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A B S T R A C T   

The present work aims at understanding the stochastic matrix crack evolution in CFRP cross-ply 
laminates under tension–tension fatigue loading. An experimental campaign was carried out on 
twenty-three specimens at different stress levels, while two optical techniques were used for the 
in-situ monitoring of the accumulation of transverse matrix cracks. The results showed a signif-
icant scatter in crack evolution among specimens. This stochastic behaviour was further inves-
tigated using image analysis and numerical modelling. It was found that transverse matrix cracks 
can be classified into the independent and dependent cracks based on a critical crack spacing. 
Furthermore, the severity of interaction among cracks was quantified by introducing a dependent 
crack ratio. Finally, a strength-based probabilistic model was proposed to describe the scattering 
regime of the crack evolution. The agreement between model and test results indicates that local 
strength variations of 90 plies are the dominant scattering source governing the initial fatigue 
resistance to cracking and determining the accumulation of transverse matrix cracks among 
specimens. These results may provide a new insight into the stochastic nature of matrix cracking 
in composite laminates and aid in the design of fatigue resistance properties.   

1. Introduction 

Composite laminates undergo a progressive damage process during their service life [1,2]. When subjected to fatigue loading, a 
three-stage damage accumulation has been characterised for laminates, starting with matrix cracking, followed by delamination and 
ending with fibre damage [3–5]. Matrix cracking accumulates to a saturated state, also referred to the characteristic damage state 
[4,5], and the stiffness of the laminate can be reduced by 10–15% under fatigue loading [6]. While matrix cracking is the dominant 
damage mechanism during the early fatigue life, delamination between adjacent plies can be induced, further contributing to the 
stiffness degradation [7,8]. The progressive damage method, which typically includes a stress analysis model, a failure criterion and a 
material degradation model [9], has shown great potential and efficiency in predicting the mechanical response and damage 
assessment of laminated structures, such as the Type IV composite pressure vessels reported in [10]. However, the interaction, synergy 
and sometimes even competition, between similar and different damage mechanisms of laminates under fatigue loading, are yet on the 
way to be fully explored from experiments and further considered in the predictive modelling. In the effort to establish a physical/ 
physics-based fatigue damage framework, the focus should first be put on understanding and classifying the matrix crack accumu-
lation process [1]. 
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The generation of off-axis matrix cracks is a stochastic process that exhibits both temporal and spatial variations [3,11]. This 
phenomenon has been extensively studied and it has been found that defects in the local microstructure of off-axis plies, i.e. matrix 
porosity, debonded fibre, local volume fraction of fibre and matrix, and their spatial distribution, affect when and where an off-axis 
crack initiates [12]. Due to the current manufacturing processes, these local defects are difficult to control [13–15], thus posing a 
challenge to elucidate the mechanisms of off-axis crack initiation. Efforts have been made to quantify the stochastic fibre architectures 
and defects by using image analysis techniques; based on this, representative volume element models have been developed which 
provide the link between the microstructure and the local material property [12,16,17]. Accordingly, the randomness of crack 
initiation caused by the variations in local microstructures at off-axis plies can be related to the variations in local material properties. 

So far, strength-based or energy-based approaches [18,19] have been used in probabilistic crack evolution models, with the 
variations in local strength or local fracture toughness introduced. The strength-based approach checks whether the local stress reaches 
the material strength, while the energy-based approach checks whether the energy release rate in the front of a microcrack (or flaw) 
reaches the local fracture toughness [20]. Although the energy-based approach could consider the effect of ply thickness [21], the size 
and the pattern of the micro-cracks need be accurately obtained to determine the variations in local fracture toughness [20]. Instead, 
the variations in local strengths at off-axis plies involved in the strength-based approach can be obtained directly by performing tensile 
tests on unidirectional lamina. However, it excludes the in-situ effect of off-axis strength and cannot be adapted to predict high-density 
crack evolution. Furthermore, band models have been proposed by discretising the off-axis plies of laminates into multiple elements to 
capture the distribution of in-situ local strengths in one/few tensile tests [22,23]. 

Probabilistic strength-based models have demonstrated the ability to describe the stochastic evolution of off-axis matrix cracks at 
both low and high densities under fatigue loading. For low density cracks, the model takes into account a statistical distribution of the 
local strengths at off-axis plies [24], which can be correlated with the statistical distribution of fatigue life for the crack initiation at 
different local regions, based on the Strength Life Equal Rank Assumption (SLERA) named by Chou and Croman [25]. SLERA states that 
a specimen should have the same probability within the statistical distributions of static strength, fatigue life and residual strength 
[26,27], considering that specimens with higher static strength have longer fatigue life [28,29]. Consequently, an ordered correlation 
can be established between the static strength and the fatigue life statistics [29]. Sendeckyj [30] used the SLERA to determine Weibull 
distribution parameters of static strength by converting fatigue data to equivalent static strength values. In the case of the high crack 
density, the model takes into account not only the local strength variation but also the stress redistribution around the cracked region 
[6,31,32], as both the local strength and the stress state of the off-axis plies determine the fatigue cycles to initiate a new matrix crack. 
By assuming that fatigue failure occurs when the residual strength is reduced to the value of the maximum applied stress, residual 
strength models as reviewed in [33], could be used to calculate the fatigue life for the crack initiation at the stress-redistributed region. 
As for the local stresses in the cracked region, they can be obtained by using different analytical and numerical methods. Analytically, 
shear lag analysis and variational analysis are two of the widely used methods, and the latter can take into account the stress transfer 
due to out-of-plane shear loading [34]. Based on finite element (FE) modelling, various techniques have been developed to simulate 
cracks in composites and to obtain redistributed stresses in the cracked region. Teimouri et al. [35] found that trilinear cohesive 
element models were more accurate than the bilinear models when fibre bridging effects were considered. Karimi et al. [36] proposed 
an adaptive virtual crack closure technique that can significantly improve the accuracy of fatigue crack growth simulation. Garoz et al. 
[34] predicted the local stresses of a cracked laminate by applying the seam crack technique in a representative unit cell to duplicate 
the nodes at the crack surface. 

