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Abstract

In the last few decades, enormous progress has been made in the field of Computational Fluid Dynamics
(CFD). Computers became powerful enough for full-scale simulations and smart algorithms enabled engi-
neers to simulate intricate phenomena like for example turbulence. However, these developments do not
stop, and a promising, new area of research is the incorporation of uncertainty quantification in these CFD
simulations. Since traditional statistical methods like the Monte Carlo method are useless in these cases due
to computational cost, deterministic solutions are sought.

The two major non-statistical methods now in use are the generalized Polynomial Chaos (gPC) and
the Probabilistic Collocation Method (PCM). The former relies on a polynomial expansion of the solution
variable together with a Galerkin projection. It delivers exponential convergence rates and is extendable to
a high number of stochastic variables. However, it is an intrusive method, i.e. the equations themselves have
to be altered in the implementation of the algorithm. It also has difficulty coping with non-linear equations.

The PCM on the other hand, is a non-intrusive method. It post-processes the outcome of several deter-
ministic simulations, using cleverly chosen values for the stochastic input, i.e. collocation points. Polynomial
interpolation is then used to calculate the behaviour of the random variable in stochastic space. Integrating
the random variable delivers the statistical moments, e.g. the mean and variance. The PCM procedure
has the disadvantage that is becomes computationally expensive very rapidly for more than a few random
variables.

The PCM and gPC methods are similar in many aspects, but most notably in their incapability to deliver
accurate results in long-term integrations. Both methods suffer from a phenomena called stochastic drift. At
the start of a simulation, certain assumptions are made on the distribution of the stochastic variable. For
example, it is assumed to be uniformly distributed. According to the initial distribution, the gPC algorithm
is started using the best possible polynomial basis. Similarly, the PCM chooses its collocation points with
respect to the initial distribution. So different initial distributions will result in different set-ups for both
methods.

During the simulation, the distribution of the solution variable will change. It will not stay uniformly
distributed, but might e.g. cluster around one extreme of the stochastic domain. As a result, the initial
polynomial expansion/collocation points will not be ideally suited any more for the current distribution
of the stochastic variable. This is stochastic drift and will result in rapidly increasing errors during time
integration.

As suggested by Prof. G.E. Karniadakis, Vos started the research on Time-Dependent generalized Poly-
nomial Chaos (TDgPC). The main idea was to transform the stochastic variable and its polynomial basis
over time, according to the current distribution, thus countering the stochastic drift. Van der Steen continued
this research and considerably improved the algorithm.

In this graduation project, further improvements were sought for the TDgPC method. Using the differen-
tial equation known as the growth equation as a test bed, different new formulations were tested. Recognizing
the characteristics of the growth equation led to a new expansion of the random variable, resulting in sub-
stantial increases in accuracy of the calculations.

However this formulation proved to be too case sensitive to be widely applicable, so a generalization was
sought and found. When applied to the partial differential equation called the heat equations, results were
excellent. The accuracy gained for the errors in variance and mean was around six orders of magnitude.

Afterwards, the new formulation of TDgPC was analyzed more closely. It was recognized that the TDgPC
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method had evolved into a collocation method. The TDgPC procedure in its new form turned out to be
equivalent to the PCM. No longer was the accuracy of the simulation dependent on the order of the polynomial
expansion, but on the number of collocation points.

Thus, switching attention from gPC to PCM, time-dependent methods were sought to counter stochastic
drift in PCM simulation. First of all, p-refinement was investigated, i.e. the addition of collocation points
during the time integration. Since only a few collocation points are necessary to capture the behaviour of
the solution in the first few time step iterations, it is computationally inefficient to initiate the simulation
using many points. When the accuracy of the simulation is compromised, p-refinement can be applied to
keep the accuracy at a certain predefined level. Especially for full-scale calculations where computational
costs becomes an issue, p-refinement could be a powerful tool.

Furthermore, the principles of TDgPC were applied to the PCM, i.e., the initial set-up of the simulation
will not be the optimal basis further along the time integration. In the case of the PCM procedure, this means
that the positioning of the collocation points in stochastic space might be ideal early on in the simulation,
but not necessarily so after several seconds. Using again the example that the distribution of the solution
might cluster around an extreme of the stochastic domain, one would like the collocation points to cluster
around these points as well. This will enable the collocation points to capture the behaviour of the solution
more efficiently, leading to better accuracy.

Thus, the Time-Dependent Probabilistic Collocation Method was formulated. Even though some limi-
tations were found that need to be addressed in further research, the algorithm proved to be beneficial for
the accuracy of the calculations. The collocation points indeed ‘move’ towards the region in the stochastic
domain where they were most efficiently used.

Time-Dependent Methods for Stochastic Differential Equations
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Chapter 1

Introduction

Although the field of Computational Fluid Dynamics (CFD) has made enormous progress with the advent
of powerful computers, researchers are constantly trying to incorporate more physical phenomena into their
programs. Ideally, a true representation of reality is provided, not a simplified model. A promising and
relatively new area is the incorporation of uncertainties into the governing equations. One could for example
aim to implement an unknown fluctuation in material properties, inlet conditions or forcing terms. The
procedures used for the modeling of these uncertainties are called probabilistic or stochastic methods.

One of the major problems in this field is the treatment of time-dependent equations. The traditional
methods are incapable of yielding accurate results when integrating over even more than a few seconds.

One way of tackling this issue has been researched by P. Vos and J.B. van der Steen and has been dubbed
Time-Dependent generalized Polynomial Chaos (TDgPC) [1, 2]. This thesis describes the continuation of
their research.

The outline of this report is as follows: Chapter 2 will explain why probabilistic method are necessary and
give an overview of existing stochastic methods. Chapter 3 will describe the TDgPC method in detail, which
will be applied to an ordinary differential equation in Chapter 4. Here the TDgPC algorithm is modified,
leading to significantly better results. This new approach is generalized and applied to a partial differential
equation in Chapter 5. In Chapter 6 this new formulation is examined more closely, eventually leading
to the Probabilistic Collocation Method (PCM). To increase the accuracy of the Probabilistic Collocation
Method, p-refinement is explored in Chapter 7. In Chapter 8, the principles of the time-dependent approach
of TDgPC are applied to the PCM procedure, resulting in the Time-Dependent Probabilistic Collocation
Method (TDPCM). This thesis will be concluded with a chapter containing the conclusions of this research
and recommendations for further research.
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Chapter 2

Stochastic methods: motivation and

history

This chapter explains the use of stochastic methods and gives an overview of work already performed in this
field.

2.1 Motivation

As stated in the introduction, researchers are nowadays trying to include more and more of the physical
world into their models. One way of incorporating more ‘physics’ into a computational model is to include
a realistic measure of uncertainty. This leads to more accurate predictions of relevant quantities in e.g. flow
computations. As a consequence, the data on which design decisions are made, are improved. Ultimately,
this helps to optimize the design process. However, there is still a lot of research needed before probabilistic
modeling can be used on typical flow equations and arbitrary domains.

In this light, time-dependent approaches of stochastic differential equations have the potential to become
a widely applicable tool for designers. It promises an exponential convergence rate, with accuracy in the case
of long term integration, even though the method is new and far from fully developed.

2.2 Overview of existing methods

The main division in probabilistic methods is between the procedures using a statistical approach and the
procedures using a non-statistical approach. In general, the former method uses non-deterministic equations,
whereas the later method entails a deterministic formulation, see Figure 2.1. However, research has been
conducted on methods that use a combination of both approaches.

The most well-known example of a statistical method is the Monte Carlo concept. It relies on the
calculation of a large number of samples. From this data, the statistical moments can be calculated in a boot-
strapping manner. Although this method is straightforward to implement, it lacks elegance and its accuracy
relies heavily on the sample size. As a result of the later, this method can become too computationally
expensive to be useful for research purposes. This is especially true if the model and its equations are already
complicated in the deterministic case.

A popular non-statistical method is the perturbation method. Its principle lies in a Taylor series expansion
of the random field. However, this method has the disadvantage of becoming too complicated when using
third order expansions or higher. Furthermore, this method deals inherently with small variations. Therefore,
the uncertainties to be modeled cannot exceed approximately 10% of the mean value [3]. As a result, it is
not a practical tool in CFD, where conditions may vary significantly and the equations are rarely simple.
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2.2. OVERVIEW OF EXISTING METHODS 3

Figure 2.1: Overview of existing probabilistic methods

Another branch of non-statistical models is the one initiated in the 1930’s by Wiener. Initially dubbed
the ”Homogeneous Chaos,” Wiener outlines the basic theory for the representation of chaos through the use
of polynomials [4]. However, this research was not pursued again until the 1960’s, when Imamura, Sieger and
Meecham proposed an expansion of a random function in Wiener-Hermite functionals. [5]. This procedure
was then applied to a near-Gaussian random function. This method was neglected for several decades, mainly
due to a lack of computing power.

The interest for chaos expansions was rekindled when Ghanem and Spanos combined the concept with a
Finite Element Method (FEM) [6]. This combination was then applied to model uncertainties in several solid
mechanics cases. They were able to attain an exponential convergence rate for Gaussian stochastic processes.

