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Room Acoustical Parameter Estimation From Room
Impulse Responses Using Deep Neural Networks

Wangyang Yu , Student Member, IEEE, and W. Bastiaan Kleijn , Fellow, IEEE

Abstract—We describe a new method to estimate the geometry
of a room and reflection coefficients given room impulse responses.
The method utilizes convolutional neural networks to estimate
the room geometry and multilayer perceptrons to estimate the
reflection coefficients. The mean square error is used as the loss
function. In contrast to existing methods, we do not require the
knowledge of the relative positions of sources and receivers in the
room. The method can be used with only a single RIR between one
source and one receiver. For simulated environments, the proposed
estimation method can achieve an average of 0.04 m accuracy for
each dimension in room geometry estimation and 0.09 accuracy
in reflection coefficients. For real-world environments, the room
geometry estimation method achieves an accuracy of an average of
0.065 m for each dimension.

Index Terms—Room impulse response, room geometry,
reflection coefficient, deep neural network.

I. INTRODUCTION

AUGMENTED reality (AR) is an immersive audio-visual
environment where artificial objects are added to a real-

world scenario, providing the user with an enhanced and interac-
tive experience [1]. Augmented reality will play an increasingly
important role in numerous contexts, such as education, manu-
facturing, and archaeology. An accurate description of acoustic
environments is essential for generating perceptually acceptable
sound in an AR system. Estimating room acoustical parameters
forms an important aspect of modeling an acoustic environment
accurately. In this paper, we consider the estimation of the
room geometry and reflection coefficients from room impulse
responses.

The room impulse response (RIR), the transfer function
between the sound source and the listener, characterizes the
acoustic environment of a room. It is composed of direct-
direction sound, early reflections, and late reverberation. An
RIR is affected by the position of the sound source and the
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receiver, the room geometry, and the reflection coefficients. In
the context of this paper, we consider rectangular rooms and
define room geometry to be a three-dimensional vector, which
contains the length, width, and height of a room. The room
geometry and the reflection coefficients can be used to model and
analyze acoustic behavior inside a room via RIRs. We are inter-
ested in the estimation of the room acoustical parameters from
RIRs.

In this paper, we use deep learning to solve this estimation
problem. In recent years, deep learning has seen a rapid increase
in usage as a result of the increased computational power and the
availability of large databases. Relevant deep neural networks
(DNNs) to our work are feedforward multilayer perceptrons
(MLPs) and convolutional neural networks (CNNs). MLPs [2]
are composed of fully connected layers and can approximate
most mapping functions. This property makes them applicable
in various areas, such as ecology [3], chemistry [4], and climate
change [5]. CNNs contain a set of generalized filters of different
levels to extract features from the signals. CNNs have been used
for various applications such as image classification [6]–[8], and
speech recognition [9]–[11].

We use CNNs for room geometry estimation and MLPs for the
estimation of reflection coefficients. CNNs can analyze data with
salient spatial structures [12] and we hypothesize that the room
geometry defines patterns in RIR signals. Reflection coefficients
influence the strength of reflective pulses, which we hypothesize
MLPs are able to learn from RIR signals. Due to the limited
amount of real-world measured RIRs, we first train the neural
network with artificial data. After that, we use transfer learning
to make the model work with real-world measured RIRs.

The main contribution of this paper is the usage of deep neural
networks to estimate room acoustical parameters. In contrast
to state-of-the-art methods for estimating room acoustical pa-
rameters, our method only requires a random RIR between a
single sound source and a single receiver in the room without
any additional information. The new room geometry estimation
model performs well with real-world measured RIRs.

This paper is organized as follows. We review the relevant
background knowledge in Section II. In Section III, we formulate
the estimation problem of the room acoustical parameters. We
then describe the solutions of the room geometry estimation
problem and the reflection coefficient estimation problem sep-
arately in Section IV and Section V. The experimental results
are discussed and analyzed in detail in Section VI. Finally, we
conclude our paper in Section VII.
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II. BACKGROUND

In this section, we discuss relevant background knowledge
of our work. We first describe the image source method, which
we use to generate the RIR database to train our base method
of room geometry estimation as described in Section IV and
to estimate reflection coefficients as described in Section V.
We aim to use MLPs to estimate reflection coefficients and
CNNs to estimate room geometry. Consequently, we discuss
room acoustical parameters estimation, multilayer perceptrons,
and convolutional neural networks in this section.

A. The Image Source Method

The image source method [13]–[16], which was first pro-
posed by Allen and Berkley [16] in 1979, is commonly used
to model RIRs in empty and rectangular rooms. It assumes
the sound only propagates along straight rays. The method is
computationally efficient, which makes it suitable to gener-
ate a large scale database. In three-dimensional (3D) space,
we denote the position of the receiver as (xr, yr, zr) and the
position of the source as (xs, ys, zs). Implementing the im-
age source method [17], the image source position can be
represented as (qxs + 2mxLx, jys + 2myLy, kzs + 2mzLz),
where (Lx, Ly, Lz) are the length, width and the height of the
room, respectively, and where each element in (q, j, k) takes on
values −1 or 1, indicating the direction of the considered image
sources in each dimension, and each element in (mx,my,mz)
takes on integers from −N to +N , indicating reflection order
with respect to each dimension withN the predefined maximum
reflection order. The path length for each ray arriving at the
receiver is the distance between the image source position and
the receiver position. The gain along each path is calculated as
the multiplication of its length and wall reflection coefficients
for all reflections.

B. Room Acoustical Parameters Estimation

In this subsection, we first discuss the existing work on esti-
mating the room geometry vector. After that, we review a closely
related topic, room volume estimation. Finally, we review the
estimation of reflection coefficients and reverberation time.

Room geometry is an important room acoustic parameter.
Existing algorithms to estimate room geometry from RIRs all
require prior information about the locations of the sources and
the microphones [18]–[22]. [21] uses single-channel RIRs which
are simulated by the image source method in a rectangular
room, and a set of time of arrival (TOA) measurements of
reflections to estimate 2D room geometry. It assumes that the
TOA measurements are labeled with image sources and that
RIRs consist of direct sound and the first and second-order
reflections. [22] uses TOAs for 3D room geometry estimation
with the image-source method simulated RIRs and measured
RIRs. In contrast to [21], [22] obtains sets of TOAs from RIRs
by detecting and labeling peaks in RIRs. These TOAs are used
to estimate the source position and image source positions with
knowledge of the array geometry of receivers. Finally, the room
geometry can be inferred with estimated positions.

