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Abstract
Concept drift is an unforeseeable change in the un-
derlying data distribution of streaming data, and be-
cause of such a change, deployed classifiers over
that data show a drop in accuracy. Concept drift
detectors are algorithms capable of detecting such
a drift, and unsupervised ones detect drift without
needing the data’s actual labels, which can be ex-
pensive to obtain. This work is concerned with the
implementation and evaluation of two existing un-
supervised concept drift detectors based on cluster-
ing, UCDD and MSSW, by evaluation on both syn-
thetic and real-world data. Our biggest contribution
is in making implementations publicly available.
By evaluation, we also realise that UCDD detects
drift earlier for simple numerical synthetic datasets,
MSSW detects drift earlier for more complex syn-
thetic datasets with categorical features, and none
seems suitable for real-world datasets.

1 Introduction
Streaming data analysis is currently in high demand, and its
rapid growth is expected in the upcoming years. The stream-
ing data analytics market has been valued at $ 7 Billion in
2019, and is expected to grow to up to $ 50 Billion by 2027
[1]. However, the analysis of data streams is faced with mul-
tiple challenges stemming from the online learning environ-
ment. One such challenge is concept drift, which signifies
a drastic, unpredictable change in streaming data over time,
characterised by a change in the underlying distribution of
said data (Note: in the rest of this paper, the terms ”concept
drift” and ”drift” will be used interchangeably). Most stream-
ing data analysis tasks can suffer from concept drift; illustra-
tive examples include monitoring tasks [2], user modelling
tasks [3], intrusion detection [4], or fraud detection [5].

A machine learning (ML) classifier - i.e. base classifier - is
typically trained on stationary reference data that is assumed
not to contain concept drift, and then released into produc-
tion to process incoming streaming data, called testing data
in our work. Once this incoming data starts exhibiting con-
cept drift, the base classifier’s accuracy drops significantly,
precisely because such data is different from what the clas-
sifier has been trained on. This is why having mechanisms
dealing with concept drift is of high importance.

One way of dealing with concept drift is detecting it with
concept drift detectors (DDs). A DD is a monitoring algo-
rithm for a deployed ML model in production that can de-
tect drift, so that the ML model can be quickly adapted to
new, shifted (drifted) data to avoid accuracy loss. Most pub-
licly available DDs are supervised: they assume that true
testing data labels are available shortly after prediction, and
use the difference between predicted testing labels and true
testing labels to test for drift. Nonetheless, in reality, ob-
taining true streaming data labels is expensive, so unsuper-
vised DDs might be preferred in industry. Unsupervised DDs
work by observing differences between reference and test-
ing data itself, so they do not need access to testing data la-

bels. However, in papers describing and evaluating unsuper-
vised DDs, implementations are only rarely publicly avail-
able. Moreover, most of these DDs are evaluated only on
synthetic datasets, which might not reflect the detectors’ use-
fulness in the real world.

Our contributions are therefore the following. Firstly,
we replicate implementations of two existing clustering
similarities-based unsupervised drift detectors in Python
3.9.0 with NumPy1 and Pandas2 and make these implemen-
tations public3, so that they can be used by researchers and
practitioners. Most notably, we extend the work of Lorena
et al. [6] - a comparative study of drift detectors, severely
limited by the unavailability of unsupervised drift detectors.
Secondly, by this replication, we validate results of two ex-
isting research papers. Finally, we evaluate the implemented
detectors on real-world data, which has not been done before.

We aim to answer the following research question: How
well do clustering similarities-based concept drift detectors
identify drift in case of synthetic/real-world data? This ques-
tion can be further divided into these sub-questions: What
is the false-positive rate (FPR) and latency of the algorithms
under different settings such as abrupt versus gradual drift, or
the presence of categorical features in synthetic data? And
how well, in terms of FPR and detection accuracy, do these
algorithms detect drift in real-world datasets?

The paper is organised as follows. Section 2 presents the
existing categorization of unsupervised drift detectors, and
introduces UCDD and MSSW, the two implemented algo-
rithms. Section 3 describes the methodology: datasets used,
their preparation through division to reference data and test-
ing batches, evaluation metrics such as latency and FPR, and
implementation decisions such as libraries to use. In Sec-
tion 4, the promising results on synthetic datasets and sub-
optimal results in real-world datasets can be found, followed
by a discussion of why these results were obtained in Section
5. Section 6 touches upon ethical aspects such as this work’s
reproducibility, and conclusions summarize our contributions
in Section 7.

2 Related work
Four different categories of unsupervised drift detectors were
extracted from [7] and [8]. These are statistical-based drift
detectors - drift detection based on statistical tests, mar-
gin density-based drift detectors - drift detection based on
the density of points on a classification boundary, cluster-
ing similarities-based drift detectors - drift detection relying
on clustering, and mixed drift detectors - multiple different
strategies combined.

This paper is concerned with the category of clustering
similarities-based drift detectors. These detectors work by
using clustering to assess whether clustering characteristics
in newly incoming data differ from clustering characteristics
in old data. Moreover, label estimates can be useful to de-
tect concept drift, e.g. to observe that samples of one class
suddenly appear elsewhere in the feature space. With shifted

1https://numpy.org/
2https://pandas.pydata.org/
3https://github.com/Jindrich455/clustering-drift-detection



data, a base classifier would estimate labels in a biased way,
while label estimates from unsupervised clustering are poten-
tially of more use by being unbiased. Two existing algorithms
were found, implemented and evaluated in this paper, and in
the following paragraphs, each is introduced briefly. Note
that a drift detector can signal that drift occured, but only if
the drift really happened can we say that the detector detected
drift.

