) when increasing the batch size, as more queries are
evaluated. Nevertheless, partition-based is consistently the faster
strategy.

Figure 4 reports on the synthetic datasets. Parameter 𝑚 is
again set to the best value on each dataset, using the model in
[10]. The plots follow a similar trend to Figure 3. As expected
the domain size, the dataset cardinality, the query extent and the
batch size, all negatively affect the performance of the strategies.
Increasing the domain size under a fixed query extent, affects
the performance similar to increasing the query extent, i.e., the
queries become longer and less selective, including more results.
In contrast, when 𝛼 grows, the intervals become shorter, so the

444

Query-based Query-based with sorting

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query extent [%]

ua
aa

uma
ama

umg
amg Level-based with sorting

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query extent [%]

ua
aa

uma
ama

umg
amg

Partition-based with sorting

BOOKS WEBKIT TAXIS GREEND

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

Figure 3: Comparison: real datasets

 0

 50

 100

 150

 200

 250

 300

32M 64M 128M 256M 512M

T
o
ta

l
ti

m
e
 [

m
se

c
]

domain size

 0

 5000

 10000

 15000

 20000

 25000

 30000

10M 50M 100M500M 1B

T
o
ta

l
ti

m
e

[m
se

c]

dataset cardinality

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1.01 1.1 1.4 1.6 1.8

T
o
ta

l
ti

m
e

[m
se

c]

α (interval length)

 0

 500

 1000

 1500

 2000

 2500

 3000

10k 100k 1M 5M 10M

T
o
ta

l
ti

m
e

[m
se

c]

σ (interval position)

 0

 100

 200

 300

 400

 500

 600

 700

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

1 5 10 50 100

T
o
ta

l
ti

m
e

[m
se

c]

queries [x1000]

Figure 4: Comparison: synthetic datasets

performance of all strategies improves. Similarly, when increas-
ing 𝜎 the intervals are more widespread, meaning that the queries
are expected to retrieve fewer results, and the query cost drops
accordingly.

Lastly, we study the applicability of the partition-based strat-
egy to an alternative interval index. Table 5 shows that 1D-grid
benefits from a partition-based batch processing but its perfor-
mance still remains typically an order of magnitude inferior (in
3 outs of 4 datasets) to the partition-based HINT; This result is
in line with the single-query case in [10, 11].

Table 4: Impact of computation sharing - lower numbers
better; default query extent 0.1% and 10K query batch

strategy BOOKS WEBKIT TAXIS GREEND
Query-based with sorting 85% 86% 51% 53%
Level-based with sorting 78% 81% 49% 54%
Partition-based with sorting 67% 71% 46% 48%

Table 5: Applicability of partition-based strategy, total time
[secs]; default query extent 0.1% and 10K query batch

strategy BOOKS WEBKIT TAXIS GREEND
1D-grid query-based 2.336 2.565 4.398 1.231

1D-grid partition-based with sorting 1.566 1.627 3.629 0.679
HINT partition-based with sorting 0.223 0.226 0.337 0.201

5 CONCLUSIONS
We studied the batch processing of selection queries on intervals.
For this purpose, we built upon the state-of-the-art main-memory
index on intervals, HINT. Under its current setup, HINT can only
employ a query-based evaluation strategy where every query in
the given batch is computed independently to the rest. Such a
strategy however, is cache-agnostic and prone to cache misses
while traversing the index. Instead, we proposed the level-based
and partition-based strategies, which both operate in per-level
fashion, i.e., they first evaluate all queries for a level of the index
before moving to the next. Partition-based strategy in particular,
proceeds to the next partition on a level after all queries relevant
to the current one are computed. Our experiments showed that
both strategies always outperform the query-based baseline, and
that the partition-based strategy is overall the most efficient. In
the future, we plan to investigate the parallel processing of query
batches in multi-core CPUs and under a distributed setting.

ACKNOWLEDGMENTS
Partially funded by the Hellenic Foundation for Research and
Innovation (HFRI) under the “2nd Call for HFRI Research Projects
to support Faculty Members & Researchers” (Project No. 2757).

445

REFERENCES
[1] James F. Allen. 1983. Maintaining Knowledge about Temporal Intervals.