[18] proposes a method to estimate the 3D room shape from
real-measured RIRs by exploiting the properties of Euclidean
distance matrices and the first-order reflections. Although it
requires only a single source, it requires at least four receivers
and their pairwise distances. In addition, it may misclassify
higher-order reflections as first order reflections [19]. In [19],
the room geometry is estimated from simulated RIRs between
one sound source and five receivers by a two-step geometrical
method. The method first identifies the first-order image source
positions and estimates the room geometry based on the image
source positions. It requires knowledge of the pairwise distances
between receivers. This method can achieve 1 cm estimation
accuracy. [20] infers the room geometry efficiently from sim-
ulated RIRs obtained with the image-source method using a
graph theoretical approach. The echo combinations are modeled
as nodes and the task is to find the maximum independent set
in the graph, which refers to a set of vertices without direct
interconnection. The image source positions can be calculated
when the echoes are correctly labeled. After that, the room
geometry can be inferred efficiently. It can achieve an average
of 2.4 cm accuracy with at least two sources and five receivers.

A relaxation of room geometry estimation is the room volume
estimation problem. Room volume estimation was formulated as
a classification problem in [23], where room volume is classified
into six volume class values. Seven room acoustical parameters
are first extracted from a given RIR and serve as the input of the
model. With these parameters, a statistical pattern recognition
approach is used for room volume classification. This method
can achieve a 0.1% equal error rate (EER) with simulated
RIRs and a 19.1% EER with real-measured RIRs and does
not require source-to-receiver distance. However, room volume
is continuously distributed. Recently, room volume estimation
was formulated as a regression problem [24]. Room volume
is estimated with CNNs from noisy reverberant signal-channel
speech signals that are split into frames with a 25% overlap.
After training, the estimated volume is within approximately a
factor of two to the true volume value.

Reflection coefficients characterize room reverberation ef-
fects. However, they are difficult to estimate directly and we are
not aware of existing work on reflection coefficients estimation.
Since reverberation time also characterizes room reverberation
effects and is closely related to reflection coefficients, we briefly
discuss work on reverberation time estimation. The reverber-
ation time, RT60, of a room is defined as the time it takes
for sound to decay 60 dB. Sabine-Franklin’s formula [25] is
commonly used to estimate the reverberation time:

RT60 =
24 ln 10

c20

V

Sa
≈ 0.1611sm−1 V

Sa
, (1)

where c20 is the speed of the sound in the room for 20 degrees
Celsius, V is the room volume, S is the total surface area of
the room and a is the average absorption coefficient of room
surfaces. From (1), we can conclude that reverberation time
is related to room geometry and reflection coefficients. Given
RIRs, the reverberation time can be directly estimated from the
calculated energy decay curve [26], [27].

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2021 at 08:33:43 UTC from IEEE Xplore.  Restrictions apply. 



438 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

C. Multilayer Perceptron

MLPs refer to neural networks that are composed of multiple
layers (perceptrons), where each unit in one layer is connected
to all units in the previous layer. The perceptron concept was
first proposed by Rosenblatt in 1958 [28]. With each layer, an
intermediate result is computed as the dot product of the input
and the weights and an added bias, which is forwarded to the
non-linear activation function. Each perceptron can be written
mathematically as

y = ϕ(wTx+ b), (2)

where ϕ denotes the non-linear activation function, w and b are
the weights and bias, and x and y are the input and the output
of the perceptron.

[29] demonstrates that an MLP with only one hidden layer and
an arbitrary continuous sigmoidal nonlinearity can uniformly
approximate any continuous function. Although an MLP with
only one hidden layer can uniformly approximate any contin-
uous function, the number of neurons has to be exponentially
large. It has been proved that considering the expressiveness of
an MLP with ReLU activation, depth is more important than
width [30]. This motivates us to use MLPs with more hidden
layers instead of a wide shallow network. MLPs are relatively
straightforward to implement and widely used in a variety of
classification and regression problems, e.g., [3]–[5], [31], [32].

D. Convolutional Neural Networks

CNNs show a good modeling ability in various applications.
CNNs capture spatial relationships of the input by means of
parameter sharing and sparse connection. CNNs were first pro-
posed by [33] for visual pattern recognition.

The layers of CNNs each perform a set of filtering operations,
each commonly referred to as a channel, with a non-linear
function operating on the biased filter output. The resulting
output is a set of feature maps, which generally is reduced in
dimensionality using a pooling layer. With increasing depth the
features extract signal patterns that are increasingly position
independent, as each kernel does not change when it slides over
the signal. The parameters of the kernels are learned through the
training process.

Many variations of CNN architectures have been developed,
such as LeNet, AlexNet and VGGNet. LeNet, a classical CNN,
was first proposed in the 1990s for handwritten and machine
printed character recognition [34]. In 2012, AlexNet was pro-
posed for image classification problems and obtained a con-
siderably lower error rate than the previous state-of-art [35].
This error rate was further reduced with VGGNet [36]. From
these classical CNN architectures, we can learn how to build
a convolutional neural network. A CNN commonly consists of
several convolutional layers, each followed by a pooling layer
for downsampling, a few dropout layers to prevent overfitting,
and several fully connected layers at the end.

CNNs have been used for various applications. CNNs are
primarily used in computer vision, for example, image classifi-
cation [6]–[8]. In addition to image data, CNNs can also analyse
videos [37]–[39]. Until recently, CNNs were not widely used
in acoustic signal processing. Recent applications confirm that

CNNs show a good modeling ability for acoustic problems and
can outperform state-of-the-art algorithms in this context. Such
applications include speech dereverberation [40]–[42], speech
enhancement [43]–[45].

III. PROBLEM FORMULATION

In this section, we formulate our problem, i.e., room acoustical
parameter estimation from RIRs, and discuss the motivation for
using deep neural networks to solve it.

We aim to use deep neural networks to estimate room acoustic
parameters separately and blindly from a single RIR. Since the
room acoustical parameters are described by continuous vari-
ables, we formulate the room acoustical parameter estimation
problem as a regression problem. We define the input and output
pair of the neural network with a random variable pair (X,Y ).
Specifically, in our problem, X is an RdX -valued random vari-
able that represents RIRs where dX denotes the length of each
RIR signal vector, and Y is an RdY -valued random variable that
represents the room acoustical parameters where dY denotes the
length of each room acoustical parameter vector.