The first algorithm, UCDD (Unsupervised Concept Drift
Detection) [9], works as follows. Firstly, data from a fixed-
size reference and testing window - a window signifies mul-
tiple time-consecutive streaming data samples - is merged.
K-means is used on this dataset to obtain two clusters, called
plus and minus, which should serve as data label estimates,
assuming there are two classes in the data. Then, each cluster
is split back to reference and testing data; this (ideally) results
in four clusters in total. Subsequently, as illustrated by Fig-
ure 1, the reference cluster of the plus class is compared to
reference and testing clusters of the minus class through the
number of nearest neighbours in each. If there is a significant
difference in these two numbers, assessed through a critical
value of the CDF of the Beta distribution, then concept drift
is signaled. The same happens for the minus class reference
cluster and the two plus clusters.

Figure 1: Comparison of nearest neighbours in UCDD in the plus
reference cluster against reference and testing minus clusters.

The second algorithm will be referred to here as MSSW
(Multi-Scale Slide Windows) [10], and works thus. First, all
reference data is clustered through k-means with weighted
Euclidean distance. Then, a lower and upper bound of accept-
able total average distances to centroids is calculated from
this reference data. Each testing batch (i.e. fixed-size win-
dow) is subsequently clustered according to the obtained ref-
erence data centroids, and when the total average distance
to centroids in the testing batch exceeds the defined bounds,
drift is signaled.

3 Methodology
In this section, the entire experimental setup is outlined. The
data setup is described in 3.1, followed by the description of
datasets in 3.2. Evaluation metrics used to assess the algo-
rithm’s performance are introduced in 3.3. Once the evalua-
tion setup is clear, the necessary implementation adaptations
done to the respective algorithms are explained in 3.4.

3.1 Data setup and dataset types
In this work, the setup in Figure 2 was used for the algorithm
evaluation. Each dataset used in the evaluation was first split

to reference and testing data. Testing and possibly also refer-
ence data was then split to equal-sized batches, and some test-
ing batches, shown in gray, were known or defined to contain
concept drift. The drift detectors implemented in this paper
accept reference data and then individual testing batches as
input, and should be able to tell which testing batches contain
drift. Two types of datasets were used for the evaluation -
synthetic and real-world, and the next paragraphs explain the
data setup for each.

Figure 2: High-level data setup for evaluation. Data is split to ref-
erence and testing and then divided to batches. Grey batches con-
tain drifting data. Note: the number of batches differs per dataset.
Adapted from Lorena et al. [6].

Synthetic datasets were generated artificially, so drift was
chosen to start at one testing batch. All remaining testing
batches also exhibit concept drift, like in Figure 2. Figure 3
shows the two types of concept drift: abrupt drift means a
sudden complete change of concept, while gradual drift has a
width, and means a progressive introduction of a new con-
cept. Drift start location, type, and width were chosen in
advance, so we knew exactly where a drift detector should
signal drift, and interesting results could be extracted about
different drift types and widths.

Figure 3: Concept drift can be abrupt or gradual. The gradual drift’s
width is the number of samples from the start of the new concept
until the new concept is fully established. Adapted from Lorena et
al. [6].

The detection performance of a drift detector on real-world
data is expected to reflect the usefulness of the said detector
on real-world problems much better than the detection perfor-
mance on synthetic data. Nevertheless, in real-world datasets,
the exact concept drift locations were unknown, and therefore
had to be defined. In this case, testing batches were defined as
drifting on a case-by-case basis, so we could no longer work
with concept drift ”starting” at some testing batch.

3.2 Description of datasets
All datasets used in this paper have binary classification la-
bels. Our work is therefore mostly useful for binary stream-
ing data classification. The exact synthetic and real-world
datasets used are described in the following paragraphs.



Synthetic datasets used in this paper were the same as those
employed by Lorena et al. [6]. All have 100 000 total sam-
ples, the first 30 000 samples were taken as reference data, the
remaining 70 000 as testing, and experiments were done with
batches of 10 000 samples. Drift always starts at the third test-
ing batch. SEA is a dataset of three numerical features ranging
from 0 to 10. The datasets AGRAW1 and AGRAW2 have the
same features, but differently generated values. These are six
numerical features and three categorical features describing a
person, and labels are a decision of whether this person can
receive a loan.

Table 1: Numerical description of real-world datasets.

Dataset Size # Ref # Num. features # Cat. features # Experiments
Weather 18159 6053 8 0 2
Spam 4405 1468 10727 0 3
ELECT2 45312 15104 8 0 1
Airlines 539383 179794 3 1 2

Four real-world datasets were used for the evaluation:
Weather, Spam, ELECT2, and Airlines. ELECT2 [11] and
Airlines [12] were also employed by Lorena et al. [6], while
Weather [13] and Spam [14] were used additionally. In Table
1, we can see the total number of samples (Size), the first n
samples used as reference data (# Ref), where (Size−#Ref)
samples were then used as testing data, the numbers of nu-
merical and categorical features, and the number of experi-
ments done in each dataset. In Weather, the idea is to predict
whether it is raining or not, and we did two experiments with
batches of either 365 (yearly) or 30 (monthly) samples. Spam
is a sparse representation of word frequencies in emails, for
which it should be decided whether they are spam or not, and
we did three experiments with batches of 100, 50, and 20
samples. ELECT2 is concerned about rises or drops in elec-
tricity prices, and we did one experiment with batches of 365
(yearly) samples. The Airlines show flight details from which
the aim is to predict whether a flight will be delayed or not.
We did two experiments, both with batches of size 17 000,
but two different encoding methods for the categorical fea-
ture: one-hot encoding and target encoding.

Figure 4: Concept drift definition example in the Weather dataset for
yearly experiments. Batches defined as drifting shown in red.