A major step was made by Xiu and Karniadakis with the introduction of generalized Polynomial Chaos
(gPC) [7, 8]. The core idea of gPC was the linking of the weighting function in the orthogonality relations,
to the probability density function (PDF) of the random distribution. More specifically, for certain standard
random distributions (e.g. Gaussian, uniform, etc.), related expansion polynomials were found. Thus, also
non-Gaussian processes could be represented by a family of orthogonal polynomials (the so-called Askey-
scheme) with the classical Hermite polynomials chaos as a subset. The next step was to extend the procedure
to arbitrary random distributions. Whereas the optimal expansion polynomials for standard distributions

Time-Dependent Methods for Stochastic Differential Equations



2.2. OVERVIEW OF EXISTING METHODS 4

are found in the Askey-scheme, the optimal trial basis for arbitrary random distributions is calculated using
e.g. the Gram-Schmidt orthogonalization technique.

The gPC technique proved to be efficient, with an exponential convergence of the solution for several
cases. However, difficulties were encountered in two specific areas. First of all, long-term integration proved
to be troublesome. This stemmed from the fact that a certain random distribution is assumed at time t = 0,
which does not necessarily correspond to the distribution at later times. For example, periodic stochastic
solutions with random frequencies experience amplified phase shifts [8]. This results in an error that increases
in time and eventually becomes unacceptable. Secondly, gPC has difficulties converging for discontinuous
distributions in the random space. Both problems cannot be overcome by simply increasing the polynomial
order or reducing the time step.

To overcome the aforementioned problems with gPC, Wan and Karniadakis developed the multi-element
generalized polynomial chaos method (ME-gPC). Basically, probability space is discretized in a similar way
to the spectral element method. To do this, a mesh adaption scheme is applied which decomposes the space
of random inputs if a certain threshold is reached for the relative error in the variance [9]. The gPC method
is then applied to each element in random space. This allows for a probabilistic kind of grid refinement in the
case of discontinuities in the random space. The procedure was successfully applied to the Kraichnan-Orszag
three-mode problem and a stochastic advection-diffusion equation.

Vos and Van der Steen have adopted a different approach to deal with long term integration and discon-
tinuities in the random space. They recognized that a significant part of the unstable behaviour originated
from the fact that the distribution assumed at the initial state, was not necessarily equal to the distribution
further in time. In most cases, this random distribution can and will become increasingly different from the
original state. By recalculating the orthogonal basis using the Gram-Schmidt procedure, they ensured an
optimal trial basis throughout the integration. Vos applied this method to a one dimensional growth equation
with uniformly distributed reproduction rate [1]. Van der Steen improved the algorithm and applied it to the
above mentioned Kraichnan-Orszag three-mode problem, with excellent results [2]. This TDgPC method is
described in more detail in Chapter 3.

Another way of coping with the aforementioned problems of gPC was initiated by Mathelin, Hussaini
and Zang [10], with a method termed stochastic collocation (SC). There are many similarities with the gPC
method, e.g. a one dimensional gPC simulation with polynomials of order N will yield the same results
as a SC simulation with N + 1 collocation points. But the main difference with the gPC method is that
collocation points in the random space are used in combination with polynomial interpolation, instead of
the aforementioned orthogonal polynomial expansion. This procedure was refined by both Babus̆ka et. al.
and Loeven et. al. and was termed the Probability Collocation Method (PCM) by both [11, 12]. The main
advantage of the PCM over the gPC is threefold. First of all, the method results in a non-coupled system
of equations, which makes it a non-intrusive method. As a result, it facilitates the implementation of the
method, since an existing solver can be used as a black box operator. The intrusive gPC requires far more
effort to implement. Secondly, PCM can cope with non-linear equations more easily than the gPC method.
This stems from the fact that in the gPC method, a Galerkin projection is performed that can be simplified
for the linear case (due to the orthogonality of the polynomials), but which has to be numerically evaluated
for non-linear equations. PCM circumvents this problem. Thirdly, for a small number of random variables,
the PCM is computationally less expensive than the gPC method. However, the PCM suffers ‘from the
so-called curse of dimensionality,’ as Babus̆ka states [11]. Meaning that, when using more random variables,
the computational cost increases rapidly and gPC will again be more efficient.

Foo, Wan and Karniadakis have incorporated the aforementioned multi-element method into the PCM
procedure to form the multi-element probabilistic collocation method (ME-PCM). When applied to, among
other cases, a noisy flow past a 2D stationary circular cylinder, they reported a higher accuracy and a lower
computational cost compared to the ME-gPC method [13].

Time-Dependent Methods for Stochastic Differential Equations



Chapter 3

Time-Dependent generalized

Polynomial Chaos

This chapter will give an overview of the TDgPC method. First of all, the gPC procedure is described, then
the extension to the time-dependent method is explained.

3.1 Generalized polynomial chaos

Let (Ω,F ,P) be a complete probability space, where Ω denotes the sample space, F ⊂ 2Ω is the σ-algebra
of subsets of Ω, and P is the associated probability measure. Furthermore, let D ⊂ R

d × T (d = 1, 2, 3)
be a combination of spatial and temporal dimensions. Then a stochastic process can be seen as function
u(x, t, ω) : D × Ω → R

b. Here, x denotes an element of physical space, t is a point in time and ω is a point
in stochastic space. Since a continuous random space is quite unwieldy, we describe this space by a finite
number of random variables

ξ1, ξ2, . . . , ξn : Ω → R
b

With this, the stochastic process can be regarded as

u(x, t, ξ) : D × R
n → R

b

where ξ is an n−dimensional vector of random variables.
A general random process can then be expanded as

u(x, t, ξ(ω)) =

∞
∑

i=0

ui(x, t)Φi(ξ(ω)) (3.1)

where ω is the random event, and Φi(ξ(ω)) are polynomial functionals in terms of the n-dimensional vector of
random variables ξ = (ξ1, . . . , ξn). The family {Φi(ξ(ω))} forms a complete orthogonal basis in L2(Ω,F ,P)
with orthogonality relation

〈Φi, Φj〉 = 〈Φ2
i 〉δij

where δij denotes the Kronecker delta and 〈·, ·〉 denotes the ensemble average. This statistical average can
be regarded as the inner product in the Hilbert space. The inner product then takes on its usual form

〈F (ξ), G(ξ)〉 =

∫

supp(f(ξ))

F (ξ)G(ξ)fξ(ξ)dξ (3.2)

5



3.1. GENERALIZED POLYNOMIAL CHAOS 6

or

〈F (ξ), G(ξ)〉 =
∑

ξ

F (ξ)G(ξ)fξ(ξ)

in the discrete case. Important is the fξ(ξ) term. It is the PDF of the random variables of ξ but serves as a
weighting function in the orthogonality relation for {Φi(ξ(ω))}. This is the direct link between the PDF of
the random variables and the orthogonal polynomials, since the latter are directly related to the weighting
function. An overview of related PDF’s and orthogonal polynomials can be found in Table 3.1. According
to Cameron and Martin, these expansion converge to any stochastic process in the L2 sense [14].

Table 3.1: Relation between the distribution of the random variables and the optimal trial basis [8]
PDF distribution of ξ Expansion polynomials {Φi(ξ)}

Continuous Gaussian Hermite
Gamma Laguerre
Beta Jacobi
Uniform Legendre

Discrete Poisson Charlier
Binomial Krawchouk
Negative binomial Meixner
Hypergeometric Hahn

However, as stated in Section 2.2, these relations can be generalized to truly arbitrary random distribu-
tions. If the PDF of the random variables is known, an optimal trial basis can be generated through any
orthogonalization technique. A straightforward and commonly used procedure is the Gram-Schmidt method.
Taking φ0 = 1, the higher order (for clarity, one dimensional) orthogonal polynomials up to order P are
generated as

φp(ξ) = ξp −
p−1
∑

k=0

cpkφk(ξ), p = 1, 2, . . . , P

with

cpk =
〈ξpφk(ξ)〉
〈φ2

k(ξ)〉

Note that cpk is the orthogonal projection of ξp onto φk and the ensemble average is the same as defined by
Equation 3.2.

The drawback of the Gram-Schmidt method is that it is numerically unstable, i.e. when generated
numerically, the polynomials are often not completely orthogonal due to rounding errors. This effect can be
negated by doing the procedure a second time using the (almost orthogonal) polynomials from the first run.
However, this reorthogonalization obviously doubles the computational cost. A second possibility as proposed
by Van der Steen is to use a modified Gram-Schmidt procedure. In the classical Gram-Schmidt method, φ1

is taken as the first entry, which is orthogonalized to all polynomials of lower degree. The procedure is then
repeated for φ2 . . . φP , again orthogonalizing this entry to all polynomials of lower degree, see Figure 3.1. In
the modified Gram-Schmidt method, the algorithm starts with φ0 and updates all orthogonal polynomials of
higher degree to be orthogonal to φ0. The same is then done for φ1 . . . φP , where φP is only orthogonalized
to φP−1. This modified algorithm is less sensitive to rounding errors. Van der Steen tested all three methods
(classical Gram-Schmidt, classical Gram-Schmidt with reorthogonalization and modified Gram-Schmidt) for
P = 2 and found no significant differences, but suggested that the modified Gram-Schmidt algorithm could
be more accurate for basis polynomials of higher degree [2].