We aim to learn a continuous deterministic function h to
predict y from x, where (x, y) is a realisation of the random
variable pair (X,Y ). Hence, we have ŷ = h(x) where ·̂ labels
an estimate. To measure the generalisation ability of the learned
function h, we use a loss function l : ŷ × y → R+. The risk R
of the predictor can then be defined as:

R = E[l(h(x), y)], (3)

where the expectation E is calculated with respect to the dis-
tribution fX(x) (recall y is a deterministic function of x). As
the neural network does not know the distribution fX(x) of the
input data during learning, we approximate the risk R of the
predictor with the empirical risk Remp on the training set:

Remp =
1

m

m∑
i=1

l(h(xi), yi), (4)

where m denotes the size of training dataset and each (xi, yi)
pair is one copy of the realisation (x, y) ∈ RdX × RdY in the
training dataset.

As we have mentioned above, the RIR is affected by both room
geometry and reflection coefficients. For a given room geometry,
reflection coefficients, and source and microphone position, the
corresponding RIR can be computed for an empty box-shaped
room. However, given an RIR in the real world, we might be
not able to determine a set of parameters due to the existence
of obstacles, a non-regular room shape, changes in temperature,
and measurement noise. As a result, we conclude the relationship
between the RIR and the room acoustical parameter is proba-
bilistic. It is difficult to use conventional signal processing tech-
niques to estimate room geometry and the reflection coefficients
since the RIR can not be formulated as an analytical function of
the room acoustical parameters. This motivates us to use deep
neural networks as a non-linear mapping function to estimate
room geometry and reflection coefficients from RIRs.

When we consider the effect of room geometry on RIRs, each
geometry corresponds to a characteristic set of arrival times for
the pulses. We hypothesize that the kernels of CNNs can extract
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the arrival-time patterns, where the room geometry information
lies. Hence we use CNNs to estimate the room geometry from
RIRs.

The effect of the reflection coefficients on RIRs is encoded in
the strength of each pulse in the RIRs. It is independent of the
time of arrival (TOA) of each pulse. With a multilayer percep-
tron, these pulses can be treated as features. This motivates us
to use MLPs when we estimate reflection coefficients since we
assume this information is mainly related to the feature values.

IV. ROOM GEOMETRY ESTIMATION

In this section, we describe room geometry estimation based
on convolutional neural networks. We solve the problem first
for simulated data and then use transfer learning to solve the
problem for real-world data.

In convolutional neural networks (CNNs), the receptive field
of each neuron is processed with a set of kernels that do not vary
across the input data. For our geometry-estimation problem,
this corresponds to assuming that the RIR contains similar
structures with respect to room geometry across all delays. In this
section, we describe how we use convolutional neural networks
to estimate room acoustical parameters. We first describe our
base method and how we evaluate the precision of our model.
We then propose two methods to improve the accuracy of the
base method. Finally, we generalize our method to real-world
RIRs.

A. Baseline Method

As our base method, we use CNNs to estimate the room geom-
etry vector from RIRs blindly. We hypothesize room geometry
vectors can be estimated from a single random RIR of a room
without any additional information. To solve the problem, our
neural network has three output nodes for the length, width, and
height of a room. We use the time-domain RIR as the input of our
regression model without any pre-processing. Since the ordering
of the three lengths of the geometry is arbitrary, we re-order
the geometry vector in ascending order as a pre-processing
step.

We adopt a commonly used CNN architecture as a basis. In
this architecture, each convolutional layer is followed by a batch
normalization layer [46] and an activation function. Since our
input signal is a time-domain signal, we use one-dimensional
convolutional layers and one-dimensional batch normalization
layers. To keep a balance between the number of parameters
and the modeling ability of neural networks, the neural network
consists of eight one-dimensional convolutional layers and three
fully connected layers. The number of channels (filters) in
the convolutional layers increases with depth while the output
dimensionality of the convolutional layers decreases.

In a regression problem, a quadratic loss is commonly used
to track the training process and measure the generalization
ability. Using this quadratic loss in (4), we define the mean
square error (MSE) as the empirical risk, which is used as the
objective function to train our CNN in order to minimize the
squared distance between the estimated room geometry and the
true room geometry. We chose the MSE loss since it is relatively

sensitive to outliers. The loss function is then defined as

l(g, ĝ) =
1

m

m∑
i=1

‖ gi − ĝi ‖22, (5)

where ‖ · ‖22 is the l2-norm, m denotes the size of training
dataset, g ∈ Rm×3 denotes the true room geometry and ĝ ∈
Rm×3 denotes the corresponding estimated room geometry.

To characterize the estimation performance of our method, we
evaluate bias and variance on the test data. Bias measures the
mean deviation of our estimates from the true value and variance
measures how much our estimates vary from the mean estimated
value. Minimizing the MSE results in a balance between bias and
variance since the relationship between MSE, bias and variance
can be described as

MSE = Bias2 + Variance. (6)

Since bias is also a parameter that a neural network tries to learn
during the training process, our CNN model should in principle
result in an unbiased estimator. For an unbiased estimator, we
can increase the precision by averaging over the estimates.

B. Improved Methods

Two methods can be used to improve the accuracy of our
baseline method, i.e., the averaging method and the semi-blind
estimation method. We describe both methods separately in this
subsection.

Multiple RIRs can be used to increase estimation precision
by averaging estimates. For each room, we select N random in-
dependent RIRs. The method is to average over the N estimates
to calculate the final estimate for the room. The variance of
the estimator will decrease by averaging over N independent
estimates. Although the accuracy is limited by the bias, the
estimation precision can be increased.

In addition to the above mentioned averaging method, we
can also increase accuracy by adding restrictions when we
generate RIRs. When we estimate room geometry from RIRs,
the source/receiver position, and reflection coefficients can be
considered as nuisance factors. We want to reduce the effect
of nuisance factors in our problem to increase estimation accu-
racy. It requires more effort and more information to assume
knowledge of reflection coefficients or exact source/receiver
position. However, we can consider a setup where the relative
position between the source and the receiver is fixed without
the system knowing the distance or absolute position. We then
remove one nuisance factor in RIR generation. By adding such
a restriction, we hypothesize the estimation accuracy can be
increased compared to blind room geometry estimation.

C. Generalization to Real-World Room Impulse Responses

Our goal is to generalize our method to real-world RIRs. On
the one hand, since the amount of available real-world data is
insufficient for training, we augment our data by processing our
simulated RIRs to make our simulated RIRs close to real-world
data. On the other hand, due to the imbalanced amount of simu-
lated database and real database, transfer learning can be applied
to improve generalization performance. In this subsection, we
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will first discuss how we use transfer learning. After that, the data
augmentation technique will be covered. Finally, we describe
how we apply our method to real-world RIRs.