Fig. 1. Research scheme of present work.  
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Despite the efforts to understand the matrix crack evolution during fatigue loading using the probabilistic modelling, there are still 
open questions that this work attempts to address: how to model the stochastic matrix crack evolution over multiple specimens at 
different stress levels; how to quantify the interaction between adjacent matrix cracks; and how to consider the effect of delamination 
on matrix crack accumulation. As observed in our previous experimental work [3], for carbon/epoxy cross-ply laminates, the evolution 
of transverse matrix cracks during the early fatigue life varies significantly among specimens with a similar stiffness degradation trend. 
Specifically, the saturated crack density varies from ~ 0.2 to 0.4 mm− 1 among specimens. For specimens with lower saturated crack 
densities, more fatigue cycles are consumed to reach the saturation of transverse matrix cracks [3]. Considering that each specimen has 
certain strength variations in the local region of 90 plies, these strength variations should determine the initial fatigue resistance to the 
matrix cracking, as reported by Pathakokila et al. [37] as a source of scatter in fatigue data among specimens. It could also affect the 
accumulation and interaction of transverse matrix cracks. Therefore, a strength-based probabilistic framework is proposed in this 
paper so as to further investigate and better understand the experimental results as reported in [3]. 

Overall, the objective of this work is to understand the stochastic evolution of transverse matrix cracks among specimens tested 
under tension–tension fatigue loading. Fig. 1 shows the structure of the present work, including both experimental and modelling 
aspects. First, the interaction among transverse matrix cracks was analysed and quantified based on the test data and finite element 
analysis. Then, a strength-based probabilistic model, taking into account the variations in local strengths at 90 plies, was established to 
predict the scattering range of crack density evolution among multiple specimens. Later, after validation by experimental results, the 
model was used to uncover the scatter sources of crack evolution from specimen to specimen. 

2. Experimental analysis 

2.1. Specimen preparation and test set-up 

The ply configuration of the specimens is [02/904]s, and they were obtained from several laminated panels (300 × 300 mm) made 
with the unidirectional prepreg Hexply® F6376C-HTS(12 K)-5–35% with a nominal thickness of 0.125 mm. Curing was performed at 
177 ◦C and 7 bar for two hours, as recommended by the manufacturer [38]. The specimens were subjected to cyclic tension–tension 
loading with constant amplitude of sinusoidal waves was applied to the specimens. The stress ratio was set at 0.1 to reduce the time 
cost of fatigue testing, as matrix cracks accumulate more rapidly at lower stress ratios [5]. The frequency was set at 5 Hz to avoid self- 
heating of the laminate under cyclic loading. Five different stress levels were considered in this work, with the maximum cyclic stress 
at 74%, 70%, 66%, 63% and 55% of the Ultimate Tensile Strength (UTS) of the [02/904]s laminate, where 55% of UTS was used to 
generate the P-S-N curves. The above-mentioned percentages of UTS represent the stress level of the whole laminate, but not the stress 
level of 90 plies within the cross-ply laminate, as the tensile strength of 90 plies is much lower than the ultimate tensile strength of the 
laminate. Based on the axial stress (σ90i) of the laminate at the onset of the first transverse crack at 90 plies, as measured under static 
loading [11], the corresponding stress levels at 90 plies can be obtained by the percentages of the maximum cyclic stress to the σ90i. In 
Table 1, the case with the percentages of σ90i greater than 100% indicates the initiation of transverse matrix cracks on the first cycle 

Table 1 
Summary of tested specimens included in the present work (Specimen ID: stress level - specimen number; G1 - Group 1; G2 - Group 2.  

Specimen 
ID 

Maximum cyclic 
stress σapplied 

(MPa) 

Percentage of 
UTS (%) 

Percentage of 
σ90i (%) 

Group of 
stiffness 

degradation 

Cycles for 
saturation of 

transverse matrix 
cracks 

Saturated crack 
density 
(mm− 1) 

Delamination ratio at 
saturation of transverse 

matrix cracks 

S1-1 533 74 105 G1 10,500 0.2625 0.0012 
S1-2 533 74 105 G1 17,000 0.2250 0.0299 
S1-3 533 74 105 G2 28,500 0.2563 0.0931 
S2-1 507 70 99 G1 28,000 0.2658 0.0293 
S2-2 507 70 99 G1 32,000 0.2143 0.1147 
S2-3 507 70 99 G1 20,500 0.3497 0.0002 
S2-4 507 70 99 G1 26,500 0.2911 0.0204 
S2-5 507 70 99 G2 53,500 0.2166 0.1465 
S2-6 507 70 99 G2 42,000 0.3474 0.0205 
S2-7 507 70 99 G2 50,000 0.2656 0.0567 
S3-1 480 66 94 G1 53,000 0.2750 0.0443 
S3-2 480 66 94 G1 50,000 0.2938 0.0176 
S3-3 480 66 94 G1 72,500 0.2625 0.1524 
S3-4 480 66 94 G1 48,500 0.3500 0.0059 
S3-5 480 66 94 G2 85,500 0.3125 0.0527 
S3-6 480 66 94 G2 113,500 0.2125 0.1225 
S4-1 453 63 89 G1 170,500 0.2405 0.1219 
S4-2 453 63 89 G1 116,000 0.3822 – 
S4-3 453 63 89 G1 118,500 0.3360 0.0148 
S4-4 453 63 89 G2 220,000 0.3019 0.0309 
S5-1 400 55 78 – – – – 
S5-2 400 55 78 – – – – 
S5-3 400 55 78 – – – –  
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under fatigue loading. Conversely, the initiation of transverse matrix cracks occurs after certain fatigue cycles when the percentage of 
σ90i is less than 100%. 

