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Abstract 

Since the introduction of the Automatic Identification System (AIS), AIS data has proven to be a 

valuable source of ship behavior analysis using data mining. It records ship position, speed and other 

behavior attributes at specific time intervals in all voyages at sea and in ports. However, the current 

studies in ship behavior analyze the behavior patterns either with a subjective choice of classification 

for behavior differences among the groups of ships or without any classification at all. In order to fill 

this gap, a new methodology for ship classification in ports based on behavior clustering is developed 

by analyzing AIS data from the port of Rotterdam. Besides a proper data preparation, the proposed 

methodology consists of two steps: step I, clustering ship behavior in a port area and identifying the 

characteristics of the clusters; step II, classifying ships to such behavior clusters based on the ship 

characteristics. The clustering results present both the behavior patterns and the behavior change 

patterns for ship path and speed over ground, which are the dominant behavior attributes for ships in 

ports. Some patterns of integral ship behavior can also be revealed by investigating the correlation 

between the two behavior attributes. Our research has shown that length and beam can be adopted as 

explanatory variable to classify ships to the corresponding behavior clusters. The classifiers are 

developed based on both unsupervised discretization (equal width binning) and supervised 

discretization (Chi2). The performances of classifiers are compared by three evaluation metrics, 

including Average Accuracy, 
1Fscore , and AUC. We found that the classification based on multi-

criteria is more accurate than using a single criterion. The classifications based on Chi2 discretization 
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outperform the ones with equal width discretization. The outcome leads to a systematic understanding 

of ship behavior in a port area and can be used to predict the ship behavior pattern based on their 

characteristics and simulate the ship behavior. 

Keywords: Data mining; AIS data; Behavior clustering; Ship classification; Ports and waterways 

1. Introduction

Waterborne transport has become an increasingly important means of international freight 

transport. Due to a large amount of cargo carried by individual ships and the high frequency of ships 

visiting the hub ports, the safety of ships and the capacity of ports have been global challenges with 

high priority for nautical traffic management and port authorities. Both efficient traffic management 

and predictive port design require a systematic and thorough understanding of ship behavior in port 

and inland waterways. For individual ships, the behavior is always different due to the officers on 

board and the different sailing situations. However, it is assumed to exist some behavior patterns for 

the total ship traffic in an area. The ship behavior patterns in an area are revealed by clusters of similar 

ship behavior, while the clusters are distinctive with each other over the area. For the macroscopic ship 

traffic flow, the behavior patterns show the characteristics of the ship behavior in the area. For the 

individual ships, the behavior patterns indicate the range that the ships will behave.  accurate behavior 

pattern prediction will support the port operation and the maritime surveillance. As only static ships 

characteristics are known before the ships enter a port area, a relation between these ship 

characteristics and the behavior patterns needs to be found. Therefore, ships are classified according to 

such patterns based on the ship characteristics. 

Currently, in the field of ship behavior analysis, Automatic Identification System (AIS) data has 

proven to be a valuable source of big data. Many researchers have used AIS data for general behavior 

pattern recognition and anomaly detection, without a clear classification of the involved ships (Gunnar 

Aarsæther and Moan, 2009; Pallotta et al., 2013; Ristic et al., 2008). In these studies, the behavior 

differences of individual ships are ignored. However, such individual differences have been revealed 

in other studies, in which a ship classification is pre-defined before analyzing the ship behavior using 
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AIS data. Silveira et al. (2013), Goerlandt and Kujala (2011), and Mascaro et al. (2010) classify ships 

based on their type, while not considering the size of ships. For the purpose of ship behavior 

investigation, this classification method lacks a detailed description of the behavior differences within 

the same ship type. De Boer (2010) proves behavior differences of container ships with different 

deadweight tonnages (DWT). However, the classification thresholds are determined such that 

approximately the same amount of available trajectories is included in every data set. This 

classification method only explains the behavior differences when comparing groups of ships, without 

a clear recognition of the actual behavior patterns in the area. The results of behavior comparison 

depend on the choice of classification criterion. The same drawback holds for the studies of Shu et al. 

(2013) and Xiao et al. (2015), which classify ships according to gross tonnage (GT). Moreover, the GT 

is a measure of ship’s overall internal volume without information on ship’s size which seems to be 

relevant to the behavior. Both classifications are based on the presence frequencies of ships with 

different GT in the data set. In the study for ship behavior during collision avoidance based on AIS 

data by Mou et al. (2010), the overall length is selected as the criterion to distinguish ship size and 

investigate the correlation between ship length and the closest point of approach (CPA). However, the 

reason for choosing such a criterion is not explicitly explained. Thus, in the studies of predefined 

classification for ship behavior, the choice of the classification criterion would result in a subjective 

explanation of the ship behavior patterns. It would be better to recognize the patterns of ship behavior 

directly from the behavior clusters, which then form the basis of ship classification.  

To the best of the authors’ knowledge, there is no dedicated research on the methodology of ship 

classification based on their behavior in a port or waterway. In our preliminary research on ship 

classification methodology (Zhou et al., 2015), ships are classified based on the relation between ship 

characteristics and behavior when passing a specific cross-section. However, the proposed method 

cannot be applied in a waterway or port area since it cannot handle the behavior in time series. The 

behavior patterns are not recognized, either. In a recent study, ship trajectories in a coastal area have 

been classified to predict ship type (Sheng et al., 2018). However, the classification only considers two 

types of ships (cargo ships and fishing ships) without other ship characteristics, and the method cannot 

be applied in a port area since detailed paths and speeds are not analyzed. In real-life port operations or 
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maritime traffic management, the general ship classification in a port, a water area, or a country is 

subjectively determined by the local port authority or other equivalent parties for the purpose of port 

dues calculation or ship registration. Ship classifications based on guidelines or rules will not support 

the accurate prediction of port operations with respect to maritime traffic. 

The objective of this paper is to develop a ship classification method based on ship behaviors 

revealed by AIS data, using static ship characteristics as explanatory variables. The first contribution is 

to develop a methodology to cluster ship behavior using AIS data. The resulting ship behavior patterns 

form the classification basis. The second contribution is the development of a ship classifier able to 

predict the ship behavior based on the static ship characteristics. To apply clustering and classification 

techniques in the domain of maritime traffic, existent methods in data mining will be modified and 

improved according to the characteristics of the data. The research result will support the behavior 

pattern recognition from AIS data and simulate the behavior in a systematic way considering the 

differences of ship characteristics. From the practical application perspective, the port authority would 

be able to predict the behavior pattern based on the available ship characteristics from AIS data or 

Vessel Traffic Services (VTS) report when a ship is about to approach. In case of special 

circumstances, the prediction can provide theoretical references for traffic control measures regarding 

ship behavior suggestions (e.g. position control or speed limit). In this paper, the data sets are 

introduced in Section 2 to give an overview of the characteristics of maritime traffic in ports. Section 3 

explains the proposed methodology for behavior clustering and ship classification. The clustering 

results and the classifier performance are presented and discussed in Section 4. Finally, Section 5 

concludes the paper with recommendations for further research. 