Commun. ACM 26, 11 (1983), 832–843. https://doi.org/10.1145/182.358434
[2] Ahmed Awad, Riccardo Tommasini, Samuele Langhi, Mahmoud Kamel,

Emanuele Della Valle, and Sherif Sakr. 2022. D2IA: User-defined inter-
val analytics on distributed streams. Inf. Syst. 104 (2022), 101679. https:
//doi.org/10.1016/J.IS.2020.101679

[3] Andreas Behrend, Anton Dignös, Johann Gamper, Philip Schmiegelt, Hannes
Voigt, Matthias Rottmann, and Karsten Kahl. 2019. Period Index: A Learned
2D Hash Index for Range and Duration Queries. In Proceedings of the 16th
International Symposium on Spatial and Temporal Databases, SSTD 2019, Vienna,
Austria, August 19-21, 2019. ACM, 100–109. https://doi.org/10.1145/3340964.
3340965

[4] Michael H. Böhlen, Anton Dignös, Johann Gamper, and Christian S. Jensen.
2017. Temporal Data Management - An Overview. In Business Intelligence and
Big Data - 7th European Summer School, eBISS 2017, Bruxelles, Belgium, July
2-7, 2017, Tutorial Lectures (Lecture Notes in Business Information Processing),
Vol. 324. Springer, 51–83. https://doi.org/10.1007/978-3-319-96655-7_3

[5] Panagiotis Bouros and Nikos Mamoulis. 2017. A Forward Scan based Plane
Sweep Algorithm for Parallel Interval Joins. Proc. VLDB Endow. 10, 11 (2017),
1346–1357. https://doi.org/10.14778/3137628.3137644

[6] Panagiotis Bouros, Nikos Mamoulis, Dimitrios Tsitsigkos, and Manolis Ter-
rovitis. 2021. In-Memory Interval Joins. VLDB J. 30, 4 (2021), 667–691.
https://doi.org/10.1007/S00778-020-00639-0

[7] Francesco Cafagna and Michael H. Böhlen. 2017. Disjoint interval partitioning.
VLDB J. 26, 3 (2017), 447–466. https://doi.org/10.1007/S00778-017-0456-7

[8] Yun Chen and Jignesh M. Patel. 2007. Efficient Evaluation of All-Nearest-
Neighbor Queries. In Proceedings of the 23rd International Conference on Data
Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007.
IEEE Computer Society, 1056–1065. https://doi.org/10.1109/ICDE.2007.368964

[9] Farhana Murtaza Choudhury, J. Shane Culpepper, Zhifeng Bao, and Timos
Sellis. 2018. Batch Processing of Top-k Spatial-Textual Queries. ACM Trans.
Spatial Algorithms Syst. 3, 4 (2018), 13:1–13:40. https://doi.org/10.1145/3196155

[10] George Christodoulou, Panagiotis Bouros, and NikosMamoulis. 2022. HINT: A
Hierarchical Index for Intervals in Main Memory. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022.
ACM, 1257–1270. https://doi.org/10.1145/3514221.3517873

[11] George Christodoulou, Panagiotis Bouros, and Nikos Mamoulis. 2023. HINT:
A Hierarchical Interval Index for Allen Relationships. VLDB J. (2023). https:
//doi.org/10.1007/s00778-023-00798-w

[12] Nilesh N. Dalvi and Dan Suciu. 2004. Efficient Query Evaluation on Proba-
bilistic Databases. In (e)Proceedings of the Thirtieth International Conference on
Very Large Data Bases, VLDB 2004, Toronto, Canada, August 31 - September 3
2004. Morgan Kaufmann, 864–875. https://doi.org/10.1016/B978-012088469-8.
50076-0

[13] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Over-
mars. 2008. Computational geometry: algorithms and applications, 3rd Edition.
Springer.

[14] Anton Dignös, Michael H. Böhlen, and Johann Gamper. 2014. Overlap interval
partition join. In International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014. ACM, 1459–1470. https://doi.org/
10.1145/2588555.2612175

[15] Shuai Ding, Josh Attenberg, Ricardo Baeza-Yates, and Torsten Suel. 2011.
Batch query processing for web search engines. In Proceedings of the Forth
International Conference on Web Search and Web Data Mining, WSDM 2011,
Hong Kong, China, February 9-12, 2011. ACM, 137–146. https://doi.org/10.
1145/1935826.1935858

[16] Herbert Edelsbrunner. 1980. Dynamic Rectangle Intersection Searching. Tech-
nical Report 47. Institute for Information Processing, TU Graz, Austria.

[17] Mehrad Eslami, Vahid Mahmoodian, Iman Dayarian, Hadi Charkhgard, and
Yicheng Tu. 2020. Query batching optimization in database systems. Comput.