For the Weather dataset, sequential cross-validation [15]
was used to obtain the expected accuracy. Each time, a num-
ber of consecutive samples in reference data of the same size
as one testing batch were taken randomly. A classifier was
trained on the rest of reference data, and then its accuracy
was measured on the extracted points. This was repeated un-
til the standard error of accuracies was smaller than 0.05. The
mean and standard deviation (std) of all these accuracies were
then taken as benchmark. Gaussian Naive Bayes, decision

trees, k nearest neighbors, SVM, and logistic regression from
sklearn were tried and their hyperparameters tuned through
Bayesian search4 in both monthly and yearly experiments.
In both cases, SVM5 was the best-performing method, with
C=2.09 in monthly experiments and C=11.98 in yearly exper-
iments. We then defined testing batches to be drifting if their
accuracy was smaller than the benchmark accuracy minus the
benchmark std - i.e. batches below the red line in Figure 4.
Drift definitions for all real-world datasets used were done in
a similar way6.

3.3 Evaluation metrics
In synthetic datasets, the drift detectors’ performance was
based on two metrics: false-positive rate (FPR), and latency,
both adapted from Lorena et al. [6]. These reflect how of-
ten a detector signaled drift before it occurred, and how late
it detected drift after it occurred. With a good drift detector,
both should have values as low as possible. Each metric is
described in more detail in the following paragraphs.

Synthetic False-Positive Rate (FPRS) is the percentage
of testing batches before drift happened where a detector sig-
naled drift. It takes on values between 0 and 1, where 0 means
that no drift was signaled before it was supposed to be sig-
naled, and 1 means that all batches before the first batch with
drift were wrongly signaled as containing drift. The formula,
adapted from [6], is

FPRS =
kF

|BND|
: bFk ∈ B, (1)

where B is the list of batches, bFk is the batch erroneously sig-
naled as drift, and BND is the total number of batches without
drift out of the total list of batches.

Latency (LTC) is the percentage of testing batches re-
quired to detect concept drift after it occurred. It is therefore
only applicable to the first signaled batch at or after the first
batch with actual concept drift. It takes on values between
0 and 1, where 0 means that drift was detected at the exact
location where it was supposed to be detected, and 1 means
that drift was detected only at the last batch or not detected at
all. The formula, adapted from [6], is

LTC =
k − j

|BAD|
: bj , bk ∈ B, (2)

where B is the list of batches, bn is the nth batch in B, bj
is the batch corresponding to the beginning of concept drift,
bk is the batch detected as drift, and BAD is the number of
batches after the first batch with drift.

In real-world datasets, the drift detectors’ performance was
based on real-world FPR (FPRR), and detection accuracy
(ACC). The metrics are:

FPRR =
|BDS ∩BC

DD|
|BC

DD|
,

ACC =
|BDS ∩BDD|

|BDD|
,

4skopt.gp minimize()
5sklearn.svm.SVC()
6https://github.com/konstaka/drift-definitions



where BDS are testing batches where drit was signaled by a
detector, BDD are batches where drift was defined, and regu-
lar set complement, intersection and size notation is used.

3.4 Implementation of concept drift detectors
The clustering used in the two drift detectors shares three
common characteristics. Firstly, the k-means algorithm is
used, because this clustering algorithm was also used in the
papers from which the algorithms are adapted, is well-known,
is relatively fast, and its implementation is publicly available
in the widely used scikit-learn Python library7. Secondly, in
this imported KMeans, the kmeans++ method is used to ob-
tain the initial centroids. This method chooses initial cluster
centroids progressively, through weighted probabilities based
on distances from already obtained centroids. This way, the
convergence of KMeans was faster and results were more
consistent with different random states than with purely ran-
domly selected initial centroids. Finally, data was always
scaled through min-max scaling8. This scaling does not as-
sume any particular data distribution, and ensures that fea-
tures with larger value ranges do not unreasonably contribute
more to the distance between data points in k-means. Note
that this scaling is built into MSSW by default.

The two papers describing the algorithms also do not men-
tion anything about categorical features, which are present in
some of our datasets, cannot be directly handled by k-means,
and therefore had to be adapted to the algorithms. We tried
both omitting these features and converting them to numerical
ones through one-hot encoding9 and target encoding10. These
two encodings were suitable, because the notion of distance
between data points, necessary in k-means, remained consis-
tent, as opposed to e.g. ordinal encoding, where the distance
between two different encoded categorical values depends on
these values without conveying any meaning. In the follow-
ing headers, the algorithm-specific implementation adapta-
tions to the given setup are described for each algorithm. Pa-
rameters not described here were kept exactly the same as in
the original papers.

UCDD
For some UCDD-specific functionalities, we imported
additional libraries. Firstly, it must be possible to
find the k nearest neighbors. This is why we used
sklearn.neighbors.NearestNeighbors for the analysis.
We are always using 1-NN, since that is what the original
UCDD paper is also using. UCDD also uses the CDF of the
Beta function, for which we chose scipy.stats.beta.cdf.

Another adaptation concerned the split of reference data
to batches. When UCDD was run with all reference data -
30k samples in synthetic data - and one testing batch - 10k
samples in synthetic data - then drift was always signaled in
each such testing batch. This is because the algorithm works
by comparing the nearest neighbors of one reference cluster
to another reference and a testing cluster. If there are much

7sklearn.cluster.KMeans()
8sklearn.preprocessing.MinMaxScaler()
9sklearn.preprocessing.OneHotEncoder()

10category encoders.TargetEncoder()

more points in the reference cluster than in the testing clus-
ter, then much more neighbours will be found in the reference
cluster than in the testing cluster, even if they both come from
the same distribution. For this reason, reference data was al-
ways split to batches of the same size as a testing batch, and
each testing batch was compared to all reference batches in-
dividually, as can be seen in Figure 5.

Figure 5: Comparing one testing batch to all reference batches in
UCDD.

For the evaluation, we created a parameter named
min ref batches drift (MRBD) to determine the minimum
fraction of reference batches that must signal drift for UCDD
to signal the current testing batch as drifting. Because there
were always three synthetic reference data batches, we tried
values of 0.3, 0.6 and 0.9 (i.e. requiring either 1/3, 2/3, or all
batches) for synthetic datasets.