Fig. 2(a) shows the experimental setup, where two pairs of cameras were used to measure the stiffness degradation and to monitor 
the damage evolution of the specimens in situ, as described in [3,39]. One pair of 9 megapixel cameras was used to capture the cracks 
along each edge of the specimens. The edge surfaces of each specimen were covered with thin white paint in order to enhance the 
white-black contrast of cracked and uncracked regions. A user-defined algorithm [11] was then developed to automatically identify 
and locate the transverse matrix cracks on the 90 plies using image processing, which has been recognised as an efficient method for 
the in-situ crack monitoring of composite laminates under fatigue loading [40,41]. In this algorithm, the image was first processed by 
the bottom-hat filtering to compute the morphological closing of the image, followed by conversion to the binary image and noise 
reduction for subsequent crack labelling. As a result, the crack density can be obtained as the average number of transverse matrix 
cracks at both edges divided by the gauge length (~80 mm). In addition, another pair of 5 megapixel cameras was placed in the front to 
measure the deformation of the specimens using the Digital Image Correlation (DIC) technique [42]. The length of the gauge region is 
~80 mm for edge observation and DIC analysis. Every 500 cycles, a tensile unloading-loading ramp was applied in a two-second period 
(see Fig. 2(b)), and both pairs of cameras were triggered synchronously to capture images every 50 ms or 200 ms. Table 1 lists the 
details of the specimens tested at different stress levels. 

2.2. Test results 

As reported in the literature [3–5], a three-stage stiffness degradation in a rapid-slow-rapid manner is representatively behaved by 
composites under fatigue loading. Our work focuses on the first rapid stage (Stage I), where a significant loss of stiffness occurs within a 
short period of time due to the formation of transverse matrix cracks and delamination. Therefore, almost all tests were run until the 
stiffness degradation had passed through Stage I and approached a stable phase, or the number of fatigue cycles had reached a run-off 
of 1E+06 cycles. 

The axial modulus of the specimens was measured from the slope of the axial stress and average axial strain measured by DIC for 
each tensile loading ramp after every 500 cycles. Fig. 3 plots the degradation trends of the normalised axial modulus EN/E0 as the 
number of fatigue cycles increases. Here, E0 and EN are the axial modulus at the initial state and the Nth cycle, respectively. As 
observed, the EN/E0 at the plateau approaches that of the ply discount model, which assumes zero value for the transverse modulus E22 

Fig. 2. Test set-up (a) and loading profile (b) of fatigue tests.  
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and the in-plane shear modulus G12 in the 90 plies. This indicates that the stiffness degradation of most specimens approaches the 
second stage before the end of the test. Furthermore, the specimens can be divided into two groups for all stress levels, based on the rate 
of stiffness degradation within the first stage. Group 1 specimens show a faster degradation trend than that Group 2 specimens (see 
Fig. 3). This is due to the manufacturing inhomogeneity which results in different levels of fatigue resistance among specimens. 

During the fatigue test, most of the transverse matrix cracks propagated through the entire width of the laminate within 500 cycles, 
and axial strain concentration stripes were produced on the outer 0 ply along with the generation of new cracks, as shown in Fig. 4. Red 
arrows indicate the location of the new cracks. While the evolution of transverse matrix cracks is scattered within each group of 
specimens (see dot plots in Fig. 12 and Fig. 13), transverse matrix crack saturation was reached later for specimens with lower 
saturated crack density (see Table 1). It was also observed that delamination started during the accumulation of transverse matrix 
cracks. Fig. 4(b) shows the damage at 90 plies and 0/90 interfaces from the edge view as the transverse matrix cracks saturated. The 
specimen with the lowest saturated crack density (top) in Group 1 and the specimen with the highest saturated crack density (bottom) 
in Group 1 are shown for each stress level. As can be seen from Table 1 and Fig. 4(b), for each group of specimens with a similar trend of 
stiffness degradation within Stage I, the specimen with the higher saturated crack density grew less delamination grew. Apparently, 
both damage mechanisms compete to contribute to the stiffness degradation and energy dissipation that are similar for each group of 
specimens under the constant load or displacement in a linear-elastic material system. Therefore, there are different levels of inter-
action (competition) between transverse matrix cracking and delamination among specimens in each group. As a result, a significant 
scatter in crack accumulation is presented for each group of specimens, with the saturated crack density at 90 plies (nominal thickness: 
1 mm) in the range of ~ 0.2 to 0.4 mm− 1, irrespective of the applied stress level. 

2.3. Characterisation of independent and dependent cracks 

Off-axis matrix cracks with high local density tend to interact with their neighbours, resulting in local stress redistributions 
[6,24,31,43]. To quantify the level of interaction between adjacent matrix cracks, it is necessary to classify independent (non-inter-
active) cracks and dependent (interactive) cracks: the former are located far from neighbours where the local stress remains at a 
uniform stress level within the 90 plies, whereas the latter initiate close to existing cracks, where a redistributed stress state exists. 

Fig. 3. The decreasing of normalised axial modulus with the increase of fatigue cycles under different stress levels: (a)74% of UTS; (b)70% of UTS; 
(c) 66% of UTS; (d) 63% of UTS. 
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2.3.1. Finite element modelling 
To determine whether a transverse matrix crack is independent or dependent, a critical crack spacing should be determined. For the 

given cross-ply configuration, a parametric finite element analysis was performed to calculate the local stress state between two cracks 
at different distances and to obtain the critical crack spacing. 