Transfer learning [47] was proposed to improve the perfor-
mance of a new task based on prior knowledge from a related
trained task. Since we are able to generate a simulated RIR
database of sufficient size to cover a wide range of room ge-
ometries for training, we can first train a neural network with
an RIR database generated with the image source method. Then
this trained neural network can be used as initialization when
we train the neural network with a real RIR database of small
size.

Instead of directly using transfer learning for real RIR
database from the pre-trained model, which is trained on the
ISM generated RIRs, we augment data as a transition stage.
Compared to real-world measured RIRs, RIRs that are generated
by the ISM lack some distortions, for example, additive envi-
ronmental noises. Consequently, the neural network, which is
trained by simulated RIRs, may adapt to certain features that are
obscured to a real-world database and may fail to generalize well
to a real RIR database. [48] proposed a simple and computation-
ally cheap method to augment data for speech recognition, where
they warp the features, mask blocks of frequency channels, and
blocks of time steps. With this simple augmentation method,
they could outperform prior work and achieve state-of-art perfor-
mance. Inspired by this work, we can add some distortions to our
simulated RIR as a data augmentation policy. In the following
several paragraphs, we will introduce how we augment our data.

In the real world, it is almost impossible to obtain clean RIRs.
In rooms and concert halls, a signal to noise ratio (SNR) of
an RIR is commonly between 30 and 50 dB [27]. Hence, it is
reasonable to include additive noise with an SNR between 30
and 50 dB in the RIR.

Obstacles are quite common in the real world, but we are not
aware of an efficient method to simulate the effect of obstacles.
Since we want to apply our model to real-world data, we have
to mimic the effect of obstacles in our simulated RIR database.
In the context of this paper, we discuss two artificial distortion
types and one analytical method to simulate RIRs with obsta-
cles in rectangular rooms. We will discuss these three methods
separately.

The first type of artificial distortion to simulate the effect of
obstacles is computationally inexpensive although rudimentary.
The existence of obstacles will block some reflection paths and
add some extra reflection paths. As a consequence, the first
method is to randomly add and delete a random number of pulses
in each RIR generated by the ISM.

As the second method, we add patterns to the blocked pulses
due to the existence of obstacles. This method is also com-
putationally feasible for simulations. Since each RIR can be
viewed as a composition of a direct path between each image
source and the receiver, the reflective pulse is blocked when the
corresponding image source is blocked by the obstacle. This
method is not physically correct since it only considers the
blocked reflective pulses when their last reflection segment is
blocked by the obstacle. Our derived pattern covers a subset of
true blocked reflective patterns. To avoid the occlusion effect,
we consider 2D non-reflective obstacles to simplify the problem.

The blocked area, which is extended to infinity, can be then
be defined with the receiver as the vertex and the obstacle as
the base. When the shape of the obstacle is a quadrilateral, the
blocked area can be considered as a pyramid that extends to
infinity. Our task is to determine whether the image source lies
inside this extended pyramid. To determine the position of the
image source, we calculate the dot product between the normal
of each face and the vector between the receiver and the image
source position. If the dot products are negative with respect
to each face, then the image source is inside this pyramid. The
method can be generalized to determine whether the reflective
pulse is blocked when the obstacle is any polygon.

As the third method of modeling obstacles, we use a method
based on adaptive rectangular decomposition (ARD) to simulate
the sound propagation in 3D space with obstacles, which was
proposed to model sound propagation in 3D complex environ-
ments [49]. This method utilizes the analytical solution of the
wave equation in a rectangular domains and an efficient imple-
mentation of the discrete cosine transform (DCT) to facilitate
computation on a desktop computer. However, it remains a
challenge to generate an RIR database of sufficient size to train
a neural network with this ARD-based method. As a result, this
method is only used as a data augmentation method in the context
of this paper. The procedure can be summarised as follows. We
approximate each obstacle as a cuboid. Adaptive rectangular
decomposition is then utilized to decompose the scene into
rectangular partitions. After that, sound propagation can be
simulated in each partition with the analytical solution to the
wave equation on rectangular domains based on the DCT [13].
For the absorbing boundary, a perfectly matched layer absorber
is employed [50]. A finite-difference approximation is used
for sound propagation between two neighboring rectangular
partitions. The RIRs that are generated with this method provide
a useful transitional RIR between the RIRs generated with the
image source method and real measured RIRs.

Our ultimate goal is to make the model work with a real-
world RIR database. We first use transfer learning from the ISM
generated RIRs to the transitional RIR database, which includes
RIRs with noise, RIRs with obstacles generated with the three
different methods. We then use transfer learning again from this
transitional model with a real RIR database. To make efficient
use of the small number of real world RIRs for our experiments,
we use cross-validation [51] to train and test room geometry
estimation. That is, we first divide the database into distinct
parts. Each time, we select one subset as the test dataset and mix
the remaining subsets as the train dataset. Finally, we average
the test results over the folds of the cross-validation method.

V. ROOM REFLECTION COEFFICIENTS ESTIMATION

We now describe room reflection coefficients estimation.
Since databases that contain both RIRs and reflection coeffi-
cients are not available, the method will be applied to simu-
lated data only. RIRs are composed of reflective pulses. The
strength of reflective pulses depends on reflection coefficients
and propagation path length. We hypothesize MLPs are able to
learn reflection coefficients from a RIR without any additional
information.
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We first describe the general estimation procedure and discuss
the effect of re-ordered reflection coefficients on estimation
accuracy. After that, we discuss the frequency dependency of
the reflection coefficients. Finally, we describe how we link the
reflection coefficients with the room geometry.

A. General Reflection Coefficients Estimation

The reflection coefficient is a factor determining the RIR and
this factor is encoded in the strength of reflective pulses in an
RIR. We hypothesize there exists a continuous mapping function
from the RIR signal to the reflection coefficient. Since MLPs can
uniformly approximate any continuous function, we use MLPs
to estimate reflection coefficients from a random RIR blindly.
We use the time-domain RIR as the input of our regression
model without any transformation. Similarly to our reflection
coefficient estimation problem.

In a real-world room, reflection coefficients are different on
different walls and can even be different in different areas of a
single wall. We will not cover different reflection coefficients
on a single wall. Thus, in a rectangular room, we assume there
are six reflection coefficients corresponding to the six walls. We
re-order the six reflection coefficients in ascending order as a
pre-processing step.

Similarly to the room geometry estimation problem, we use
the MSE as our objective function to train the model, which is
defined as

l(c, ĉ) =
1

m

m∑
i=1

‖ ci − ĉi ‖22, (7)

where c ∈ Rm×6 is the true reflection coefficient matrix and the
ĉ ∈ Rm×6 is the estimated output.