Time-Dependent Methods for Stochastic Differential Equations



3.1. GENERALIZED POLYNOMIAL CHAOS 7

Figure 3.1: Difference between the classical and modified Gram-Schmidt procedure. The polynomial from
which the arrow originates is the one being updated.

To keep the simulation computationally feasible, the infinite series of Equation 3.1 has to be truncated.
The expansion polynomials are truncated at their maximum degree, P . Denoting the dimensionality of the
random vector ξ by n, it can be proven that the P , n and the number of terms in the expansion (M + 1) are
related as [2]

M + 1 =

(

P + n

P

)

=
(P + n)!

P !n!

Equation 3.1 can then be rewritten as

u(x, t, ξ(ω)) =

M
∑

i=0

ui(x, t)Φi(ξ(ω)) (3.3)

which can be substituted into a general differential equation

L(x, t, ξ(ω);u) = g(x, t, ξ(ω)) (3.4)

Here, L denotes a differential operator and g is a source term. The substitution yields

L
(

x, t, ξ;

M
∑

i=0

ui(x, t)Φi(ξ)

)

= g(x, t, ξ) (3.5)

The ω is dropped for convenience. To turn this stochastic equation into a set of M +1 coupled, deterministic
equation for M + 1 expansion coefficients, a Galerkin projection is performed, i.e. Equation 3.5 is multiplied
by every polynomial of the expansion basis {Φi}. Afterwards, the statistical average is taken

〈

L
(

x, t, ξ;

M
∑

i=0

ui(x, t)Φi(ξ)

)

, Φj(ξ)

〉

= 〈g(x, t, ξ), Φj(ξ)〉, j = 0, 1, . . . , M (3.6)

This set of equations can be solved through standard methods, e.g. a Euler or Runga-Kutta integration in
time and a spectral/hp element method in space.

Time-Dependent Methods for Stochastic Differential Equations



3.2. GAUSS-LOBATTO-LEGENDRE QUADRATURE 8

3.2 Gauss-Lobatto-Legendre quadrature

Since the Galerkin projection results in a system of equations involving integrated polynomials, a numerical
integration routine is used to evaluate these integrals. The preferred method to do this, is the Gauss-Lobatto-
Legendre (GLL) algorithm. It is a very accurate integration scheme for integrals of the form

∫ 1

−1

u(x)dx (3.7)

especially if the integrand is smooth [15]. In this procedure, the integrand is represented as a Lagrange
polynomial using Q points xi, which are to be specified, i.e.

u(x) =

Q−1
∑

i=0

u(xi)hi(x) + ǫ(u)

where ǫ(u) is the integration error. Substituting this into Equation 3.7 yields

∫ 1

−1

u(x)dx =

Q−1
∑

i=0

wiu(xi) + R(u)

where

wi =

∫ 1

−1

hi(x)dx

R(u) =

∫ 1

−1

ǫ(u)dx

It is natural to assume that when integrating a polynomial u(x) of order Q − 1 or less, the integration is
exact. In other words, R(u) = 0 if u(x) ∈ PQ−1([−1, 1]). However, with a specific choice of integration
points, an exact integration can be achieved for polynomials of order higher than Q − 1. This surprising
result was discovered by Gauss and is the core of Gaussian quadrature.

The Gauss-Lobatto-Legendre method is one of a few derived Gauss quadrature procedures, and differs
only in the choice of the end points. Now let x

α,β
i,P be the P zeros of the P th-order Jacobi polynomial such

that

P
αβ

P (xα,β
i,P ) = 0 , i = 0, 1, . . . , P − 1,

where

x
α,β
0,P < x

α,β
1,P < . . . < x

α,β
P−1,P

These zeros usually cannot be calculated analytically, so they are either tabulated or attained through a
numerical algorithm themselves. The Gauss-Lobatto-Legendre quadrature can now be defined by

xi =







−1 i = 0,

x
1,1
i−1,Q−2 i = 1, . . . , Q − 2

1 i = Q − 1

wi =
2

Q(Q − 1)[LQ−1(xi)]2
i = 0, . . . , Q − 1

R(u) = 0 if u(x) ∈ P2Q−3([−1, 1])

where LQ−1(xi) is the Legendre polynomial of order Q − 1. The last line of the above equation states that
the integration is exact if the order of the polynomial is less than 2Q − 1. In other words, taking a fixed
order P of the integrand yields

Qmin ≥ P + 1

2

Naturally, this is a very desirable property when integrating polynomials.

Time-Dependent Methods for Stochastic Differential Equations
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3.3 Adjustments to transform gPC into TDgPC

One of the problems of the gPC method is that it fails for long-term integration. As mentioned before, this
is caused by a change in the distribution of the random variables over time, also known as stochastic drift.
One way to deal with this issue is to recalculate the trial basis polynomials after a certain amount of time
steps. Vos investigated the possibility of recalculating the trial basis at a threshold criterion for the non-linear
terms in the expansion, while Van der Steen experimented with a recalculation after a fixed time, e.g. after
four seconds or even after every time step iteration. The result turned out to be too case sensitive to draw
conclusions.

To use the TDgPC method, one starts with applying the gPC method to a certain differential equation,
i.e. Equation 3.4. After a certain time, say t = t∗, the original trial basis loses its efficiency and accuracy
and the trial basis is recalculated. To do this, a transformation of the random variable is performed

ζ = u(x, t, ξ) =
M
∑

i=0

ui(x, t)Φi(ξ)

The vector of new random variables ζ has a new PDF fζ(ζ). For each fζi
the Gram-Schmidt orthogonalization

procedure can be used to produce a new trial basis φζi

p (ζi), with p = 0, . . . , P . This can then be used for the
integrations in time and space, as for the gPC.

If the transformation of the random variable is denoted as ζ = Z(ξ) (assuming one dimension in random
space for convenience), one can calculate the new PDF’s as [16]

fζ(ζ) =
∑

ξn

fξ(ξn)
∣

∣

∣

dZ(ξ)
dξ

|ξ = ξn

∣

∣

∣

The computation of this PDF is a relatively expensive and can be quite sensitive to round-off and interpolation
errors. So ideally, one would like to avoid the calculation of this PDF.

The way Van der Steen avoided this recalculation of fζ(ζ) was by keeping the integrations needed for
the Galerkin projection and the calculation of the statistical moments (i.e. the mean and variance) in terms
of ξ, instead of the new random variables ζ. To be able to do this, he recognized that in the case of a
transformation to three random variables, such as in the Kraichnan-Orszag problem, the following must hold
for every realizable point (ζ∗1 , ζ∗2 , ζ∗3 )

fζ1,ζ2,ζ3
(ζ∗1 , ζ∗2 , ζ∗3 )dζ1dζ2dζ3 =

∑

ξ∗

fξ(ξ
∗)dξ (3.8)

where the summation is over all points ξ∗ for which Z1(ξ
∗) = ζ∗1 , Z2(ξ

∗) = ζ∗2 and Z3(ξ
∗) = ζ∗3 . What

Equation 3.8 expresses, is that the probability of (ζ1, ζ2, ζ3) being inside the ‘volume’ dζ∗1dζ∗2dζ∗3 , should be
equal to the probability of ξ being inside the summation of ‘volumes’ dξ∗. See Figure 3.2 for a graphical
interpretation in the case of a transformation to two random variables. The reason that there can be several
dξ∗-volumes, is that the transformation ζ = Z(ξ) can have several roots. If Equation 3.8 holds, then it
follows that

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

· · · fζ1,ζ2,ζ3
dζ1dζ2dζ3 =

∫ 1

−1

· · · fξdξ (3.9)

Note that the limits for the integration over the original variable depend on the basis for the initial distri-
bution. Since Van der Steen assumed a uniform distribution over [−1, 1], the integration is obviously also
taken over this interval.

Apart from the very desirable consequence that the computationally expensive calculation of the PDF
is not performed, Equation 3.9 also means that the calculation of the statistical moments becomes less
complicated. This reduction in computing time made the recalculation of the orthogonal basis at every time
step feasible.

Time-Dependent Methods for Stochastic Differential Equations
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Figure 3.2: Graphical representation of Equation 3.8 for a transformation to two random variables.
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Chapter 4

TDgPC applied to the growth

equation

The growth equation was chosen as the object of this research. Although it is a simple equation from a
programming point of view, it is quite challenging in its stochastic behaviour. The equation represent e.g.
the growth of a population.

A new formulation of the TDgPC method is proposed, leading to significant improvements in accuracy.