2. Data description 

The study area is a nearly straight waterway, Nieuwe Waterweg, located at the entrance of the 

port of Rotterdam, the Netherlands, as shown in Figure 1. The reason for choosing a straight waterway 

for behavior clustering is to eliminate the impact of a specific waterway layout on ship behavior. Thus, 

the proposed methodology is expected to be generically applicable in other (straight) waterways. This 

study focuses on ship behavior in unhindered situations, as it is assumed that ships with the same 
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behavior pattern in an unhindered situation would behave similarly when under the impacts of external 

factors, such as encounters, wind, and current. Based on such behavior clustering and ship 

classification, the behavior in other waterway layout or hindered situation can be systematically 

analyzed. The length of the study area is 2300 m, and its width is about 650 m. For the inbound traffic 

(sailing from the sea towards the port of Rotterdam), the Maasgeul channel (see Figure 1) splits into 

Nieuwe Waterweg and Calandkanaal, which are physically separated by a slightly bent mole, named 

the Splitsingsdam.  

The X-Y coordinate system in Figure 1 corresponds to the Dutch geographical coordinate system, 

the Rijksdriehoeksmeting (RD system), with the origin located in the southwest of the study area. In 

order to facilitate the analysis of ship behavior, the coordinate system is transposed to a local reference 

system. The transposed origin lies at the bottom left corner of the study area, which corresponds to the 

west end of the Splitsingsdam.  

 
Figure 1. Location of the study area and the wind and visibility measuring stations in the port of Rotterdam. The X-Y 

coordinate system is RD system. In the cutout area, the transposed system is indicated, so the inbound ships sail in the X’-

direction, while the lateral deviations from the straight path are visible in Y’-direction. 

The data for the whole year of 2014 have been collected from the port authority of Rotterdam, 

including the ship behavior records and the data of external environmental factors. The raw AIS data 



6 

 

reveal the ship behavior in the study area, while the meteorological and hydrological data present the 

external conditions, including visibility, wind, and current. In this section, the collected data are 

introduced. 

2.1. AIS data 

The AIS system is an automated tracking system onboard ships, which is designed to 

automatically provide information about the ship to other ships and to coastal authorities. In 2000, 

International Maritime Organization (IMO) issued an amendment adopting a new requirement 

regarding the introduction of AIS system in the International Convention for the Safety of Life at Sea 

(SOLAS) (IMO, 1974). The AIS system is mandatory by the end of 2004 for all ships of 300 Gross 

Tonnage (GT) and more engaged on international voyages, cargo ships of 500 GT and more not 

engaged in international voyages and all passenger ships irrespective of size. In the study area, every 

seagoing ship, even below the GT limit of IMO regulation, has installed AIS equipment and used it in 

all voyages. For the inland ships, both commercial and recreational ships, and sailing vessels longer 

than 20 meters are mandatory to use AIS since December 1
st
, 2014 according to the resolution of the 

Central Commission for the Navigation of the Rhine. The regulation applies to most of the inland 

vessels in the Netherlands. Since the year of 2014 is still a transition period, the majority of the 

collected AIS data of 2014 are seagoing ships. 

According to the guidelines by IMO (2003), the AIS data contain three types of information: (1) 

static information (Maritime Mobile Service Identity (MMSI) number, IMO vessel number, ship name, 

radio call sign, ship type, overall length, beam, etc.); (2) dynamic information (UTC time, ship 

position, speed over ground (SOG), course over ground (COG), heading, navigational status, etc.); (3) 

voyage-related information (draught, destination, etc.). The static information is entered into the AIS 

system by the equipment provider when the equipment is initially installed or after a major change of 

the ship structure. The dynamic information is updated automatically based on the sensor data. The 

update time interval of dynamic information depends on the speed of the ship according to the 

regulation by the International Telecommunication Union (ITU, 2014). The time interval is short when 

the SOG is high, and vice versa. The voyage-related information should be manually updated to the 
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real-time situation by the officers onboard. The actual draught may indicate the loading condition of 

the ship, which affects the ship’s maneuverability. However, in the collected data set, errors are found 

in the voyage-related information. For most of the ships in the data set, the draught is not updated in 

each voyage. For some ships, the value of draught equals the molded draught in the registration. Other 

ships are recorded with a draught of 0 meter in the data set. This implies that the data of ship draught 

are not reliable, thus these are not analyzed. 

Since the port authority of Rotterdam only stores the mandatory fields of static information in AIS 

data, the ships characterization is limited to type, length, and beam. In the collected AIS data set 

(2,299,842 messages), numerous ship types occur, including cargo ships, tankers, passenger ships, 

pilot ships, tugs, and dredgers. For the specific purpose ships (pilot ships, tugs, and dredgers), their 

working status is not indicated in the AIS messages. However, their behaviors in working and non-

working states are different, and as such, these ships are excluded from this research. Thus, only three 

main types of ships are analyzed in this research, being cargo ships (993,566 messages), tankers 

(522,614 messages) and passenger ships (77,724 messages). Since the cargo ships are not further 

categorized (e.g., into container, general cargo ship or bulker), the ship type is not included as a 

characteristic to classify the ships, even though it is assumed that the behavior of these types of cargo 

ships vary considerably. Therefore, the static ship characteristics to classify ships are length and beam 

in this research. The ratio between length and beam is also considered as a characteristic, as it is one of 

the ship dimension ratios indicating ship maneuverability. The ratio is calculated with an accuracy of 

0.1 considering the rules of significant figures in division calculation (Harris and Stöcker, 1998), since 

the length and beam are registered with an accuracy of 0.1 meter in AIS data. 

In the AIS data, the dynamic ship behavior is recorded through four behavior attributes (see 

Figure 2): position, heading, COG, and SOG. Since the study area is a straight waterway, the COGs of 

the ships mostly follow the direction of the waterway. The headings of the ships change seldom, either. 

Thus, in this research, the ship position and SOG are the main behavior attributes to be analyzed and 

clustered. Based on the transposed coordinate system (see Figure 1), the ship position is represented 

by the distance to the Y’-axis (the northwest boundary of the study area) and the lateral distance to the 

X’-axis (the southwest boundary). Since the Splitsingsdam is a slightly bent mole, the lateral distance 
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to the X’-axis does not exactly correspond to the distance to the dam.  

 
Figure 2. Illustration of behavior attributes in AIS data (RD system is the geographical coordinate system in the 

Netherlands).The ship with a solid outline is the current position, while the ship with a dotted outline is the position at next 

time step. The position of the ship is represented as the center in the figure, but the exact position for each ship depends on 

the location of transmitter installed on board. 

2.2. Meteorological and hydrological data 

Since the ship behavior is highly influenced by the external environmental conditions (Shu et al., 

2017), meteorological and hydrological data are collected to describe the external conditions of ship 

behavior.  

The meteorological condition refers to wind and visibility. Both are measured during the same 

period as for which the AIS data have been collected (2014). The location of the measuring stations 

are presented in Figure 1. The measured wind velocity data are stored at an interval of 5 minutes, 

while the visibility is presented every minute. In non-extreme weather conditions, there is no sudden 

change of wind within 5 minutes. Thus, the data are reliable and sufficiently accurate in presenting the 

external conditions. Since there are no obstructions in the study area, the wind and visibility are 

deemed to be the same for the whole area. 