As shown in Fig. 5(a), a two-dimensional model with a length of 10 mm was built from the edge view using CPE4R (reduced 4-node 
bilinear plane strain quadrilateral) elements. The mesh size was set to 0.05 mm based on a sensitivity analysis. The linear-elastic 
material properties of the unidirectional lamina, as listed in Table 2, were assigned to the model. To simulate the orthotropic 
feature, local material coordinates with orientations of 0◦ and 90◦ were set to 0 and 90 plies, respectively. For the cracked region, seam 
cracks were applied at the red locations marked in Fig. 5(a). In ABAQUS, a seam crack defines an edge or a surface with overlapping 
nodes that can separate during an analysis [44]. The transition of the nodes at the left end of the model was constrained along the 
loading direction. The force was applied to a reference point coupled to all nodes at the right end of the model, as shown in Fig. 5(a). 
Considering that each transverse matrix crack is assumed to occur at the loading phase during a sinusoidal cycle, the force applied on 
the reference point in the model can be simplified by introducing a linearly increasing force up to the maximum cyclic load. Based on 
the experimental observation, delamination usually initiates and propagates in the low crack density region where crack interaction 
rarely occurs. In addition, delamination can have a limited effect on the stress field along the in-plane tensile load. Therefore, a perfect 
bond at 0/90 interfaces, as indicated by the black lines in Fig. 5(a), has been set in the current model. The effect of the length of the 
model has been checked and it is found that there is no difference in the modelling results of the local stress state at the cracked region 
from the model with a length above 10 mm. 

Fig. 4. Axial strain concentration at the exterior 0 ply for the specimen S2-2 under the stress level at 70% of UTS (a); Images at the gauge region 
from the edge view when transverse matrix cracks saturate, for the specimen with the lowest saturated crack density at Group 1 (top) and for the 
specimen with the highest saturated crack density at Group 1 (bottom) under each stress level (b). 

X. Li et al.                                                                                                                                                                                                               



Engineering Failure Analysis 150 (2023) 107277

7

2.3.2. Critical crack spacing 
Fig. 5(b) shows the axial normal stress state at 90 plies between two cracks with a spacing varying from 0.5 mm to 5 mm. Here, the 

axial stress state is averaged along the thickness, denoted as σ, and then normalised by the maximum cyclic stress applied at 90 plies 
σapplied. In other words, σapplied is the ply stress at 90 plies for cases without cracks. The x-axis in Fig. 5(b) is the ratio of the position 
between the two cracks, X, to the 90-ply thickness, t90, of the [02/904]s laminate. As observed, the axial stress at the centre of the two 
cracks gradually converges to the applied level as the crack spacing d increases. Here, the critical case can be considered to be that at d 
= 4.5 mm, where the σ/σapplied at the centre of the two cracks is very close to that at d = 5.0 mm, with a difference of less than 0.001. 
Consequently, the average axial stress at the centre of the two cracks is lower than the applied level when the crack spacing is less than 
4.5 mm. This observation indicates that the overlap of stress perturbation between two cracks starts at a distance less than 4.5 mm, and 
the driving force to initiate a new crack in between is affected by the occurrence of previous cracks. In the case of d ≥ 4.5 mm, the 
average axial stress is equal to the applied level at the centre of the two cracks, where the new crack does not interact with its 

Fig. 5. Schematic diagram of the finite element model for a cracked laminate, including boundary and loading conditions, ply configuration and 
geometry dimensions (a); The normalised average transverse stress at 90 plies σ/σapplied versus ratio of position along x-axis between two transverse 
matrix cracks to thickness of 90 plies x/t90 (b). (d - crack spacing; t90- thickness of 90 plies). 

Table 2 
Input material properties for the finite element model [3].  

Material properties Values 

Longitudinal modulus E11 = 142 GPa 
Transverse modulus E22 = E33 = 9.1 GPa 

In-plane shear modulus G12 = G13 = 5.2 GPa 
Transverse shear modulus G23 = 3.5 GPa 

In-plane Poisson ratio ν 12 = ν 13 = 0.27 
Transverse Poisson ratio ν 23 = 0.30  
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neighbours. Therefore, the critical crack spacing is found to be 4.5/2 = 2.25 mm. 

2.3.3. Dependent crack ratio 
Having estimated the critical crack spacing, the dependent and independent transverse matrix cracks generated in the ~80 mm 

gauge region can be grouped accordingly. The maximum number of independent cracks Ta at the saturation state scatters in a certain 
range, as summarised in Fig. 6(a). The mean value of Ta is 17 (see the blue dashed line). In addition, a dependent crack ratio rd is 
introduced to represent the proportion of dependent cracks generated in one specimen. It is calculated as the maximum number of 
dependent cracks Tb divided by the maximum number of independent cracks Ta. As shown in Fig. 6(b), the dependent crack ratio rd 
ranges from 0.1 to 0.7 at the saturation state. A larger dependent crack ratio is produced for the specimen with a higher saturated crack 
density, which is usually associated with less delamination growth at the saturation state of transverse matrix cracks, as mentioned in 
Section 2.2. In other words, when strong interaction among transverse matrix cracks occurs in a specimen, it is accompanied by weak 
interaction between transverse matrix cracks and delamination. By assuming that the maximum number of independent cracks is 
constant at 90 plies, which in this case is 17, the competition between transverse matrix cracks and delamination found in Section 2.2 
can be further related to the competition between dependent cracks and delamination. Here, the assumption of a constant Ta 
(maximum number of independent cracks) is used to simplify the stochastic generation of transverse matrix cracks. As a result, in the 
analysis of crack evolution, the severity of the interaction among transverse matrix cracks as well as the interaction between transverse 
matrix cracks and delamination can be quantified by the dependent crack ratio proposed here: a large dependent crack ratio represents 
strong interaction among cracks as well as weak interaction between transverse matrix cracks and delamination, and vice versa. 