4.1 Problem definition

The growth equation is defined as

du(t, ξ)

dt
+ k(ξ)u(t, ξ) = 0, u(0, ξ) = 1, t ≥ 0, −1 ≤ ξ ≤ 1 (4.1)

with the growth factor

k(ξ) =
1

2
(1 + ξ)

The stochastic variable ξ is uniformly distributed over [−1, 1] with f(ξ) = 1
2 , which means that k has an

average of µk = 1
2 . So strictly speaking, this is a decay problem. However, both Vos and Van der Steen

dubbed it the growth equation. To avoid confusion, this convention is adopted.
One of the advantages of studying this equation, is that it has an analytical solution

uexact(t, ξ) = e−k(ξ)t

which means that the exact mean and variance are given as

µexact(t) = E[uexact(t, ξ)]

=

∫ 1

−1

e−k(ξ)tf(ξ)dξ

=
1 − e−t

t

and

σexact(t) = E[(uexact(t, ξ) − µexact(t))
2]

=

∫ 1

−1

(

e−k(ξ)t − 1 − e−t

t

)2

f(ξ)dξ

=
1 − e−2t

2t
−
(

1 − e−t

t

)2

11
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4.2 TDgPC applied to the growth equation

First consider the method as used by Van der Steen and Vos. Substitute the polynomial expansion into
Equation 4.1

d

dt

P
∑

i=0

ui(t)φi(ξ) = −
P
∑

i=0

k(ξ)ui(t)φi(ξ)

Applying the Galerkin projection yields

duj

dt
=

−
P
∑

i=0

ui〈kφi, φj〉

〈φ2
j 〉

, j = 0 . . . P

After a certain time t∗, a transformation of the stochastic variable from ξ to ζ is performed

ζ = u(t∗, ξ) =
P
∑

i=0

ui(t
∗)φi(ξ) (4.2)

Next, a new polynomial basis
{

φ̃(ζ)
}

is calculated using the aforementioned Gram-Schmidt procedure. The

‘initial’ conditions (conditions at t = t∗) are updated accordingly

ui(t
∗) =







−φ̃1,0 if i = 0
1 if i = 1
0 otherwise

4.3 TDgPC shortcomings

This method was used by Van der Steen to investigate the effect of certain parameters on the accuracy of
the solution, which revealed that a transformation at every time-step was not the optimal setting. It was
found that when using a higher polynomial order, the accuracy improved when transforming less often. This
was curious, since one would expect that the transformation benefits the accuracy, regardless of polynomial
order and the number of transformations, see also Figure 4.1. The relative errors are defined as

ǫmean =

∣

∣

∣

∣

µexact − µTDgPC

µexact

∣

∣

∣

∣

, ǫvar =

∣

∣

∣

∣

σexact − σTDgPC

σexact

∣

∣

∣

∣

These observations let to the belief that the method has some shortcomings, at least when applied to this
specific problem. The most prominent one is described in the next section.

4.3.1 Polynomial expansion of the natural logarithm

First of all, when transforming the stochastic variable as shown in Equation 4.2, ζ would ideally behave as

ζ(ξ) = e−(1+ξ) t

2 , e−t ≤ ζ ≤ 1

since this is the exact solution. This means that

k(ξ) =
1

2
(1 + ξ) = −1

t
ln ζ

Because the TDgPC method tries to expand the stochastic process, i.e. k(ξ), using polynomials, the above
statement actually implies that one tries to approximate the natural logarithm through polynomials. Here
lies a problem.

Time-Dependent Methods for Stochastic Differential Equations



4.3. TDGPC SHORTCOMINGS 13

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t [sec]

σ
[-
]

 

 
σ

TDgPC

σ
exact

(a) Variance when transforming every time step

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t [sec]

σ
[-
]

 

 
σ

TDgPC

σ
exact

(b) Variance when transforming every 5 seconds

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

t [sec]

ǫ
[-
]

 

 

ε
mean

ε
var

(c) Errors when transforming every time step
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(d) Errors when transforming every 5 seconds

Figure 4.1: Results for the TDgPC scheme, using P = 5, Q = 100

For this distribution of k(ξ), the corresponding transformed PDF is given by

f(ζ, t) =
1

ζt
, e−t ≤ ζ ≤ 1

and k(ξ) can be expressed as

k(ξ) = −1

t
ln ζ =

∞
∑

i=0

aiφi(ζ)

Since the first of the monic polynomials is equal to 1, the other polynomials can be calculated analytically.
For example, the first order polynomial is

φ1(ζ) = ζ − 1

t
+

1

t
e−t

The expressions for the higher order polynomials become increasingly elaborate.
Plotting the expansion, it becomes clear from Figure 4.2 that the expansion cannot follow the logarithm as

Time-Dependent Methods for Stochastic Differential Equations
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it gets closer to ζ = 0, i.e. as time increases. This implies that as time progresses, the polynomial expansion
has more and more trouble following the behaviour of the exact solution. This again explains the observed
increase of the error in time of any gPC method. The current TDgPC procedure is no exception.
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Figure 4.2: Natural logarithm and its 6th order expansion for t = 1, t = 10, t = 100 (left to right)

4.4 Adjustment of the TDgPC method

The first step to tackle these problems, is to recognize that the PDF of the solution actually differs from the
PDF of k(ξ), i.e. ξ is uniformly distributed over [−1, 1] regardless of time. The solution on the other hand,
starts with a deterministic initial condition, implying a very ‘slim’ distribution, and proceeds to become
increasingly ‘uncertain,’ which would mean a ‘wide’ distribution, see Figure 4.3.
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t = 1
t = 2.5
t = 5

z
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ln f
u
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3

Figure 4.3: Logarithm of PDF’s of the solution for various instants in time

Therefore, the transformed stochastic variable ζ associated with the solution should be introduced and
updated in time. This differs from the original TDgPC approach, since in that method, ζ was directly linked
to the distribution of the growth coefficient k.

Time-Dependent Methods for Stochastic Differential Equations
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The proposed expansion of u then is

u(t, ξ) = ζ(t∗, ξ)

∞
∑

i=0

ui(t)φi(ξ), ζ(t∗, ξ) = u(t∗, ξ) (4.3)

Substituting into Equation 4.1 yields

ζ(t∗, ξ)
∞
∑

i=0

dui(t)

dt
φi(ξ) + k(ξ)ζ(t∗, ξ)

∞
∑

i=0

ui(t)φi(ξ) = 0

Since ζ 6= 0, this amounts to

∞
∑

i=0

dui(t)

dt
φi(ξ) + k(ξ)

∞
∑

i=0

ui(t)φi(ξ) = 0

which is exactly the gPC formulation and can thus be solved with the now familiar Galerkin projection. The
difference is then that once the coefficients at the new time step have been calculated, this gPC solution
needs to be multiplied by ζ(ξ, t∗), i.e. u at the previous time step. The mean and variance can then be
calculated in the normal fashion. After this, the ζ for the next time step can be calculated and the ‘initial’
conditions (conditions at t = t∗) are updated according to

ui(t
∗, ξ) =

{

1 if i = 0
0 otherwise

This has the added advantage of a very low order approximation, since only two polynomials are needed to
capture k(ξ).

Another advantage of this approach, is that one does not need to recalculate the orthogonal polynomial
base. This is particularly beneficial for the treatment of PDE’s, where one needs to recalculate this base not
only for every time step, but also every grid point in the spatial domain.

The results for this approach are shown in Figure 4.4. Using a fourth order Runge-Kutta (RK4) time
integration with ∆t = 0.001 and transforming every time step, the errors are below 10−10 throughout the
whole time integration, even up to t = 200.
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Figure 4.4: Results for the adjusted TDgPC scheme, using P = 5, Q = 100
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Chapter 5

TDgPC applied to the heat equation

This chapter will describe the polynomial chaos method as applied to a PDE known as the heat equation.
The method as introduced in Chapter 4 was generalized to be applicable to a wider range of equations. Also,
a convergence study was performed.

5.1 Definition of the heat equation

The heat equation is a typical example of a diffusion equation. It is related to the growth equation, but it is
extended to the spatial domain. The following form was chosen

∂u(x, t, ξ)

∂t
= κ(ξ)

∂2u(x, t, ξ)

∂x2
, 0 ≤ x ≤ 1, t ≥ 0, −1 ≤ ξ ≤ 1

with an uncertain heat coefficient κ = 1
2 (1 + ξ) uniformly distributed over [−1, 1] and deterministic initial

condition

u(x, 0) = sin(2πx)

As for the growth equation, an analytical solution is known

uexact(x, t, ξ) = sin(2πx)e−4π2κ(ξ)t

This again facilitates the error analysis, since we can calculate the mean and variance of the solution
analytically as

µexact(x, t) = sin(2πx)
1 − e−4π2t

4π2t
σexact = sin2(2πx)





1 − e−8π2t

8π2t
−
(

1 − e−4π2t

4π2t

)2




5.2 From growth equation to heat equation

When attempting to apply the method of Section 4.4 to the heat equation, a few of its drawbacks became
apparent. The approach proved to be

• awkward to implement for a PDE, since it raised similar questions about the spatial derivative of a
stochastic variable, as it did for the time derivative,

• disastrous for equations where the solution becomes (too close to) zero. Since ζ will be set to zero, it
will keep the solution at zero. This way, ζ forces the solution to remain zero, even though the analytical
solution might not. Think for example of a harmonic oscillator, where the amplitude of the swing will
‘go through zero.’