The hydrological condition refers to the current, in particular, the current velocity. Unlike wind 

and visibility, the measured current velocity at a specific measuring station is not representative for the 

whole area, due to the propagation of flow and the velocity variation over the water-depth. Thus, the 

data of current velocity are calculated by the port authority using the SIMONA model (Vollebregt et 

al., 2003) using the measured water level from eight stations around the port as input. The modeled 

velocity has been validated by comparing to the measured velocity at one station in the area. The 

collected data describe the current velocity in 41×7 orthogonal curvilinear grids with a resolution of 

about 85 meters. The current velocity in each grid cell is presented by 10 layers with the same depth 
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averaged by the water depth of the grid at an interval of 15 minutes. For most of the ships, the length 

is larger than 85 meters, so the grid resolution is sufficiently accurate. The data represent the current 

situation along the voyage of ships.  

3. Research methodology 

The goal of this research consists of two parts, being distinguishing behavior clusters and 

classifying ships. Since the data mining in this research involves multi data sources, data preparation is 

necessary. The flow diagram in Figure 3 illustrates the three steps of the research methodology, which 

are further explained in this section.  

   

 

Data processing
(data combining, filtering)

AIS data

Data set of ship 
behavior in different 
external conditions

Data filtering for unhindered situation
Visibility≥2000 m

Wind speed<8 m/s
Current speed<0.37 m/s

No ship encounter

Data set of unhindered 
ship behavior

Start

K-means clustering of ship behavior

Naive Bayes classifier

End

3.2.
Behavior clustering

3.3.
Classifier development

Visibility

Wind

Current

3.1.
Data preparation

Ship behavior
in clusters

Classified ships based 
on behavioral clusters

Ship characteristics
from processed AIS data

 
Figure 3. Flow diagram of the ship classification based on ship behavior clustering. 

3.1. Data preparation  

Since ship behavior is influenced by the external conditions (Shu et al., 2017), the clustering of 

ship behavior is assumed to be based on the unhindered situation. This way, the impacts of external 
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factors are eliminated, which could reveal the behavior patterns mainly due to the ship characteristics. 

In the unhindered situation, the bridge team is assumed to behave with good seamanship, which is 

mostly based on the ship characteristics and maneuverability. The clustered ships are also expected to 

behave similarly when they are in some specific hindered situation. Therefore, multiple data sources 

are integrated.  

In the data processing of this research, the raw AIS data are integrated with the data of visibility, 

wind, and current based on the time and ship position in each AIS message. To eliminate the impacts 

of environmental factors, thresholds are used to filter out the unhindered situation. The thresholds have 

been previously analyzed in the impact analysis of external factors using the same data set (Zhou et al., 

2017). An unhindered situation is characterized by visibility ≥ 2000 m, wind speed < 8 m/s, and 

current speed < 0.37 m/s. Besides, in order to exclude the impact of ship encounters, the processed 

data set has filtered the trajectories of ships with any encounter with another ship in the study area. 

The three main types of ship encounter identified in the International Regulations for Preventing 

Collisions at Sea (COLREGs) are taken into account: head-on, overtaking, and crossing. The 

encounters of overtaking and crossing can be easily distinguished by the speed and position changes. 

The head-on situation at sea is defined when one ship is coming towards the other one roughly within 

6 degrees on either side of the heading. For the bi-directional waterway in port area, any two ships 

sailing in opposite directions will be deemed as head-on situation, since the inland waterway is narrow. 

When the two ships sail close to each other, they may change their course to avoid collision risk. Even 

without the collision risk, both ships will sail as near to the outer limit of the waterway on her 

starboard side as is safe and practicable, according to the rule of narrow channels in COLREGs. Thus, 

when two ships pass by each other, such encounter will influence the behavior of both ships. The head-

on situation is identified and filtered, when one ship encountering the other from the opposite direction 

in the study area. So far, the data set of ship behavior in the unhindered situation is generated.  

The AIS messages are transmitted at different time intervals due to the different speeds of ships. 

In the collected AIS data, the duration of the time interval is between 6 seconds and 15 seconds. A set 

of cross-sections has been developed parallel to the Y’-axis in order to analyze the behavior pattern of 

all ships when passing the same cross-section. The distance between cross-sections is equal, and is 
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determined by calculating the proceeded distance of ships between two adjacent AIS messages. The 

distance should guarantee that there is at least one AIS message in between two adjacent cross-

sections for most of the ships in order to reduce the inaccuracy introduced by interpolation. This 

results in a distance between cross-sections of 65 meters, with 35 cross-sections in total. The data of 

ship behavior attributes are linearly interpolated by the last message before and the first message after 

the cross-section. Considering the ships cannot make sudden changes in behavior in port areas due to 

the maneuverability and large inertia, linear interpolation of ship behavior within short distance will 

not decrease the data accuracy or influence the results. 

3.2. Behavior clustering  

The AIS data in unhindered situations are used to form classes for each behavior attribute using 

clustering techniques. Clustering analysis is an unsupervised technique in data mining. The data set 

without any pre-classification can be grouped into multiple clusters, so that the objects within a cluster 

have high similarity with each other, but are distinctive to the objects in other clusters (Han et al., 

2011). Clustering methods can be divided into two groups: hierarchical and partitioning techniques 

(Saxena et al., 2017). In the hierarchical clustering methods, clusters are revealed by iteratively 

dividing the groups using a top-down method or forming the groups by a bottom-up approach. The 

result of such methods usually leads to a dendrogram among the data objects. As the behavior of 

individual ships is assumed to be independent, the hierarchical clustering method is not appropriate for 

this research. Therefore, the partitioning method is adopted, with the aim to assign the data objects into 

clusters without hierarchical structure by optimizing some criterion function. The criterion is usually 

expressed by the dissimilarity between each data object and the corresponding cluster center. In the 

clustering of ship behavior, the behavior attributes are all scalable and each ship can only be assigned 

to one cluster. Thus, the centroid-based portioning technique, k-means algorithm, satisfies the 

requirements in this research.  

The general procedure of k-means clustering includes: step 1, choosing initial cluster centers for a 

given number of clusters; step 2, assigning each data object to the cluster with least dissimilarity to the 

cluster center; step 3, updating the cluster center after all objects being assigned and repeat step 2 until 
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there is no change in cluster center. The limitations of this method can be found through its procedure 

(Saxena et al., 2017): (i) strong reliance on the user to define the number of clusters in advance; (ii) 

high sensitivity to the initialization phase; (iii) high sensitivity to the outliers in the assigning process; 

(iv) high sensitivity to the definition of stopping criterion. In this research, the disadvantages are 

improved or overcame in the ship behavior clustering algorithm.  

(i) decision on the number of clusters  

Given the general ship behavior data set, the number of behavior clusters is unknown beforehand. 

Too few clusters will lead to an obscure recognition of behavior patterns, as some behavior patterns 

might be combined. Meanwhile, choosing too many clusters will lead to a lack of general 

representativeness of behavior patterns, and the clustering patterns are possibly indicated by statistical 

artificial differences.  

To deal with the influence of the number of clusters, the k-means clustering method is performed 

using different numbers of clusters as input, starting with 2 clusters, and increasing the number of 

clusters until the ship behavior data in each cluster are significantly different with the data objects in 

other clusters over the whole area, which can be compared at all cross-sections. The statistical t-test is 

performed to compare the ship behavior patterns with a significance level of 95% (corresponding to a 

p-value of 0.05). This condition guarantees that the clustering results represent the ship behavior 

patterns in the whole study area. When the data in two clusters are not significantly different at some 

cross-sections, these two clusters cannot be deemed to have a different behavior pattern in the whole 

area.  