One important drawback of the original algorithm is that
it was designed to only detect drift when classes shift fur-
ther away from each other, but not the one where they
shift towards each other. This is due to a one-ended com-
parison of the numbers of nearest neighbours, obtained by
CDFBeta(n1,n2)(0.5) < 0.05. In this formula, either n1 =
number of nearest neighbours in ref plus and n2 = number
of nearest neighbours in test plus, or n1= number of near-
est neighbours in ref minus and n2 = number of nearest
neighbours in test minus. However, by making this compar-
ison double-ended, so by additionally also checking whether
CDFBeta(n2,n1)(0.5) < 0.05 holds, drift could also be de-
tected in the case where classes shifted towards each other,
which is certainly not less of a drift than when classes shift
away from each other. The (promising) performance of this
additional check to the algorithm can be observed in Section
4.

The choice of clustering parameters for KMeans -
n clusters, tol, and max iter - was complicated, because
clustering is done between a reference and a testing batch, but
in the real world, when setting these parameters, only refer-
ence data is known. The number of clusters, n clusters,
was set to two, because the UCDD paper argued that our aim
is to estimate classes through clustering, and all our datasets
had two classes. Tol controls whether the change in cen-
troids is small enough to stop KMeans, while max iter is
the maximum acceptable number of iterations until the algo-
rithm stops. We cannot know how demanding will be the
clustering of a new dataset made of one reference and one
testing batch. However, since half of such a dataset is made
of a reference batch, we could try finding suitable parame-
ters by clustering datasets made of reference batches. This
was done by picking each possible consecutive pair of ref-
erence batches, joining them, and performing clustering 100
times. In all datasets, we concluded that strict convergence
(tol=0) could be obtained in each of the runs in less than
a second, so tol=0 was used for the final analysis. Out of



all the combinations and clusterings, the highest number of
iterations observed was picked, and the max iter used for
the final analysis was 1000 times this value. By using such
a max iter on testing data, we could be fairly confident that
KMeans reached strict convergence every time.

In UCDD, it is possible that less than four clusters are cre-
ated. This is because joined reference and testing data forms
two clusters in which reference and testing data should be
separated afterwards. But if either of these two clusters is
made of only reference or only testing data, then no split is
happening. Since the number of nearest neighbours of an
empty set is undefined, we decided to signal drift whenever
less than four clusters were created, because that probably
meant a significant change in the data.

MSSW
A first concern during the implementation of MSSW was the
notion of ”sub-windows”. The original paper used a refer-
ence and a testing window, which are further divided into
equal-sized sub-windows, and mentioned that drift should be
detected between the two windows, but then found drift for
each testing sub-window. We therefore assumed that drift
detection happens for sub-windows, not for whole windows.
Adapting this to our work, both the reference and the testing
data were divided to same-sized batches. Then, all the ref-
erence data was considered as the reference window, and all
testing data as the testing window. Batches of reference and
testing data are taken as sub-windows, and the drift detec-
tor signals testing batches - i.e. sub-windows - which should
contain concept drift.

The most important challenge that had to be addressed in
MSSW was the custom k-means with an entropy-weighted
Euclidean distance used in the original paper. The main issue
was that existing implementations of k-means either only sup-
port regular Euclidean distances (scikit-learn), or support
the injection of a custom distance function (pyclustering),
but then become orders of magnitude slower. However, we
made the following observation about data weighting. If not
stated otherwise, the same nomenclature as in the MSSW pa-
per is used.

Distance between two points - put:

z′tg =
√
Wgx

′
tg, (3)

z′t = [z′t1, z
′
t2, ..., z

′
tdm], (4)

where dm is the number of dimensions.
Then

EuclideanDist(z′i, z
′
j) =

√√√√ dm∑
g=1

(z′ig − z′jg)
2 (5)

=

√√√√ dm∑
g=1

(
√

Wgx′
ig −

√
Wgx′

jg)
2 (6)

=

√√√√ dm∑
g=1

(Wg(x′
ig − x′

jg)
2) (7)

= WeighedDist(x′
ig, x

′
jg) (8)

If we choose an initial set of centroids Cinit in the original
data, and run k-means with weighted Euclidean distance, we
obtain some final set of centroids Cfinal. However, if we first
transform all data including each centroid Cinit with

√
Wg

as in equation 3, and run k-means with regular Euclidean dis-
tance, we obtain the same final set of centroids Cfinal, only
weighted by

√
Wg . This means that, except for the different

basis, the two clustering methods are equal.
The implementation outcomes of this analysis were the fol-

lowing. We could transform data by
√

Wg , and then use
KMeans11 to obtain the correct final clusters, only in a dif-
ferent basis. MSSW uses average distances to centroids in
testing batches to signal drift, and the distance used is still
the same weighted Euclidean distance. The data could conse-
quently stay transformed after the clustering; we only needed
to also transform testing data with

√
Wg obtained from refer-

ence data, and use a regular Euclidean distance wherever the
weighted Euclidean distance was requested.

We had to choose the n clusters, tol, and max iter pa-
rameters in KMeans for the analysis. In each dataset, we ob-
served the clustering process for 100 different runs of the al-
gorithm (i.e. 100 runs with different random states, so differ-
ent initial centroids) through n clusters=10, n init=100,
tol=0, and max iter=500. For all datasets, we concluded
that strict convergence (tol=0) is observed after less than 100
iterations, so we took tol=0 and max iter=10 000 for a
sufficient margin for the final evaluation of MSSW. Then,
the elbow method12 was performed for n clusters ranging
from two to 30, where 30 was a high enough upper boundary
since the inertia was always close to zero, and the elbow point
found for n clusters was taken for the final analysis.