16
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• in general, too case-tailored.

Therefore, a generalization was sought.

5.3 Generalized formulation

This generalization was found in the following procedure:

1. Define the first P + 1 polynomials of the expansion as if applying the gPC method. So for a uni-
form distribution, construct P + 1 Legendre polynomials up to order P . These will be denoted as
φi(ξ), i = 0, . . . , P

2. Define the next P + 1 polynomials as

φ̂P+i+1(ξ) = ζ(ξ)φi(ξ), i = 0, . . . , P

This means that, e.g. for P = 1 and a uniform distribution, the four polynomials will look like

φ0 = 1, φ1 = ξ, φ̂2 = ζ, φ̂3 = ζξ (5.1)

3. In general, these polynomials are not orthogonal. But because orthogonality is a very desirable trait
for the rest of the analysis, we apply a Gramm-Schmidt procedure to set up an orthogonal system φi(ξ)
for i = 0, . . . , 2P + 1, using

φi(ξ) = φ̂i −
i−1
∑

k=0

〈φ̂i, φk〉
〈φ2

k〉
φk, i = P + 1, . . . , 2P + 1

If however, the norm of the new function is sufficiently small, i.e. 〈φ2
i 〉 ≤ ǫ for small ǫ, we consider φi

a linear combination of the previous polynomials. Therefore, this polynomial is discarded.

4. Calculate the according new initial conditions by projecting the solution onto the basis vector

ui(t
∗) =

〈u(t∗)φi〉
〈φ2

i 〉

5. Use this new polynomial basis for the next time step.

6. Repeat at next time step, so transform at every time iteration.

Note that φ̂2 and φ̂3 in Equation 5.1 represent the method of Section 4.4. However, if ζ = 0, the first two
polynomials will prevent the solution from being ‘stuck’ at zero. This formulation can thus indeed be seen
as a generalization of the aforementioned approach.

5.4 Discretization and the Galerkin projection

The above formulation expansion can now be inserted in the heat equation. We use a central discretization
scheme in the space domain

∂uk

∂t
= κ

uk+1 − 2uk + uk−1

∆x2

and the expansion with our new polynomials

uk(t, ξ) =
2P+1
∑

i=0

uk
i (t)φk

i (ξ)

Time-Dependent Methods for Stochastic Differential Equations



5.5. RESULTS 18

where k denotes the grid point. This yields

2P+1
∑

i=0

∂uk
i

∂t
φk

i = κ

2P+1
∑

i=0

uk+1
i φk+1

i − 2uk
i φ

k
i + uk−1

i φk−1
i

∆x2

Applying the Galerkin projected results in

∂uk
j

∂t
=

2P+1
∑

i=0

〈

κφk+1
i , φk

j

〉

uk+1
i − 2

2P+1
∑

i=0

〈

κφk
i , φk

j

〉

uk
i +

2P+1
∑

i=0

〈

κφk−1
i , φk

j

〉

uk−1
i

∆x2
〈

(

φk
j

)2
〉 , j = 0, . . . , 2P + 1 (5.2)

5.5 Results

Equation 5.2 was discretized in time using an Euler scheme, and integrated over time. The results are shown
in Figures 5.1 and 5.2. A comparison was made between gPC using P = 3, which means four polynomials,
and our new formulation using 2P + 1 = 3, so also (at most) four polynomials.

In reality, the third and fourth polynomial are not used every iteration, e.g. for five grid points, using
a threshold value of ǫ = 10−10 in the third step of the algorithm and integrating over the first second, 8%
of the new polynomials is discarded. This number increases as we let the program integrate over a longer
time interval: after fifteen seconds, 25% of the polynomials is not used. From this we can conclude that the
new polynomials are especially beneficial for the capturing of the behaviour in the first second, where we are
dealing with the steepest slopes.

Figures 5.1 and 5.2 clearly show that the new formulation behaves much better than the gPC scheme.
Using only four polynomials, the trend of the variance is captured very decently and the errors in variance
and mean have decreased considerably. Figure 5.1a also shows us where much of the accuracy is gained, i.e.
in the first second. The gPC method clearly has difficulty following the slope of the curve, whereas the new
formulation does not.

To verify that the errors in Figure 5.2 can be reduced by increasing the number of grid points in the
spatial domain, a convergence study was performed on the cells size. Figure 5.3 shows the convergence of
the error with respect to grid refinement. The different norms are defined as

|ǫmean|1 =
∑

k

(|µexact − µTDgPC |∆x)

|ǫmean|2 =

√

∑

k

(|µexact − µTDgPC |∆x)
2

|ǫmean|∞ = max
k

(|µexact − µTDgPC |)

and similarly for the variance. The convergence graphs show a second order h-convergence for all norms,
which is to be expected from this central discretization.

Time-Dependent Methods for Stochastic Differential Equations
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Figure 5.1: Variance at x = 4
15 , 15 elements in spatial domain, ∆t = 0.0001, Q=60
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Figure 5.2: Errors in L1 sense, 15 elements in spatial domain, ∆t = 0.0001, Q=60
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Figure 5.3: Convergence of the errors in L1, L2 and L∞ sense, 2P + 1 = 3, ∆t = 0.0001, Q=60, tend = 15 s

5.6 Comparison with semi-discrete analytical system

To confirm that the errors in Figure 5.2 were dominated by the discretization error in the spatial domain and
to check the convergence with respect to the time integration, a comparison was made with an analytical
semi-discrete system.

Consider the heat equation, centrally discretized in space, but not in time:

∂uk

∂t
= κ(ξ)

uk+1 − 2uk + uk−1

∆x2

or in matrix notation

∂

∂t
u = κ(ξ)A u

This system can be diagonalized and decoupled as

∂

∂t
X−1u = κ(ξ)X−1AX X−1u = κ(ξ)Λ X−1u

Where Λ is the diagonal matrix containing the eigenvalues of A and X is the matrix containing the eigen-
vectors of A. Now set

X−1u = w

which yields the following set of decoupled equations (note that this is actually a set of growth equations)

∂wk

∂t
= κ(ξ)λkwk ⇒ wk(t, ξ) = w0e

κ(ξ)λkt (5.3)

These analytical solutions to the semi-discrete system can be compared to the our TDgPC calculations. The
results are shown in Figures 5.4 and 5.5. An Euler integration method was used, which is first order accurate.
This meant that the time integration was now the main source of error. Increasing the polynomial order or
number of quadrature points did not increase the accuracy of the scheme. This conclusion is confirmed by
Figure 5.6, which shows the convergence study for the time step size. As expected, the new method is first
order convergent with respect to the time step.
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Figure 5.5: Errors in L1 sense for the semi-discrete system, 15 elements in spatial domain, ∆t = 0.001, Q=60
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Figure 5.6: Convergence of the errors in L1, L2 and L∞ sense for the semi-discrete system, 2P + 1 = 3, 15
elements in spatial domain, Q=60, tend = 15 s

5.7 Comparison with fully discrete analytical system

This process can be taken one step further, by comparing the method with the fully discretized system. This
allows one to really see the error introduced by the TDgPC method, instead of the discretization error in time
and space. Another way would be to use a higher order time discretization scheme, such as the Runge-Kutta
method. But because the problem at hand is simple enough to construct a completely objective comparison
between gPC and the new TDgPC method, the following procedure was chosen.

So consider now not the analytical solution of Equation 5.3, but the fully discretized system, using an
Euler explicit procedure

wk
n+1 − wk

n

∆t
= κ(ξ)λkwk

n

where superscript k again denotes the grid point and subscript n denotes the solution at time step n. The
solution at the new time step is then

wk
n+1 =

(

1 + ∆tκ(ξ)λk
)

wk
n

The results are shown in Figures 5.7 and 5.8. The error shown is the L1 norm. This can be seen as the real
accuracy of the scheme. It becomes clear that the new formulation really is able to deliver very accurate
results. The accuracy can be increased even further by using more quadrature points.
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Figure 5.8: Errors in L1 sense for the fully discrete system, 15 elements in spatial domain, ∆t = 0.001, Q=60
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5.8 Influence of threshold value ǫ

The value of ǫ, i.e. the threshold value for the norm of the orthogonalized polynomials as described in Section
5.3, was found to have a substantial influence on the accuracy of the results for long time integration.

In Figure 5.9 the L1 errors are shown, when varying the value of ǫ. It is clear from this figure that the
choice of ǫ has a significant effect on the outcome. When polynomials are discarded quickly, e.g. ǫ = 10−5,
there is a visible jump in the error. When lowering the value of ǫ, this jump is postponed and lowered, until
it is so low that round-of errors in the orthogonalization become the predominant source of error.
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Figure 5.9: Error results for varying values of ǫ, 2P + 1 = 3, 15 elements in spatial domain, ∆t = 0.001,
Q=60
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Chapter 6

From TDgPC to PCM

Although the results of Chapter 5 were encouraging, a realization led to a different perspective on the new
TDgPC algorithm. In this chapter, a brief overview of the PCM procedure will be given, after which the
growth equation will be used to take a better look at the new-found TDgPC algorithm. Finally, a major
disadvantage of PCM will be explained as a prelude to the next chapters.