(ii) the defined initialization phase  

The common k-means clustering starts with an arbitrary choice of the centers of initial clusters. 

However, the random initialization would lead to different clustering results in different runs, where 

each run starts with different centers of initial clusters. In order to get a unique clustering result 

representing behavior patterns, the centers of initial clusters are defined to be distinct. As the ship 

behavior is assumed to be smooth without sudden changes due to its maneuverability, the initial 

centers can be calculated from the data objects. For any ship trajectory n, a general indicator of 

behavior attribute nB  is defined as the mean value of this behavior attribute on all cross-sections. Two 
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of the cluster centers are the minimum and maximum nB , respectively. The other cluster centers are 

the trajectories with the corresponding percentile value of nB . For instance, when the number of 

clusters is 4, the initial cluster centers are the minimum, 33
rd

 percentile, 67
th
 percentile and maximum 

of nB . This way, the initial centers are unique and distinct to each other.  

 (iii) the measure of overall dissimilarity between clusters 

In the k-means algorithm, every data object will be assigned to a cluster and influence the cluster 

center, which makes the algorithm sensitive to the outliers. Outliers in ship behavior in AIS data are 

mostly caused by the occasional measurement error during one message transmission. The clustering 

based on differences of behavior when passing a specific cross-section is sensitive to such data 

outliers. Besides, the cluster of ship behavior should represent the general behavior pattern over an 

area. Thus, to express such overall dissimilarity of behavior and overcome the sensitivity to the 

outliers at some point, the measure of distance between a data object to the cluster center is defined 

considering the ship behavior on all cross-sections. For any ship trajectory n, the distance to the center 

of cluster i ( , )n iD  is defined as 

  
2

( , ) ( ) ( , )1

m

n i n j c i jj
D B B


    (1) 

where ( )n jB  denotes the behavior attribute of trajectory n on cross-section j, ( , )c i jB  denotes the center 

of cluster i for this behavior attribute on cross-section j, and m is the total number of cross-sections.  

The difference is squared for each cross-section to avoid difference compensation and to weigh 

the difference (larger differences have a larger effect). Based on the calculation of distance to all 

cluster centers, each ship trajectory will be assigned to the cluster with the minimum distance to the 

corresponding center.  

(iv) the data-based stopping criterion 

After each iteration of assigning ships to clusters, the centers are updated by calculating the mean 

value of the behavior attributes on each cross-section in each cluster. The clustering stops when the 

centers do not longer change. In the application to practical problems, a specific stopping criterion 

needs to be defined, which is usually indicated by the number of iteration steps. However, in the 
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clustering of ship behavior to recognize the behavior pattern in an area, such stopping criterion (no 

change of cluster centers or a definite number of iterations) lead to heavy computation load or 

incomplete clustering results. In this research, the stopping criteria are decided based on the significant 

figures of behavior data. When the maximum change of cluster centers is less than a threshold value, 

further clustering is no longer significant in practice. Then, the clustering repetition stops. In this 

research behavior, the threshold of position is set as 0.1 meter, while it is set to 0.01 knot for SOG. 

When the clustering results satisfy the aforementioned stopping criteria, the formed clusters 

represent the general ship behavior patterns in the area. The clustering result for each ship trajectory is 

input as label for its behavior pattern in the process of ship classification, see the next section. 

3.3. Classifier development 

The clustering result reveals the behavior patterns and identifies clusters for each type of ship 

behavior. In this section, the proposed classifier(s) is identified to predict to which behavior cluster a 

ship belongs to, based on the ship characteristics. To discover the most appropriate criteria to classify 

ships using available data, four combinations of ship characteristics are selected to develop classifiers, 

and their performances need to be tested and compared. These combinations are: (1) ship length; (2) 

ship beam; (3) ratio between ship length and ship beam; (4) ship length and ship beam. 

The data classification is a two-step process, consisting of a learning step to develop a classifier 

or a classification model and a classification step where the classification model is used to predict 

class labels for given data objects (Han et al., 2011). In the second step, the performance of the 

developed classifier can be tested. In this research, the holdout method with random subsampling is 

used to compare the performances of different classifiers. Two-third of the ship trajectories are 

allocated to the training set, while the remaining one-third of the trajectories are used in the test set. To 

avoid the impact of seasonality of port operation on maritime traffic, random subsampling is 

performed to the data per month over the year. This way, both training and test sets cover the whole 

year of collected data.  

Five main categories of classification algorithms are distinguished (Kotsiantis et al., 2007): logic-

based algorithms, perceptron-based techniques, statistical learning algorithms, instance-based learning, 
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and Support Vector Machines. In this research, instead of a direct causal relationship between ship 

characteristics and ship behavior, there is a possibility for any ship to belong to any behavior pattern. It 

means that the class of a data object is predicted by the highest possibility to belong to a single class 

among all classes. Besides, it is expected that more than two classes of ship behavior will be 

distinguished. Thus, in this research, the statistical learning algorithm underlying a probability model 

is adopted. Among the statistical learning algorithms, the naive Bayesian classifier has been found to 

be comparable in the performance with other neural network classifiers, and it has a high accuracy and 

short computational time when applied to large data sets (Han et al., 2011). As the effects of ship 

characteristics on the prediction of behavior class are assumed to be independent, it also follows the 

basic assumption in Naive Bayesian classification. Thus, the Naive Bayesian classifier is appropriate 

for this research. In the following, the two steps of classification using a Naive Bayesian classifier are 

further elaborated upon. 

Step 1: learning step to develop classifier 

Let any ship nS S  be represented by its characteristics, 1 2{ , ,..., }mx x xX . Suppose that there 

are k behavior clusters (the results from ship behavior clustering), 1 2, ,..., kC C C . The classifier will 

assign nS  to class i with the highest posterior probability, which is the maximum posteriori probability 

(MAP) presented as 

 argmax ( )
nMAP S S iC P C X   (2) 

The posterior probability is calculated according to Bayes’ theorem: 

 
( ) ( )

( )
( )

i i

i

P C P C
P C

P


X
X

X
  (3) 

Since ( )P X  is the same for all classes, only ( ) ( )i iP C P CX  needs to be calculated and 

maximized. The prior probabilities of all behavior classes ( )iP C  are known based on the clustering 

results for each behavior attribute. Thus, only the prior probability of different characteristics should 

be estimated. For numerical characteristics, there are two alternatives to estimate the prior probability: 

(i) For each ship characteristic, if a continuous distribution can be fitted based on the collected 

data, the prior probability can be computed using the distribution function. 
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(ii) If there is no fitted distribution for the ship characteristics, the data need to be discretized into 

bins to generate the prior probability from the training data set. The techniques of discretization can be 

categorized as supervised or unsupervised (Witten et al., 2016). Since neither method always yields 

better results than the other, both discretization methods have been tested in this research. 