4 Results
In this section, we present resulting metric values in compre-
hensive tables and discuss how we obtained them and why
some values are not reported in full. Because the drift de-
tection setup and metrics differ for synthetic and real-world
datasets, results of each dataset type are presented in separate
sub-sections.

4.1 Synthetic data
Obtaining meaningful results with randomness stemming
from random centroid initialisation was done in the follow-
ing way. K-means’ n init was set to 100, which already
guarantees a certain robustness against randomness. Further-
more, each drift detector was run independently 2 times (i.e.
k-means was run with at least 200 different random states
in total). If the standard error of our evaluation metrics (see
Section 3.3) from these initial runs was higher than 0.05, the
algorithm was re-run, again with n init=100, until the stan-
dard error became smaller. The metrics reported here are the
average of metrics of all drift detector runs.

In the resulting tables presented here, the ”width” column
specifies the drift width in 1k samples - e.g. the value 0.5
means 500 samples, 5.0 means 5000 samples and so on -

11sklearn.cluster.KMeans()
12yellowbrick.cluster.elbow.kelbow visualizer



and width 0.0 signifies an abrupt drift. For AGRAW1 and
AGRAW2, results were obtained for three encoding strate-
gies: exclude for leaving categorical features out, and one-hot
and target for encoding categorical features.

UCDD

Table 2: UCDD metrics in all synthetic datasets with different en-
codings and increasing drift widths. We tried three different com-
binations of additional parameters MRBD and ADD C, shown as three
different columns (a), (b), and (c). Metric values using the best val-
ues for MRBD, ADD C and the best encoding(s) are highlighted.

(a) (b) (c)
MRBD= 0.3 0.3 0.6

ADD C was used unused used
width FPRS LTC FPRS LTC FPRS LTC

SE
A

E
X

C
L

U
D

E

0.0 0.5 0.0 0.5 1.0 0.0 0.17
0.5 0.5 0.0 0.5 1.0 0.0 0.25
1.0 0.5 0.0 0.5 1.0 0.0 0.25
5.0 0.5 0.0 0.5 1.0 0.0 0.0
10.0 0.0 0.25 0.0 1.0 0.0 0.25
20.0 0.0 0.25 0.0 1.0 0.0 0.75

A
G

R
A

W
1

E
X

C
L

U
D

E

0.0 0.0 0.5 0.0 1.0 0.0 1.0
0.5 0.0 0.5 0.0 1.0 0.0 1.0
1.0 0.0 0.5 0.0 1.0 0.0 1.0
5.0 0.0 1.0 0.0 1.0 0.0 1.0
10.0 0.0 1.0 0.0 1.0 0.0 1.0
20.0 0.0 0.75 0.0 1.0 0.0 1.0

O
N

E
-H

O
T

0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.5 0.0 0.0 0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0 0.0 0.0 1.0
5.0 0.0 0.0 0.0 0.0 0.0 1.0
10.0 0.0 0.25 0.0 0.5 0.0 1.0
20.0 0.0 0.25 0.0 0.25 0.0 1.0

TA
R

G
E

T

0.0 0.0 0.0 0.0 0.5 0.0 1.0
0.5 0.0 0.0 0.0 0.5 0.0 1.0
1.0 0.0 0.0 0.0 0.5 0.0 1.0
5.0 0.0 0.0 0.0 0.5 0.0 1.0
10.0 0.0 0.0 0.0 1.0 0.0 1.0
20.0 0.5 0.0 0.5 0.75 0.0 1.0

A
G

R
A

W
2

O
N

E
-H

O
T

0.0 0.0 0.5 0.0 0.5 0.0 1.0
0.5 0.0 0.5 0.0 0.5 0.0 1.0
1.0 0.0 0.5 0.0 0.5 0.0 1.0
5.0 0.0 0.5 0.0 0.5 0.0 1.0
10.0 0.0 1.0 0.0 1.0 0.0 1.0
20.0 0.0 0.0 0.0 0.0 0.0 1.0

In UCDD, multiple different results had to be obtained be-
cause of the MRBD and additional check (ADD C) param-
eters. It is important to note that FPRS is always non-
increasing and LTC is always non-decreasing for increasing
MRBD: requiring more reference batches to signal drift must
make drift signaling less likely. On the other hand, when us-
ing the additional check, LTC is always at most as high and
FPRS is at least as high as when not using this check, be-
cause the check only introduces an additional possibility of
detecting drift.

Based on the analysis above, we constructed Table 2, omit-
ting all parameter values that would always give an LTC of
1.0. This is why there are no results for exclude and target
encodings in AGRAW2. For completeness, SEA MRBD=0.9
when using the check gave LTC higher than 0.7 for all drift
widths, so this result was also excluded.

For more insights, we inspected clusters created by k-
means to test for the assumption of UCDD that (k-means)
clustering can accurately estimate data labels. In SEA, av-
erage label estimate accuracies of all drift widths were rang-
ing from 79% to 81%, but in the more complex AGRAW1
and AGRAW2 datasets and all category encoding strate-
gies, this number was at most 56%. The results for
AGRAW1, AGRAW2, and real-world datasets should there-

fore be looked at critically, because there, drift was not de-
tected through the way in which UCDD was designed.

MSSW

Table 3: MSSW metrics in all synthetic datasets with increasing drift
widths. We tried three different encodings of categorical variables,
shown as three different columns (a), (b), and (c). Values for the
best-performing encoding in each dataset are highlighted.