3. Probabilistic modelling 

A strength-based probabilistic model is developed hereafter to describe the stochastic accumulation of transverse matrix cracks 
under fatigue loading. This strength-based model contains two parts: one is the modelling of independent crack accumulation in a non- 
interactive scheme (see Section 3.1) and the other is the modelling of dependent crack accumulation in an interactive scheme (see 
Section 3.2). Both parts require data input from fatigue tests at stress levels of 70%, 63% and 55% of UTS to calibrate the associated 
empirical parameters. In Section 3.3, the model is validated using crack evolution measured from tests at stress levels of 74% and 66% 
of UTS. The purpose is to gain a better understanding of the ability of the model to mimic the crack evolution. 

3.1. Independent crack accumulation 

Since the initiation of independent cracks depends mainly on the local strength of 90 plies, it is necessary to obtain the statistical 
distribution of local strengths and then relate the local strength to the fatigue life of independent crack initiation. 

3.1.1. Collection of local strength at 90 plies 
In order to obtain the local strength variations of 90 plies, the matrix crack evolution was monitored during static tests at a loading 

rate of 1 mm/min on five specimens, following the experimental methods reported in [11]. The generated independent cracks were 
then identified by the critical crack spacing as presented in Section 2.3.2. When the independent cracks initiated under tensile loading, 
the applied axial stresses of the laminates were used to calculate the transverse stresses at 90 plies, and the residual thermal stresses 
were not included in the present study. These stresses can later be considered as the local strengths of 90 plies S shown in Fig. 7. A 
Weibull distribution, with the probability density function shown in Eq. (1), was then used to fit the local strengths S collected from 

Fig. 6. The maximum number of independent cracks (a), and the dependent crack ratio versus the maximum number of cracks (b) at the saturation 
state of transverse matrix cracks under different stress levels. 
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five samples. The determination of the Weibull parameters on the logarithmic axis is plotted in Fig. 7(a). As observed, the scale factor η 
is 113.72 MPa and the shape factor β is 14.85. 

p(S) =

⎧
⎪⎪⎨

⎪⎪⎩

β
η

(
S
η

)β− 1

e
−

(

S
η

)β

, S ≥ 0

0, S < 0

(1) 

This Weibull distribution (see the red dashed line in Fig. 7(b)) represents the local variation in strength for 90 plies across all 
specimens tested under fatigue loading. 

3.1.2. Local strength - fatigue life relation 
The number of cycles Na for independent cracks initiation was also measured during fatigue testing at 70% of UTS. It was then fitted 

by a Weibull distribution (η: 13554.41; β: 1.18). In addition, the Strength Life Equal Rank Assumption (SLERA) [25] is applied here and 
its applicability is discussed in Section 4. According to SLERA, each pair of local strength Sa (unit: MPa) and fatigue life Na was 
correlated with the same cumulative probability of independent crack initiation, as expressed by: 

Sa = 53.36408 × Na
0.07952 (at 70% of UTS) (2) 

Fig. 7. Weibull parameter determination of test data collected under static tensile loading, where P(S) is the cumulative probability of local strength 
S (a); Two groups of Weibull distributions (scale factors (η ∊ [105 MPa, 120 MPa]) and shape factors (β ∊ [14.85, 29.85])) about the local strengths 
of 90 plies generated based on the Weibull distribution collected from static tests (red dash line) (b). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Scatter of fatigue life related to the initiation of independent cracks collected from fatigue test under three different stress levels, and the 
fitted P-S-N curves. (Note: the black markers indicate the fatigue life at cumulative probabilities of 1%, 50% and 99.7% for the statistical distri-
butions of fatigue life related to independent crack initiation under the different stress levels.). 
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However, Eq.(2) is limited to determining the fatigue life Na given a local strength Sa at the 70% UTS stress level. To extend this 
local strength - fatigue life relationship from the 70% of UTS stress level to other stress levels, the number of cycles Na required for 
independent crack initiation was also measured at the 63% and 55% of UTS stress levels. P-S-N curves can then be plotted at the 1%, 
50% and 99.7% cumulative probabilities, based on the statistical distributions of fatigue life in terms of independent crack initiation at 
the 70%, 63% and 55% UTS stress levels, as shown in Fig. 8. The black markers in Fig. 8 for each stress level represent the fatigue life 
N1, N50, N99.7 with the cumulative probabilities of 1%, 50% and 99.7% respectively. Based on the P-S-N curves, the relationship 
between the applied stress level σpi and the fatigue life to initiate an independent crack Na is established by Basquin’s power law 
equation:  

σpi = A × NB
a (3)  

where B is set to − 0.0647, which is the slope of the P-S-N curve at the 99.7% cumulative probability; A can be derived in the com-
bination with Eq.(2). In this way, if a local strength Sa is known, the number of cycles Na to initiate an independent crack at any stress 
level σpi can be calculated. 

3.1.3. Fatigue life of independent crack initiation 
Having obtained the local strength - fatigue life relationship, the next step is to describe the differences in local strength variation 

among specimens, after which the scatter of independent crack evolution as a function of fatigue cycles can be modelled. 
For specimens with lower initial fatigue resistance to cracking (more cracks at the saturation state), more significant 

manufacturing-induced inhomogeneity is presented, which could contribute to a low average local strength of 90 plies with a wide 
scatter band. The opposite should be true for specimens with higher initial fatigue resistance to cracking. Accordingly, a variety of 
Weibull distributions, based on the reference distribution of local strengths from static tests (see the red dashed line in Fig. 7(b)), can be 
generated to represent different variations in local strengths at 90 plies and different initial fatigue crack resistance from specimen to 
specimen. As shown in Fig. 7(b), for Weibull distributions positioned along the x-axis, both scale factors (η ∊ [105 MPa, 120 MPa]) and 
shape factors (β ∊ [14.85, 29.85]) increase monotonically, and the higher peak is accompanied by a narrower spread band. Here, the 
scale factors are scattered around 113.72, which is the same as the scale factor of the Weibull distribution from the static tests (see 
Section 3.1.1). It indicates the local strength with the highest probability of all the specimens. The shape factors should be greater than 
14.85 which is the shape factor of the Weibull distribution from static tests and represents the dispersion of local strengths across all 
specimens. The reason for this is that the dispersion of local strengths of one specimen should be equal to or less than that of all 
specimens. Finally, the range of scale and shape factors that could significantly affect the upper and lower limits of the scatter region of 
the crack density evolution during the early fatigue cycles, is calibrated based on the modelling results of independent crack evolution 
as described below. 