(a) unsupervised discretization 

Among the unsupervised discretization methods, the equal-width binning and equal-frequency 

binning are the basic ones, while the discretization based on clustering is more sophisticated (Joiţa, 

2010). Since the number of intervals for each ship characteristic is unknown, the discretization by 

clustering analysis, such as k-means discretization, cannot be applied. As the purpose of discretization 

in this paper is to calculate the prior probability, the equal-frequency interval binning is not 

appropriate. Thus, the equal-width binning is chosen as unsupervised discretization method.  

In the equal-width interval binning, the data range  1 2, ,..., na a a  is divided into k intervals of an 

equal width determined by  max min /a a k . This way, the interval is determined by the data objects 

and the desired number of intervals. However, as stated before, the number of intervals in this research 

is unknown. Thus, the interval width for each ship characteristic is given in the discretization instead 

of the number. Since an empty bin of ship characteristics in the training set means the prior probability 

equal to 0, the ships with such characteristics cannot be properly classified. To avoid empty bin and 

consider the values of different ship characteristics, the interval for length is determined as 10 meters, 

2 meters for beam, and 0.5 for the ratio between length and beam.  

(b) supervised discretization 

Compared to the unsupervised discretization methods, the supervised methods make use of the 

class labels when partitioning the characteristics. Several discretization methods exist, and the 

supervised discretization methods in classification have been tested and compared (Lavangnananda 

and Chattanachot, 2017). They show that the Chi2 algorithm yielded the best performance in most 

datasets compared to other supervised methods. In the classifiers with Naive Bayes, Chi2 also yielded 

the best performance. Thus, in this research, Chi2 is adopted, which is a bottom-up discretization 

method using the 
2  value to determine the merging point (Liu and Setiono, 1995).  
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The discretization process starts with sorting the values of a characteristic. Then, the following 

steps are performed: (1) each value forms one interval; (2) the 
2 value for every pair of adjacent 

intervals are calculated according to equation 4; (3) the pair of adjacent intervals with the lowest 
2

value are merged into one interval. Since the main behavior class in adjacent intervals of ship 

characteristics might be different, the merging only considering the 
2 value may change the 

distribution of behavior classes within the interval. To avoid such unexpected variation, one more 

criterion for merging is required, being that the pair of adjacent intervals should be consistent in the 

main behavior class.  

 
 

2
2

2

1 1

k
ij ij

i j ij

A E

E


 


   (4) 

where:  

k  is the number of classes;  

ijA  is the number of data objects in the i
th
 interval, j

th
 class;  

ijE  is the expected frequency of ijA , * /ij i jE R C N ;  

iR  is the number of data objects in the i
th
 interval, 

1

k

i ijj
R A


 ; 

jC  is the number of data objects in the j
th
 class, 

2

1j iji
C A


 ; 

N  is the total number of data objects, 
2

1 1

k

i ji j
N R C

 
   . 

Instead of setting a threshold of 
2 , Chi2 introduces the inconsistency rate. For the data objects 

with the same value of a characteristic, the inconsistency count is the total number of objects minus 

the largest number of objects with the same class label. The inconsistency rate is the sum of the 

inconsistency count divided by the total number of the objects in the interval. For example, there are n  

data objects with the same value of a characteristic, 1c  objects belong to class 1, 2c  objects to class 2, 

and 3c  objects to class 3, where 1 2 3c c c n   . If 1c  is the largest among the three classes, the 

inconsistency count is 1n c . In the original Chi2 algorithm, the merging process stops when the 

inconsistency rate exceeds a certain value  . However, an appropriate value of   can only be given 
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after some tests on the data set. The same value of   for all intervals also ignores the different portion 

of inconsistent objects in different intervals. Thus, the value of   is set as a dynamic criterion, which 

is the lowest initial inconsistency rate among the involved initial intervals. For instance, if the i
th
 

interval is merged from the 4
th
, 5

th
, and 6

th
 initial intervals, the value of   for the i

th
 interval is the 

minimum of the inconsistency rate among the three intervals at the initial step without any merging. 

This is still to avoid the change of the behavior class distribution after merging the intervals.  

Since the supervised discretization considers the class labels, the discretization for the same ship 

characteristics for different ship behavior might be different. Thus, in the research, the discretization 

would perform 6 times, which are for 2 ship behavior attributes with 3 ship characteristics. 

Step 2: classification step to measure performance 

The performance of a classifier can be evaluated by comparing the predicted class labels by the 

classifier and the actual class labels by behavior clustering (Sokolova and Lapalme, 2009). The 

confusion matrix in this research is defined in a one-versus-others method based on the classical 

matrix for binary classification, as listed in Table 1.  

Table 1. Confusion matrix for class i in ship classification. 

Actual ship behavior class  Predicted as class i Predicted as other classes 

Class i  true positive ( TP
i
) false negative ( FN

i
) 

Other classes false positive ( FP
i
) true negative ( TN

i
) 

 

Considering the characteristics of different performance measures for classification (Sokolova 

and Lapalme, 2009), three evaluation metrics are selected for different purposes: (1) Average 

Accuracy to represent the average per-class effectiveness of the classifier; (2) 1Fscore , which is the 

harmonic mean of precision (a measure of exactness) and recall (a measure of completeness) with 

equal weights, to represent the effectiveness of the classifier to identify positive class; (3) Area Under 

the Curve (AUC), which is also referred as balanced accuracy, to represent the classifier’s ability to 

avoid false classification. Usually, the AUC of a classifier should be in the interval [0.5,1]. When the 

AUC is equal to 0.5, it means random guessing in binary classification. When the AUC equals to 1, 

the prediction of the classifier perfectly matches the actual labels. 
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The performance test is to investigate the developed classifiers from two aspects: (1) to compare 

the classification based on two discretization methods; (2) to discover the most appropriate criterion(-a) 

to classify ships regarding the ship behavior.  

In the next chapter, the methodology introduced in this chapter will be applied to the data set 

introduced in chapter 2. 

4. Results and analyses 

For the application of the proposed methodology, the behavior of both inbound and outbound 

ships in the study area have been analyzed. Since the sailing direction (approach to or departure from a 

port) might influence the ship behavior, the data of inbound and outbound ships are handled as two 

independent data sets in the research. In this section, the behavior clustering results are discussed 

(section 4.1) and the performances of classifiers based on different ship characteristics are compared 

(section 4.2). 

4.1. Ship behavior clustering and statistical test results 

The behavior clustering results of ship path and SOG are discussed in this section. The results of 

inbound ships are presented with detailed explanations, while the results of outbound ships are briefly 

provided, as they only deviate slightly from the results of the inbound ships. 
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According to the methodology proposed in section 3.2, the ship behavior attributes are clustered 

into 2 to 10 clusters. The statistical t-test is performed to the behavior data of all clusters on all cross-

sections, as presented in Table 2.  

Table 2. Number of cross-sections with significantly different behavior in all clusters of inbound ships. 

No. of clusters 2 3 4 5 6 7 8 9 10 

Path 35 35 35 35 35 33 32 29 28 

SOG 35 35 35 35 34 33 32 30 29 

* The total number of cross-sections is 35. The gray shading indicates the formed clusters are significantly different on some 

cross-sections, not over the whole area. 