(a) (b) (c)
ENCODING: EXCLUDE ONE-HOT TARGET

width FPRS LTC FPRS LTC FPRS LTC

SE
A

0.0 0.0 0.25 - - - -
0.5 0.0 0.25 - - - -
1.0 0.0 0.25 - - - -
5.0 0.0 0.25 - - - -

10.0 0.0 0.25 - - - -
20.0 0.0 0.25 - - - -

A
G

R
A

W
1

0.0 0.0 0.25 0.0 1.0 0.0 0.0
0.5 0.0 0.25 0.0 1.0 0.0 0.17
1.0 0.0 0.25 0.0 1.0 0.0 0.17
5.0 0.0 0.25 0.0 1.0 0.0 0.0

10.0 0.0 0.25 0.0 1.0 0.0 0.25
20.0 0.0 0.5 0.0 1.0 0.0 0.25

A
G

R
A

W
2

0.0 0.0 0.25 0.0 1.0 0.0 0.2
0.5 0.0 0.25 0.0 1.0 0.0 0.2
1.0 0.0 0.25 0.0 1.0 0.0 0.2
5.0 0.0 0.25 0.0 1.0 0.0 0.2

10.0 0.0 0.25 0.0 1.0 0.0 0.25
20.0 0.0 0.75 0.0 1.0 0.0 0.5

Results from MSSW can be found in Table 3, and to
have more understanding of these results, we also inspected
plots of average centroid distances in testing batches ver-
sus drift detection boundaries made by clustering reference
data. From there, for example, we observed that the method
worked as expected for SEA: the missed first testing batch,
characterised by the LTC of 0.25 in all drift widths, was
only missed because the average centroid distance of this
batch was always just below the boundary for a drift to be
signaled. This same close distance to the decision bound-
ary was observed for LTCs of up to 0.25 in other datasets
for exclude (a) and target (b) encodings. We also observed
that higher drift widths caused average centroid distances for
the first drifting batches to not be that different from non-
drifting batches, causing MSSW to detect drift later. This
is why in AGRAW1 and AGRAW2, we observe increased la-
tencies for higher drift widths - for example, in AGRAW2 tar-
get (c), width=5.0 shows an (average) LTC of 0.2, but with
width=10.0, the latency increases to 0.25.

4.2 Real-world data
In real-world datasets, k-means’ randomness was overcome
as follows. For experiments with batches of at most 50 sam-
ples, we only run the algorithms once with k-means’ n init
equal to twice the batch size to make sure all possible initial
centroid choices were tried - twice because UCDD always
clusters two batches. For experiments with larger batches, we
always observed exactly the same results for two independent
runs with n init=100, so we always only report results of a
single run.

For the Spam dataset, for all three experiments, all batches
were signaled as drifting by UCDD and no batch was signaled
as drifting by MSSW. The reason for these unsatisfactory re-
sults lies in the data sparsity: the Spam dataset is made of
10 000 columns, but on average, in each row, only 56 values



Table 4: MSSW real-world metrics for different datasets and exper-
iments. FPR=FPRR, acc=ACC.

WEATHER ELECT2 AIRLINES
YEARLY MONTHLY YEARLY ONE-HOT TARGET

acc 0.11 0.043 1.0 0.0 0.05
FPR 0.27 0.06 1.0 0.0 1.0

Table 5: UCDD real-world metrics for different datasets and experi-
ments and an increasing MRBD parameter. FPR=FPRR, acc=ACC

WEATHER ELECT2 AIRLINES
YEARLY MONTHLY YEARLY ONE-HOT TARGET

MRBD FPR acc FPR acc FPR acc FPR acc FPR acc
1e-16 0.73 0.83 1.0 1.0 1.0 1.0 1.0 0.75 1.0 0.9

0.1 0.53 0.33 1.0 1.0 1.0 1.0 0.0 0.15 1.0 0.65
0.2 0.27 0.17 1.0 1.0 1.0 1.0 0.0 0.15 0.0 0.6
0.3 0.27 0.06 0.99 1.0 0.93 0.98 0.0 0.3 0.0 0.6
0.4 0.27 0.06 0.93 0.94 0.89 0.98 0.0 0.3 0.0 0.5
0.5 0.27 0.06 0.59 0.76 0.89 0.96 0.0 0.4 0.0 0.05
0.6 0.27 0.06 0.32 0.46 0.85 0.96 0.0 0.45 0.0 0.05
0.7 0.27 0.06 0.11 0.23 0.85 0.96 0.0 0.55 0.0 0.05
0.8 0.27 0.06 0.04 0.1 0.85 0.96 0.0 0.65 0.0 0.0
0.9 0.27 0.06 0.02 0.04 0.85 0.96 1.0 0.65 0.0 0.0

are non-zero. The distances between different rows there-
fore vary substantially, resulting in UCDD always observing
different numbers of nearest neighbours, so always reporting
drift, and in MSSW setting too wide acceptable average cen-
troid distance boundaries, resulting in drift never detected for
any testing batch. The trivial Spam dataset results were there-
fore omitted from Tables 4 and 5.

With MSSW, as is visible in Table 4, no drifts were de-
tected accurately for real-world datasets, and these are the
reasons. In Weather, ACC is below 12% in both experi-
ments, because testing batches where SVM showed a low
classification accuracy did not correspond to batches with sig-
nificantly different average distances to cluster centroids. As
expected, drift was never signaled in Airlines with one-hot en-
coding, because sparsity made boundaries for acceptable cen-
troid distances too loose. With target encoding, drifts were
defined to be in every testing batch except for the first one.
FPRR is 1.0 and the ACC is 0.05, because MSSW signaled
this first batch and only one other testing batch as containing
drift. In ELECT2, all batches were signaled as drifting, as
ELECT2 includes features representing dates whose values
only increase. This increase results in testing samples always
shifting further apart from reference data centroids, always
increasing the total average distance to these centroids.

With UCDD, Table 5, the first column shows ten values of
MRBD tried to see what influence this parameter has on results,
and whether a high ACC and low FPRR can be observed
for any MRBD. The first, MRBD=1e-16, is low enough to signal
drift whenever any reference batch signaled drift. For real-
world datasets, we always used the additional check, because
it has proven to be useful in synthetic datasets. From Table 5,
we see that ACCs were either below 0.8, or higher than 0.8,
but accompanied by FPRRs of at least 0.7. The only poten-
tially acceptable results are in Airlines, where MRBD=0.3 gives
0.6 ACC and 0.0 FPRR for target encoding, and MRBD=0.8
gives 0.65 ACC and 0% FPRR for one-hot encoding. How-
ever, these two values of MRBD are very different, so MRBD is
dataset and encoding-dependent, and finding the correct MRBD
for a new drift detection problem is difficult.