We then discuss the effect of ordered reflection coefficients.
We aim to verify that our neural network does learn the reflection
coefficients from the RIRs and does not just correspond to an or-
dering of random outputs unrelated to the reflection coefficients.
We useX = [X1, ..., X6] to denote the six reflection coefficients
and Y = [Y1, ..., Y6] to denote the target of our neural network,
i.e., the six ordered reflection coefficients. The real output of our
neural network is denoted by Ŷ = [Ŷ1, ..., Ŷ6]. In the following
we assume that the coefficients each have a uniform distribution,
which we will impose in our simulation experiments.

We use Ỹ = [Ỹ1, ..., Ỹ6] to denote a set of ordered but un-
related random variables. Thus, distance measures between Y
and Ỹ form an upper bound on the expected error of our neural
network output: E[|Yi − Ŷi|2] < E[|Yi − Ỹi|2]. E[|Yi − Ŷi|2]
will be computed experimentally for each i, which corresponds
to the MSE. Our objective here is to compute E[|Yi − Ỹi|2]
theoretically for each i.

We first need to compute the probability density function ofYi

and Ỹi. Since Yi and Ỹi are the i-th order statistic of X1 · · · , X6

respectively, they are identically independent distributed for
each i. We assume X1, · · · , X6 are iid random variables that
follow a standard uniform distribution. We can then compute the
probability density function of Yi and Ỹi respectively according
to the order statistic [52]. That is, Yi ∼ Beta(i, 7− i) and Ỹi ∼
Beta(i, 7− i), where Beta(., .) denotes the beta distribution. The

Beta distribution is a continuous distribution defined on the range
(0,1) with density

fY (y) =
1

B(i, 7− i)
yr−1(1− y)s−1, (8)

where B(., .) is the Beta function. The pdf of Ỹi, fỸ (y), is
identical to that of fY (y).

With the probability density function of Yi and Ỹi, our next
step is to compute the probability density function of Yi − Ỹi,
which is denoted as Di. Following Theorem 2.1 in [53], if Yi

and Ỹi are two independent random variables having support in
(0,1), the pdf of Di = Yi − Ỹi is defined as

fDi
(d) =

{∫ 1+d

0 fY (t)fỸ (t− d)dt −1 < d < 0∫ 1−d

0 fY (d+ t)fỸ (t)dt 0 < d < 1
. (9)

With this pdf, we can compute the second moment of Di, which
corresponds to the expected value of |Yi − Ỹi|2, as

E[D2
i ] =

∫ 1

−1

d2fDi
(d)dd. (10)

With the above derivation, we are able to calculate the ex-
pected value of |Yi − Ỹi|2 for each i. Taking the square root of the
expected values, we can compute the expected upper bound of

the root mean square error (RMSE),
√
E[|Yi − Ỹi|2], which for

the six dimensions is [0.1750, 0.2259, 0.2474, 0.2474, 0.2259,
0.1750].

B. Frequency Dependent Reflection Coefficients Estimation

In this subsection, we discuss the frequency dependency
of the reflection coefficients. To define an appropriate model
for estimating frequency-dependent reflection coefficients, we
must know how reflection coefficients vary with frequency. [54]
lists several absorption coefficients in different frequencies. For
example, the absorption coefficients of a painted concrete block
change from 250 Hz (0.05) to 4000 Hz (0.08), the absorption
coefficients of a lightweight drapery change from 125 Hz (0.03)
to 250 Hz (0.04), and the absorption coefficients of plaster on lath
change 500 Hz (0.06) to 4000 Hz (0.03). As all these examples
change only moderately over frequency, we assume a simple
model with piecewise constant reflection coefficients.

With the piecewise constant reflection coefficient assumption,
we add a preprocessing step to divide the full-band RIR into
several frequency bands with bandpass filters so that we can esti-
mate reflection coefficients in different frequency bands. Among
different kinds of bandpass filters, Chebyshev filters show a good
computational speed although they are not perfect on stop-band
attenuation [55]. Consequently, we choose Chebyshev type I
filters [56] as our lowpass filter, which can be transformed
into a bandpass filter or highpass filter as needed. With this
pre-processing process, we will get access to RIRs in different
frequency bands. We can then apply the previously discussed
estimation methods for each frequency band separately.
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C. Linking Reflection Coefficients With Room Geometry

Knowledge of six reflection coefficients only is generally
insufficient. In this subsection, we focus on how to link the
reflection coefficients with the room geometry. We assume that
we already know the room geometry that can be estimated as de-
scribed in Section IV. This linking problem can be solved by two
methods, a machine learning based method and a conventional
signal processing method.

With the machine learning based method, we build a CNN
that takes an RIR signal conditioned on the room geometry as
the input. The choice of CNN architecture is based on the logic
in Section IV, where the conditioning is the only difference.
The conditioning is fed into the network twice, at the input layer
and at a middle layer. The output is a combination of the room
geometry and the corresponding pairs of reflection coefficients.
Within each pair, since there does not exist an order between two
reflection coefficients, we re-order the two reflection coefficients
in ascending order.

With the conventional signal processing method, we use
RT60 as a bridge. On the one hand, ISO 3382 [57] shows how to
measureRT60 from the reverberation timeT20 or T30. We first
need to calculate the energy decay curve from the RIR signal.
The energy decay curve EDC at time t is defined as [26]

EDC(t) =

∫ ∞

t

h2(τ) dτ, (11)

where h(τ) is the room impulse response. The reverberation
time T20 (T30) is defined as the time that the energy decays
from −5 dB to −25 (−35) dB, which can be calculated from
the energy decay curve. With this, RT60 is three times T20
or twice T30. On the other hand, we can compute RT60 with
Sabine-Franklin’s formula as in (1). As what we have mentioned,
we can estimate room geometry as in Section IV and estimate
reflection coefficients as in Section V-A. Different combinations
of room geometry and reflection coefficients result in a different
RT60. By performning an exhaustive search, we are able to find
a combination of room geometry and reflection coefficients that
is closest to the correct RT60.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present our experiments. In the first sub-
section, we describe the setup of our experiments. We describe
experiments on room geometry estimation in the second sub-
section. Finally, we present our experiments on the estimaton of
the reflection coefficients.

A. Experimental Setup

In the following, we first discuss the database we used to train
and test our model. After that, we describe the configuration of
our neural networks and how we train and test them. Finally, we
introduce how we use bandpass filters for sub-band RIRs in the
frequency-dependent reflection coefficient estimation problem.