6.1 The Probabilistic Collocation Method

The implementation of a basic PCM algorithm is straightforward: calculate the deterministic solution at
several collocation points in stochastic space and use a polynomial fitting to determine the statistical moments
from this data. Or to put in more intuitively: perform a Monte Carlo simulation in a very clever way by
carefully choosing the ‘random’ input.

The statistical moments are again found using some form of numerical quadrature, using the PDF of
the solution as a weighting function. The exact location of these collocation points and the value of the
quadrature weights are dependent on the method one uses, and can be modified accordingly, as will be
shown in Chapter 8.

As stated before, this method always results in a decoupled system of equations and is non-intrusive, i.e.
one does not need to modify the flow equations. Rather, one can obtain the statistical moments by using
this method as a post-processing tool.

6.2 The growth equation revisited

Consider the growth equation, i.e. Equation 4.1, and apply a forward Euler discretization

un+1(ξ) = un(ξ) − ∆tk(ξ)un(ξ)

=

(

1 − ∆t

2
− ∆tξ

2

)

un(ξ) (6.1)

The term un(ξ) on the right hand side of the above equation can be regarded in two ways.
First of all, one can again write this term as a function of the previous time step, so

un(ξ) =

(

1 − ∆t

2
− ∆tξ

2

)

un−1(ξ)

25



6.3. SHORTCOMING OF THE PCM 26

This step can be repeated, until

un+1(ξ) =

(

1 − ∆t

2
− ∆tξ

2

)n+1

u0(ξ)

=

(

1 − ∆t

2
− ∆tξ

2

)n+1

(6.2)

Remember that this expression is exact in the stochastic sense, even though a time integration error is being
made. So the exact solution of the growth equation at time step n can be represented as a polynomial in
ξ of order n. This again shows why in normal gPC procedures, the original orthogonal basis will over time
become incapable of capturing the exact solution in stochastic space.

Secondly, because of the definition of ζ,

un(ξ) = ζ(ξ)

Therefore, expression 6.1 can also be written as

un+1(ξ) =

(

1 − ∆t

2
− ∆tξ

2

)

ζ(ξ)

From this, it becomes clear that the exact solution can be written as a linear combination of ξ and ζ. But
this is exactly what is done in the TDgPC procedure as described in Section 5.3! By updating ζ(ξ) every
time step and expanding the solution as a linear combination of only four polynomials, i.e. 1, ξ, ζ, ζξ, the
exact discrete solution is fully represented! It is therefore not necessary to go to higher order polynomials.

However, the above line of reasoning is written in a stochastically continuous form. In reality, these
equations are discretized and only evaluated on certain quadrature points. With Gauss-Lobatto-Legendre
quadrature integration, the values at these quadrature points are used to calculate the statistical moments,
as explained in Section 3.2. Although this method of integrating is exact for integrands up to order 2Q − 1
using only Q quadrature points, Equation 6.2 showed that after n time steps, a polynomial of order n needs
to be integrated to calculate the first statistical moment. So e.g. after 99 time steps, already 50 quadrature
points are needed to find the exact mean. This of course becomes even worse when considering the variance
of the solution, since there the is integrand is the solution squared.

The result is then that not the polynomial order of the expansion is the limiting parameter, but the
number of quadrature points. In fact, in every quadrature point, the exact solution is found (apart from
the integration error) and a stochastic error is only made when performing the integrations needed for the
calculation of the statistical moments. This is where the method seizes to be a gPC method and starts to
be a PCM procedure. Because this is exactly what the Probabilistic Collocation Method represents: find
the exact solution in several quadrature points (although in PCM they are dubbed collocation points) and
calculate the statistical moments using only these points in stochastic space. If one then requires a higher
accuracy, one should increase the number of collocation points.

To verify this conclusion, see Figure 6.1. In this Figure, the results of three different methods are shown:
gPC, TDgPC in the new formulation and PCM. The results for all three simulations are very similar. As
soon as errors due to the stochastic drift become larger than the round-off and transformation errors, the
results are even identical, as expected. Note that for the TDgPC simulation, a higher order polynomial than
the initially proposed 2P + 1 = 3 was used, since a RK4 integration method was performed.

6.3 Shortcoming of the PCM

One of the major disadvantages of the PCM is very similar to that of the TDgPC procedure: it experiences
stochastic drift. In the case of PCM, this means that more collocations points are needed for accurate results
over longer time integrations.

Time-Dependent Methods for Stochastic Differential Equations
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Figure 6.1: Errors in mean and variance for the gPC, TDgPC and PCM simulation using equivalent polyno-
mial order and number of collocation points, ∆t = 0.001 using a RK4 integration scheme.

This can be clearly demonstrated using the advection equation

∂u(x, t, ξ)

∂t
= a(ξ)

∂u(x, t, ξ)

∂x
, u(x, 0) = cos(2πx), 0 ≤ x ≤ 1, t ≥ 0 (6.3)

with periodic boundary conditions (u(x = 0) = u(x = 1)) and

a(ξ) =
1

2
(1 + ξ), −1 ≤ ξ ≤ 1

This equation describes a wave, moving at an uncertain, positive velocity. The analytical solution is known
to be

u(x, t, ξ) = cos(2π(x − a(ξ)t))

This equation was solved using the PCM procedure and a leapfrogging integration scheme. The solutions in
the stochastic domain are shown in Figure 6.2 using a varying number of collocations points. It becomes clear
that as time progresses, more and more collocation points are needed to avoid aliasing and thus unacceptable
errors in the calculation of the variance and mean.

In the next chapters, time-dependent methods will be used to ameliorate the effects of this phenomenon.
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(b) Q = 100, t = ∆t = 0.0667 s
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(c) Q = 1000, t = ∆t = 0.0667 s
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(d) Q = 10, t = 5∆t = 0.33 s
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(e) Q = 100, t = 5∆t = 0.33 s
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(f) Q = 1000, t = 5∆t = 0.33 s
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(g) Q = 10, t = 150∆t = 10 s
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(h) Q = 100, t = 150∆t = 10 s
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(i) Q = 1000, t = 150∆t = 10 s
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(j) Q = 10, t = 1500∆t = 100 s
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(k) Q = 100, t = 1500∆t = 100 s
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(l) Q = 1000, t = 1500∆t = 100 s

Figure 6.2: The solution as a function of the stochastic variable at x = 4
15 , using Q = 10, 100, 1000 at various

points in time
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Chapter 7

P-refinement applied to the PCM

One way of countering the stochastic drift during a PCM simulation is by applying a p-refinement, i.e. adding
collocation points during the simulation.

7.1 Interpolation

Although the addition of collocation points during the simulation is straightforward enough, the interpolation
routines require some caution. If the interpolation error becomes too great, it will negate the effect of adding
more points. The Lagrangian interpolator was chosen, since it obviously is well suited for interpolation with
polynomials.

7.2 Refinement criterium

An important parameter in this procedure is the refinement criterium. There are several possible criteria,
each with specific advantages and disadvantages:

• A straightforward approach is to refine when the relative error of the mean or variance reaches a certain
threshold value. This can also be used to stop the refinements, when the interpolation errors become
greater than the gain in accuracy. The drawback of this approach is that one needs a priori knowledge
of the exact solution. In the case of the growth equation this is trivial, but when considering a CFD
simulation of e.g. a full airplane configuration, this criterium is not all that clear.

• The criterium as used by Vos for the TDgPC transformations was to set a threshold value for the
non-linear coefficients of the polynomial expansion. Although this was an elegant solution for the
TDgPC algorithm, it does not make sense in the PCM framework. It would plainly defy the whole
point of the PCM to project the solution back onto a set of orthogonal polynomials to find these
coefficients. The strength of the PCM is exactly to perform the calculations without this Galerkin
projection.

• An alternative is to refine at fixed times. This bypasses the above mentioned disadvantages of threshold
criteria, but it has quite a severe one itself. For this criterium to work, one needs some degree of
knowledge of the progress of the simulation. For example, one should have an idea of the rate at which
the solution will change over time. This could be achieved by first running a lower order simulation
without refining the random variable and then performing the full-scale simulation.

Since the growth equation is straightforward and well understood, the refinement at fixed times was cho-
sen. However, for more interesting simulations, i.e. those that fluctuate heavily in time, a more appropriate
criterium should be constructed.
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7.3 Manner of refinement

The goal of p-refinement is to add collocation points during the simulation. The amount of points added,
can of course be varied. One could for example chose to multiply the current number of points by a factor,
or to simply add a fixed number of points. This as opposed to refining less often, but adding more points.

Testing showed that the most effective results were achieved when adding just one point, but performing
this refinement regularly.