5 Discussion
In this section, the results presented in the previous section
are considered. First, the suitability of each algorithm for
different problems under synthetic datasets is talked through,
followed by a discussion of real-world results.

5.1 Synthetic data
For UCDD, Table 2, we first assess whether using the ad-
ditional check is beneficial. We see that with the same
MRBD=0.3, in each row, results with the check - column (a)
- were always at least as good as those without it - column
(b): FPRSes were always the same, but LTCs were often
lower in column (a). Practitioners are therefore advised to al-
ways use this check for drift detection. Only columns (a) and
(c) will now be considered for the analysis, and the check is
used by default in real-world datasets.

We also discuss the effect of the choice of MRBD in UCDD
in Table 2. Except for SEA, LTCs were always 1.0 when
a higher MRBD of 0.6 was used. For the more complex
AGRAW1/2 datasets, only an MRBD of 0.3 could therefore de-
tect drift. In SEA, however, both columns (a) and (c) gave
acceptable results: with MRBD=0.3, we observe FPRSes of
0.5 for drift widths up to 5.0, but also LTCs of 0.0, while
with MRBD=0.6, FPRSes were always 0.0, but the maximum
LTC in widths up to 5.0 increased to 0.25. The value of MRBD
should therefore be set lower if late detections are a bigger
problem, and higher if false positives are a bigger issue in a
drift detection use case. The ideal value of MRBD for a new
dataset could be found e.g. by observing the number of drift
signals in reference batches for the first few testing batches,
and then choosing MRBD such that both the FPRS and LTC
are low enough.

UCDD is dependent on encoding strategies. Based on the
two previous paragraphs, for this analysis, we only look at
column (a) in Table 2. In AGRAW2, the only encoding strat-
egy detecting any drift was one-hot, and in AGRAW1, the two
encoding strategies minimizing LTC and FPRS for all drift
widths were target and one-hot. UCDD therefore needs in-
formation from categorical variables by encoding them, and
the most universal encoding that worked in both AGRAW1
and AGRAW2 is one-hot. However, in AGRAW2, the LTCs
for most drift widths were 0.5, which might be too high for
practitioners. Furthermore, classes were not estimated well
with k-means in AGRAW1 and AGRAW2, so UCDD is not
guaranteed to produce good results for more complex datasets
than SEA. Further research is needed to assess whether the as-
sumption of label estimates in complex datasets is too strong
only for k-means, or for all unsupervised clustering algo-
rithms.

As observed in Table 3, MSSW gives similar values of
metrics for AGRAW1 and AGRAW2 when using the same
encoding strategy. For both AGRAW1 and AGRAW2, the
sparsity of one-hot encoding - column (b) where all LTCs
were 1.0 - set too loose average centroid distance boundaries
in reference data, so no drift was ever signaled. However,
exclude (a) and target (c) both showed FPRSes of 0.0 and
LTCs of at most 0.25 for drift widths smaller than 20.0, and
the additional information from target encoding categorical
variables always lead to LTCs in (c) being <= LTCs in (a)



for same drift widths. These positive results might be caused
by the entropy-weighted distance in k-means, which is made
to lead to better clusters than plain k-means. Target encod-
ing, so column (c), is therefore expected to always lead to
the lowest values for both metrics, and because of the consis-
tent results, based on synthetic datasets, MSSW is considered
better suited for data with categorical values than UCDD.

Under abrupt drift (rows with width=0.0), UCDD - Table 2
- and MSSW - Table 3 - compare as follows. For MRBD=0.6,
in SEA, UCDD (Table 2 column (c)) achieved lower LTC
than MSSW. With a suitable MRBD, UCDD is therefore ex-
pected to achieve better abrupt drift results than MSSW on
simple datasets such as SEA. MSSW (Table 3) showed LTCs
of both AGRAW1 and AGRAW2 below 0.2 for target encod-
ing (column (c)), while the LTC in AGRAW2 for UCDD
was of 0.5. These results suggest that for more complex
datasets with categorical features, MSSW with target encod-
ing achieves consistently better results.

Based on our results, none of UCDD - Table 2 - and MSSW
- Table 3 - was influenced much by drift widths smaller than
10.0, i.e. 10k samples. In UCDD SEA, the FPRS and
LTC stayed the same up to width=5.0 for MRBD=0.3 column
(a), and LTC stayed below 0.25 for MRBD=0.6. In MSSW
SEA, FPRSes and LTCs were the same for all widths. In
UCDD AGRAW1 one-hot and target and AGRAW2 one-hot,
FPRS and LTC also stayed the same up to width=5.0, and
in MSSW AGRAW1 target and AGRAW2 target, FPRS was
always 0.0, and LTC stayed below 0.2 up to width=5.0.
An increase in LTC was observed for width=10.0 in most
datasets with both algorithms: with UCDD in SEA with
both MRBD=0.3 and MRBD=0.6, in AGRAW1 one-hot and
AGRAW2 one-hot, and with MSSW in AGRAW1 target and
AGRAW2 target. With the drift width being as high as the
number of samples in one testing batch, the number of drift-
ing samples in the first drifting batches diminished. This di-
minishment explains the increased LTC in both detectors.
Both detectors are therefore deemed suitable for drift widths
of less than the number of samples in one testing batch, but
are expected to show a worse detection performance with
larger drift widths.

