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Fig 1: The model in double stance, training at a target 
speed of 1.25 m/s. 
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INTRODUCTION 
Predictive simulations of human walking have 
great potential to expand our understanding of 
locomotion. For instance, they can isolate the 
effect of specific impairments on observed gait 
pathologies or aid in designing assistive 
devices by modeling human-device interactions. 
Introducing simulated impairments or adding 
augmentation devices to a model may change 
kinematics, including preferred walking speed. 
Experimental studies have characterized cost of 
transport over a wide range of walking speeds, 
and have shown that humans prefer walking at 
a speed that minimizes their cost of transport 
[1]. The purpose of this study was to use a 
predictive simulation framework to reproduce 
experimental energetic cost of transport. We 
trained a model to walk at speeds between 0.5 
and 2.0 m/s and compared our simulated cost 
of transport to experimental data. 

METHODS 
We used a planar, 9-degree-of-freedom (dof) 
musculoskeletal model based on a model by 
Delp et al. [2]. The model (Fig. 1) included a 3-
dof planar joint for the pelvis, and 1-dof hip, 
knee, and ankle joints in each leg. Each leg 
was actuated by 9 Hill-type musculotendon 
units using a compliant tendon, representing 
the major sagittal plane muscles. To better 
represent an average, healthy, young 
individual, we adjusted musculotendon 
parameters in our model based on a model by 
Rajagopal et al. [3]. Ligaments were modelled 
as variable stiffness springs that engaged 
during hyperextension and hyperflexion of the 
joints. Contact forces between the foot and the 
ground were computed using the Hunt-Crossley 
contact model [4], with contact spheres at the 
heels and toes to represent the foot and a 
contact plane to represent the ground. We 
modeled neural control using a series of state-
based controllers based on the model 
developed by Geyer and Herr [5]. Briefly, this 
model uses a set of low-level controllers to 

calculate excitation for each muscle with a 
combination of constant signals, positive and 
negative feedback from the muscle length and 
force, and proportional-derivative (PD) 
controllers to stabilize pelvis orientation.  A 
high-level controller determines when the low-
level controllers are active based on the phase 
of gait. In this work, the high-level controller 
transitioned between 5 phases of gait: early 
stance, mid-stance, terminal stance, swing, and 
landing preparation. The controller was 
implemented in a custom software package. 

We generated a 10-second simulation using 
OpenSim version 3.3 [6], and then assessed 
performance using the following objective 
function, J: 

𝐽𝐽 = 𝐽𝐽cot + 𝑤𝑤spd𝐽𝐽spd +𝑤𝑤inj𝐽𝐽inj + 𝑤𝑤pel𝐽𝐽pel + 𝑤𝑤hd𝐽𝐽hd. 

This function sought to minimize the gross cost 
of transport (Jcot) while maintaining a steady 
speed (Jspd), avoiding injury (Jinj), and stabilizing 
the upper body (Jpel, Jhd). We computed gross 
cost of transport, Jcot, by summing the basal 
and per-muscle metabolic rates [7, 8]. The 
speed penalty, Jspd, was applied if the speed 
averaged over a step differed from the target 
speed by more than 0.05 m/s. If the simulation 
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Fig 2: Comparison of measured cost of transport from 
three experimental studies (gray lines) with our 
simulated results (black dots). 

was terminated early due to the model falling, 
the speed was set to 0 m/s for the remainder of 
the 10 seconds, yielding a large penalty. The 
injury penalty, Jinj, discouraged hyperextension 
or hyperflexion of the joints by penalizing 
ligament use. To promote pelvis, trunk, and 
head stability, Jpel penalized large pelvic tilt 
deviation from a neutral position and zero 
rotation velocity, and Jhd penalized excessive 
accelerations of a point at the center of the 
head [9]. We manually adjusted weights (wspd, 
wlig, wpel, whd) to balance these competing 
objectives. 

We used the Covariance Matrix Adaptation 
Evolution Strategy algorithm [10] to solve for 
the controller and initial pose parameters that 
minimize our objective function, J. In total, there 
were 90 design variables: 70 variables for the 
gains and offsets in the muscle controllers, 16 
variables for the initial position and velocities of 
the model, and 4 variables for the transition 
timing of the high-level controller. We used a 
population size (i.e., the number of function 
evaluations in each generation) of 16. Since 
this optimizer is stochastic, we ran the 
optimization 20 times for 3000 generations. The 
best solution was then used to seed another 
round of 20 optimizations. This was repeated 
until the change in the best objective function 
value decreased by less than 5% from the 
previous round’s best value. 

We optimized the model at speeds between 0.5 
and 2.0 m/s, in 0.25 m/s increments. The model 
was first trained at 1.25 m/s. Each speed was 
trained by seeding with the solution from the 
neighboring speed (e.g., the solution for 1.25 
m/s was used as the initial seed to train 
solutions for 1.00 and 1.50 m/s). 

RESULTS AND DISCUSSION 
Our model and optimization framework 
generated simulations that were in close 
agreement with experimental results [1, 11, 12] 
(Fig. 2). The minimum cost of transport from our 
simulations (3.17 J/kg·m) and the 
corresponding speed (1.23 m/s) were both 
within the range reported in previous 
experimental studies. Our cost of transport 
measures also captured realistic trends for 
decreasing and increasing speed, following the 
characteristic bowl-shaped curve. A steeper 
increase in cost of transport was observed 
while approaching slower speeds as compared 
with faster speeds. Since we used a planar 
model, future work is needed to determine 
energetic costs due to stabilization of and 
motion in the frontal and transverse planes. 

CONCLUSIONS 
Our finding that predictive simulations match 
experimental cost of transport data indicates 
that this method captures salient features of 
walking. This study increases confidence in the 
results of future simulations that study novel 
conditions, such as introducing musculoskeletal 
impairments or adding assistive devices. 
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