7.4 Results

The effect of the p-refinement can be seen in Figure 7.1. These simulations were all started with five
collocation points. Every second, one collocation points was added, up to a maximum of collocation points,
Qmax. This maximum value was varied. So for the simulation with Qmax = 15, refinements were performed
at t = 1, 2, . . . , 10. As a reference, the results for a simulation with Q = 15 without refinement are shown as
well.
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Figure 7.1: Errors in mean and variance using p-refinement on the PCM procedure

Although it is obvious that the simulation run with Qmax = 15 cannot achieve the same accuracy as a
simulation initiated with 15 collocation points, the advantages of p-refinement are clear. Adding only one
collocation point every second has an significant stabilizing effect on the calculations. Interpolation errors are
well within acceptable limits, i.e. they are negligible compared to the error produced by the PCM procedure
itself.

For large simulations where computational cost becomes an issue, the benefits of p-refinement are most
clear. If one can add points only when the accuracy of the simulation is compromised, there is no need for
expensive calculations in points that are not (yet) necessary.
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Chapter 8

Time-Dependent Probabilistic

Collocation Method

The basic idea behind TDgPC is that the variable used to express the problem, should change and adapt
in time. This is done to prevent the aforementioned stochastic drift. This principle can also be applied to
the PCM procedure. This chapter will explain the implementation of this Time-Dependent Probabilistic
Collocation Method (TDPCM) and show its application to the growth equation.

8.1 Working principle of TDPCM

The main cause for error in normal PCM calculations, is that the points in stochastic space cannot capture
the behaviour of the solution. For example, for the growth equation, the PDF of the solution starts out
uniformly, but gradually centers around the origin of the stochastic domain. This can also be seen from
Figures 4.2 and 4.3. So at the start of the simulation, only two points would suffice to describe the exact
behaviour. However, when integrating further in time, one needs more and more points to capture the steep
slope of the solution around the origin. Moreover, these points would ideally be clustered at this steep slope.
Having more points around the ‘tail’ of the solution is unnecessary, since this virtually horizontal line segment
can be described using very few points.

So even though one can start out with many (computationally expensive) collocation points, at some
point in the integration, these points will not be able to capture the solution, resulting in increasing errors.

Applying the principles of time-dependence of the stochastic variable on the PCM, one can ameliorate
this problem. Not only will the transformation of the stochastic variable have a steadying effect on the order
of the error, but the relocating of the collocation points will enable us to use said points more effectively.

8.2 The Probabilistic Collocation Method applied to the growth

equation

Using again the growth equation as a test bed for our new method, we start the simulation using the standard
Gauss-Lobatto-Legendre (GLL) collocation points and weights for the PCM procedure. The variable u(ξ, t)
is discretized on these N points. The Ordinary Differential Equation (ODE) is then expressed as a decoupled
system of equations

dui(t)

dt
+ kiui(t) = 0, ∀i = 1 . . .N
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The variance and mean are calculated as

µ(t) =

∫ 1

−1

u(ξ, t)f(ξ)dξ =

N
∑

i=1

ui(t)wi

σ(t) =

∫ 1

−1

((uξ, t) − µ(t))
2
f(ξ)dξ =

N
∑

i=1

u2
i (t)wi − µ2(t)

8.3 The TDPCM algorithm

At some point during the time integration, say at t = t∗, we wish to reevaluate the collocation points and
the random variable. In order to do this, we first introduce the transformed random variable ζ, as was done
in the TDgPC as well

ζ = u(ξ, t∗)

The difference with the TDgPC method is that u(ξ, t) does not have to be constructed out of the orthogonal
polynomial basis. Instead, a Lagrange polynomial is constructed through the collocation points. Let us call
this polynomial T

ζ = T (ξ)

The PDF of this new variable is then approximately given by [16]

fζ(ζ) =
∑

n

fξ(ξn)
∣

∣

∣

∣

dT (ξ)
dξ

∣

∣

∣

ξ=ξn

∣

∣

∣

∣

This new PDF is used as a weighting function to find the optimal orthogonal basis. To find these
polynomials, the Stieltjes procedure is used [17]. This is a stable method to find the coefficients of polynomials
for arbitrary distribution functions. These orthogonal coefficients satisfy the three-term recurrence relation

φi+1(ζ) = (ζ − αi)φi − βiφi−1, i = 2, . . .N (8.1)

with φ0 = 0, φ1 = 1. The recurrence coefficients α and β are then found as

αi =
〈ζφi, φi〉
〈φi, φi〉

, i = 1, . . . N

βi =
〈φi, φi〉

〈φi−1, φi−1〉
, i = 1, . . . N

where the 〈, 〉 still denotes the ensemble average, but now with respect to the new PDF fζ(ζ). For a normalized
PDF, β1 = 1.

To find the desired Gauss quadrature points, the roots of the derivative of polynomial φN−1 are calculated.
This gives N −2 collocation points. The minimum and maximum value of the new random variable are taken
as the remaining two points.

Next, the associated weights are calculated. To ensure continuity of the statistical moments over the
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transformation, the following requirements are imposed

N
∑

i=0

w̃i = 1

N
∑

i=0

ζiw̃i =

N
∑

i=0

uiwi

N
∑

i=0

ζ2
i w̃i =

N
∑

i=0

u2
i wi (8.2)

...
N
∑

i=0

ζN
i w̃i =

N
∑

i=0

uN
i wi

Here, ui is the solution in the ‘old’ collocation points, ζi the solution in the ‘new’ collocation points and
w̃ denotes the weights after the transformation. This results in a system of N + 1 equations with N + 1
unknowns, yielding the new weights.

Finally, the new ‘initial’ conditions for ũi(t
∗) need to be imposed. Note that ũi(t

∗) 6= ui(t
∗), since ũi(t

∗)
is of course evaluated at the new collocation points. Regarding the definition of the new variable this is
trivially

ũi(t
∗) = ζi

The algorithm can then be summarized as:

- apply the PCM on a stochastic ODE
- integrate in time
- at specified time t∗:
- construct new variable ζ

- calculate new PDF as a function of ζ

- construct orthogonal polynomial basis through Stieltjes procedure
- use derivative of polynomial of order N − 1 to find N − 2 new collocation points
- add boundaries as two remaining points
- use continuity of statistical moments to find weights at new collocation points
- set new initial conditions
- interpolate growth coefficient and PDF at new points
- calculate mean and variance
- postprocessing

8.4 Considerations on the algorithm

Although this algorithm is in principle straightforward, some considerations are in place.

8.4.1 Interpolations and integrals

The TDPCM as described above clearly depends on numerous interpolations and numerical integrations.
As a rule, all interpolations and curve fittings were done using a Lagrangian interpolation. Although in
previous versions of the program cubic spline and least square fittings were used, Lagrangian interpolation
outperformed both.

Also, even though Van der Steen and Vos used a Gram-Schmidt orthogonalization, for this method the
Stieltjes procedure was chosen. It proved to be more accurate and numerically stable.
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But even with these precautions, interpolation errors are an important source of errors. This will be
further discussed in Section 8.5.

8.4.2 Calculation of the collocation points

Another method of finding the collocation points from the set of orthogonal polynomial is the Golub-Welsch
algorithm [18]. This method relies on finding the eigenvalues of the matrix

J =



















α1

√
β1√

β2 α2

√
β3 ∅√

β3 α3

√
β4

. . .
. . .

. . .

∅
√

βN−1 αN−1

√
βN√

βN αN



















The α and β in this system are the recurrence coefficients of Equation 8.1. This is equivalent to finding the
roots of polynomial φN . However, this method has the disadvantage of ‘shrinking’ the domain, i.e. it always
finds the new points within the domain, see Figure 8.1. When using few points, e.g. five collocation points,
this resulted in severe loss of accuracy when transforming a second time. The end points are necessary to
fully describe the PDF.

 

 

φN

φN−1

φ‘N−1

ζmin, ζmax

Figure 8.1: Position of different roots in domain of ζ

8.4.3 Rootfinders

Furthermore, rootfinders are extensively used throughout the program. The default Newton rootfinder was
chosen for its convergence rate and accuracy. However, this routine proved to be inadequate for simulations
using more than ten collocation points. The algorithm was not able to find all roots in the considered interval,
which led to unacceptable errors. Therefore, no results will be presented using polynomials of such order.
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8.4.4 Transformation criterium

One of the issues using this procedure, is to determine the time at which to transform the random variable
and recalculate the collocation points. The possible criteria are the same as discussed in Section 7.2 for the
p-refinement procedure.

A specific case of transforming at fixed times is to transform at every time step. Although this is a
very straightforward implementation, it is also the computationally most expensive one. It is therefore not
considered to be practically feasible, especially for more intricate problems.

Considering the characteristics of the problem at hand, the simulations for this problem were also run
with transformations at fixed times. However, more research is desirable to find a more general and elegant
transformation criterium.

8.5 Results

The benefits of this new method become apparent when considering Figure 8.2. Using the TDPCM scheme
results in a gain of about three orders of magnitude for the relative errors at tend. Apparently, it is easier to
follow the exact solution in stochastic space by using the new collocation points. As can be seen in Figure
4.3, a clustering of collocation points near ζ = 0 would be desirable as time proceeds. This is where the
solution will be most difficult to capture. Table 8.1 shows this is indeed the case. The newfound collocation
points are indeed ‘moving’ in the right direction.