For the ship path, the clusters are significantly different from each other on all cross-sections, 

when the number of clusters is less than 7. With a further increase of the number of clusters, the 

clusters are not significantly different on all cross-sections anymore. Thus, the number of path clusters 

of inbound ships is determined as 6, for which the different behavior patterns (indicated as clusters) 

over the whole area can be recognized. The ship paths for each cluster are shown in Figure 4. Since the 

mole locating at the south of the study area is slightly bent with an irregular outline, the shape is 

extracted from the map and indicated as an irregular black bar at the bottom of each plot. The solid 

line shows the center value of each cluster, while the dashed line shows the 95% confidence interval of 

the ship path of each cluster on each cross-section. The lines do not refer to the behavior of a single 

ship, but the behaviors of all ships within that cluster. The vessel behavior of clusters varies within the 

range. Thus, an overlap of the range can be observed between clusters, which refers to the ships with 

the behaviors on the edges of the clusters. For the individual ships from two clusters may have similar 

behaviors. However, the defined function of distance to the cluster center (in section 3.2) can 

mathematically guarantee that every ship will be clustered to the group with least dissimilarity over 

the whole area. When comparing the cluster centers of all clusters, the ship paths are generally 

different over the whole area, with the ship path of cluster #1 closest to the starboard bank while the 

ship path of cluster #6 is farthest away from the starboard bank. The range and distribution of paths in 

clusters are also different, when looking at the ship path at 95% confidence interval. Along the sailing 

direction of inbound ships (from the left to the right of the figure), the ship paths in all clusters move 

farther away from the X’-axis. The reason is that the waterway becomes narrower outside the right 

boundary of the study area as shown in Figure 1. Thus, the ships sail farther away from the starboard 
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bank to enter the neighboring waterway smoothly. Similarly, the clustering results for outbound ships 

consist of 4 clusters of path.  

The comparisons of ship path centers between clusters of inbound and outbound ships are 

presented in Figure 5. The ship path centers for outbound clusters (see Figure 5(b)) are obviously 

different with each other over the study area. However, for the inbound ships, the path centers of 

cluster #3 and cluster #4 cross in the middle area. The ships in cluster #3 sail closer to the starboard 

bank when entering the study area from the sea compared to the ships in cluster #4, while farther away 

from the bank when leaving the study area. When investigating the composition of ships in these two 

clusters, approximately half of ships in both clusters have medium length (100-170 meters) and 

medium beam (16-26 meters). Of the remaining ships in cluster #3, more ships have small lengths and 

beams than large ones. The percentage of ships with small and large length and beam in cluster #4 are 

around the same. As the majority of ships in these two clusters are similar in ship characteristics and 

the sailing situation is unhindered, the behavior difference in path is possibly due to the maneuvering 

preferences of officers onboard when sailing in a narrowing waterway. Especially for the ships with 

medium size, the space for sailing in the waterway is more flexible than smaller ships (which need to 

sail closer to the starboard bank due to the navigation rules in narrow channels) or larger ships (which 

need to sail farther to the starboard bank due to the bigger draught). Some officers prefer to change 

their position more to the center in advance in case of unexpected situation in the neighboring 

narrower waterway, which is presented as cluster #3. The other officers prefer to keep themselves as 

close to the starboard bank as possible according to the advice of navigation rules, shown as cluster #4. 

Thus, not only the different behavior patterns over the whole area can be recognized by the proposed 

clustering method, the behavior change patterns are also identified in different clusters.   
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Figure 4. Clustered inbound ship paths: (a) cluster #1; (b) cluster #2; (c) cluster #3; (d) cluster #4; (e) cluster #5; (f) cluster 

#6 (The distance to the X’-axis as a function of the distance to the origin of the coordinate system with the sailing direction 

from the left to the right of the figure). The black bar at the bottom of each plot indicates the mole, Splitsingsdam, as shown 

in Figure 1. 

 
Figure 5. Comparison of ship path in clusters: (a) inbound ships; (b) outbound ships. The black bar at the bottom of each plot 

indicates the mole, Splitsingsdam, as shown in Figure 1. 

The method to decide the number of clusters for SOG is the same as the method used for ship 

path, see Table 2. The five clusters of SOG for inbound ships are presented in Figure 6. The ships in 

SOG cluster #1 sail with the lowest speed, while the SOG for cluster #5 is highest. For the ships in 

cluster #3, #4, and #5, the range of the 95% confidence interval is larger at the boundaries than in the 

middle of the area. The ships with high speed tend to have more variation of speed when entering a 

waterway, while behaving similarly when there is no change in the sailing environment. The behavior 

patterns of SOG are significantly different in all clusters over the whole study area for both inbound 

and outbound ships, as shown in Figure 7. Most of the ships keep a stable speed during the whole 

voyage in the area (cluster #1, #2, #3 for inbound ships, cluster #1, #2, #3, #4 for outbound ships). 
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However, for the ships with high speed, the closer to the neighboring narrow waterway (the right of 

the figure), the lower speed they sail (cluster #4, #5 for inbound ships, cluster #5, #6 for outbound 

ships). A lower speed in the narrow waterway reduces the impact of ship wave on other ships and 

guarantees sufficient time for maneuvering in case of unexpected situations. 

 

 
Figure 6. Clustered inbound ship SOG: (a) cluster #1; (b) cluster #2; (c) cluster #3; (d) cluster #4; (e) cluster #5 (The ship 

SOG as a function of the distance to the origin of the coordinate system with the sailing direction from the left to the right of 

the figure) 

 
Figure 7. Comparison of ship SOG in clusters: (a) inbound ships; (b) outbound ships. 

To further interpret the clustering results with respect to the correlation between ship path and 

SOG (the integral ship behavior), the number of ships in each path and SOG cluster for both inbound 

and outbound directions are shown in Figure 8. Based on the number of ships in clusters for path and 

SOG, some patterns of the integral behavior can also be revealed for both inbound and outbound ships. 

Generally, ships sailing with low speed (SOG #1) mostly sail close to the starboard bank (Path #1). 

With an increase of speed, ships sail farther from the starboard bank. However, the ships with the 
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highest SOG (cluster #5 of inbound ships and cluster #6 of outbound ship) keep a proper distance to 

both sides of the bank, instead of sailing farthest to the starboard bank. It is possibly in consideration 

for sufficient maneuvering space for ship encounter or other special circumstances.  

When comparing the behavior pattern for inbound and outbound ships, the speed range for both 

are similar, but the distribution of speed for the ships sailing farthest away from the starboard bank is 

different. For the inbound ships (path cluster #6), most of them sail with a high speed as in SOG 

cluster #4 and #5. Meanwhile, the speed for outbound ships in path cluster #4 is evenly distributed. 

When investigating for both directions the composition of ships sailing farthest to starboard bank, 

most of them are large-size ships. In narrow waterway, large ships need a relatively high speed to 

maintain the rudder effectiveness, even it may consume more fuel. For inbound ships, they need to 

keep a relatively high speed (SOG cluster #4 and #5) for maneuvering in the neighboring narrow 

waterway. However, for outbound ships, they can sail at their desired speed maintaining the basic 

maneuverability without consuming much fuel. 

  
Figure 8. The number of ships in different path and SOG clusters: (a) inbound ships; (b) outbound ships. 