5.2 Real-world data
While MSSW gave values of metrics of at most 0.25 in all
synthetic datasets with exclude and target encodings, and the
upper bound for most values of metrics in UCDD was 0.25
in SEA and AGRAW1 one-hot, if we look at Tables 4 and 5,
both algorithms seem unsuitable for the real world. Since the
drift detectors were not tried on real-world data before, and in
the case of UCDD, the algorithm did not estimate class labels
as it claims to in more complex datasets than SEA, it is there-
fore possible that these detectors are only suitable for datasets
as simple as SEA, or for controlled, synthetically generated
drifts. The low ACC could also be caused by the very small
batch sizes in real-world experiments - as discussed in 5.1,
detections of drifting batches of smaller size than drift width
are not guaranteed.

Nevertheless, the suboptimal real-world detection perfor-
mance was not necessarily caused by the drift detectors them-
selves. For example, defining drifting batches through a drop

in a classifier’s accuracy is not always consistent, as the ac-
curacy can differ for different choices of classifiers. Addi-
tionally, the ACC metric requires drift to be detected at each
exact batch where it occurred, so even with drift detected
only one batch later every time, in the worst case, ACC can
be 0.5. Further research could try alternative drift definition
strategies and a comparison against existing label-dependent
drift detectors to assess how much influence have drift defini-
tions on the drift detection performance, and reach a conclu-
sion of whether UCDD and MSSW are suitable in some real-
world scenarios. Because of the differing results for synthetic
and real-world datasets, we also conclude that evaluating new
drift detectors only on synthetic datasets is not sufficient, so
all upcoming research on new drift detectors is advised to in-
clude evaluation results with both types of datasets.

6 Responsible Research

This paper is concerned with a partial replication of work
done in two other existing papers about drift detectors. Par-
tial because we implement algorithms described in these pa-
pers, but evaluate them under a new setup. As such, we con-
tribute to the scientific community by confirming that these
two drift detectors are capable of detecting drift in a new sce-
nario. Because we were also capable of detecting drift with
the algorithms the replicated papers describe, we can con-
clude that these replicated papers are valid and their findings
can be trusted. By evaluating these algorithms under a dif-
ferent setup and with different datasets, we also contribute by
pointing out what are their limitations. This increased trans-
parency and additional information on top of the replicated
papers’ findings could lead to better choices in future studies.
For example, based on the newly found limitations, a future
study might more easily assess whether or not to use the find-
ings in the replicated papers.

To make sure the replication of the two algorithms is valid,
we adhered to the following rules. Firstly, the papers describ-
ing them were properly cited. Secondly, the evaluation setup
used in our paper, including the datasets used, was described
in detail to make sure to have a proper distinction from the
setup used in the replicated papers. This way, different or sub-
optimal results could be easily tracked down to the datasets
and evaluation strategy, and could not be directly used to dis-
credit the replicated papers. Thirdly and finally, everything
concerning the implementation of the algorithms is explicitly
mentioned: all our assumptions about the understanding of
the replicated papers, all necessary adaptations and possible
deviations from the original work, as well as the choices of
technology, both in terms of programming language and in
terms of libraries chosen for the implementations.

We ensured that our own results are reproducible by also
including negative results, and by making our implementa-
tions publicly available. All results are either directly shown
in the form of tables, or at least mentioned in text, which in-
cludes results where the algorithm did not perform well - in
other words, no cherry picking was done to only show great
results. This claim can be directly confirmed by consulting



the publicly available implementation repositories13,14 and
re-running our experiments. These repositories are linked to
personal emails, not university or other time-limited emails,
so they will remain active and open to consultation for a pe-
riod of time not limited by e.g. the remaining study duration.
The code for drift detection is in Python packages and .py
files, which makes it accessible and easy to copy for anyone
interested. There are also instructions for the technological
setup needed to make sure anyone can run the code. Finally,
the repositories store all datasets used for this paper.

7 Conclusion

In conclusion, this paper is an enhancement to the study by
Lorena et al. [6], which is concerned with the comparison of
the performances of multiple existing concept drift detectors
- monitoring tools for ”concept drift”, which is a drastic un-
predictable change in the underlying distribution of streaming
data. This study is limited by the unavailability of implemen-
tations of unsupervised - i.e. label-independent - drift detec-
tors. By implementing two existing unsupervised drift de-
tection algorithms and making them publicly available, this
and similar studies can be facilitated. Furthermore, ML prac-
titioners can now choose to use such unsupervised drift de-
tectors to detect drift without having access to actual labels
in streaming data classification tasks. Finally, by replicat-
ing work done by other people, and by evaluating it on real-
world datasets, through positive results obtained on synthetic
datasets, we conclude that their work can be trusted, but might
be limited to only synthetic datasets.

This paper aimed at describing the implementation process
and finding out the detection performance of two unsuper-
vised concept drift detectors: UCDD and MSSW, and the
aim was to detect drift in fixed-sized testing batches. We
have found out that under synthetic datasets, UCDD with
a carefully chosen value for the MRBD parameter detected
drift earlier in simple datasets of three numerical features,
but k-means failed to estimate class labels for more com-
plex datasets, which was reflected by a worse detection per-
formance. On the other hand, MSSW detected drift consis-
tently earlier than UCDD for two more complex datasets with
six numerical and three categorical features when these cat-
egorical features were target encoded. The number of data
samples from the moment a drift starts until it is fully estab-
lished, i.e. the drift width, made UCDD and MSSW detect
drift significantly later only when this width was at least as
large as one testing batch. The results on real-world datasets
were marginally worse for both algorithms than on synthetic
datasets; the two methods are therefore likely not suitable for
real-world problems. However, since results depend on the
not necessarily consistent definitions of drifting batches in
real-world data, further research with multiple drifting batch
definition strategies and a comparison against supervised drift
detections is advisable to confirm this conclusion.

13https://github.com/Jindrich455/clustering-drift-detection
14https://github.com/konstaka/drift-definitions
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