Using a generated distribution of local strengths (see Fig. 7(b)) as an input, the statistical distribution of fatigue life for independent 
crack initiation at a given stress level can be obtained according to Eq. (2) and Eq. (3). The associated cumulative probability of this 
fatigue life distribution for an arbitrary cycle can be regarded as the probability of independent crack initiation at that cycle. The 
maximum of the cumulative probability was set at 0.997 to avoid the infinite fatigue life. Then, by assuming that the total number of 
independent cracks at the saturation Ta is constant, the number of independent cracks can be modelled as a function of fatigue cycles. 
Here, Ta is set to 17, which is the average of the specimens from the fatigue tests (see Fig. 6(a)). Fig. 9 shows the correlation between 
modelling and test results for independent crack accumulation at stress levels of 70% and 63% of UTS. This correlation validates the 
range of scale and shape factors and the grouping of the generated Weibull distributions shown in Fig. 7(b). Thus, these two groups of 
generated Weibull distributions adequately reflect the local variations at 90 plies for the two groups of specimens with different trends 

Fig. 9. Comparison between the experimental and modelling results about the evolution of independent cracks as a function of fatigue life under the 
stress levels at 70% and 63% of UTS. 
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of stiffness degradation trends (see Fig. 3). 

3.2. Dependent crack accumulation 

The initiation of dependent cracks is controlled both by the local strength of the 90 plies and by variations in the stress state around 
the independent cracks. In order to describe the accumulation of dependent cracks in the model, their interaction with independent 
cracks had to be clarified. 

3.2.1. Severity of interaction 
As the maximum number of independent cracks Ta is constant in the model, the dependent crack ratio rd can be assigned to each 

generated Weibull distribution (see Fig. 7(b)). In this way, the severity of the crack interaction was determined from specimen to 
specimen. In Section 2.3.3., it was found that rd ranges from 0.1 to 0.7 and it increases with the decrease in fatigue resistance to 
cracking. Based on these observations, a Weibull distribution of local strengths (in Fig. 7(b)) at each group is matched with a dependent 
crack ratio rd such that rd decreases proportionally from 0.7 to 0.1 as the peak of the Weibull distribution increases. As a result, the 
maximum number of dependent cracks Tb can be determined: Tb = rd × Ta. 

3.2.2. Interactive region 
Once the maximum number of dependent cracks Tb is known, interactive regions can be created in the model by matching 

dependent cracks with independent cracks. Due to the relatively low crack density in the present study, the crack interaction is less 
severe and complex compared to the very high density cases. As a result, it is not common for new cracks to form close to the previous 
dependent cracks at a distance less than the critical crack spacing. Therefore, a one-time interaction is considered, which means that an 
interactive region contains one pair of independent and dependent cracks. 

To obtain the number of fatigue cycles that a dependent crack will initiate, the local strength Sa for the independent crack, the local 
strength Sb for the dependent crack and the crack spacing d must be determined. The following steps illustrate the collection and 
matching of Sa, Sb, and d for all interactive regions in a specimen. 

Step1: The local strength Sa(i) for the ith independent crack is collected at the cumulative probability of the selected Weibull 
distribution: Pi = i/Ta when i ∊ [1, Ta-1] and Pi = 0.997 when i = Ta, as shown in Fig. 10(a). In this way, a group of Sa is created that 
is scattered in a certain band and concentrated around the peak of the probability density function (PDF). 
Step2: The collection of the local strength Sb(j) for the jth dependent crack is shifted to the decreasing part of the PDF, as shown in 
Fig. 10(b), because the local region where dependent cracks initiate generally has a higher initial fatigue resistance to cracking than 
that of independent cracks. Sb(j) are then selected at the cumulative probability level Pj = j×(1-Ppeak)/(Tb + 1) (j ∊ [1, Tb]), where 
Ppeak is the cumulative probability at the peak of the PDF. Consequently, a set of Sb is generated to represent the local strengths at 
which dependent cracks initiate. 
Step3: Provided local strength collections for both independent cracks and dependent cracks are available, the jth dependent crack 
with a local strength Sb(j) can be matched to an independent crack with a local strength Sa(i). Sa(i) should be less than Sb(j), 
considering that the independent crack initiates earlier than the dependent crack in an interactive region. After matching with a 
dependent crack, Sa(i) is removed from the set of Sa to avoid an independent crack interacting with multiple dependent cracks. 
Step4: Since the local strength for independent and dependent cracks in an interactive region is known, the range of crack spacing 
[dmin, dmax] between two cracks should be determined. Here, dmax is equal to the critical crack spacing of 2.25 mm, while dmin is 
initially set at 0.05 mm as the minimum crack spacing observed in fatigue tests. Given a pair of Sa(i) and Sb(j), dmin should be 
recalibrated to avoid the fatigue cycles for dependent crack initiation exceeding an expected limit. 

Fig. 10. Collections of local strength for independent cracks (a) and dependent cracks (b), given a statistical distribution of local strength.  
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Step5: Considering the spatial randomness of transverse matrix cracks presented in [11], the matching of local strengths for a pair 
of independent and dependent cracks (Step 3) and the determination of the crack spacing (Step 4), are assumed to be a random 
process. Therefore, given a local strength Sb(j) for the jth dependent crack, 100 times Monte Carlo simulations are performed to 
obtain a Sa(i) and d in the bounded domains. 