4.2. Ship classification and performance measures results 

As stated in the methodology of ship classification (section 3.3), the first step is to estimate the 

prior probability of different ship characteristics. Since the characteristics of length, beam and the ratio 

between length and beam are all ratio variables, the ship data are analyzed using Arena Input Analyzer 

to fit common statistical distributions, including normal, lognormal, gamma, Erlang, beta, Weibull, 

uniform and exponential distributions (Takus and Profozich, 1997). The results show that the 

lognormal distribution is the most likely distribution for the beam and the ratio between length and 
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beam of inbound ships and all three characteristics for outbound ships, while the gamma distribution 

best describes the length of inbound ships. Based on the fitting results, the Kolmogorov-Smirnov test 

(K-S test) is performed to the data and the most likely distribution. The null hypothesis is that the data 

are drawn from the corresponding distribution. However, the null hypotheses are rejected for all 

characteristics of inbound and outbound ships with the p-value of 0.05. Thus, the most likely 

distribution cannot represent the real situation. Therefore, the second solution to estimate the prior 

probabilities for each characteristic is adopted consisting of computing the observations in the data set 

using supervised and unsupervised discretization methods, respectively. The number of intervals for 

different ship characteristics resulting from these two discretization methods is shown in Table 3. The 

supervised discretization method Chi2 results in different intervals of ship characteristics when 

considering the classes of behavior attributes.  

Table 3. Number of intervals for different ship characteristics by two discretization methods. 

Ship 

characteristics 

Unsupervised 

discretization 

(EWB) 

Supervised discretization (Chi2) 

Inbound ships Outbound ships 

Path SOG Path SOG 

Length 18 23 6 21 26 

Beam 14 3 6 4 4 

Length/Beam 12 6 8 17 9 

 

To test the classifiers, 50 runs of classification are performed with the holdout method using the 

collected data. The values of three evaluation metrics in 50 classification runs for each classifier 

follow a normal distribution, which has been statistically tested. The mean value of evaluation metrics 

of the classifiers for inbound and outbound ships are shown in Table 4. 

Table 4. Mean value of evaluation metrics for the ship classification in 50 runs. 

Data set 

of ships 

Behavior 

attributes 

Ship 

characteristics 

Classification based on 

unsupervised discretization 

(EWB) 

Classification based on supervised 

discretization (Chi2) 

Average 

Accuracy 1
F score   AUC 

Average 

Accuracy 1
F score  AUC 

Inbound 

ships 

Path 

Length 0.7830 0.6233 0.7077 0.7943* 0.6781* 0.7435 

Beam 0.7838* 0.6256* 0.7198 0.7805 0.6567 0.7354 

Length/Beam 0.7734 0.6188 0.6899 0.7741 0.6602 0.7069 

Length & 

Beam 
0.7837 0.6256* 0.7265* 0.7901 0.6687 0.7487* 

SOG Length 0.7411 0.5881 0.6829 0.7391 0.6244 0.7025 
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Beam 0.7465* 0.5898 0.6941 0.7462* 0.6296* 0.7031 

Length/Beam 0.7304 0.5791 0.6658 0.7286 0.6126 0.6808 

Length & 

Beam 
0.7450 0.5900* 0.7013* 0.7412 0.6140 0.7182* 

Outbound 

ships 

Path 

Length 0.7266 0.6443 0.6801 0.7333 0.6771 0.7028 

Beam 0.7344* 0.6506* 0.6927* 0.7328 0.6774 0.7019 

Length/Beam 0.7036 0.5886 0.6373 0.7087 0.6358 0.6589 

Length & 

Beam 
0.7295 0.6486 0.6916 0.7346* 0.6802* 0.7065* 

SOG 

Length 0.7756 0.6149 0.7159 0.8001* 0.6868* 0.7602 

Beam 0.7820 0.6209 0.7230 0.7788 0.6545 0.7311 

Length/Beam 0.7635 0.5984 0.6988 0.7686 0.6418 0.7200 

Length & 

Beam 
0.7865* 0.6277* 0.7318* 0.7988 0.6797 0.7621* 

* In the classification for each behavior attribute in each data set of ships (e.g. for the path of inbound ships), the highest 

values of each evaluation metrics in the developed classifiers are marked with a star(*), respectively. The gray shading 

indicates the classifiers outperforming others in all three evaluation metrics.  

For all of the developed classifiers, the AUC values are larger than 0.5, which suggests the 

classifiers perform better than a random class assignment. The classifiers with gray shading in Table 4 

are the ones with an overall good performance in classifying ships to the corresponding behavior 

classes. For the classifiers marked with two stars, the differences of the remaining evaluation metrics 

to the highest value are all less than 0.01. The performance of such classifier is also deemed as 

comparable and adoptable in practice.  

To compare the classification based on two discretization methods, the classifiers based on Chi2 

outperform the ones with EWB. The reason is that the behavior classes of ships have been considered 

during the Chi2 discretization. Thus, the estimate of prior probabilities based on such discretized 

intervals will lead to a better performance in classification. Especially when looking at 1Fscore  and 

AUC which indicate the ability to identify the correct classes, the classifiers based on Chi2 

discretization are better than the other algorithm in all cases. Thus, the Chi2 algorithm is 

recommended to perform discretization of ship characteristics, though the complexity of such 

classification increases than the one with EWB.  

To discover the most appropriate criterion(-a) of ships characteristics, the performances of 

classifiers based on different characteristics in both discretization methods are analyzed. When 

investigating the classification based on a single criterion, the classifiers based on beam outperform 
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the others, considering the evaluation metrics and the number of intervals in Chi2 discretization. In the 

classification based on EWB discretization, the classifier based on beam also outperforms the other 

classifiers with a single criterion. Comparing the performances of all classifiers, the ones based on 

length & beam perform well with two or three stars in three cases (path in inbound ships, SOG in 

inbound ships, SOG in outbound ships) in the classification with EWB discretization. In the 

classification with Chi2 discretization, the classifiers based on length & beam are marked with the 

highest AUC value in all cases. The AUC value represents the classifier’s ability to avoid false 

classification. Considering the other two evaluation metrics, the performances of classifier based on 

length & beam are also comparable to the ones with highest value. It could also be expected that with 

more ship characteristics for classification, the performance is better, since the ship can be 

characterized from different aspects.  

The classification for inbound and outbound ships are developed and tested independently. If to 

choose a classifier for both inbound and outbound ships in practice for the study area, the one with 

Chi2 discretization based on length & beam is recommended.  

5. Conclusions 

This paper presents a methodology for clustering ship behavior in an area and classifying ships 

into these clusters based on the static ship characteristics. The ship behavior clustering methodology is 

based on the k-means theory and modified to overcome its drawbacks in subjective decision on 

number of clusters and sensitivity to initialization and stopping criteria. The proposed algorithm is 

stable in clustering results without subjective decisions in the initialization phase. The ship classifier is 

developed according to the principle of Naive Bayesian classification. Instead of assuming a 

distribution to estimate the prior probability, two discretization methods (unsupervised Equal Width 

Binning and supervised Chi2) are tested to calculate the probability. The most appropriate classifier 

can be indicated by the evaluation metrics. 