Oper. Res. 121 (2020), 104983. https://doi.org/10.1016/J.COR.2020.104983
[18] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M. Fischer,

Donald Kossmann, Franz Färber, and Norman May. 2013. Timeline index: a
unified data structure for processing queries on temporal data in SAP HANA.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. ACM, 1173–1184.
https://doi.org/10.1145/2463676.2465293

[19] Krishna G. Kulkarni and Jan-Eike Michels. 2012. Temporal features in SQL:
2011. SIGMOD Rec. 41, 3 (2012), 34–43. https://doi.org/10.1145/2380776.
2380786

[20] Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and Feifei Li. 2012.
Scalable Multi-query Optimization for SPARQL. In IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012. IEEE Computer Society, 666–677. https://doi.org/10.
1109/ICDE.2012.37

[21] Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2020. Fast Query
Decomposition for Batch Shortest Path Processing in Road Networks. In 36th
IEEE International Conference on Data Engineering, ICDE 2020, Dallas, TX, USA,
April 20-24, 2020. IEEE, 1189–1200. https://doi.org/10.1109/ICDE48307.2020.
00107

[22] Joel Mackenzie and Alistair Moffat. 2023. Index-Based Batch Query Processing
Revisited. In Advances in Information Retrieval - 45th European Conference on
Information Retrieval, ECIR 2023, Dublin, Ireland, April 2-6, 2023, Proceedings,
Part III (Lecture Notes in Computer Science), Vol. 13982. Springer, 86–100.
https://doi.org/10.1007/978-3-031-28241-6_6

[23] Andrea Monacchi, Dominik Egarter, Wilfried Elmenreich, Salvatore
D’Alessandro, andAndreaM. Tonello. 2014. GREEND: An energy consumption
dataset of households in Italy and Austria. In 2014 IEEE International Conference
on Smart Grid Communications, SmartGridComm 2014, Venice, Italy, November
3-6, 2014. IEEE, 511–516. https://doi.org/10.1109/SMARTGRIDCOMM.2014.
7007698

[24] Apostolos Papadopoulos and Yannis Manolopoulos. 1998. Multiple Range
Query Optimization in Spatial Databases. In Advances in Databases and Infor-
mation Systems, Second East European Symposium, ADBIS’98, Poznan, Poland,
Spetember 7-10, 1998, Proceedings (Lecture Notes in Computer Science), Vol. 1475.
Springer, 71–82. https://doi.org/10.1007/BFB0057718

[25] Danila Piatov and Sven Helmer. 2017. Sweeping-Based Temporal Aggregation.
In Advances in Spatial and Temporal Databases - 15th International Symposium,
SSTD 2017, Arlington, VA, USA, August 21-23, 2017, Proceedings (Lecture Notes
in Computer Science), Vol. 10411. Springer, 125–144. https://doi.org/10.1007/
978-3-319-64367-0_7

[26] Betty Salzberg and Vassilis J. Tsotras. 1999. Comparison of Access Methods
for Time-Evolving Data. ACM Comput. Surv. 31, 2 (1999), 158–221. https:
//doi.org/10.1145/319806.319816

[27] Pierangela Samarati and Latanya Sweeney. 1998. Generalizing Data to Pro-
vide Anonymity when Disclosing Information (Abstract). In Proceedings of
the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 1-3, 1998, Seattle, Washington, USA. ACM Press, 188.
https://doi.org/10.1145/275487.275508

[28] Timos K. Sellis. 1988. Multiple-Query Optimization. ACM Trans. Database
Syst. 13, 1 (1988), 23–52. https://doi.org/10.1145/42201.42203

[29] Richard T. Snodgrass and Ilsoo Ahn. 1986. Temporal Databases. Computer 19,
9 (1986), 35–42. https://doi.org/10.1109/MC.1986.1663327

[30] Yicheng Tu, Mehrad Eslami, Zichen Xu, and Hadi Charkhgard. 2022. Multi-
Query Optimization Revisited: A Full-Query Algebraic Method. In IEEE Inter-
national Conference on Big Data, Big Data 2022, Osaka, Japan, December 17-20,
2022. IEEE, 252–261. https://doi.org/10.1109/BIGDATA55660.2022.10020338

[31] Lefteris Zervakis, Vinay Setty, Christos Tryfonopoulos, and Katja Hose. 2020.
Efficient Continuous Multi-Query Processing over Graph Streams. In Proceed-
ings of the 23rd International Conference on Extending Database Technology,
EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020. OpenProceed-
ings.org, 13–24. https://doi.org/10.5441/002/EDBT.2020.03

446