1) Database: As is discussed in Section IV-C, a large-scale
dataset of good quality is needed to train neural networks. An
overview of the database we use is shown in Table I.

TABLE I
DATABASE DESCRIPTION

We used [58] as our real-world RIR database because it con-
tains a relatively large number of real RIRs, several room types
are covered, and the room geometry was measured in each room.
This database contains nine distinct rectangular rooms that are
not empty. Since we aimed our work at moderate or small rooms,
we did not include three large rooms of the database, i.e., one
conference room (with geometry 28× 11× 3 m) and two lec-
ture rooms (with geometry 20× 12× 5 m and 23× 17× 7 m).
The selected six rooms include one hotel room, one meeting
room, three office rooms, and one enclosed staircase. The geom-
etry of these selected rooms varies between 4.4× 2.8× 2.2 m
and 14.2× 6.9× 3.6 m. The corresponding RT30, the time that
it takes to decay 30 dB, varies between 0.59 s and 1.85 s. Within
each room, an average of 155 RIRs is given between five sources
and 31 receivers.

To build an RIR dataset, we used the ISM to simulate RIRs
[17]. We refer to this dataset as a clean RIR dataset of empty
rooms. The shape of the rooms is rectangular and the rooms are
empty. The speed of sound was set to c = 340m/s. The sampling
frequency was set to 8000 Hz. The length of each RIR was 4096
because an approximate 0.5 s RIR contains at least the direct
path signal and early reflections in an indoor environment. Each
dimension of the room geometry, i.e., length × width × height,
was assumed to be iid between 6× 5× 4 m and 10× 8× 6 m.
The room geometry range covers moderate and small rooms
and is close to the real-world RIR database described above. The
reflection coefficients of the walls were simulated as iid between
0 and 1. We randomly placed one source and one receiver in
each room and generated the corresponding RIR. We labeled
each RIR with room geometry and reflection coefficients. In our
experiments, the number of the image-source method simulated
RIRs was 400000, which was divided into a training dataset, a
validation dataset, and a test dataset with the ratio 7 : 2 : 1 for
the baseline method.

The clean RIR training dataset of empty rooms was randomly
divided into two equal parts for RIRs with noise and the first
artificial distortion type. With one part, an additive Gaussian
white noise was added to each RIR with an SNR uniformly
distributed between 30 dB and 50 dB.

With the first artificial distortion of the RIR as defined in
Section IV-C, a random number (this number was set to be
uniformly distributed between 10 and 100) of pulses was added
or deleted from the first 0.1 s of the clean RIRs. This choice was
motivated by the hypothesis that the early reflection part of RIR
provides more information for room geometry estimation than
late reverberation.

With the second artificial obstacle pattern as defined in
Section IV-C, we generated an RIR database of 50000 rooms. For
each room, we randomly placed one rectangular obstacle of an
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TABLE II
NETWORK ARCHITECTURE OF ROOM GEOMETRY ESTIMATION

arbitrary size inside the room and generated the corresponding
RIR. This process was repeated nine times, i.e., there were nine
distinct distorted RIRs for each room in this database.

For the RIRs generated with the analytical method based on
ARD, due to the restriction of computational cost, we simulated
a scenario with one source and 1000 receivers in each of 144
rooms. We randomly placed one to three obstacles of a random
size in each room. We changed the reflection coefficients and
geometry of the room. Each combination was denoted as one
configuration.

2) Neural Network Description: In this subsection, we de-
scribe how we train and test our neural networks. In addition,
we describe the configuration of our neural networks for differ-
ent objective functions. We did an ablation study on network
architecture and hyperparameter tuning with a grid search as a
preliminary experiment for each neural network. The network
architecture and hyperparameters below were chosen based on
this preliminary experiment with our target database. If some
properties of the target database change, we always performed
an ablation study on network architecture and hyperparameter
tuning with grid search.

We used a GPU node to train our neural network. The output
node is the room acoustical parameter of the given room. The
network was trained with the Adam optimizer [59], to minimize
the training loss. The learning rate of the Adam optimizer was
0.001 and the coefficients used for computing running averages
of the gradient and its square were set to be (0.9, 0.999). We
iterated for 2000 epochs and recorded the MSE loss for each
epoch. To prevent overfitting, early stopping is used as regu-
larisation in our model [60]. Early stopping is performed when
the validation performance degrades in 100 successive epochs
to guarantee the training performance without overfitting and
keep a balance on the computational effort. In each epoch, we
set the model on evaluation mode and computed the validation
error for early stopping. In addition, mini-batch based training
is used to increase computational efficiency [61]. The batch size
was set to be 50. After training, we set the model to evaluation
mode and computed the RMSE per dimension in the test set.

For geometry estimation, our network architecture and the
corresponding parameters are shown in Table II, where b denotes
the batch size. First the layer size decreases as the number
of channels (feature maps) increases. The features are finally
mapped to the geometry with fully connected layers. We use a

TABLE III
NETWORK ARCHITECTURE OF LINKING REFLECTION COEFFICIENTS TO

ROOM GEOMETRY

leaky rectified linear unit (Leaky ReLU) [62] as the activation
function. After each convolutional layer, there are always a batch
normalization layer and a Leaky ReLU layer [62], which we do
not list in the Table II since the output size does not change. The
network contains 4577763 trainable parameters in total.

To estimate six frequency-dependent reflection coefficients,
we use a multilayer perceptron regressor with nine hidden layers.
The size of each layer was halved with each layer, from 2048 to
8. A rectified linear unit (ReLU) [63] was used as an activation
function after each hidden layer.

To link the reflection coefficients to the room geometry, the
network is described in Table III, where b denotes the batch size
and we omit the batch normalization layer and the Leaky ReLU
layer in the table. The conditioning, i.e., the room geometry
vector, is concatenated to the RIR at the input layer and to the
reshaped output vector before the fully connect layers. Each out-
put vector is reshaped to a 3× 3 matrix, where the first column
is the room geometry vector, each row of the second and the
third columns is a pair of reflection coefficients corresponding
to that edge.

3) Sub-Band RIRs: When we take frequency dependency
into account, we assumed the reflection coefficients are piece-
wise constant. The order of the Chebyshev type I filter was set to
be 10 for a relatively short transition band. The maximum ripple
factor was set to be 1 dB. Each full-band RIR was transformed
into three signals, a lowpass RIR (0− 1000 Hz), a bandpass
RIR (1000− 2000 Hz), and a highpass RIR (2000− 4000 Hz).
With this transformation, we were available to four sets of sub-
band RIR data. The training and test process, and the network
configuration are the same as for the full band RIRs.