3.2.3. Fatigue life of dependent crack initiation 
As the local strength and distance about independent and dependent cracks can be determined, the number of fatigue cycles for a 

dependent crack initiation is further investigated. In an interactive region, the local position of the dependent crack at 90 plies ex-
periences a stress redistribution where the maximum cyclic stress is represented as two consecutive blocks under stress levels of σp1 and 
σp2 (see Fig. 11). 

Prior to the independent crack initiation, the maximum stress at this local position remains constant and is equal to the applied 
maximum stress applied to the 90 plies, denoted as σp1. The fatigue cycles consumed n1 under σp1 is therefore equal to the fatigue life of 
the independent crack initiation Na. Once the independent crack initiates, this maximum stress is redistributed, and can be calculated 
by: 

σp2 = a0 − a1 × a2
d (4) 

Eq.(4) is obtained from the finite element model presented in Section 2.3.1. The fitted parameters a0, a1, a2 are listed in Table 3 for 
different stress levels, where d is the distance of this local position from the independent crack. 

The consumed fatigue cycles n2, under σp2, can be derived based on a strength-based failure criterion that the residual strength σr of 
the local position should decrease to σp2 when the dependent crack initiates. Therefore, the Broutman-Sahu model is adopted here to 
calculate the residual strength of this local position, as expressed by Eq.(5). 

σr = σult −
∑

i

(
σult − σpi

) ni

Ni
(5) 

where σult is the local strength; ni is the fatigue cycles consumed at the applied stress level σpi; Ni is the failure life of this local 
position at a constant stress level σpi, and can be calculated from Eq.(2) and Eq.(3). The reason for using the Broutman-Sahu model here 
is that it omits the additional residual strength tests. Based on this residual strength model, the associated fatigue cycles n2 consumed 
under the redistributed stress σp2 (see Fig. 11), as calculated from 100 times Monte Carlo simulations (Step 5 in Section 3.2.2.), were 
averaged and then summed with n1 to obtain the fatigue cycles consumed for a dependent crack initiation at this interactive region. 

Overall, the prediction of the number of cracks with increasing number of fatigue cycles shown in Fig. 9 should be improved to take 
into account the interaction among cracks. For each statistical distribution of local strengths shown in Fig. 7(b), the interactive region 
and associated fatigue cycles of dependent crack initiation can be determined by the above steps. The number of transverse matrix 
cracks, including both independent and dependent cracks, as the number of fatigue cycles increases can then be updated from the 
results shown in Fig. 9. Based on the gauge length of 80 mm, which corresponds to the damage monitoring area during the tests, the 
updated crack number can be converted to crack density. Fig. 12 shows two sets of crack density evolution with increasing number of 
fatigue cycles from both the modelling (area plots) and experiments (dot plots) at the stress levels of 70% and 63% of UTS. As observed, 
the modelled scatter range covers the most of the experimental data. The negative correlation between crack density and the number of 
fatigue cycles consumed at the saturation is also achieved by the model. Therefore, the empirical parameters involved in the model and 
the proposed modelling strategy are suitable to describe the scattering phenomena of crack evolution. 

Fig. 11. Variations of axial stress and the degradation of residual strength at the local region of 90 plies before the initiation of a dependent crack.  
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3.3. Validation 

To further check the applicability of the proposed model, stress levels at 74% and 66% of UTS, which are not included in the data 
input for the model calibration, are selected here. Fig. 13 shows both modelling results (area plots) and test data (dot plots) for the 
evolution of crack density as the number of cycles increases. As can be seen, the modelled scatter appears to be less qualified than that 
in Fig. 12. Compared to Group 2, more test data is covered in the modelled scatter plot for Group 1. These results could be attributed to 
the availability of more data from Group 1 specimens than that Group 2 specimens during the model calibration. Despite some 
discrepancy between modelling and testing in terms of crack evolution history, the model captures a reasonable scatter range of 
saturated crack density and the predicted error in the fatigue life limits at crack saturation is less than 15%. Therefore, the modelling 
results are in acceptable agreement with the test data, indicating that the proposed model can provide guidance for experimental 
design and probabilistic analysis under different stress levels. 

Table 3 
The fitted parameters in the function of axial stress state at the cracked region of 90 plies for different stress levels.  

Stress level a0 (MPa) a1 (MPa) a2 (mm− 1) 

74% of UTS 91.3933 86.3079 0.1660 
70% of UTS 86.8237 81.9925 
66% of UTS 82.2540 77.6771 
63% of UTS 77.6843 73.3617  

Fig. 12. Comparisons between the experimental results (dot plots) and modelling results (area plots) about the evolution of crack density for the 
two groups of specimens under stress levels at 70% and 63% of UTS. 
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4. Discussion 

In the model, given a local strength distribution of 90 plies, the severity of interaction among cracks and the fatigue cycles for crack 
initiation can be determined according to the local strength distribution-dependent crack ratio relationship and the local strength- 
fatigue life relationship calibrated from test data. Therefore, the statistical distributions of local strengths generated in Fig. 7(b) 
behave as the scatter input to the model to produce the variation in crack evolution among specimens. The agreement between the 
model and test data on the scatter range of crack evolution (see Fig. 12 and Fig. 13) indicates that the simulated scatter input (local 
strength distribution of 90 plies) is reasonable to quantify the initial fatigue resistance to cracking and to describe the stochastic crack 
evolution with increasing number of fatigue cycles among specimens. When moving to high frequency and high stress ratio load 
conditions, the model should take into account other fatigue-induced factors such as cyclic creep and hysteresis heat, which could 
become significant in affecting the fatigue crack resistance [45–48]. Overall, the hypothesis proposed in Section 1, that local strength 
variations can be considered as the dominant scattering source to control the fatigue life for crack initiation at 90 plies among 
specimens, is verified by the present analysis performed under low frequency (5 Hz) and stress ratio (R = 0.1) from both modelling and 
experimental perspectives. Furthermore, by introducing the relationship between the local strength distribution and the dependent 
crack ratio, the present model implicitly takes into account the level of interaction between transverse matrix cracks and delamination: 
specimens with high dependent crack ratios usually show less delamination propagation and vice versa. 