Although an error is introduced when transforming, this is very quickly negated by the increased capability
to capture the behaviour of the exact solution. This error is a combination of factors. First of all, round-
off errors play a role. For example, when solving the system of equations 8.2, the program has difficulty
maintaining an accuracy of 10−14, most notably when performing matrix inversions. Also, the aforementioned
rootfinder introduces an round-off error.

But most notably, the interpolation routines are responsible for these errors. For example, when interpo-
lation k at the new collocation points, an error is made. Since k(ζ) is known analytically, one can investigate
the size of this error. From the analytical solution for the growth equation we know that

u(ξ, t) = e−k(ξ)t

and at the time of transformation u(ξ, t∗) = ζ, so

ζ = e−k(ξ)t ⇒ k = −1

t
ln ζ

When the analytical values for k are inserted into the routine, rather than the interpolated values, one sees
significantly smaller ‘jumps’ in the relative errors at the time of transformation, see Figure 8.3. The same
holds for the interpolation of the PDF.

Table 8.1: Position of collocation points as percentage of domain, N = 7
collocation point original position position after 1st transformation position after 2nd transformation
1 0.0 0.0 0.0
2 8.5 7.9 7.2
3 26.6 25.2 23.9
4 50.0 48.4 47.0
5 73.4 72.3 71.4
6 91.5 91.1 90.8
7 100.0 100.0 100.0
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(d) Errors using TDPCM, transforming at t = 1, 2

Figure 8.2: Errors and variance for PCM and TDPCM, N = 8
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Figure 8.3: Difference in relative variance error when using exact or interpolated k

8.5.1 Influence of the number of collocation points

Keeping the same criterium for the transformation, we can see the influence of the number of the collocation
points (and therefore the polynomial order), see Figure 8.4. Increasing the polynomial order has several
effects. Initially, it increases accuracy. This is as expected, since the use of more collocation points counters
the effect of stochastic drift. However, at N = 9 the interpolation error introduced at the transformation
starts to undo the benefit of using better collocation points. Even though the interpolation error of e.g. k

will decrease when using more points, the influence of the error is amplified even further, see Figure 8.3.
Also, the rootfinder and matrix inversion deliver less accurate results when using more points.

8.5.2 Influence of the time of transformation

The influence of the time of transformation was investigated as well, see Figure 8.5. If one transforms too
early, the PDF is not clustered around ζ = 0 yet, and the new collocation points will not differ much from
the original ones. The interpolation error introduced when transforming will even be higher than the benefit
of the transformation. Transform too late in the simulation and the original points will have great difficulty
capturing the PDF and the benefits from calculating new points will already be negated by the errors from
the PCM part of the simulation.

Furthermore, if the first transformation was performed after t = 20, the polynomial fitting of the PDF
proved to be inadequate and the calculation of the new collocation points went awry. This is the same effect
as can be seen in Figure 4.2.

8.5.3 Influence of the number of transformations

From Figure 8.6 it becomes clear that it is most beneficial to transform several times early on in the simulation.
If the interval between two transformations is too large, a similar effect as described in the Section 8.5.2 occurs,
i.e. the polynomial fitting of the PDF generates less than optimal values for the new collocation points.
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(b) Variance using TDPCM, transforming at t = 1, 2, N = 5
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(c) Variance using PCM, N = 7
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(d) Variance using TDPCM, transforming at t = 1, 2, N = 7

0 5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

t [sec]

ǫ
[-
]

 

 

ε
mean

ε
var

(e) Variance using PCM, N = 9
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(f) Variance using TDPCM, transforming at t = 1, 2, N = 9

Figure 8.4: Errors and variance for PCM and TDPCM, using varying values of N
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Figure 8.5: Relative variance errors for TDPCM, using varying values of t∗, N = 7
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Time-Dependent Methods for Stochastic Differential Equations



Chapter 9

Conclusions and recommendations

This chapter will recapitulate the results of this thesis and give some recommendations for further research.

9.1 Conclusions

During this graduation project, several methods were investigated to enhance to performance of stochastic
methods in long-term integration. The starting point of this research was the TDgPC method as formulated
by Vos and van der Steen.

An alternative formulation for the expansion of the solution variable was investigated and applied to the
growth equation, see Section 4.4. In first instance, the results were very promising, but the method proved
to be too case sensitive to be generally applicable.

A generalization of this procedure was found and tested on the PDF known as the heat equation, as
described in Section 5.3. Again, the gain in accuracy of the simulation was considerable. A convergence
analysis was performed to show that the error introduced by the stochastic computations was negligible
when compared to the space and time discretization errors.

When analyzed more thoroughly, the new TDgPC formulation proved to be equivalent to the standard
Probabilistic Collocation Method, see Section 6.2. Since the PCM has its own shortcomings in long-term
integrations, time-dependent methods were sought to soften the effects of stochastic drift.

The effects of p-refinement during a simulation, i.e. adding collocation points, were investigated in
Chapter ??. The interpolation error introduced at the time of refinement proved to be insignificant when
compared to the overall relative error. Thus, a simulation could be initiated using a minimum of collocation
points. When the accuracy of the simulation was compromised, more points were adding, resulting in a
stabilization of the relative errors of the mean and variance. Therefore, p-refinement has the potential to be
a valuable tool for PCM procedures, especially when computational cost becomes an issue.

Finally, the principles of TDgPC, i.e. to reevaluate the stochastic variable over time, were applied to the
PCM in Chapter 8. The accuracy of the mean and variance relies heavily on the placement of the collocation
points in stochastic space. Therefore, these positions were recalculated several times during the simulation.
It was shown that the algorithm indeed moves the collocation points towards the region in stochastic space
where they are most effective. Although an error was introduced when transforming, this was negated by
the beneficial effects of a better placement of the collocation points.

9.2 Recommendations

A substantial limitation in the application of time-dependent methods on the PCM is the refinement/transformation
criterium. For the TDgPC procedure, the values of the non-linear coefficients in the polynomial expansion
were a good measure and could serve as a threshold criterium. In PCM simulation, this does not make
sense. Other criteria rely on prior knowledge of either the exact solution or the progress of the simulation.
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For full-scale simulations of proper flow equations this poses a serious issue. Although this problem could
be circumvented by first performing a low-order simulation, this is not an elegant solution. Therefore, more
research on this criterium would be appropriate.

The rootfinder routine in the TDPCM also turned out to be a limiting factor in the applicability of the
method. Either a different algorithm should be used instead, or a linear transformation should be performed
to ‘blow up’ the domain, making the algorithm more robust.

A logical next step in this research would be to apply the TDPCM to more intricate problems. The
extension to simple partial differential equations will not be very difficult. However, the influence of more
than one stochastic variable will be quite interesting to investigate. As stated before, the Probabilistic
Collocation Method suffers from the ‘curse of dimensionality.’ So unfavorable side-effects are possible in
these cases. On the other hand, this is also an opportunity for p-refinement to really prove its worth.

A very interesting development would be to combine the TDPCM with a multi-element scheme as used
by Foo, Wan and Karniadakis [13]. The results achieved with ME-PCM are formidable, especially when
considering higher order simulations. Also, to the knowledge of the author, p-refinement has not been tried
in combination with ME-PCM. This too, could be a powerful combination.

9.2.1 The PCM paradox

Besides all this, the PCM in itself is quite paradoxical. The goal of these algorithms is to find a solution
in several points in stochastic space as accurately as possible. When that is done, the statistical moments
are calculated by performing an integration over this domain. In most cases, this is exactly what is required
by an engineer: a mean or variance at a certain point in time. In general, the behaviour of the solution in
stochastic space is not considered very important, as long as the mean and variance are known. They are
the ‘design parameters.’

First of all, calculating the probability in a point is awkward, mathematically speaking. Theoretically,
the probability of an event in a point in stochastic space is zero. But more importantly, why would one want
to calculate values at discrete points, if the main interest lies in integrated values?

It could for example be very interesting to abandon the concept of calculating the solution in certain
collocation points, and use the mean over an interval as a new variable. So instead of solving the system of
equations

dui(ξ, t)

dt
+ ki(ξ)ui(ξ, t) = 0, ∀i = 1 . . . N

One could perform a variable transformation

ui =

∫ ξi

ξi−1

u(ξ, t)f(ξ)dξ, kiui =

∫ ξi

ξi−1

k(ξ, t)u(ξ, t)f(ξ)dξ

and solve the system

dui(ξ, t)

dt
+ ki(ξ)ui(ξ, t) = 0, ∀i = 1 . . . N

In this transformation, some information on the behaviour of the solution in the stochastic domain is lost.
But as stated above, if the mean is the major object of interest, this might not matter.

This line of reasoning is at this moment being pursued by K. Myerscough and Dr. M.I. Gerritsma.
Although it is a work in progress, preliminary results look promising.
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