B. Experiments on Room Geometry Estimation

In this subsection, we present experiments on room geom-
etry estimation. We first compare the baseline method and
the proposed semi-blind estimation method for simulated data.
After that, we discuss experiments for the proposed averaging
method. We then compare our proposed method with a reference
signal processing based method. Finally, we describe how we
generalize our method to real-world RIRs.

As the first experiment of room geometry estimation, we set up
the experiments of our baseline method and the proposed semi-
blind estimation method for simulated data. For the semi-blind
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Fig. 1. MSE distribution of room geometry estimation.

TABLE IV
COMPARISON OF BASE ROOM GEOMETRY ESTIMATION METHOD AND

SEMI-BLIND ROOM GEOMETRY ESTIMATION

room geometry estimation, we pre-set a random source-receiver
relative position relationship and generated the corresponding
RIR dataset, whose only difference with respect to our original
RIR dataset was the receiver-source relative position. We com-
pared the performance of these two cases in terms of RMSE,
bias, and variance per dimension in the test set. We used the
mean estimation error to approximate bias. In addition, we plot
the error distribution of both methods in Fig. 1, where the error
here refers to the MSE of each room geometry estimation.

We list the RMSE, bias, and variance of the base method and
the semi-blind method in Table IV. A positive sign indicates our
prediction is larger than the true geometry value. The RMSE,
bias, and variance show different values with respect to length,
width, and height because the range on these three elements
is different and they are independent of each other. We also
performed an experiment with our baseline method to compare
the estimation accuracy between rectangular rooms and cube
rooms. The RMSE of cube rooms is [0.0534, 0.0374, 0.0243] m,
which does not show a difference from rectangular rooms. This
confirms that the estimation of length, width, and height are
independent of each other. As shown in Table IV, the small
bias vector confirms that our CNN model is not significantly
biased after training and the small variance confirms that most
estimation errors are relatively small and they do not vary much.
The error distribution in the test set of both methods is shown in
Fig. 1. Observing the error distribution in Fig. 1, the error follows
a long-tailed distribution, which confirms that most estimation
errors are relatively small, which is consistent with the small
variance in the test set. Comparing the experimental results of
the baseline method and the semi-blind method, the semi-blind
method outperforms the baseline method in terms of accuracy.
To conclude, by the addition of a restriction on the relative
source-receiver position relationship, the estimation accuracy
of room geometry estimation is increased.

The second experiment of room geometry estimation was
related to the proposed averaging method to increase the
estimation accuracy. We aim to investigate the effect of the
number of available RIRs in each room. For this experiment

TABLE V
ROOT MEAN SQUARED ERROR AND VARIANCE OF AVERAGING METHOD

TABLE VI
COMPARISON OF PROPOSED METHOD AND STATE-OF-ART METHOD

only, we generated a dataset with 16 RIRs per room to do the
experiments and the RIRs in this dataset were distinct from those
in the training dataset. In each room, 16 RIRs were generated
independently, i.e., they correspond to 16 different randomly
placed sources and 16 different randomly placed receivers.
These RIRs were then use for inference with averaging. We
ordered the estimates by the true room geometry and grouped
the estimates to one, four, eight, and 16 estimates per room
to perform the averaging method. Finally, we computed the
RMSE, bias, and variance of the average method.

Next we describe the experimental result for the averaging
method. The bias of the estimate is [0.0045,−0.0027,−0.0015]
m, which does not change by averaging over N estimates. The
RMSE, and variance under different numbers of RIRs are listed
in Table V. The method with one RIR corresponds to our baseline
method. The RMSE, bias, and variance are slightly different
from the results in Table IV because the test database is not
the same. From Table V, we can conclude that, as expected,
averaging leads to improved performance. The variance de-
creases with averaging but does not decrease by a factor of N
since there exist nuisance factors, reflection coefficients, and
source/receiver positions, which imply that the RIRs in each
room are not independently conditioned on room geometry. To
conclude, the performance is better when more RIRs are used
for averaging although our estimation is still biased.

As the third experiment, we compared our proposed method
with the signal processing method proposed in [20] in terms of
system requirements, estimation error, and average run time. The
experiments are both based on the RIRs generated by the ISM
method. For calculating the run time, the experiments were aver-
aged over 600 experiments. The result is shown in Table VI. The
method in [20] uses five sources and five receivers and a 96000
Hz sampling frequency while the proposed method only requires
sixteen random RIRs and an 8000 Hz sampling frequency. From
the experimental results, our proposed method achieves approx-
imately the same accuracy while requiring approximate 104 less
computational effort after training. To conclude, our CNN based
room geometry estimation method is computationally efficient
with approximately the same estimation error and, in contrast
to the conventional signal processing based method, does not
require prior knowledge or knowledge of the measurement con-
figuration. Moreover, if lower accuracy is required, our method
allows the usage of fewer measurements.
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TABLE VII
ROOM GEOMETRY ESTIMATION WITH REAL-WORLD MEASURED RIRS

Our last experiment on room geometry estimation was the
generalization to real-world RIRs with transfer learning. Before
feeding the real-world RIRs into the neural network, we first
resampled the real-world RIRs to 8000 Hz and then used the first
4096 samples of the resampled RIR as the input. With transfer
learning, the base method model was adopted as initialization
and the learning rate of the optimizer was set to be one-tenth of
the original learning rate. This generalization was split into two
steps. We trained 500 epochs for each step to prevent overfitting.
We describe the two steps in detail in the next two paragraphs.

The first step was the transfer learning from the base model
with additive noise, randomly deleted and added pulses, de-
rived approximate distorted RIRs due to obstacles, and the RIR
genereated with the ARD-based analytical method for obstacles.
These distorted RIRs were mixed as the training dataset for
transfer learning in the first step. The model after the first step
was saved as an initialization for the second step.

In the second step, we used transfer learning with real-world
RIRs [58]. Cross-validation was used for the six selected rooms
in the database. In each test set, we computed the RMSE per
dimension to evaluate the generalization performance. Since
there were multiple RIRs per room, the proposed averaging
method was performed in each test set to increase accuracy.

The experimental results for room geometry estimation with
real-world measured RIRs are shown in Table VII. Before aver-
aging over multiple estimates from multiple RIRs, the minimal
RMSE on a single dimension is 0.05 m and the maximum error is
0.26 m. The 0.26 m RMSE appears in the hotel room with two
beds and other furniture inside, which is a room with relative
many obstacles, but this error reduces to 0.12 m after averaging.
After averaging, the minimal RMSE is 0.01 m and the maximal is
0.17 m. The 0.17 m RMSE after averaging method appears in the
enclosed staircase, which is relatively difficult to handle because
of the stairs. The difference between RMSE with and without
averaging method does not consistently follow the results shown
in Table V. This is because the real measured 151 RIRs in each
room are from five sources and 31 receivers, which indicates the
measurements are not independent from each other.