As the local strength distribution of 90 plies is the dominant source of scatter here, the approach to relate the local strength to 
fatigue cycles for the independent crack initiation becomes a key point of the model. The local strength refers to the initial fatigue 
strength, and it can be related to the in-situ strength of 90 plies obtained from static tests. The question then becomes how to obtain the 
relationship between static strength and fatigue life. Since both static strength and fatigue life for a local region of 90 plies cannot be 
obtained experimentally at the same time, this relationship is difficult to derive. As a result, the Strength Life Equal Rank Assumption 
(SLERA) used in Section 3.1.2. is not easy to prove. D’Amore and Grassia [27] suggested that the SLERA can be applied if the scatter of 
the fatigue life is mainly dominated by the scatter of the static strength and other sources of scatter induced during the fatigue tests 
remain negligible. As a final note, it would be useful to find out how to verify this assumption and to fully identify the loading 

Fig. 13. Comparisons between the experimental results (scatter plots) and modelling results (area plots) about the evolution of crack density for the 
two groups of specimens under stress levels at 74% and 66% of UTS. 
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conditions under which it may be valid. 

5. Conclusions 

In this present work, the stochastic evolution of transverse matrix cracks was monitored in situ for CFRP cross-ply laminates 
subjected to tension–tension fatigue loading at different stress levels. Then, a critical crack spacing was obtained by finite element 
modelling to verify the interaction among transverse matrix cracks. Finally, a probabilistic model was developed and validated with 
test data to investigate the stochastic nature of crack evolution among specimens. The main conclusions are as follows:  

1) The proposed probabilistic model can describe the scattering region of the transverse matrix crack evolution for loading cases with 
low fatigue test frequency (5 Hz) and stress ratio (R = 0.1).  

2) The variation in local strengths at 90 plies is the dominant source of scatter among specimens during fatigue testing, which governs 
the initial fatigue resistance to cracking and determines the accumulation of transverse matrix cracks.  

3) The dependent crack ratio can be used to quantify not only the severity of the interaction between independent and dependent 
cracks but also the level of interaction between transverse matrix cracks and delamination. 

The modelling strategy proposed in the current work, by considering the independent and dependent crack evolution separately, 
can be used to predict the evolution of tunnel cracking of other cross-ply configurations and materials under fatigue loading. In this 
way, more physical phenomena observed in experiments can be considered during the modelling of crack evolution under fatigue 
loading. Due to a relatively thick 90 block of the cross-ply laminates used in the present work, a small number of dependent cracks 
occurred during fatigue testing, so a one-time interaction between independent and dependent cracks is considered in the proposed 
model. However, for cross-ply laminates with different 90 block/ply and materials, the model should be updated to consider the 
possible multiple-time interaction among cracks for a wider application. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Data availability 

The test data required to reproduce the above findings are available to download via the 4TU.ResearchData repository at https:// 
data.4tu.nl/articles/_/12927974. 

Acknowledgements 

The authors would like to thank the financial supports of China Scholarship Council (No.201706290028). 

References 

[1] R.C. Alderliesten, Critical review on the assessment of fatigue and fracture in composite materials and structures, Eng. Fail. Anal. 35 (2013) 370–379, https:// 
doi.org/10.1016/j.engfailanal.2013.03.022. 

[2] D. Ma, P. Verleysen, S. Chandran, M. Giglio, A. Manes, A modified peridynamic method to model the fracture behaviour of nanocomposites, Eng. Fract. Mech. 
247 (2021), 107614, https://doi.org/10.1016/j.engfracmech.2021.107614. 

[3] X. Li, J. Kupski, S. Teixeira De Freitas, R. Benedictus, D. Zarouchas, Unfolding the early fatigue damage process for CFRP cross-ply laminates, Int. J. Fatigue 
(2020) 140, https://doi.org/10.1016/j.ijfatigue.2020.105820. 

[4] K.L. Reifsnider, R. Jamison, Fracture of fatigue-loaded composite laminates, Int. J. Fatigue 4 (1982) 187–197, https://doi.org/10.1016/0142-1123(82)90001-9. 
[5] H. Pakdel, B. Mohammadi, Stiffness degradation of composite laminates due to matrix cracking and induced delamination during tension-tension fatigue, Eng. 

Fract. Mech. 216 (2019), 106489, https://doi.org/10.1016/j.engfracmech.2019.106489. 
[6] J.A. Glud, J.M. Dulieu-Barton, O.T. Thomsen, L.C.T. Overgaard, Fatigue damage evolution in GFRP laminates with constrained off-axis plies, Compos. A Appl. 

Sci. Manuf. 95 (2017) 359–369, https://doi.org/10.1016/j.compositesa.2017.02.005. 
[7] H. Pakdel, B. Mohammadi, Characteristic damage state of symmetric laminates subject to uniaxial monotonic-fatigue loading, Eng. Fract. Mech. 199 (2018) 

86–100, https://doi.org/10.1016/j.engfracmech.2018.05.007. 
[8] M. Saeedifar, H. Hosseini, The Effect of Interlaminar and Intralaminar Damage Mechanisms on the Quasi - Static Indentation Strength of Composite Laminates, 

Appl. Compos. Mater. (2023), https://doi.org/10.1007/s10443-023-10123-x. 
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