The methodology has been independently applied to two subsets: inbound ships and outbound 

ships in the study area in the port of Rotterdam. The clustering result can recognize both the fully 

different behavior patterns over the whole research area and the different behavior change patterns for 
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some clusters of ships. The integral ship behavior pattern can also be revealed. With the holdout 

method, the developed classifier (based on training data set) has been used to classify ships (in testing 

data set) to the corresponding behavior cluster. The evaluation results of classification show that the 

Chi2 algorithm tends to perform better than EWB. The classifications based on length & beam 

outperform the ones based on a single criterion. The results reveal the underlying relation between 

ship characteristics and behavior patterns. 

Both the port authority and the researchers could benefit from the proposed methodology and the 

identified clusters. For the port authority, the ship behavior clustering results reveal the ship behavior 

patterns and the ship behavior change patterns in a specific area, which helps the port operation and 

traffic management. The developed classifiers can be used to predict the behavior patterns of ships. 

For nautical researchers, this paper provides an integrated method of behavior pattern recognition 

based on AIS data and the corresponding ship classification. The results could also help to simulate 

the behavior of different ships in a systematic way. For data mining researchers, the method of 

deciding the number of clusters in k-means clustering can be applied to other problems. The results of 

classification based on two discretization methods indicate the applicability and effectiveness in the 

domain of maritime traffic.  

Future research can be to include more ship characteristics in the classification. With a more 

comprehensive data set of ship particulars (e.g., GT, DWT, actual draught), the classifier performances 

can be compared to choose the criterion best indicating ship behavior patterns. In a later stage, the 

results will be applied in traffic model development to simulate such ship behavior. Given the detailed 

recognition of ship behavior patterns, the simulation results will be closer to the reality.  

Acknowledgement 

This work is initiated by the project, Nautical traffic model based design and assessment of safe 

and efficient ports and waterways, under the Netherlands Organization for Scientific Research (NWO). 

The fellowship of Yang Zhou is supported by China Scholarship Council and Delft University of 

Technology. The support from SmartPort, both financially and by embedding the research in the 

practical context of the Port of Rotterdam, is highly appreciated. The authors would also like to thank 



29 

 

the department of Data Management in the port of Rotterdam during the data collection, and 

appreciate Frank Cremer for accessing AIS data, Cor Mooiman for providing wind and visibility data, 

Bob van Hell and Lamber Hulsen for simulating current data. 

References 

De Boer, T., 2010. An analysis of vessel behaviour based on AIS data. TU Delft, Delft University of 

Technology. 

Goerlandt, F., Kujala, P., 2011. Traffic simulation based ship collision probability modeling. 

Reliability Engineering & System Safety 96 (1), 91-107. 

Gunnar Aarsæther, K., Moan, T., 2009. Estimating navigation patterns from AIS. Journal of 

Navigation 62 (04), 587-607. 

Han, J., Pei, J., Kamber, M., 2011. Data mining: concepts and techniques. Elsevier. 

Harris, J.W., Stöcker, H., 1998. Handbook of mathematics and computational science. Springer 

Science & Business Media. 

IMO, 1974. International Convention for the Safety of Life at Sea, London. 

IMO, 2003. Guidelines for the Installation of a Shipborne Automatic Identification System (AIS), 

SN/Circ.227, London. 

ITU, 2014. Technical characteristics for an automatic identification system (AIS) using time division 

multiple access in the VHF maritime mobile frequency band, in: ITU (Ed.), M.1371-5, Geneva. 

Joiţa, D., 2010. Unsupervised static discretization methods in data mining. Titu Maiorescu University, 

Bucharest, Romania. 

Kotsiantis, S.B., Zaharakis, I., Pintelas, P., 2007. Supervised machine learning: A review of 

classification techniques. 

Lavangnananda, K., Chattanachot, S., 2017. Study of discretization methods in classification, 

Knowledge and Smart Technology (KST), 2017 9th International Conference on. IEEE, pp. 50-55. 

Liu, H., Setiono, R., 1995. Chi2: Feature selection and discretization of numeric attributes, Tools with 

artificial intelligence, 1995. proceedings., seventh international conference on. IEEE, pp. 388-391. 

Mascaro, S., Korb, K.B., Nicholson, A.E., 2010. Learning abnormal vessel behaviour from ais data 

with bayesian networks at two time scales. Tracks A Journal Of Artists Writings. 

Mou, J.M., Tak, C.v.d., Ligteringen, H., 2010. Study on collision avoidance in busy waterways by 

using AIS data. Ocean Engineering 37 (5), 483-490. 

Pallotta, G., Vespe, M., Bryan, K., 2013. Vessel pattern knowledge discovery from ais data: A 

framework for anomaly detection and route prediction. Entropy 15 (6), 2218-2245. 

Ristic, B., La Scala, B., Morelande, M., Gordon, N., 2008. Statistical analysis of motion patterns in 

AIS data: Anomaly detection and motion prediction, Information Fusion, 2008 11th International 

Conference on. IEEE, pp. 1-7. 

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.-T., 

2017. A review of clustering techniques and developments. Neurocomputing 267, 664-681. 

Sheng, K., Liu, Z., Zhou, D., He, A., Feng, C., 2018. Research on Ship Classification Based on 

Trajectory Features. The Journal of Navigation 71 (1), 100-116. 

Shu, Y., Daamen, W., Ligteringen, H., Hoogendoorn, S., 2013. Vessel Speed, Course, and Path 

Analysis in the Botlek Area of the Port of Rotterdam, Netherlands. Transportation Research Record: 

Journal of the Transportation Research Board (2330), 63-72. 

Shu, Y., Daamen, W., Ligteringen, H., Hoogendoorn, S.P., 2017. Influence of external conditions and 

vessel encounters on vessel behavior in ports and waterways using Automatic Identification System 

data. Ocean Engineering 131, 1-14. 

Silveira, P., Teixeira, A., Soares, C.G., 2013. Use of AIS data to characterise marine traffic patterns 

and ship collision risk off the coast of Portugal. Journal of Navigation 66 (06), 879-898. 

Sokolova, M., Lapalme, G., 2009. A systematic analysis of performance measures for classification 

tasks. Information Processing & Management 45 (4), 427-437. 



30 

 

Takus, D.A., Profozich, D.M., 1997. ARENA software tutorial. Institute of Electrical and Electronics 

Engineers (IEEE). 

Vollebregt, E.A., Roest, M., Lander, J., 2003. Large scale computing at Rijkswaterstaat. Parallel 

Computing 29 (1), 1-20. 

Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., 2016. Data Mining: Practical machine learning tools and 

techniques. Morgan Kaufmann. 

Xiao, F., Ligteringen, H., van Gulijk, C., Ale, B., 2015. Comparison study on AIS data of ship traffic 

behavior. Ocean Engineering 95, 84-93. 

Zhou, Y., Daamen, W., Vellinga, T., Hoogendoorn, S., 2015. Vessel classification method based on 

vessel behavior in the port of Rotterdam. Scientific Journals of the Maritime University of Szczecin, 

42 (114), 2015. 

Zhou, Y., Daamen, W., Vellinga, T., Hoogendoorn, S.P., 2017. AIS data analysis for the impacts of 

wind and current on ship behavior in straight waterways, in: GUEDES SOARES, C., Teixeira, A. 

(Eds.), 17th International Congress of the International Maritime Association of the Mediterranean. 

CRC Press, pp. 265-272. 

 