We did an additional experiment to evaluate the importance
of these four augmentation methods, where we left one data
augmentation method out each time and repeated the two steps
in the previous experiment. We computed the RMSE after aver-
aging and compared it with Table VII. We computed the average
RMSE difference, where the positive sign indicates an increase
in the RMSE when one data augmentation method is left out.

The average RMSE in Table VII after averaging is 0.0644m.
The leave-one-out experimental result is shown in Table VIII.
Observing the result, when one data augmentation method is left
out, the corresponding RMSE increases. This shows all four data

TABLE VIII
EVALUATION OF THE IMPORTANCE OF FOUR DATA AUGMENTATION METHODS

TABLE IX
RMSE OF MULTIPLE REFLECTION COEFFICIENTS ESTIMATION

augmentation methods are all necessary and make a contribution
to the estimation accuracy. In addition, comparing the increased
RMSE (m), we can conclude that RIRs generated with the ARD-
based analytical method is the most important among these four
methods. This is likely because this method simulates the effect
of obstacles on real-world RIRs most accurately.

C. Experiments on the Estimation of Reflection Coefficients

In this subsection, we describe our experiments that relate
to the reflection coefficients. We first describe the experiments
on estimating only reflection coefficients from RIRs, where
we cover the frequency-independent case and the frequency-
dependent case. Next, we describe the experiment on linking
the reflection coefficients to room geometry.

We performed the reflection coefficient estimation experi-
ments under the assumption of six distinct reflection coefficients,
one for each wall. We divide this into two cases according
to their frequency dependency. For the frequency-independent
reflection coefficients, we estimate the reflection coefficients
from the corresponding full-band RIR. With respect to the
frequency-dependent reflection coefficients, we estimate the
reflection coefficients from the sub-band RIRs independently.
We compared the estimation error of the sub-band RIRs and the
full-band RIRs to explore the effect of frequency bands on re-
flection coefficient estimation accuracy.The experimental results
of estimating six distinct reflection coefficients in a rectangular
room are shown in Table IX. With the full band RIRs, the average
RMSE per dimension is 0.09. With the sub-band RIRs, part of
the information of the RIRs is lost. Consequently, the RMSE of
the sub-band RIRs is larger. In addition, the RMSE of the low
pass RIR is smaller than that of the bandpass RIR and the high
pass RIR. This is likely because the relation between the RIR and
the coefficients is smoother for low pass signals and it is easier to
learn a smoother function by a neural network. In addition, when
observing the RMSE for each reflection coefficient, the RMSE
in the middle position is relatively large. This is consistent with
the upper bound in Section V-A and results from having ordered
reflection coefficients in the interval [0,1].

Comparing the experimental results in Table IX and the
upper bound derived in Section V-A, each RMSE in Table IX
are substantially smaller than the upper bound derived in
Section V-A. This indicates our neural network does learn
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TABLE X
RMSE OF LINKING REFLECTION COEFFICIENTS TO ROOM GEOMETRY

reflection coefficients from RIRs instead of simply generating
a set of ordered random numbers.

In the remainder of this subsection, we describe the experi-
ments on linking the reflection coefficients to the room geometry
as outlined in Section V-C. We start with the machine learning
based method. With the machine learning based method, we
computed the RMSE for the reflection coefficients to evaluate
the estimation accuracy. Since the room geometry serves as
conditioning, the RMSE for the room geometry is negligible and
not recorded here. Based the estimated reflection coefficients,
which are linked to the room geometry, we computed the RT60
with the Sabine-Franklin formula, which is compared with the
RT60 calculated from the energy decay curve to compute the
RMSE. After that, we took the six reflection coefficients from
each output, re-ordered them, and computed the RMSE for each
reflection coefficient again to compare the accuracy with the
previous reflection coefficients only estimation experiment.

The experimental result of linking reflection coefficients
to room geometry using machine learning based method is
shown in Table X. Each row of the second and the third
columns is the RMSE for the pair of reflection coefficients
corresponding to that edge. The RMSE for the paired reflec-
tion coefficients is slightly worse than for the previous exper-
iment but the model can still link a pair of reflection coef-
ficients to the room geometry. The corresponding RMSE for
the RT60 based on these estimates is 0.0220 s. When we
reordered the six estimated reflection coefficients, the RMSE is
[0.0795, 0.0742, 0.0809, 0.0854, 0.0854, 0.0915], which is ap-
proximately the same as the result in Table IX. This result proves
that the estimation accuracy of the reflection coefficients does
not decrease but the linking operation decreases the accuracy a
little.

In addition to the machine learning based method, we can also
link the reflection coefficients to the room geometry using the
conventional signal processing method. Since we use estimated
room geometry and reflection coefficients, we only recorded the
RMSE for RT60. We computed RT60 with the estimated room
acoustical parameters using Sabine-Franklin’s formula. We then
compared it with the RT60 calculated from the energy decay
curve, and recorded the RMSE.

Computing the RT60 using the conventional signal process-
ing method, the corresponding RMSE is 0.0083 s, which is
smaller compared to the machine learning based method. Since
the difference in the RMSEs for estimates of the room geometry
is negligible, the difference in the RMSEs for the RT60 is due
to the linking process of the reflection coefficients.

VII. CONCLUSION

We showed that it is possible to estimate the geometry of a
shoebox-shaped room and also the reflection coefficients of its

walls from RIRs using deep neural networks. We formulated the
problem as a regression problem with the MSE as a loss function.
In contrast to conventional methods, the proposed methods only
requires a single RIR between a source and a receiver and do not
require knowledge of their positions or relative distance. For the
room geometry estimation task, we used convolutional neural
networks. We first trained the neural network with artificial data.
Then transfer learning was used to make the method work for
real-world RIRs. We achieved an average of 0.065 m testing
accuracy for real-world data. We used multilayer perceptrons
to estimate the wall reflection coefficients from simulated RIRs.
We obtained an RMSE of approximately 0.09 for each reflection
coefficient when the reflection coefficients are different for the
six walls. This value increased slightly if we require pairs of
reflection coefficients to be associated with an estimated room
geometry. In addition, we were able to estimate frequency-
dependent reflection coefficients and achieved similar accuracy.
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